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1 Introduction

We study the way the free boundary of solutions to some partial differential
equations behaves depending on the trace of the solutions. The free boundary
problems we consider are of two different types:
i) Elliptic reaction-diffusion type problems, as{

−Lu+ λuq = 0 in Ω,
u = h on ∂Ω,

(1)

under the fundamental assumption

q ∈ (0, 1), (2)

which guaranties the formation of the free boundary (at least for λ > 0 large
enough, if Ω is bounded, or for any λ > 0, if Ω is unbounded). Such problem
arises, for instance, in Chemical Engineering when a catalytic chemical reactor
occupying a domain Ω has a reactant feed channel (entrance boundary) which is
represented by the part Γ+ ⊂ ∂Ω, where the reactant concentration is h(x) > 0
and the rest of walls of the chemical reactant are isolated in such a way that, if
we denote by Γ0 := ∂Ω \ Γ+, then h(x) = 0 on Γ0. Here we assume that there
is no exit boundary (see Figure 1). The exponent q is called the order of the
reaction.
ii) The obstacle problem{

−Lu ≥ f(x), u ≥ 0 and (−Lu− f(x))u = 0 in Ω,
u(x) = h(x) on ∂Ω.

(3)

Here the free boundary is given by the boundary of the coincidence set (the
set of points where u = 0); according for instance to [17] a sufficient condition
for the existence of the free boundary is that f(x) ≤ −µ for some µ > 0 on a
large enough open subset of Ω (see, for instance, [29] for a full treatment of the
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Figure 1: Chemical reactor scheme

obstacle problem). Among the many frameworks in which the obstacle problem
arises we could mention, for instance, the unilateral problem of the stationary
shape of a membrane which is forced downwards by a constant force f , is fixed
on the boundary to a hight h(x) and constrained to lie over the hyperplane
u = 0. Actually, here we shall consider the special case in which (3) can be
formulated in terms of {

−Lu+ λβ(u) 3 ε in Ω,
u = h on ∂Ω,

(4)

for some constant ε ∈ [0, λ), where β(u) is the maximal monotone graph of R2

given by

β(u) =


0 for u < 0,

[0, 1] for u = 0,

1 for u > 0.

(5)

If u “solves” problem (4) (the rigorous definition of solution will be given later)
then u is also a solution of the obstacle problem (3) with f = −λ + ε: indeed,
we will see that ε ≥ 0 and h ≥ 0 imply that u ≥ 0. Then, if u > 0, −Lu+λ = ε
which is the same as −Lu− f = 0. Finally, since there is uniqueness of solution
for both formulations we get that the solutions must be the same.

Another interesting application of problem (4) arises also in the context of
Chemical Engineering (as problem (1) with q = 0: see, e.g., [7]).

For some general purposes, such as the existence, uniqueness and regularity
of the solutions, the domain Ω will be assumed to be an open regular set of RN .
Nevertheless, when studying the qualitative properties of the solutions we focus
on the bi-dimensional case, and we adopt as domain Ω both a bounded rectangle
and the upper half plain in R2, i.e., Ω = R× [0,∞). In the unbounded setting
we use the following notation: x := (x1, x2) with x1 ∈ R and x2 ∈ [0,∞). The
unbounded boundary of the domain is then ∂Ω = R×{0} and so the boundary
function h will depend only on the variable x1.
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In general, L denotes a second order elliptic operator of the form

Lu =

N∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
u

)
= div(A(x)∇u), (6)

with aij ∈ C1,α(Ω) for some α ∈ (0, 1), such that the corresponding matrix
A(x) is symmetric and positive definite. Actually, in the parts concerning the
behaviour of the support and free boundary of the solutions we shall restrict
to the case of constant coefficients. This restriction serves merely to simplify
the calculations and does not affect the local behaviour. For what concerns the
boundary datum h, we assume that

h ∈ L∞(∂Ω) and h ≥ 0 on ∂Ω,

even though the existence and uniqueness results on a bounded domain hold for
h ∈ L1(∂Ω) (and even for signed boundary measures).

