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2

ABSTRACT: New doped inorganic nanocrystals (NC) consisting on iron oxide and other metal 

integrated into the structure have been synthesized in one-step by adapting the oxidant 

precipitation synthesis route for magnetite. Different metals have been chosen to confer extra and 

unique properties to the resulting magnetic heteronanostructure: Co and Gd for enhancing 

transversal and longitudinal relaxivities for Magnetic Resonance Imaging (MRI), and Bi and Au 

for achieving X-Ray absorption for CT imaging. Apart of that, gold optical properties are 

interesting for photothermal therapy and iron oxides for magnetic hyperthermia. All metals have 

been incorporated during the synthesis to the magnetite structure in different ways: by forming a 

solid solution, by modifying the surface of the NCs or by cocrystallization with the magnetite. The 

nanostructure formed in each case depends on the ionic radius of the secondary metal ion and the 

solubility of its hydroxide that control the co-precipitation in the initial steps of the reaction. 

Magnetic properties and imaging capabilities of the heteronanostructures have been analyzed as a 

function of the element distribution. Due to the synergistic combination of the different element 

properties, these magnetic heteronanostructures have great potential for biomedical applications.

INTRODUCTION

The combination of materials with different physical properties in one single structure is a 

common approach for the creation of novel systems with improved functionalities.1-3 Among them, 

the synthesis of doped magnetic nanoparticles (NP) based on iron oxide attracts much attention 

due to the potential to explore the special functions of two or even more metal elements in 

biomedicine in a matrix of low toxicity such as the iron oxide.4-7 Depending on the materials and 

synthesis method, different structures may appear like solid solutions, doped oxides, core/shell or 
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3

pudding-like particles, etc. (Figure 1), which determines the properties and applications of the 

nanomaterials. Interesting metal elements that will be tested in this work are Co, Gd, Bi and Au. 

Doping, which involves the intentional addition of appropriate atoms or ions into the host 

materials, is one effective way of improving the physical/chemical characteristics of the parent 

materials to obtain desirable properties.8 Particles of various spinel ferrites can now be routinely 

prepared using the coprecipitation method by partial or complete replacement of Fe2+ ions in 

magnetite (Fe3O4) nanocrystals with other divalent transition metal ions (Co2+, Ni2+, Mn2+) 4, 9-11 

or with lanthanide ions (Gd3+, Eu3+
, Dy3+). 7, 12-16

In the case of Co, it is incorporated by partial or complete replacement of Fe2+ ions in magnetite 

(Fe3O4) nanocrystals.4, 9, 17-18 The complete replacement of Fe2+ gives rise to cobalt ferrite that 

exhibits a cubic spinel structure with a ferromagnetic nature, 19-20 along with interesting electronic, 

magnetic, optic and catalytic properties.21-24 

Figure 1. Schematics showing different types of doped nanoparticles: (a) core/shell, (b) phase-

segregated, (c) solid solution and (d) coalesced nanoparticles.3

Magnetic NPs engineered by Gd doping have also attracted considerable attention due to their 

wide applications in biology, catalysis and solar cells,7-8, 12 showing intriguing properties based on 

its strong paramagnetic character coming from its seven unpaired 4f electrons (Gd3+). This 

property can be advantageously exploited for MRI25-26 producing T1-T2 dual modal magnetic 

resonance imaging (MRI) contrast agents.27-33 Gadolinium-based agents still have relatively low 

sensitivity, so a high dose of contrast agents should be used. In addition, free gadolinium ions 
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4

leached from the complexes can have toxic side effects such as nephrogenic systemic fibrosis 

