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ABSTRACT: In this work, we study by means of simulations of hard spheres the equilibrium between
a spherical solid cluster and the fluid. In the NVT ensemble we observe stable/metastable clusters of the
solid phase in equilibrium with the fluid, representing configurations that are global/local minima of the
Helmholtz free energy. Then, we run NpT simulations of the equilibrated system at the average pressure of
the NVT run and observe that the clusters are critical because they grow/shrink with a probability of 1/2.
Therefore, a crystal cluster equilibrated in the NVT ensemble corresponds to a Gibbs free energy maximum
where the nucleus is in unstable equilibrium with the surrounding fluid, in accordance with what has been
recently shown for vapor bubbles in equilibrium with the liquid. Then, within the Seeding framework, we
use Classical Nucleation Theory to obtain both the interfacial free energy γ and the nucleation rate. The
latter is in very good agreement with independent estimates using techniques that do not rely on Classical
Nucleation Theory when the mislabeling criterion is used to identify the molecules of the solid cluster. We
therefore argue that the radius obtained from the mislabeling criterion provides a good approximation for the
radius of tension, Rs. We obtain an estimate of the Tolman length by extrapolating the difference between
Re (the Gibbs dividing surface) and Rs to infinite radius. We show that such definition of the Tolman length
coincides with that obtained by fitting γ versus 1/Rs to a straight line as recently applied to hard spheres.

INTRODUCTION

The thermodynamics of systems having two phases
with a curved interface is a fascinating topic that has
been largely discussed by the scientific communities in
the last decades1–18. A system with a fixed number of
particles (N), volume (V ), and temperature (T ) can ex-
hibit a stable/metastable spherical interface between the
solid and liquid phase corresponding to a global/local
minimum of the Helmholtz free energy (F )2,5,15,19–30.
Thermodynamic properties of metastable states can be
studied as long as there is a free energy barrier separat-
ing them from the equilibrium one, and the relaxation
time of the system is shorter than the time required to
overcome the free energy barrier31–33. According to the
thermodynamic description of Rowlinson and Widom34

for planar interfaces at equilibrium, the value of the inter-
facial free energy γ is unique while for curved interfaces
depends on the choice of the dividing surface between
the two phases7,34. There are two reasonable choices:
the Gibbs dividing surface with radius Re and surface
free energy γe (where the excess number of particles is
zero), and the surface of tension with radius Rs and sur-
face free energy γs satisfying the Laplace equation, which
for spherical interfaces reads ∆p = 2γs/Rs, being ∆p the
pressure difference across the interface35.

Whenever thermodynamics enters in action, one can

∗)Electronic mail: cvega@quim.ucm.es

also use Statistical Mechanics to get a microscopic in-
sight. In fact, Kirkwood and Buff have shown that for
a planar interface between fluid phases, it is possible to
evaluate γ (which is unique) from a mechanical route
by computing the pressure tensor36. This approach has
been adopted in several simulation works, following the
pioneering study of Chapela et al.37. However, there are
cases where there is no rigorous mechanical route to γ, in-
cluding the planar fluid-solid38,39, curved fluid-fluid, and
curved solid-fluid7,10,34,40 interfaces. The only way to cal-
culate γ in these cases requires the evaluation of the total
Helmholtz free energy of the system F . Not surprisingly,
the lack of a mechanical route to γ results in quite infre-
quent experimental approaches to measure γ for planar
fluid-solid interfaces (ice-water interface being an excel-
lent example of the situation41,42), if not entirely absent
or dubiously rigorous as in the case of curved interfaces.

After this frustrating situation, several routes to γ for
curved interfaces have been proposed. The first route
consists in assuming that the value of γ for the curved
interface is that of the planar interface. This is de-
noted as the capillarity approximation. The approach
is simple, but there is no fundamental reason to believe
that the value of γ does not depend on the curvature of
the interface13,43. Indeed, a series of studies on nucle-
ation phenomena have provided indirect evidences that
the capillarity approximation fails, as γ changes with the
curvature of the spherical phase31,44–49.

The second route is theoretical and was initiated by
Tolman. In 1949, Tolman wrote an influential paper en-
titled “The effect of droplet size on surface tension”50. He
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assumed that the difference δ between the curvature radii
Re and Rs of the two dividing surfaces is constant (i.e. it
does not change with the radius of the spherical cluster)
and that can be estimated by its value for infinitely large
clusters (which defines the Tolman length δTolman). By
performing certain approximations he showed that the
value of γ (along an isotherm) should change with the
the inverse of Rs with an expression where the Tolman
length plays a key role. The paper provides molecular
evidences that γ changes with the radius of curvature of
the cluster, shifting the discussion to the value of δTolman
characterizing the difference between Re and Rs for in-
finitely large clusters. Determining Re is quite simple
and only requires to know the bulk densities of the two
phases and the total volume (the detailed density pro-
file is not needed). However, the absence of a rigorous
mechanical method to obtain Rs (in spite of a series of
attempts7,10,34,40) implies that it can only be determined
rigorously through the cumbersome task of determining
the Helmholtz free energy of the system F . Since rigor-
ous calculations of F for systems with curved interfaces
are commonly missing, Rs is not determined rigorously.
This has generated an intense debate on the magnitude
and sign of the Tolman length for a number of systems
for more than 70 years1–18,51.