A general exposition containing many references on both problems can be
found in the monograph [17]. One can see that both problems are special cases
of the wider formulation{

−Lu+ λβ(u) 3 f in Ω,
u = h on ∂Ω,

(7)

where β(u) is a maximal monotone graph of R2 such that 0 ∈ β(0): β is given
by

β(u) = |u|q−1
u (8)

in case of problem (1) and by (5) in case of problem (3). We define, as usual,
the domain of β as D(β) = {r ∈ R : β(r) 6= ∅} where ∅ stands for the empty
set.

We also consider the associated parabolic problem ut − Lu+ λβ(u) 3 f(x, t) in Q∞,
u = h(t, x) on Σ∞,
u(x, 0) = u0(x) on Ω,

(9)

where Q∞ = Ω × (0,∞), Σ∞ = ∂Ω × (0,∞) and for some f ∈ L∞(Q∞) ∩
L1

loc((0,∞);L1
loc(Ω)), h ∈ L∞(Σ∞) ∩ L1

loc((0,+∞);L1(∂Ω)), with f, h ≥ 0 re-
spectively on Q∞ and on Σ∞, and u0 ∈ L∞(Ω) with u0 ≥ 0 on Ω.

As mentioned before, the above problems, both elliptic and parabolic, give
rise to a free boundary defined as the boundary of the support of the solu-
tion. If we denote the positivity set of a non-negative function u by S(u) :=
{x ∈ Ω : u(x) > 0}, then the free boundary is defined as F(u) = ∂S∩Ω (we also
introduce the null set of u as N (u) := {x ∈ Ω : u(x) = 0} and the support of
u as S(u)). Similar notations can be introduced also for the parabolic problem,
applying the definitions to u(t, ·).

Our main goal in this work is to study the behaviour of the free bound-
ary near the support of the boundary datum h (respectively h(t, ·)). For this
purpose, we shall assume that

S(h) ( ∂Ω,
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respectively

S(h(t, ·)) ( ∂Ω, for a.e. t > 0.

The main question we investigate is whether the free boundary F(u) is con-
nected or not with the boundary of the support of the boundary datum h (and
similar question for the parabolic formulation). In some sense, this research can
be considered as a natural continuation of the study of the so called non-diffusion
of the support property (see [17] and [2]) in the case where h ≡ 0; under a suit-
able behaviour of f near the boundary of its support S(u) = S(f). In the case
of parabolic free boundary problems this question is related with the behaviour
of the free boundary for small times (the so called waiting time property) and
received a great attention in the last 40 years (see, e.g., the monographs [31], [3]
and their many references). Another study, not too far from our interest is the
paper by Martel and Souplet [27] regarding the behaviour of solutions of linear
parabolic problems with incompatible initial data.

To be more precise, our main goal is to find some sufficient criterion on
the behaviour of h near the boundary of its support ensuring that the free
boundary F(u) is in contact with ∂S(h). In this way the support of the datum
is not diffused on the boundary of the domain and we would have

∂S(u) ∩ ∂Ω = S(h). (10)

It is what we can call the non-diffusion on the boundary of the support property.
In addition, we want to give some sufficient conditions ensuring the opposite
qualitative behaviour, i.e., to find conditions on h implying that there is a strict
expansion of the support S(h) on the boundary ∂Ω. In other words, we want to
know cases in which F(u) has no contact with ∂S(h) and so

S(h) ( ∂S(u) ∩ ∂Ω.

We call this phenomenon the expansion on the boundary of the support prop-
erty. The only paper in the previous literature about such boundary qualitative
behaviour we are aware of is [20] in which they proved the expansion on the
boundary of the support property for problem (1) in the special case of Lu = ∆u,
h given by the Heaviside function and Ω the half plane R×R+. As we shall see
later, this property holds even for suitable continuous boundary data h.

We point out that there is an extensive literature dealing with the regularity
of the free boundary when it touches the fixed boundary for the special case
of the obstacle problem (both in the elliptic and parabolic case): see, e.g. [4],
[5], [6] and [30]. In some of those papers the authors also consider more general
diffusion operators (arriving to consider even the case of fully nonlinear second
order operators). Nevertheless, the reaction term here involved, β(u), is never
similar to the one considered in those papers except for the case of zero-order
reaction. In any case, our main interest is not the regularity of the free boundary
but its qualitative behaviour depending on the data of the problem (specially the
behaviour of the boundary datum near its support). To stretch the value of our
results, we underline that the techniques of proof in this paper are quite different
to the ones used in the above mentioned papers on the obstacle problem.