(NSF).34 Moreover, most gadolinium complexes are designed to have a very short circulation time, 

which precludes high-resolution and/or targeted MRI for longer times after injection.35 The 

advantage of using dual nanoparticles for MRI is that they have a longer half-life in blood, so they 

allow not only to detect a lesion but also to monitor the evolution over time of a given treatment, 

greatly improving the traceability of the nanoparticles in the organism.36 In addition, the presence 

of superparamagnetic nanoparticles of iron oxide allows the application of a local treatment of 

magnetic hyperthermia, so it would be a theranostic material, since it would not only allow the 

detection of a tumor but also its treatment. The magnetic hyperthermia properties of gadolinium-

doped magnetite have received much less attention.37-38

Other two interesting nanoparticles proposed as X-ray contrast agents are bismuth and gold 

nanoparticles, which could overcome some significant limitations of iodine-based agents. In both 

cases, nanoparticles are expected to be cleared from the blood circulating system more slowly than 

iodine agents, permitting imaging for longer time. Previous works described new 

magnetite/bismuth oxide core/shell magnetic nanoparticles with great potential in cancer therapy. 

Such particles combine the ability to image a specific tumor area by MRI and tomography (CT), 

the ability to target it under the influence of a magnetic field and the treatment by 

magnetothermia.39-41 

In the case of gold, we expect higher X-ray absorptivity than iodine with less bone and tissue 

interference achieving better CT contrast with lower X-ray dose. Ideally, gold nanoshells on 

magnetic nanoparticles should be thin enough to induce minimal alteration of the magnetic 

properties of the magnetite core. Gold-coated NPs can provide a number of additional advantages, 

such as near-infrared (NIR) absorption, photon scattering, and the preservation of the core 
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magnetic properties.42 Moreover, due to the absorption of NlR of the nanoshell its illumination by 

a laser also generates heat. This property helps gold shell to act as a potent material for optical 

hyperthermia also.43-45 Another class of gold-magnetite composites has also been reported 

involving the attachment of discrete gold nanoparticles onto magnetite without forming a full 

coating.46-47 Such composites may be useful in applications such as protein separation, optical 

imaging or catalysis, where a full coating is not necessarily required and has the advantage of 

having not only the gold surface but also the iron oxide surface partially available for further 

functionalization.

In this work we propose a single step green chemistry process based on the oxidative 

precipitation method39-40 for the preparation of doped magnetic nanostructures based on iron oxide 

and containing Co, Gd, Bi and Au as secondary metal component. We analyzed the final structure 

of the bimetallic magnetic nanocrystals to localize, quantify and determine the distribution of the 

metals, i.e. if they are forming a solid solution, core/shell or pudding-like particles. Finally, we 

studied the magnetic and optical properties as a function of the structure of the nanoparticle and 

the possible use of these materials for imaging applications such as MRI or CT contrast agents.   

EXPERIMENTAL SECTION

Doped magnetic nanocrystals were obtained by ageing at 90 ºC the amorphous hydroxide formed 

by addition of acidic solutions of FeSO4 and variable amounts of Co(NO3)2,  Bi(NO3)3, HAuCl4, 

or  Gd(NO3)3 to a NaOH solution in presence of sodium nitrate that actuates as mild oxidant. The 

process was carried using hydroalcoholic solution 25% w/w as solvent and in a glove box under 

nitrogen. Previous works explored the effect on the particle size of the [OH-] excess48 for the pure 

iron oxide case and the addition of bismuth to the reaction.39 In all the cases the iron (II) and nitrate 

concentrations were 0.2 M. The base excess was computed considering the formation of ferrous 
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6

and the secondary metal hydroxides as well as the base needed to neutralize the acid used in the 

dissolution of the metallic salts  (usually 0.01M H2SO4) (Equation 1).

[𝑂𝐻 ― ]𝐸𝑋𝐶𝐸𝑆𝑆 = [𝑁𝑎𝑂𝐻] ― 2[𝐹𝑒2 + ] ― 𝑚[𝑀 +𝑚] ― 𝑛[𝐻𝑛 𝐴] ― 𝑝[𝐻𝑝𝑀](1)

where n is 1 or 2 depending on the monoprotic or diprotic character of the acid used to dissolve 

the iron salt, m is the oxidation state of the metal used and p is the number of acid protons of the 

precursor salt (case of  HAuCl4 were p=1).  For each case the [NaOH] was adjusted to keep 

constant the [OH-]EXCESS=0.02. 

Figure 2. Scheme of the experimental synthesis of doped magnetic nanocrystals by oxidative 

precipitation.