The third route to obtain γ for curved interfaces was
initiated by Turnbull and co-workers52,53. It uses nucle-
ation studies to estimate values of γ for curved inter-
faces being this an indirect route. The idea of Turnbull
was to fit the experimental values of the homogeneous
nucleation rate J (i.e. number of critical clusters per
unit of time and volume) using classical nucleation the-
ory (CNT) which can be regarded as a combination of
the formalism of Volmer-Weber54–Becker-Doring55 and
the Gibbsian formalism applied to the thermodynamics
of curved interfaces56. This interesting approach takes
advantage of experimental results for J to obtain, after a
theoretical treatment, values of γ for curved interfaces57.
This route has undergone a new revival from simulation
studies in the last decade as now it is possible to esti-
mate J for a potential model using computer simulations.
Techniques like umbrella sampling44,45 (US), forward flux
sampling46 (FFS), or transition path sampling58 (TPS)
can be used to determine J . These techniques are rig-
orous but rather expensive from a computational point
of view. For this reason, in the last ten years, a new
technique has been proposed aimed to determine J de-
noted as Seeding59–65, where a solid cluster (equilibrated
at a certain value of T and p) is inserted into an equili-
brated liquid (at the same conditions T, p) to determine
whether is critical or not. According to its time evolu-
tion in the NpT ensemble: it is critical if the probability
to freeze and to melt are equal while there is no other
possible result than these two options. The methodol-
ogy does not allow to estimate J by itself. However,
following the CNT with a “judicious” choice of the or-
der parameter66 used to determine the size of the critical
cluster, one can reasonably estimate free energy barri-

ers and nucleation rates getting values comparable with
the ones obtained with rigorous techniques62,67,68. The
Seeding method also provides (through the CNT formal-
ism) values of γ for the curved interface. The Seeding
scheme resembles Turnbull’s approach in the sense that
it connects nucleation studies and CNT (Turnbull’s ap-
proach going from J to γ using experimental results of
J , and Seeding going from γ to J using simulation re-
sults). Interestingly, we have shown recently that the
values of γ from our Seeding studies of nucleation, can
be described by a “Tolman-like” expression for a num-
ber of systems including HS49. An interesting question
(that we intend to address in this work) is whether this
Tolman-like expression is also able to describe results for
curved interfaces at equilibrium.

Let us now discuss the fourth route to γ for a curved
interface. It simply requires to study a system that
is at equilibrium and that presents a curved interface.
This route has been developed for simulations studies by
Binder and coworkers2,5,19–27, showing that in a system
at constant N , V , and T it is possible to have fluid-
solid configurations with curved interfaces in equilibrium,
corresponding to a minimum of F . Depending on the
(N,V, T ) conditions, the minimum of F corresponds to
i) a sphere of the solid phase within the fluid; ii) an infi-
nite cylinder of the solid phase (percolating through the
periodical boundary conditions) in contact with the fluid;
iii) a slab of the solid phase in contact with the fluid; iv)
all the previous cases switching the roles of the fluid and
solid phases. At some point, the minimum of F may cor-
respond to an homogeneous fluid or homogeneous solid
phase.

By focusing on the vapor-liquid interfaces, Binder and
coworkers2,5,21,23,27 evaluated F , and determined (for
each considered system) the value of R for which γ was
minimum (thus obtaining γs and Rs). They observed
that the capillarity approximation does not work (i.e. γs
changed with Rs ) and also that the difference between
Re and Rs was not constant either. So far, these studies
focused on the liquid-vapor interface are the only rigor-
ous route so far to γ for a curved interface and can be
considered as a tour de force. After all, determining F in
computer simulations is possible but terribly expensive.
For the fluid-solid interface, there have been simulation
studies showing that a spherical cluster may be stable
(or metastable)14,15,22,24,25 although a rigorous determi-
nation of F , to the best of our knowledge, is still missing.

Let us now present the main goals of this work. In
this work, we address the issue of the variation of γ with
R for a curved fluid-solid interface. Aiming to provide
a rationale for some fundamental aspects of this intrigu-
ing problem, we will focus on a simple and pedagogical
system: hard spheres (HS). We will show that for HS it
is possible to obtain stable spherical clusters of the solid
phase when the system is simulated in the canonical en-
semble (NVT). Our findings are consistent with a recent
study of Richard et al.14. We then show that the clusters
equilibrated in the NVT ensemble are critical when the

Page 2 of 13

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

system is run at constant NpT, being p the mean pres-
sure of the NVT simulation. Knowing that the clusters
are critical, we estimate the value of γs for the clusters us-
ing the CNT approximations previously used in Seeding
studies49,62. We get consistent values with our previous
Seeding work in the NpT ensemble62. Since, as previ-
ously shown62, the nucleation rate estimated using CNT
for the simulated clusters is consistent with that obtained
from independent techniques that do not rely on CNT,
we identify the cluster radius obtained in the simulations
with Rs. This identification enables two different routes
to estimate the Tolman length. One is to extrapolate the
difference between Re and Rs (marking the distance be-
tween the equimolar dividing surface and the surface of
tension) to infinitely large clusters. The other one is to
linearly fit γs vs 1/Rs. We show in this paper that both
definitions are consistent with each other as anticipated
by Tolman.