Before stating our main results we need to make precise the notion of so-
lution. The delicate point in our study is that we want to allow the boundary
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datum to be discontinuous and so the notion of the trace of the solution must
be taken in a very general framework (something which, in our opinion, is not
discussed enough in [20]).

We recall that the notion of boundary trace of a function u in Ω depends
on the regularity properties of such function u. For instance, when u ∈ C(Ω)
the boundary trace u|∂Ω is clearly well defined and belongs to C(∂Ω). If u is
in some Sobolev space W 1,p(Ω), for some p > 1, then the boundary trace can
be defined and is a function in the space Lp(∂Ω) (more precisely in the Sobolev

space W 1− 1
p ,p(∂Ω): see, e.g., [23] and [1]) . Nevertheless, the identification of

the elements of the trace space W 1− 1
p ,p(∂Ω) is not always easy and leads to some

pathological results against intuition. For instance in the book by Mikhailov [28]
one can see that already when Ω = B, the unit ball of R2, there are continuous
functions h ∈ C(∂B) which are not the trace of any function in H1(Ω) (i.e.,

C(∂B) * H
1
2 (∂B)).

A different approach was proposed by Häım Brezis, in an unpublished paper
(1972) profusingly mentioned in the literature (see [32], [26] and [19]), which
holds for semilinear second order boundary value problems with boundary data
in L1(∂Ω) (later extended to measures on ∂Ω). The main idea is to multiply by
a “regular” test function (ϕ ∈ W 2,∞(Ω) ∩W 1,∞

0 (Ω)) and to integrate twice by
parts. We introduce the adjoint operator

L∗u =

N∑
i,j=1

∂

∂xj

(
aij(x)

∂

∂xi
u

)
= div(A∗∇u)

(A∗ the transposed matrix of A) and for x ∈ ∂Ω we define

∂Au := (A∗∇u) · n,

where n(x) is the outward normal vector to ∂Ω in x. A solution is then a
function u which satisfies

−
∫

Ω

uL∗ϕdx+ λ

∫
Ω

bϕdx =

∫
Ω

fϕdx−
∫
∂Ω

h∂Aϕdσ, (11)

for all ϕ ∈ W 2,∞(Ω) ∩ W 1,∞
0 (Ω) and for some b ∈ L1

loc(Ω) such that b(x) ∈
β(u(x)) for a.e. x ∈ Ω (in case of problem (1), it is b = uq). In order to give a
meaning to all the above integrals, it is useful to recall that, since ϕ ∈W 1,∞

0 (Ω),
it holds c1ρ(x) 6 ϕ(x) 6 c2ρ(x) ∀x ∈ Ω, where

ρ(x) := dist (x, ∂Ω)

and c1, c2 are positive constants. Thus we must require at least that

f ∈ L1(Ω; ρ),

where

L1(Ω; ρ) := {f ∈ L1
loc(Ω) :

∫
Ω

|f(x)|ρ(x) dx < +∞}.
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1.1 Elliptic case

Definition 1.1. Given f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω), we say that u is a very
weak solution of problem (7) if u ∈ L1(Ω) and there exists b ∈ L1(Ω; ρ) such
that b(x) ∈ β(u(x)) for a.e. x ∈ Ω, and for any test function ϕ ∈ W 2,∞(Ω) ∩
W 1,∞

0 (Ω) identity (11) holds.

It is not too difficult to adapt to our framework some existence and unique-
ness results in the literature (see [12], [32] and [26]).