The mixing of the metal solution and the alkaline-oxidation was carried out under stirring, 

obtaining a final volume of 250 ml.  The precipitation of the green rust was completed by overhead 

stirring for 15 min. After this time, the reaction intermediate was aged at 90 ºC for 24 h without 

agitation to obtain the doped magnetic nanocrystals (Figure 2). Ageing time was fixed at 24 h in 

order to reach conditions close to the equilibrium. Finally the system was left to cool and the 

nanocrystals were separated by magnetic decantation and washed with distilled water outside the 

glove box. 
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7

In most cases the secondary metal salt could be dissolved in 25 ml of 0.01 M HCl, H2SO4, or 

HNO3 depending of the salt employed. However, Bismuth Bi(NO3)3 was dissolved in 25 ml of  

1.73 M HNO3 due to the easy hydrolysis of Bi3+ and HAuCl4 was dissolved in 25 ml of water, 

separately to prevent oxidation of the iron (II) sulphate (Figure 2). Previous experiments 

demonstrated that lower polydispersity was obtained when the two metal solutions were added 

simultaneously to the NaOH+NaNO3 solution. However, HAuCl4 was added shortly after the 

precipitation of the green rust, to favor the hydrolysis of Au3+ and limit its reduction to non-reactive 

Au0 by ionic Fe2+.    

The samples were studied by X-ray powder diffraction performed in a Bruker D8 Advance 

powder diffractometer using Cu Kα radiation with an energy-discriminator (Sol-X) detector. The 

patterns were collected between 10° and 70° in 2θ. The XRD spectra were indexed to an inverse 

spinel structure. The average crystallite size of the magnetic core was calculated by Scherrer’s 

equation using the half width of the (311) X-ray diffraction peak of magnetite using the utilities of 

the automatic powder diffraction computer program (APD) from Phillips. The error in the 

crystallite sizes obtained by use of the Scherrer’s equation is ±0.1 nm and is related to the 

instrumental line width of the diffractometer (Δ2θ = 0.11°). 

Particle size and shape were determined by transmission electron microscopy (TEM) using a 

200 keV JEOL-2000 FXII microscope. TEM samples were prepared by placing one drop of a 

dilute suspension of maghemite nanoparticles in water on a copper grid covered with a perforated 

carbon film and allowing the solvent to evaporate slowly at room temperature. The particle size 

distribution was evaluated by measuring the largest internal dimension of at least 300 particles. 

Afterward, the distribution was fitted to a log normal distribution by obtaining the mean size and 

the polydispersity index (PDI) defined as the quotient between the standard deviation (σ) and the 
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8

mean size. Atomic resolution scanning TEM (STEM) images and high angle annular dark field 

(HAADF) images were acquired in a Nion UltraSTEM200 equipped with a spherical aberration 

fifth-order corrector and a Gatan Enfinium electron energy-loss spectrometer (EELS). A Nion 

UltraSTEM100 operated at 60 kV and equipped with a Nion aberration corrector and a Gatan 

Enfina spectrometer was also used.

The magnetic characterization of the powders was carried out using a vibrating sample 

magnetometer MagLabVSM (Oxford Instrument) with a maximum field of 50 kOe. Coercive field 

and saturation magnetization values were obtained from the hysteresis loops recorded at room 

temperature (250 K) after applying a magnetic field of ±5 T. We evaluated the saturation 

magnetization values (Ms) expressed in Am2/KgFe by extrapolation to infinite field using the linear 

M versus 1/H plot. 

Optical properties of the gold doped magnetic nanoparticles were measured in water dispersion 

(0.1 mgFe/mL) with a Varian Cary Bio UV-Visible spectrophotometer over the wavelength range 

from 450 to 700 nm using a 1 mm wide quartz cuvette. 