METHODS

In this work we shall not study a true HS system, but
rather a pseudo hard sphere system (PHS)69. The main
reason is that the PHS potential is continuous. An ad-
vantage of having a continuous potential is that one can
use highly efficient codes as GROMACS70 (highly opti-
mized for parallel calculations). A good choice is repre-
sented by the truncated and shifted Mie potential with
power m=50 for the repulsion and n=49 for the attrac-
tion, called also pseudo hard sphere potential69:

uPHS(r) =

{
50
(
50
49

)49
ε
[(
σ
r

)50 − (σr )49]+ ε r <
(
50
49

)
σ

0 r ≥
(
50
49

)
σ

(1)
where σ represents the hard sphere diameter and ε is

the depth of the potential. uPHS reproduces almost ex-
actly the properties of HS, like the equation of state, the
diffusion coefficient, the glass transition, the phase di-
agram and, last but not least, the coexistence crystal-
fluid interfacial free energy (which plays a major role
in this work)49,69,71–73. The potential given by Eq.(1)
is provided in Tabular form to GROMACS. We adopt
the following parameters: σ = 0.3405 nm, ε/k = 119.87
K (k is the Boltzmann constant), and the particle mass
m = 6.69 · 10−26 kg. These parameters are taken from
the standard Lennard-Jones potential used to describe
Ar. Simulations are performed at T = 179.8 K, since the
properties reproduced by uPHS potential agree with the
ones of HS at the reduced temperature T ∗ = T/(ε/k) =
1.5. Integration time steps is fixed to 1.0 fs and the T is
kept constant by using the Nose-Hoover thermostat. In
the following, we convert the real units of GROMACS to
reduced units: σ is the unit length; τ = σ

√
m/(kT ) is

the unit time (corresponding to 1.761ps); and kT is the
unit energy. According to this, the volume is expressed
as V ∗ = V/σ3, the density as ρ∗ = (N/V )σ3, the pres-
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FIG. 1. Percentage of mislabeled particles in the bulk liquid
and bulk solid for PHS at p∗ = 12.887. The crossing point
determines the threshold which in this work will be of ¯q6,t =
0.372 . Molecules with q̄6 > 0.372 will be labeled as solid,
whereas those with q̄6 < 0.372 will be labeled as liquid.

sure as p∗ = p/(kT/σ3), and the interfacial free energy
as γ∗ = γ/(kT/σ2). Hereafter, all the quantities writ-
ten with a start as superscript will refer to quantities
expressed in reduced HS units. In what follows, we shall
denote the PHS model, simply as HS.

Each particle of the system is labeled as fluid or solid
according to the Lechner-Dellago order parameter q̄6

74.
The threshold value of ¯q6,t used to label each particle as
liquid-like and solid-like was determined using the misla-
beling criterium61–63,68. The mislabeling criterium states
that the threshold value of the order parameter used to
label particles as liquid or solid is obtained by simulat-
ing the bulk fluid and bulk solid phases and equating the
small percentage of particles that are mislabeled as solid
in the bulk fluid, to those that are mislabeled as liquid in
the bulk solid. Particles at a distance of 1.33σ of a central
one are considered neighbors. In Fig. 1, the mislabeling
curves of HS in the fluid and solid phases are presented
for the reduced pressure p∗ = p/(kT/σ3) = 12.887. From
the curves, we adopt ¯q6,t = 0.372 as threshold value,
checking that ¯q6,t variations upon pressurization are neg-
ligible, within the pressure range explored in this work.
Once each particle of the system is labeled as liquid or
solid we shall evaluate the size of the largest solid cluster,
being Nsol the number of solid particles it contains.

For the adopted model, we have determined the value
of the coexistence pressure72 which is p∗ = 11.648 (for
true HS the value is of about 11.57, see Ref.75). Most
of the simulations of this work lasted around 20ns. This
timescale is (roughly) more than a thousand times the
time required to diffuse a particle diameter (which for
a pressure of p∗ = 12.5 is of about 13.5ps, or ∼ 8τ in
reduced units of time).

Page 3 of 13

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

0 1000 2000 3000 4000

t*

0

5000

10000

15000

20000

25000

30000

35000

N
sol

~ 33500
~ 25000
~ 2000

FIG. 2. Number of particles of the largest solid cluster in the
system as function of time (t∗ = t/τ), for N = 105875 and
V ∗ = 108265.2. Systems only differ on the initial size of the
crystal seed.

RESULTS

Phase Equilibrium above Coexistence: Solid
Clusters Stabilized in Liquids. We perform simula-
tions at constant number of particles N , volume V , and
temperature T . We seed a preformed spherical solid clus-
ter of a certain size in the bulk liquid and let the system
evolve towards the equilibrium. As shown in Fig. 2, dif-
ferent runs with the same values for N (total number
of particles in the system) and V (volume of the sim-
ulation box), but with initial clusters differing in size,
converge towards the same equilibrium state, where the
solid cluster, in average, has the same size in all cases.
When the initial cluster is rather small compared to the
equilibrium one, it takes some time to reach the final size
(green curve in Fig. 2). On the other hand, equilibration
is much faster when the initial size is close to the equi-
librium one. It should be pointed out that the size of
the initial cluster cannot be chosen arbitrarily. Indeed,
if the initial cluster is too small, it may melt; if it is too
large then it may percolate through the simulation box
forming a cylinder (we shall come to this point later). It
should be considered also that some defects (of kinetic
origin due to the fast growth) may arise when the cluster
grows from a very small initial size. For this reason, it is
advisable to use initial (and perfect) solid clusters close
in size to the final equilibrium state. Once the equilib-
rium state is reached, there are thermal oscillations in the
size of the solid cluster (Fig. 2) due to capillary waves
fluctuating in the solid-fluid interface. Also, it should be
noticed that it is convenient to consider the shape of the
seed for technical reason albeit irrelevant in terms of sta-
bility. This is, if instead of a spherical cluster we inserted
a cubic cluster, this would turn into a sphere-like cluster
as soon as possible because the cubic is not even a local
minimum.