Theorem 1.2. Let Ω be a bounded regular open set of RN , let β be a maximal
monotone graph of R2 such that 0 ∈ β(0) and let f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω).
Then there exists a unique very weak solution u of problem (7). Moreover, there
exists a constant C, only dependent of Ω, such that if û is the very weak solution
corresponding to the data f̂ ∈ L1(Ω; ρ) and ĥ ∈ L1(∂Ω), with b̂(x) ∈ β(û(x)) for
a.e. x ∈ Ω as in Definition 1.1, then we have

∥∥[u− û]+
∥∥
L1(Ω)

+ λ

∥∥∥∥[b− b̂]
+

∥∥∥∥
L1(Ω;ρ)

≤ C
(∥∥∥∥[f − f̂]

+

∥∥∥∥
L1(Ω;ρ)

+

∥∥∥∥[h− ĥ]
+

∥∥∥∥
L1(∂Ω)

) (12)

and

‖u− û‖L1(Ω) + λ
∥∥∥b− b̂∥∥∥

L1(Ω;ρ)

≤ C
(∥∥∥f − f̂∥∥∥

L1(Ω;ρ)
+
∥∥∥h− ĥ∥∥∥

L1(∂Ω)

)
.

(13)

In particular, f ≤ f̂ and h ≤ ĥ imply that u ≤ û on Ω.

To study the behaviour of the solution close to the boundary of S(h) we
consider two different frames, an unbounded case and a bounded one.

In the first case we set Ω = R × [0,∞), aij is constant for i, j ∈ {1, 2},
f ≡ 0, and β(u) is given by (8) or (5). For what concerns the boundary
datum, we are interested in the case of h satisfying, h ∈ L∞(∂Ω), h(x1) =
0 on (−∞, 0) and h(x1) > 0 on (0,+∞).

The reason why we consider boundary data in L∞(∂Ω) instead of in L1(∂Ω)
(remember that now ∂Ω is unbounded, so L∞(∂Ω) * L1(∂Ω)) is that we know
the explicit solution in the unperturbed linear case (λ = 0, L = ∆, f ≡ 0) with
boundary data given by the Heaviside function (52). Such solution is given by

u(x1, x2) = 1− 1

π
arctan

(
x1

x2

)
(14)

(the result can be found in [20] formula (2.6)). Having at disposal an explicit
solution like (14) is really useful in the study of the behaviour of general solutions
close to the point x = (0, 0). In addition, since our main interest, as already
said, is specifically the behaviour near the boundary of the support ∂S(h) and
not in the whole Ω, we shall assume also that h is non decreasing and that
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h(x1) = c+ > 0 for x1 ≥ δ > 0. We can resume this set of hypothesis in
Ω = R× [0,∞), aij constant for i, j ∈ {1, 2}, f ≡ 0,
β(u) is given by (8) or (5),
h ∈ L∞(∂Ω), h(x1) = 0 on (−∞, 0),
h(x1) > 0 on (0,∞) and h(x1) = c+ > 0 on (δ,+∞).

(Hhp)

To give a definition of solution for the new setting Hhp, we first introduce
the family of rectangles

Rn = {(x1, x2) : |x1| < n, 0 < x2 < x̄},

where x̄ is a constant which will be make explicit later on. We define now the
bounded domain Ωn, which is a sufficiently smooth regularization of the rect-
angular Rn. We call Γ1

n the horizontal boundary of Ωn, i.e., Γ1
n := {(x1, x2) ∈

∂Ωn : x2 = 0 or x2 = x̄}, and Γ2
n = ∂Ωn \ Γ1

n. Then we consider the problem
− Lu+ β(u) 3 0 in Ωn,

u(x1, 0) = h(x1), u(x1, x̄) = 0, |x1| ≤ n,
u(x1, x2) = 0 (x1, x2) ∈ Γ2

n, x1 < 0,

u(x1, x2) = z(x2) (x1, x2) ∈ Γ2
n, x1 > 0,

(15)

where z is given by (51). We define the class of “limit very weak solutions”.

Definition 1.3. In the framework of Hhp, we say that u is a limit very weak
solution of problem (7) if u = limn→∞ un, where un is the solution of the
truncated problem (15).

Theorem 1.4. Assume (Hhp). There exists a unique limit very weak solution of
problem (7) on the hyperplane Ω = R× [0,∞). Moreover that solution satisfies

the comparison principle with respect to the boundary data h: if h ≤ ĥ then the
corresponding limit very weak solutions satisfy u ≤ û on Ω.

Our main result concerns the qualitative behaviour of the solution of (7)
under the assumption (Hhp).