In order to evaluate the efficiency of the suspensions as contrast agents for MRI, measurements 

of the relaxation times of water protons (both T1 and T2) in the presence of magnetic nanoparticles 

were carried out in a time-domain NMR benchtop system MINISPEC MQ60 (Bruker) at 37º and 

1.5 T using standard methods. The relaxivities r1 and r2 (s-1·mMFe
-1) were obtained from the 

measured longitudinal and transversal relaxation times T1 and T2 of gelated (agar 0.5%) 

dispersions of samples at concentrations below 1 mMFe from the linear plot of 1/T1 and 1/T2 as a 

function of the concentration.

CT phantom imaging was performed with a nanoPET/CT small-animal imaging system (Mediso 

Medical Imaging Systems, Budapest, Hungary). MicroCT was performed for attenuation 

Page 8 of 34

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9

correction. Images were reconstructed using a Tera-Tomo 3D iterative algorithm. Acquisition was 

performed with a helical scan at 65 Kv. Acquisition and reconstruction was performed with 

proprietary Nucline software (Mediso, Budapest, Hungary). Image analysis was performed using 

Horos software (Horos is a free and open source code software (FOSS) program that is distributed 

free of charge under the LGPL license at Horosproject.org and sponsored by Nimble Co LLC d/b/a 

Purview in Annapolis, MD USA).

Heating capacities of Co and Gd doped nanocrystals in colloidal form were measured using the 

commercial ac field applicator DM100 by nanoscale Biomagnetics© in the frequency range from 

416 to 828 kHz and magnetic fields (H0) of 20 to 24 kA/m at an iron concentration of 5 mg/ml. 

Experiments were carried out within a thermally-insulated working space of about 1 cm3, using a 

closed container of 0.5 ml volume conditioned for measurements in the liquid phase. The 

temperature of the colloids was measured using an optic fiber sensor incorporated in the equipment 

and registered using a computer. Prior to turning the magnetic field on, the sample temperature 

was recorded for about 30 s to ensure thermal stability and to have a baseline for the calculation 

of the specific absorption rate (SAR). As the field was turned on, the temperature increase was 

measured during 300 s. By performing a linear fit of the data (temperature versus time) in the 

initial time interval, the slope ΔT/Δt can be obtained in the first few seconds after turning the 

magnetic field on. The time range was selected such as when the slope is maximum, typically 

during the first 30 s. Then, SAR values (W/gFe) can be calculated using Equation 2 where Cliq is 

the specific heat capacity of water (4.185 J/g·K) and cFe is the Fe weight concentration in the 

colloid.

𝑆𝐴𝑅 = (𝐶𝑙𝑖𝑞

𝑐𝐹𝑒)(Δ𝑇
Δ𝑡)                                                                (2)

RESULTS AND DISCUSSION
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10

Composition. The doped magnetic nanocrystals obtained in this work present X-Ray diffraction 

patterns that correspond to a inverse spinel structure similar to magnetite (Figure 3). Additional 

peaks corresponding to the secondary M2O3 oxide (M=secondary metal) or Au nanocrystals 

appeared for atomic ratios greater than 5 %at. Only in the case of 20 %at cobalt, we observed a shift 

of the peaks consistent with the formation of a solid solution CoxFe3-xO4. 
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Figure 3. X-ray diffraction patterns of doped magnetite nanocrystals with different secondary 

metal content ((M/Fe)atx100).

The proportion of secondary metals follows closely the preexistent in the reactant mixture as 

determined by ICP (Table 1). This result indicates that both iron and secondary metal coprecipitate 

during the reaction process. The differences between the measured and the estimated values in the 
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11

case of gold nanocrystals are probably due to the loss of not bonded gold during the washing 

process. 

TEM micrographs of different doped magnetic nanocrystals prepared with atomic percentages 

of secondary metal between 2 and 20 %at show nanoparticles with sizes ranging between 26 and 

51 nm in diameter (Figure 4). Size distributions are included in the SI (Figure S1).

Figure 4. TEM micrographs of doped magnetite nanocrystals with different secondary metal 

content.

Table 1. Composition, particle (TEM) and crystal (XRD) size and magnetic properties 

(MS=Saturation magnetization and HC=Coercivity) for the doped magnetic nanocrystals obtained 

by varying the secondary metal concentration. [M] is referred to Bi, Gd, Co and Au, respectively. 