Label V ∗ N 〈Nsol〉 〈Nsol〉/N 〈p∗〉
I 10686.4 10540 1925 0.183 13.209
II 20195.5 19779 2736 0.138 13.027
III 20195.5 19829 3718 0.188 12.887
IV 49599.9 48207 5604 0.116 12.739
V 49599.9 48357 8602 0.178 12.579
VI 108265.2 104675 10498 0.100 12.517
VII 66900.1 65383 15554 0.238 12.399
VIII 108265.2 105475 23558 0.223 12.306
IX 108265.2 105875 28879 0.273 12.258
X 887000.0 853712 129926 0.152 12.011

TABLE 1. Thermodynamic variables of the closed finite sys-
tems simulated at constant temperature and volume. The
pressure 〈p∗〉 is the average value obtained when the system
reaches the equilibrium state. Only spherical clusters were
considered. The average number of particles in the solid clus-
ter is denoted as 〈Nsol〉.

We have repeated this procedure ten times, varying N
and V (T is constant and for hard spheres it just scales
the velocities of the particles but does not affect config-
urational properties), obtaining in all cases equilibrium
solid clusters of spherical average shape. The results are
presented in Table 1, where the average size of these solid
equilibrium clusters (labeled as 〈Nsol〉) ranges from about
2000 up to 130000 particles. Notice that the size of the
equilibrium cluster is uniquely determined by the val-
ues of N and V , and corresponds to a minimum in the
Helmholtz free energy F . Both the values of 〈Nsol〉 and
〈Nsol〉/N obtained for a certain value of N and V , are
dictated by thermodynamics (i.e. the minimum in F )
and cannot be changed at will. As can be seen in Table
1, we found the ratio 〈Nsol〉/N to be ∈ [0.1 : 0.27]. Al-
though not stated explicitly in the books describing the
thermodynamic treatment of curved interfaces, one has
the impression that it is assumed that the volume of the
fluid phase is many times larger than the volume of the
solid phase. At least for HS, under periodical boundary
conditions this is certainly not the case.

In Table 1, we present also the values of the pres-
sure obtained in the simulation runs during the period
in which the solid cluster is stable. They fall in the range
p∗ ∈ [12.011 : 13.209]. Since the coexistence pressure is
p∗ = 11.648, our findings suggest that this equilibrium
method applies only close to the coexistence.

By comparing the cases II and III in Table 1, both
sharing the same volume V ∗ = 20195.5, we see that by
reducing N the equilibrium solid cluster becomes smaller.
The size of the equilibrium cluster is very sensitive to N .
In fact, for clusters II and III, removing just 50 particles
makes a change of about 1000 particles in 〈Nsol〉. Again,
focusing on the isochoric cases VI, VIII and IX, the re-
duction of 1200 particles induces a change in 〈Nsol〉 of
about 20000. As can be seen, decreasing the global den-
sity causes an increase of the volume of the phase with
lower density (the fluid phase in this case) reducing the
size of the solid cluster as given by 〈Nsol〉. Concerning
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the size of the equilibrium cluster we found that, while
it is always possible to stabilize a cluster with a size as
big as desired, the smallest equilibrium cluster we could
obtain was composed by ∼ 2000 particles. Below this
threshold the solid clusters melted leading to the conclu-
sion that for HS, within this method it is not possible
to equilibrate solid clusters with much less than ∼ 2000
particles.

In Fig. 3, we present the time evolution of Nsol for
the ten systems considered in Table 1. Each panel con-
tains trajectories with the same constant value of V al-
though different constant value of N . As can be seen
in Fig. (3)a, during a short time the initial seed grows
until it reaches a stable quasi-spherical size, maintained
for a significant period of time (τ ∈ [500 : 2500]), cor-
responding to about ∼ 250 diffusion times. At larger
times, τ > 2500, the system undergoes a transition to a
new conformation represented by a cylindrical solid.

In Fig. (4) we report two snapshots of the solid
cluster before and after the transition. The fact that
the spherical solid clusters is stable for certain time and
that the change to the cylindrical shape occurs rapidly
indicates that there is a free energy barrier separating
the spherical cluster from the cylindrical one. In this
case, the spherical cluster represents a local minimum
of F (a metastable configuration), while the cylinder
represents a deepest (possibly global) minimum of F
(we never observed the transition from a cylinder to a
sphere). The same transition was observed for cases III
and IX, shown in Figs. (3)b and (3)e respectively.