Theorem 1.5. Assume (Hhp). Then there exist four positive constants C < C,
ε < ε and two boundary points x1,ε, x1,ε > 0, such that :

i) If h(x1) ≥ Cx
2

1−q

1 for a.e. x1 ∈ (0, x1,ε) and h(x) ≥ ε for a.e. x1 ∈
(x1,ε,+∞), then the expansion on the boundary of the support property holds.

ii) If h(x1) ≤ Cx
2

1−q

1 for a.e. x1 ∈ (0, x1,ε) and h(x1) ≤ ε for a.e. x1 ∈
(x1,ε,+∞), then the non-diffusion on the boundary of the support property holds.
In both cases, q ∈ (0, 1) when β is given by (8) and q = 0 when β is chosen as
(5).

The indicative qualitative behaviour of solutions illustrated in Theorem 1.5 is
resumed in Figure 2 (i) and 3 (ii).

Corollary 1.6. In the same framework of Theorem 1.5 we have the additional
consequences:
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x1

x2

u > 0

u = 0

(0, 0)

F(u)

Figure 2: Expansion on the boundary of the support

x1

x2

u > 0

u = 0

F(u)

(0, 0)

Figure 3: Non-diffusion on the boundary of the support
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1) Under condition (i), u = ∂
∂nu = 0 on (−∞, 0)× {0}.

2) Under condition (ii), ∂
∂nu > 0 on (−ζ, 0) × {0} for some ζ > 0. If in

particular h is a multiple of the Heaviside function, then ∂
∂nu /∈ C(∂Ω)

and u /∈ C(Ω).

In both situations, n = (0, 1) is the normal vector to ∂Ω.

For the bounded case, we set Ω ⊂ R2 to be the rectangle of vertexes

R = {(−Bl, 0), (Br, 0), (Br, Bu), (−Bl, Bu)} with Bl, Br, Bu > 0.

Let us call

∂1R = [(−Bl, 0), (Br, 0)], ∂2R = [(Br, 0), (Br, Bu)],

∂3R = [(Br, Bu), (−Bl, Bu)], ∂4R = [(−Bl, Bu), (−Bl, 0)],

the four sides of R. The internal datum f is set to zero. We have the following
result.

Theorem 1.7. Assume that

h =

 εH(x1) on ∂1R,
max(0, ψ(x2)) on ∂2R,
0 on ∂3R ∪ ∂4R,

with H(x1) = 0 for x1 < 0, H(x1) = 1 for x1 ≥ 0 and

ψ(x2) = ε

(
1

2
+

1

π
arctan

(
(detA)−1

(
a22

Br
x2
− a12

)))
+
λεq

2
x2

2 + Cx2 (16)

where C is a negative constant. If

C ≤ min(− ε

Bu
− λεq

2
Bu,−

ε(detA)1/2

πa22Bl
),

the the solution of (7) with boundary datum h and internal datum f ≡ 0 satisfies
the expansion on the boundary of the support property. In both cases, q ∈ (0, 1)
when β is given by (8) and q = 0 when β is chosen as (5).

Proof. First of all we want to point out that since the boundary conditions are
all non-negative and bounded by ε, then 0 ≤ u ≤ ε.

We consider the subsolution given by u = u1 + u2, where

u1 = ε

(
1

2
+

1

π
arctan

(
(detA)−1/2

(
a22

x1

x2
− a12

)))
,

u2 =
λεq

2
x2

2 + Cx2.

(17)

One can easily check that Lu1 = 0 and Lu2 = λεq and as a consequence

−Lu = −λuq ≥ −λεq = −Lu.
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Now let us check the boundary conditions for u. On ∂1R we have that u(x1) =
εH(x1). On ∂2R it is exactly ψ(x2). On ∂3R, thanks to the hypothesis on C,
it holds

u(x1, Bu) ≤ ε+
λεq

2
B2
u + CBu ≤ 0.

On ∂4R, u(−Bl, 0) = 0. We compute the x2-derivative

∂u

∂x2
(x1, x2) = λεqx2 + C − ε

π

a22(detA)1/2 x1

detA x2
2 + (a22x1 − a12x2)2

With a direct computation and thanks to the condition on C, ∂u/∂x2(−Bl, 0) <
0 and ∂u/∂x2(−Bl, x1) is an increasing function. Hence, since u(−Bl, Bu) ≤ 0,
u|∂4R ≤ 0. We have proved that u ≤ u.