%M0 and %Mexp are given in atomic ratio ((M/Fe)at x 100). M0 refers to the initial ratio and Mexp 

to the analytical ratio obtained in the final product measured by ICP-OES.
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Id. %at
M0

%at 
Mexp

TEM 
Size 
(nm)/P
DI

XRD 
Size 
(nm)

MS 
(Am2/k
gFe)

Hc 
(kA/
m)

Fe2O3 - - 21/0.23 21.4 78 7

Bi2 2 2.2 29/0.36 28.6 119 8

Bi20 20 19.0 19/0.60 19.8 76 2

Gd2 2 1.6 42/0.31 40.9 123 9

Gd5 5 4.0 51/0.40 50.6 119 10

Co2 2 2.2 30/0.27 28.6 122 33

Co5 5 5.0 26/0.24 25.4 126 78

Au2 2 2.3 34/0.34 34.2 113 8

Au5 5 4.3 31/0.39 29.0 112 8

Au20 20 16.8 31/0.46 29.1 58 9
 

Table 1 also summarize the effect of varying the secondary metal concentration ((M/Fe)at·100) 

on particle size. In general, particle size decreases as the secondary metal concentration increases 

except for the case of Gd, indicating that Gd is not interfering in the iron oxide nucleation and 

growth, and most probably is forming a shell on the iron oxide nanoparticle as previously observed 

by other synthesis methods.49 Crystal size calculated by XRD from the width of the (311) peak 

agrees well with the TEM size, which strongly suggests that each particle is a single crystal.   

Element distribution. Figure 5 shows HAADF images of 2 %at Bi, Gd and Co samples. In this 

figure the heavier Bi and Gd atoms (not distinguishable under ordinary TEM observation) appear 

brighter than Fe atoms. The shell that concentrates most of the Bi or Gd atoms appears 

discontinuous with the Bi and Gd atoms distributed as isolated surface atoms or in small clusters. 

In the case of Bi, the clusters were presumably bismuth oxide, since additional peaks 

corresponding to Bi2O3 are observed in Bi20 X-Ray pattern (Figure 3). In contrast to that, cores 
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13

appear as well-ordered magnetite crystals (the crystalline planes and the absence of defects are 

clearly observed in high-resolution micrographs (Figure 5)). 

STEM-EELS measurements were also performed and the spectra provide an accurate 

representation of the local composition of the material. This spatially-resolved compositional 

analysis is essential in determining the location of Gd and Co in the nanocrystals. The EEL 

spectrum (Figure 5) confirms the presence of Gd and Co in the samples; the former is specifically 

distributed on the surface of the nanocrystals while the latter is uniformly distributed inside the 

nanocrystal forming a solid solution. 
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Figure 5. HAADF images of 2%at Bi, Gd and Co nanocrystals (iron atoms or crystalline planes 

are observed in the insets) along with EEL spectrum and elemental distributions obtained from 

EEL spectrum images of 2%at Gd and 2%at Co nanocrystals (O: blue, Fe: red, Gd: green, Co: cyan).

Iron oxide-gold nanocrystals present irregular pudding-like morphologies in which gold 

nanoparticles having more contrast. This microstructure indicates that gold shows no affinity 
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towards the magnetite nanoparticles, but simply disturb their growth and remain attached to their 

surfaces (Figure 6). The crystal sizes calculated from the gold peak (111) are 14 nm, 18 nm and 

27 nm for the samples Au2, Au5 and Au20, respectively while iron oxide nanoparticles have an 

average size of around 30 nm.

Figure 6. TEM images of Au5 sample at low and high magnification.

Formation mechanism. The co-crystallization of Bi, Gd, Co, and Au with magnetite under the 

conditions employed in the present work has resulted in: (1) The formation of a core-shell 

nanostructure, as it is the case for Bi and Gd, (2) the formation of a solid solution as in the case of 

Co, and (3) the decoration of the surfaces or mixture of particles of different nature, that is the case 

of Au. In order to understand these differences, we consider the differences in ionic radius and 

reactivity of these ions. 