Connecting Equilibrium and Nucleation. We
shall now perform an interesting exercise. We shall per-
form NpT simulations at the average pressure found in
the NVT run (denoted as 〈p∗〉 in Table 1). For the start-
ing configuration, we shall randomly select one from the
NVT run in which the cluster was stable. Then, we shall
study in detail the time evolution of the solid cluster
by launching up to 30 independent NpT simulations (by
changing the initial velocities). These results for systems
III and VII of Table 1 are presented in Fig. 5, panels a)
and b) respectively. The trajectories show that around
half of the times the clusters melt and the other half,
they grow until crystallizing the entire system. Hence,
the clusters are critical at pressure 〈p∗〉. The fact that
the nucleus equilibrated in the NVT ensemble is a criti-
cal cluster in the NpT ensemble has been recently shown
for bubble cavitation in the Lennard Jones system30. In
Fig. 6 we show the number of particles in the solid clus-
ters versus 〈p∗〉 at equilibrium as obtained in this work
in the NVT ensemble (red dots) alongside our previous
results for the size of the critical clusters obtained in the
NpT ensemble (black dots)49,62. As can be seen there
is excellent agreement between both set of results fur-
ther reinforcing the connection between equilibrium and
nucleation.

When the cluster is critical, it must be in the top of a
Gibbs free energy (G) curve. In other words, G reaches

a maximum when plotted as a function of the number of
particles in the solid cluster while keeping N , p, and T
constant. However, the same system was in equilibrium
when it was studied at constant N, V and T. Therefore,
F reaches a minimum when plotted as a function of the
number of particles in the solid cluster while keeping N ,
V , and T constant. That indicates that changing the
number of particles in the solid cluster would increase
the value of the Helmholtz free energy. This is sketched
in Fig. 7.

The consequences of the results of Fig. 5 and Fig. 7
are important. On the one hand, if a thermodynamic
approach is able to describe correctly the minimum in
F , it should also be able to describe the maximum in
G. On the other hand, we have shown that clusters
in stable/metastable equilibrium obtained in the NVT
ensemble correspond with critical clusters in unstable
equilibrium obtained in the NpT ensemble. As two faces
of the same coin, this equivalence implies that one can
infer the same information (e. g. the cluster radius, γ,
or the nucleation rate) from either ensemble, as shown
in the remainder of the paper. For this reason we will
apply the Seeding method, previously used in the NpT
ensemble (NpT-Seeding)49,62,67, to the clusters equili-
brated here in the NVT ensemble (NVT-Seeding). As
discussed later on, the Seeding method uses information
of the simulated clusters alongside CNT to provide
estimates of γ and the nucleation rate.

Estimating γ for the Clusters. All the clusters ob-
tained in the previous sections are in stable/metastable
equilibrium in the NVT ensemble. According to the ther-
modynamic description presented in the book of Rowlin-
son and Widom34 when the system reaches the equilib-
rium one obtains:

F = Nµ− psolVsol − pliq(V − Vsol) + γAsol (2)

where psol and pliq are the pressures of a bulk solid and
liquid respectively with chemical potential µ. Notice that
the chemical potential , and the temperature are homo-
geneous properties (the molecules can diffuse) whereas
the density and pressure are inhomogeneous76.

The way to proceed to evaluate γ is as follows.

• The value of F is computed

• A dividing surface of radius R is chosen so that
Vsol = 4/3πR3 and Asol = 4πR2

• The value of γ is obtained for the chosen dividing
surface using Eq.2

Therefore, the value of γ is not unique as it depends on
the value of the chosen dividing surface. Two important
surfaces are Re (for which the number of excess particles
is zero) yielding γe; and Rs, giving rise to γs, which is the
value for which γ is minimum and for which the Laplace
equation is satisfied.

As the reader may have noticed, the only way to de-
termine γ is to determine the free energy of the system.
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FIG. 3. Number of particles of the largest solid cluster as a function of time in reduced units. The clusters of each panel
share the same volume. Hence, the difference in cluster sizes comes from the total number of particles, in other words, the net
density. Details of the runs (volume, total number of particles, number of particles in the solid cluster, and pressure of the
system while the spherical cluster is stable) are given in Table 1. In panel a), the dashed line in the left indicates the starting
point of the equilibrated coexistence of the spherical cluster within the fluid while the dashed line in the right indicates the
transition to the cylindrical state.

This has been done only in a couple of cases for the liquid-
vapor interface by Binder and coworkers and can be re-
garded as a tour de force2,5,21,23,27.

In the past, we have used an approximate approach
denoted as Seeding61 to circumvent the computation of
free energies49,62. With NpT simulations of critical clus-
ters alongside a “judicious” order parameter to label the
particles as liquid and solid alongside CNT we obtained
reasonable estimates of γ and the nucleation rate49,62.
By judicious we mean that the chosen order parameter
is able to predict the free energy barrier and the nucle-
ation rate obtained from rigorous techniques (for instance
US44,45 or metadynamics77). For HS, the combination of
the order parameter of Lechner-Dellago q̄6

74 and the mis-
labeling criterion61 meets this requirement62. According
to CNT, the free energy barrier ∆G and the surface free
energy γ for the pressure 〈p∗〉 can be estimated by means
of the following expressions:

∆G = 〈Nsol〉
∆µ

2
, (3)