Now let us check that the expansion on the boundary of the support holds
for u and as a consequence for u. We know that u(x1, 0) = 0 for x1 < 0. The
derivative

∂u

∂x2
(x1, 0) = C − ε

π

detA

a22x1
< 0

for x1 > ε detA
πa22C

= −η. It follows that u > 0 in a neighbourhood in R2 of
(−η, 0)× {0}.

Corollary 1.8. The same result holds under the same conditions of the previous
theorem but with u|∂2R ≥ ψ.

1.2 Parabolic case

As far as the parabolic problem is concerned, our main interest consists in
analysing the stabilization of the solution to the solution of stationary problem in
order to well understand the expansion on the boundary of the support property.
When Ω is a general open bounded set the notion of very weak solution is quite
similar to the elliptic case.

Definition 1.9. Take T > 0, f ∈ L1(0, T ;L1(Ω; ρ)), h ∈ L1(0, T ;L1(∂Ω)) and
u0 ∈ L1(Ω; ρ) with u0(x) ∈ D(β). We say that u is a very weak solution of
problem (9) if u ∈ L1(0, T ;L1(Ω)) and there exists b ∈ L1(0, T ;L1(Ω; ρ)) such
that b(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ (0, T ) × Ω, and for every test function
ϕ ∈ W 1,∞([0, T ];L∞(Ω)) ∩ L∞(0, T ;W 2,∞(Ω) ∩W 1,∞

0 (Ω))with ϕ(T, ·) = 0 the
following identity holds

−
∫ T

0

∫
Ω

u
∂ϕ

∂t
dxdt+

∫ T

0

∫
Ω

uL∗ϕdx+ λ

∫ T

0

∫
Ω

bϕdxdt

=

∫
Ω

u0(x)ϕ(0, x) dx+

∫ T

0

∫
Ω

fϕdxdt−
∫ T

0

∫
∂Ω

h ∂Aϕdσdt.

(18)

Once again, it is not too difficult to adapt to our framework some existence
and uniqueness results in the literature (see [24]).

Theorem 1.10. i) For data f, h and u0 as in Definition 1.9 there exists a
unique very weak solution of (9). Moreover there holds a smoothing effect (same
as [24]).

ii) If in addition h ∈W 1,1(0, T ;L1(∂Ω)), then the very weak solution satisfies
u ∈ C([0, T ];L1(Ω; ρ)).
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b

b

b

x1

x2

0

L

−L

l−(t)

l+(t)
t1

t2

t = ∞
u∞ > 0

u(t1) > 0

u(t2) > 0

u=0

t

Figure 4: Convergence of S(u(t, ·)) to S(u∞)

Our result on the asymptotic behaviour, for t→ +∞, seems to be new in the
context of very weak solutions (check [18] and [22] for similar results on more
regular solutions).

Remark 1.11. Whenever we are dealing at the same time with the parabolic
and the elliptic problem, as we are going to do, we use the symbols u∞, h∞,
f∞ to denote the solution and the data of the elliptic boundary value problem.

For the next result we will add the following hypothesis:

∃ q ∈ [0, 1) such that |b| ≤ C |r|q

for any b ∈ β(r) and for any r ∈ R.
(19)

In the above condition the case q = 0 means that R(β) (the range of β, i.e.,
r ∈ R such that there exists x ∈ R for which r ∈ β(x)) is bounded.

Theorem 1.12. Consider the case of β satisfying condition (19). Assume h ∈
W 1,1(0, T ;L1(∂Ω)) for any T > 0 and that there exists a sequence tn → +∞,
as n→ +∞, such that∫ tn+1

tn−1

∫
Ω

|f(s, x)− f∞(x)| ρ(x) dxds→ 0 as n→ +∞ (20)

and ∫ tn+1

tn−1

∫
∂Ω

|h(s, x)− h∞(x)| dσds→ 0 as n→ +∞. (21)

Assume in addition that

u ∈ L∞(0,∞;L1(Ω; ρ)). (22)