In the Table 2 and Figure 7 the physicochemical characteristics of all the ions used in this study 

are summarized. The similitude of the ionic radius of Fe2+ and Co2+ justifies the formation of a 

solid solution. Other cations present much larger ionic radius, like Gd3+ 0.93 Å, Bi3+ 0.96 Å and 

Au3+ 0.85 Å that limit the possibility of the solid solutions formation. The high positive reduction 

potential of Au3+ (much bigger than nitrate) makes it the most powerful oxidant in the media with 

the immediate production of metal gold nanoparticles, that due to its low reactivity could only 

decorate the surface of magnetite or form a particle apart.
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Table 2. Ionic radius, solubility product of the hydroxide and reduction potential of the metal 

cations involved in the synthesis of doped magnetic nanocrystals.50-51 

Fe Bi Gd Co Au

rM3+ (Å) 0.64 0.96 0.93 0.63 0.85

rM2+ (Å) 0.74 0.72
Kps
M(OH)3

6.3·10-38 3.2·10-40 8.9·10-23 4·10-45 1·10-53

Kps 
M(OH)2

7.9·10-15 2.5·10-16

Reduction  
Potential 
(V)

0.77
(+3,+2)

0.308 
(+3,0)
0.2 
(+3,+1)

-2.28
(+3,0)

-0.28
(+2,0)

1.498
(+3,0)

NO3
- + H2O +2e-  = NO2

- +2OH-  Eo=0.01 V

The solubility product values were obtained from http://www.chemeddl.org/services/moodle/ 
media/QBank/GenChem/Tables/KspTable.htm

In the case of bismuth, gadolinium and cobalt ions, they effectively co-precipitate as hydroxides 

with Fe(OH)2 and evolve parallel towards the final product, forming either a core/shell 

nanoparticle as it is the case of Bi and Gd, or a solid solution in the case of Co, that seems to not 

alter its oxidation state during the process. Since Co2+ and Fe2+ form hydroxides with similar 

solubility product constants, an exchange of Co2+ for Fe2+ in the green rust (intermediate reaction) 

is expected to take place.52 Consequently, very homogeneous nanocrystals in size and shape were 

obtained. 

On the other hand, differences in the quality of the coating between Bi and Gd seem related to 

the match of the solubility product of the metal hydroxide with the Fe (III). In this sense, bismuth 

with better match forms more homogeneous coatings than gadolinium (Figure 5). More subtle 

differences come from the hydrolysis behavior of the different metals represented in the Figure 7. 

Again, bismuth behaves differently than the rest of the ions due to his unique ability to form 
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positive species BiO+ in strong alkaline conditions. This could be relevant if we consider that all 

colloidal forms of iron hydroxides present a negative surface neat charge at pH>9. Bismuth cations 

with positive charge will be attracted similarly to FeOH+ to the growing magnetite nuclei, altering 

their growth rate and reducing the final nanoparticle size as observed in this study and previously39 

at low Fe concentrations. The strong hydrolysis and extremely low solubility of the hydroxides are 

responsible for the final nanostructure consisting of a bismuth layer on the surface of the magnetite 

core. From the HAADF images, it can be observed that bismuth atoms are not homogeneously 

distributed on the particle surface. Similar samples were studied by X-ray absorption spectroscopy 

(XAS) and revealed that the Bi atoms do not form a well-defined Bi oxide structure and that the 

bismuth shell consists in clusters [BiO6-x(OH)x] bonded by multiple hydroxyl bridges to the 

magnetic core.40 However, when increasing the proportion of Bi up to 20% we get more 

polydispersed particles and we do not achieve such a drastic reduction in particle size as previously 

observed.39 

Figure 7. Stable form of the metal ions in solution as a function of pH at 10-10 M and 298 K. The 

two vertical lines mark the pH range of the magnetite crystallization.53

In the case of gadolinium, it seems that this element has been left out of the magnetite structure, 

decorating the surface of the nanoparticles as in the case of Bi, which is in accordance with the 
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results obtained by Li et al.49 However, it has been reported that gadolinium may be incorporated 

into the structure of magnetite with no significant structural modifications but decreasing the 

magnetic moment.8, 38, 54-55 Our results do not support this incorporation.