γ =

(
3〈Nsol〉ρ2sol|∆µ|3

32π

)1/3

, (4)

where ρsol is the density of the solid phase (at 〈p∗〉
since in CNT the solid is assumed to be incompressible)
and ∆µ ≡ µliq −µsol is the difference between the chem-
ical potentials of the bulk liquid µliq and that of the bulk

solid µsol when both are at the same pressure (this differ-
ence is not zero, as the equilibrium in the NVT ensemble
arises from the higher pressure of the solid phase due to
the presence of the curved interface). The variables ρliq
and ρsol are obtained from the equations of state that are
computed from simulations of the bulk phases along the
isotherm of interest while ∆µ is computed via thermody-
namic integration ∆µ =

∫ p
pcoex

[1/ρsol(p
′)− 1/ρliq(p

′)]dp′

starting from the coexistence point where the chemical
potential of both phases are equal78. The values of γ thus
obtained in this work from solid clusters equilibrated in
the NVT ensemble (NVT-Seeding) are compared to those
obtained in Ref.49,62 (NpT-Seeding) in Fig. 8. As ex-
pected from Fig. 6, that shows the equivalence of clusters
in both ensembles, γ is the same in both cases.

The clusters obtained in this work in the NVT en-
semble are at stable/metastable equilibrium. Therefore
the value of γs for a certain value of Rs it is the value of
the interfacial free energy obtained for this radius at the
equilibrium pressure 〈p∗〉. Although one usually speaks
on the variation of γs with Rs one should rather speak
on the variation of γs with the pair Rs and 〈p∗〉 because
it is not possible to change Rs and 〈p∗〉 independently
for a system that is at equilibrium.

Variation of γ with Curvature and the Tolman
Length. It should be emphasized that the values of R
and γ that are used in CNT are those of the surface of
tension, i.e. Rs and γs

5,22,79. In fact, it is simple to
show that if one assumes that the chemical potential of
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the bulk liquid (µliq(pliq)) is identical to that of the sta-
ble/critical solid cluster (µsol(psol)) (which makes sense
after the results presented in the previous sections) and
uses the Laplace equation (which is restricted to the sur-
face of tension) to estimate the difference of pressures,
one obtains the main equations of CNT (after assuming
that the density of the solid does not change much with
pressure). This indicates that Rs and γs are indeed the
ones obtained when applying CNT.5,22,79 Thus, values
labeled as Rc and γCNT in our previous work should be
identified with Rs and γs.

It is obvious from the results of Fig. 8 that the value
of γs is not constant (showing the failure of the capil-
larity approximation). Recently, we used the following
expression to describe the variation of γs with the clus-
ter radius49:

γs = γ0,T

(
1− 2

δT
Rs

)
, (5)

where δT is a fitting parameter and γ0,T is the inter-
facial free energy at coexistence for a flat interface. We
showed that this expression correctly describes the γ vari-
ation for critical hard sphere clusters. The blue line in
Fig. 8 is the fit obtained in Ref.49. It describes well the
data coming from either ensemble, which further demon-
strates the equivalence between clusters equilibrated in
the NVT ensemble and critical clusters obtained in the

a)

b)

FIG. 4. Snapshots of: a) metastable sphere and b) stable
cylinder within a fluid. Only crystalline particles are shown.
In b), the vertical arrowed line indicates that, in general, the
size of box does not necessarily meet k times (k being an
integer) the length, a, of the unit cell of the FCC hard sphere
crystal at the pressure 〈p∗〉. Thus, the solid may have some
stress.

NpT ensemble. The parameters are γ0,T = 0.576kT/σ2,
the interfacial free energy at coexistence (p∗ = 11.648)
averaged over several planes80,81, and δT = −0.41σ. It is
worth noting that, for HS in contact with a smooth spher-
ical hard wall, a similar value of δT was reported from
a theoretical study using Density Functional Theory18

(although the value of γ0,T was found to be different in-
dicating that there are differences in the value of γ0,T
between a hard structureless spherical wall and a solid
cluster of ordered hard spheres).

What is the physical meaning of the fitting parameter
δT ? Since this parameter is a distance we can compare
it with the Tolman length, δTolman

1,50:

δTolman ≡ lim
1

Rs
→0

δ (6)

where δ is the difference between the equimolar and the
surface of tension radii:

δ = Re −Rs (7)

The radius Re of the (spherical) Gibbs dividing surface
is obtained simply from the equation

N = ρsol[(4/3)πR3
e] + ρliq[V − (4/3)πR3

e]. (8)

The previous expression only requires the knowledge of
the bulk densities of the solid and fluid phases (ρsol and
ρliq respectively) . On the other hand, Rs can be calcu-
lated from:

Rs = [3〈Nsol〉/(4πρsol)]1/3. (9)

The values of δ are reported in Table 2. We found
that δ is negative and its value changes with the
radius of the solid cluster (i.e. with the equilibrium
pressure). An analogous change of δ has been observed
by Binder and coworkers in studies on the vapor-liquid
interface2,5,21,23,27. In Fig.9 we have fitted the val-
ues of δ as a function of 1/Rs obtaining the value
δTolman = −0.41σ when 1/Rs goes to zero (i.e. for
planar interface). The obtained value coincides with δT
obtained from 5. Therefore, δT is an estimate of the
Tolman length.

Application of Equilibrium Clusters to Study
Nucleation. We have developed in the last years an
approximate route denoted as Seeding to determine nu-
cleation rates, J . By performing NpT runs, the size of
the solid critical cluster Nsol (at a certain T and p) is
determined, and J is estimated from the expressions of
CNT:

J = ρliq

√
|∆µ|

6πkTNsol
f+exp[(−∆µNsol)/(2kT )], (10)

where f+ is the attachment rate which will be approxi-
mated as

f+ = 24Dliq(Nsol)
(2/3)/λ2, (11)
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FIG. 5. Number of particles in the largest cluster within the system in an NpT simulation at p∗ equal to the average pressure
during the life time of the stable sphere in the NV T run. The total number of runs is 30 in both cases. It can be seen how
in ∼ 50% of the trajectories the cluster either grows or disappears. The clusters correspond to cases III (left panel) and VII
(right panel) of Table 1.

11.5 12 12.5 13 13.5 14 14.5 15
p*
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1e+05

N
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FIG. 6. Cluster sizes against pressure. Notice that although
the stable clusters from NVT simulations were tested to be
critical via NpT simulations, data labeled as NpT in this fig-
ure correspond to previous work of Seeding49,62.

where λ is the attachment length which for HS can be
approximated62 as λ ' (σ/4) and Dliq the diffusion co-
efficient of the fluid at the pressure p. In previous work,
we have shown that this set of equations (with the in-
put from simulations) provides an excellent description
of the values of J (including those for HS). We could de-
note this approach as NpT-seeding as a number of runs
are performed at N , p, and T constant.

However, the results of Fig.5 indicate that there is a
new way of doing Seeding. Instead of inserting a solid
cluster in an equilibrated fluid and performing a number
of NpT runs to determine at which pressure the cluster is
critical, one can equilibrate the solid cluster in the NVT
ensemble. In this way, the size of the solid cluster at
the pressure 〈p∗〉 is obtained from a single equilibrium

t

NVT

t

NpT

F

Nsol

G

Nsol

FIG. 7. Sketch of the free energy profile for the case of a
stable solid cluster composed by Nsol particles in the NV T
ensemble (left). The system is in a free energy minimum of
the Helmholtz free energy F and does not change with time
(except for thermal fluctuations). By switching to the NpT
ensemble, the system ends up in a maximum in the Gibbs
free energy G (right) and evolves either towards to the solid
phase or towards the fluid phase with the same probability.
In both cases, the value of γ is the same. Equilibrium (left)
and nucleation (right) can be regarded as the two faces of the
same coin.

run. After this is done, one can use the machinery of
Seeding (or more precisely Eq.10) to estimate J . We
shall denote this approach as NVT-Seeding. We shall
now estimate nucleation rates, simply using the results
for the equilibrium solid clusters presented in Table 1
(plus performing additional simulations to estimate ∆µ
and Dliq ). All the results required to determine J from
the equilibrium solid clusters of this work are presented
in Table 3

Values of the nucleation rate J computed in this work
are presented in the last column of Table 3, whereas in
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FIG. 8. Interfacial free energy against the inverse of the radius
of the cluster from both equilibrium results of this work (la-
beled as NV T ) and from nucleation studies of our previous
work49,62 (labeled as NpT ). Also shown: linear expression
proposed in previous work49 in solid blue line.

Label R∗
s R∗

e δ∗ ≡ (R∗
e −R∗

s)
I 7.535 7.419 -0.1154
II 8.481 8.407 -0.0742
III 9.402 9.362 -0.0404
IV 10.791 10.543 -0.2478
V 12.461 12.265 -0.1965
VI 13.322 13.111 -0.2108
VII 15.200 14.996 -0.2035
VIII 17.467 17.213 -0.2538
IX 18.700 18.448 -0.2521
X 30.927 30.571 -0.3563

TABLE 2. Radius associated to the dividing surfaces from our
results from equilibrium clusters. Rs is computed with Eq.
(9) and corresponds to the radius of the sphere containing a
number of particles corresponding to the equilibrium one, as
reported in Tab. 1. Re corresponds to the sphere’s radius of
the equimolar dividing surface (Gibbs dividing surface). δ is,
by definition, the difference between the previous radii.

Fig. 10 we compare them with our previous work49,62

as well as other numerical44,46 and experimental82–85 in-
dependent estimations. Given that J goes to zero when
the pressure tends to its coexistence value, in Fig. 10,
we show only the highest nucleation rates. The results
obtained for J from the equilibrium clusters of this work,
agree quite well with previous results obtained from sim-
ulation techniques44,46,47,62,86. However the results of
this work clearly contradict those found in experiments,
providing further evidence that the experimental values
presented as homogeneous nucleation rates are probably
affected by heterogeneous nucleation events, as recently
suggested in Ref.87. Previously mentioned nucleation
studies of HS sampled the region of high pressures, typ-
ically above p∗ > 15 (i.e. φ = (π/6)ρ∗ > 0.52). The
results of this work expand the study to lower pressures
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δ
*
 = -0.41 + 2.613/R

s

*

FIG. 9. δ∗ as function of 1/R∗
s for the different stable clusters

of the NV T runs. Green dashed curve is a linear fit of the
data.
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Harland et al. PRE 1997
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FIG. 10. Nucleation rate against volume fraction (defined as
φ ≡ ρ∗π/6) from different sources. Experimental and nu-
merical results are shown in green and red, respectively. The
black line is a fit using CNT equations accounting for the in-
terfacial free energy variation with the radius of the cluster as
proposed in Ref.49. As stated in the caption of Fig. 8 points
labeled as NpT in the legend come from previous work49,62.