Gold decorated magnetite nanoparticles have up to our knowledge not prepared previously in 

one step. Most of the studies were focused in the obtaining of core-shell nanostructures of iron 

oxide/gold involving at least two steps (the synthesis of iron nanoparticles and subsequent gold 

coating) which could adversely affect the yield and the reproducibility of the process.42, 46-47, 56-57 

However, the achieved association could be viewed more as an intimate mixture than as a core-

shell nanostructure.   

In the case of magnetite samples prepared in the presence of Au3+ and Gd3+, goethite (a pure 

Fe(III) phase) appears as secondary phase (figure S2). It is commonly accepted that the presence 

of goethite in the synthesis of magnetite starting from a Fe(II) precursor is related to a fast 

oxidation, taking into account that prior oxidation, dehydroxylation of iron complexes should 

occur.58 In the preparation of pure magnetite by oxidative precipitation the appearance of goethite 

as secondary phase is related to the presence of trace amounts of oxygen that accelerates the 

oxidation of Fe2+. In the case of the doped samples, the presence of goethite was due to the oxidant 

cation Au3+ substituting the oxygen. Gadolinium ion is not oxidant and its relation with the 

formation of goethite is unclear. 

Magnetic properties. In Figure 8 are plotted the magnetic parameters at room temperature for 

the doped magnetic nanoparticles (hollow symbols) and pure magnetite nanoparticles for 

comparison (dense symbols). In general, the saturation magnetization of the doped nanoparticles 

is similar to the magnetite nanoparticles of similar size except for heavily enriched NPs in the 

secondary metal (Bi20 and Au10). Saturation magnetization increases with particle size from 110 

Page 18 of 34

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

Am2/KgFe to 125 Am2/KgFe for 20 nm and 90 nm particles, respectively. However, the coercivities 

are higher for the doped NPs than those for pure magnetite, especially for Co5. The coercivities of 

nanoparticles containing Gd, Bi and Au are independent of the secondary metal ratio but dependent 

on the particle size. It means that the presence of the secondary metal affects the magnetic 

anisotropy of the particles increasing it, either because of the increase of the crystalline anisotropy 

(Co) or because of the reduction of surface defects (Bi, Gd). 
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Figure 8. Comparison among the saturation magnetization (a) and coercivities (b) of doped 

nanocrystals (hollow symbols) and pure magnetite nanocrystals obtained by the same method 

(dense symbols) at room temperature. 
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In the case of samples containing Co, saturation magnetization values are below the saturation 

magnetization of bulk cobalt ferrite but its value increases with cobalt content in spite of some 

reduction in particle size. The obtained results are in accordance with previous observations on Co 

doped magnetite nanoparticles where MS shows a maximum together with the magnetic anisotropy 

at x=0.6 for CoxFe3-xO4.59 This maximum was not observed by Sathya and coworkers9 that reported 

a continuous decrease of MS as the cobalt proportion increased from x=0.1 to x=1. This has been 

interpreted due to the Co2+ ions, being smaller that the Fe2+ ions, tend to occupy both the octahedral 

sites and the smaller tetrahedral sites, breaking the antiferromagnetic ordering among the Fe3+ 

ions.9 Our samples with Co exhibit a  coercivity increase from 33 kA/m up to 78 kA/m with the 

cobalt content in accordance with the reported increase of this magnitude from x=0.1 to x=0.5 at 

which the maximum HC value is obtained.9, 59-60

Imaging capabilities. Doped magnetic NCs containing Co and Gd have been evaluated as MRI 

contrast agents. Study of the relaxometric properties was carried out by measuring the proton 

relaxation times (T1 and T2) at various concentrations of iron and calculating relaxivity values (r1 

and r2). In Figure 9, it can be observed that doped nanocrystals present maximum r1 and r2 for 30 

nm core size. Larger nanocrystals showed a decrease of both r1 and r2 values. In all samples r2 

values, which are responsible for the negative contrast of the nanoparticles, are of the same order 

or greater than those reported for commercial contrast agents and other superparamagnetic iron 

oxide nanocrystals synthesized by the decomposition method.61-62

The X-ray attenuation was measured on phantoms of different concentrations of Bi20 in water 

and compared with standard iodine-based contrast (Figure 8). As expected, the Bi20 sample 

presents higher opacity than Xenetix® measured by the slope of the linear plot of the CT numbers 