(i.e. between p∗ = 12 and p∗ = 13.2 (i.e. 0.5 < φ <
0.515), closer to the coexistence pressure.

The NVT-seeding approach does not only work for nu-
cleation of solid HS. We have also shown recently that
this approach is also working for an entirely different
problem (the cavitation of a bubble in a Lennard-Jones
fluid at negative pressures)30. This NVT-seeding ap-
proach allows to study easily nucleation along isotherms
(NpT-seeding can be implemented easily both along iso-
bars and along isotherms). However, it has two draw-
backs. The first one is that it cannot be applied to
small solid clusters as it is impossible to have them in
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Label ρ∗liq ρ∗sol |∆µ|/kT γ∗ ∆G/kT Dliq/(σ
2/τ) f+/(6Dliq/σ

2) log10[J/(6Dliq/σ
5)]

I 0.970 1.074 0.1566 0.634 150.7 0.0183 9904 -63
II 0.967 1.071 0.1383 0.628 189.1 0.0190 12520 -79
III 0.964 1.068 0.1242 0.623 230.9 0.0195 15360 -97
IV 0.962 1.065 0.1092 0.628 306.0 0.0201 20192 -130
V 0.959 1.061 0.0931 0.617 400.5 0.0207 26869 -171
VI 0.958 1.060 0.0869 0.614 456.3 0.0209 30684 -195
VII 0.956 1.057 0.0750 0.603 583.3 0.0213 39879 -250
VIII 0.954 1.055 0.0658 0.606 775.0 0.0217 52594 -333
IX 0.953 1.054 0.0609 0.600 879.3 0.0219 60242 -378
X 0.949 1.049 0.0362 0.587 2350.6 0.0228 164176 -1017

TABLE 3. Results from NVT-seeding calculations as obtained from the simulations of this work.

a stable configuration in the NVT ensemble. The sec-
ond is that there may be finite size effects, as the ratio
〈Nsol〉/N cannot be changed at will. For instance for a
solid cluster of HS at equilibrium in the NVT ensemble
with 〈Nsol〉 = 3200 particles we found 〈Nsol〉/N = 0.16.
In the NpT-seeding approach, this ratio can be made ar-
bitrarily low (we typically set it to 〈Nsol〉/N < 0.05 in
our previous work). We found that the pressure at which
the cluster was critical in the NVT system was p∗ ∼ 12.95
whereas it was found to be p∗ ∼ 13.05 in the NpT en-
semble when 〈Nsol〉/N was small. The finite size effects
on HS is not dramatic (less than one per cent for the
pressure at which the cluster is critical) but one should
be aware of their presence.

CONCLUSIONS

In this work, we extend the simulations pioneered
by Binder and coworkers2,5,19–27 and recently used by
Richard et al. also for HS to study a curved interface14.
In particular, we have considered the possibility of hav-
ing a stable spherical solid cluster in equilibrium with a
fluid, for the hard spheres system. We were able to ob-
tain equilibrium for up to ten different clusters with sizes
ranging from 1900 to 130000 particles.

After the equilibrium configuration was found, we
launched NpT runs and found that the clusters were crit-
ical at the average pressure found in the NVT run. Ac-
cordingly, all properties that can be inferred from criti-
cal clusters in unstable equilibrium with the fluid in the
NpT ensemble coincide with those obtained from clusters
in stable/metastable equilibrium in the NVT ensemble.
We show this equivalence for the cluster radius as well
as for γ and the nucleation rate obtained from a Seeding
analysis (CNT fed by microscopic parameters of the clus-
ters measured in the simulations). Therefore, whereas
the system is in a minimum of F in the NVT ensemble,
the fact that the solid cluster is critical indicates that
the system is in a maximum of G in the NpT ensemble.
This is in agreement with a recent NVT-Seeding study
of bubble cavitation30.

In addition, we study the variation of γ with Rs, the

relevant dividing surface in CNT. Recently, we showed by
means of simulations of critical clusters in the NpT en-
semble that such variation is well described by a linear fit
of γ versus 1/Rs and obtained a characteristic length δT
as a fitting parameter49. In this paper we show that the
fit obtained in Ref.49 works well for clusters equilibrated
in the NVT ensemble as well. Moreover, we obtain the
Tolman length as the difference between Re, the Gibbs
dividing surface, and Rs in the limit of very large clus-
ters. We obtain Re − Rs for the clusters equilibrated in
the NVT ensemble and extrapolate the difference to infi-
nite radius. With this procedure we estimate the Tolman
length, δTolman. We find that δTolman coincides with the
δT parameter obtained from the fit of γs versus (1/Rs)
above mentioned.

We hope this work will encourage further research on
the fascinating (but arguably difficult) issue of the change
of the interfacial free energy between two phases sepa-
rated by a curved interface.
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der Waals loop: What can be learned from simulating Lennard-
Jones fluids inside the region of phase coexistence. Am. J. Phys.
2012, 80, 1099–1109.

22Statt, A.; Virnau, P.; Binder, K. Finite-size effects on liquid-
solid phase coexistence and the estimation of crystal nucleation
barriers. Phys. Rev. Lett. 2015, 114, 026101.
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