(HU) against the concentration, as previously reported.41
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Figure 9. a) NMR relaxivities, r1 and r2, vs. particle size for Co and Gd doped nanocrystals. b) X-

ray attenuation of sample Bi20 as a function of the bismuth concentration at 65 kV in CT numbers 

(HU), HU=1,000(μ-μw)/μw, where μ and μw are the linear absorption coefficients of the sample 

and water, respectively. The iodine-based commercial sample Xenetix 350® (Gerbet, France) was 

shown for comparison. c) UV-Vis absorption spectra comparing pure magnetite and samples 

containing different amount of gold.

Finally, we present the UV-Visible absorption spectra of Fe3O4/Au nanoparticles in Figure 9. 

Samples with Au content above 5% showed a broad band corresponding to the surface plasmon 

resonance (SP) of the gold particles at around 540 nm. This wavelength corresponds to pure gold 

particles of 60 nm, however since the gold particles present in our samples are much smaller we 

assumed that this red shift is due to the interaction between gold and magnetite nanoparticles. 

Similar quenching effect has been previously observed for luminescent and magnetic NPs.63-64
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Heating capacity. The heating power of Co and Gd nanocrystals is presented in Figure 10. SAR 

values are obtained by fitting the experimental heating curves and normalizing to the iron mass 

(W/gFe). From these results it can be observed that in all cases, the highest SAR value is obtained 

when the samples are measured at 710 kHz and 24 kA/m (H0·f=1.7·1010 A/m·s, close to the 

recommended value 5·109 A/m·s). Samples doped with Co present SAR values lower than samples 

doped with Gd, which could be related to the larger anisotropy of the Co samples (Hc=33 and 78 

kA/m for Co2 and Co5, respectively) and the low amplitude of the magnetic field used in this 

experiment. These results support the fact that Co is incorporated in the magnetite structure while 

Gd is attached at the nanocrystal surface, in contrast to previous results.8, 38, 54-55
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Figure 10. SAR values of aqueous dispersions of Co doped samples (a) and Gd doped samples (b) 

measured at 24 kA/m (419, 542 and 710 kHz) asn at 20 kA/m (829 kHz).

CONCLUSIONS

New doped magnetic nanocrystals consisting of iron oxide and other metal integrated into the 

structure in different ways (forming a solid solution, forming structures core/shell decorating the 

surface or simply nano-intermixed) have been synthesized by a simple aqueous route which can 

be achieved in one step. The nanostructure formed in each case is controlled by the ionic radius of 

the secondary metal ion and the solubility of the metal hydroxide that controls the degree of 

simultaneity of the precipitation of both hydroxides in the initial steps of the reaction. 
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Important points that have been concluded from this work: (1) The introduction of an extra 

element is successful in all cases below 5 %at reproducing the initial proportion of the mixture. (2) 

Above 5 %at good results have been obtained with bismuth and gold but with the appearance of a 

secondary phase of goethite in the last case. (3) The particle size generally decreases with doping, 

except for gadolinium. (4) Magnetic properties of the doped systems are not damaged by the 

cocrystallization of any of the metal tested below the 5 %at of doping. All samples present lower 

coercivities due to surface effects but Co that produces an enhancement of the coercivity due to 

their increase in magnetic anisotropy. (5) The UV absorbance of nanocrystalline gold has been 

observed in gold decorated magnetite nanocrystals. (6) Samples doped with Gd presents higher 

SAR values than samples doped with Co for the measurement conditions used. (7) Samples Co2 

and Bi20 present good properties as contrast agents for MRI and CT, respectively. 
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