Then u(tn, ·)→ u∞ in L1(Ω; ρ) with u∞ the very weak solution of (7) with data
f∞ and h∞.
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For the qualitative behaviour of the solutions, we consider now the half plane
case under the assumptions

Ω = R× [0,∞), aij are constants, f ≡ 0, u0 ≥ 0,
β(u) is given by (8) or (5),

h ∈W 1,1
loc (0,+∞;L1(∂Ω)) ∩ L∞((0,+∞)× ∂Ω),

h(t, ·) = 0 on (−∞, 0) and h(t, ·) > 0 on (0,+∞),
h(t, x1) = c+∀x1 ∈ [δ,∞), t > 0.

(Ĥhp)

In this setting we adapt the definition of limit very weak solution from the
elliptic case using truncated-in-space solutions. Existence and uniqueness can
be obtain in similar way.

Corollary 1.13. Assume (Ĥhp). Then there exist four positive constants C <
C, ε ≤ ε and two boundary points x1,ε, x1,ε > 0 such that

i) if u0 = 0, h(t, x1) ≤ Cx
2

1−q

1 for a.e. x1 ∈ (0, x1,ε) and h(t, x1) ≤ ε for a.e.
x1 ∈ (x1,ε,+∞), for any t ≥ 0, then the non-diffusion on the boundary of the
support property holds for any t ≥ 0, i.e., ∂S(u(t, ·)) ∩ ∂Ω = S(h(t, ·)) for any
t ≥ 0 (infinite waiting time property).

ii) Assume that u0(x1, x2) ≥ u1(x1, x2) + u2(x1, x2), with u1 and u2 solutions

of the problems (57) and (58), and that h(t, x1) ≥ Cx
2

1−q

1 for a.e. x1 ∈ (0, x1,ε)
and h(t, x1) ≥ ε for a.e. x1 ∈ (x1,ε,+∞), for any t ∈ (0, T ).
Then the expansion on the boundary of the support property holds for any t ∈
(0, T ], i.e., S(h(t, ·)) ( ∂S(u(t, ·)) ∩ ∂Ω := [−δ0,∞]× {0}, for some δ0 > 0.

Remember that q ∈ (0, 1) when β(u) is given by (8) and q = 0 when β is
given by (5).

Corollary 1.14. The conclusions of Corollary 1.6 remain valid for u(t, ·) under
the corresponding assumptions.

Remark 1.12. For the special case of q = 0 it is illustrative to compare
the conclusions of Theorem 1.5 (respectively Corollary 1.13) with the comple-
mentary information given in Theorem B of [30] (respectively Theorem I of
[4]).

The organization of the rest of the paper is the following. Section 2 is devoted
to the proof of the general existence and uniqueness results, Theorems 1.2 and
Theorem 1.10. The stabilization of very weak solutions, when t → +∞, is
considered in Section 3 and, in particular Theorem 1.12 is proved there. Finally
the special case of the half plane is considered in Section 4. After proving
Theorem 1.4 we present the proof of Theorem 1.5 in Subsections 4.2 and 4.3.
The special case of discontinuous boundary data plays an important role in such
proof and so it is previously discussed there.
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2 On the existence and uniqueness of very
weak solutions

In this part we omit to write the parameter λ as it can be thought as already
included in β.

2.1 Proof of Theorem 1.2

We need to introduce first a result on the corresponding linear problem{
− Lu = f in Ω,

u = h on ∂Ω.
(23)

Definition 2.1. Assume f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω). A function u ∈ L1(Ω)
is a weak solution of (23) if it satisfies∫

Ω

uL∗φdx =

∫
∂Ω

h ∂Aφdσ −
∫

Ω

fφdx

for every function φ ∈ C2
0 (Ω̄).

The following lemma is a known result and we cite it for further needs.

Lemma 2.2. Assume that u solves (23) with h = 0 and f ∈ L2(Ω). Then
u ∈ H1

0 (Ω) and ∫
Ω

−Lu · u dx ≥ C||u||2L2(Ω)

Next proposition is a consequence of a generalization of the estimates of
Brezis [12] applied to the operator L. The proof when L is the Laplacian can
be found in [26]. The case of an even more general second order linear operator
of the form

Lu = −div(A∇u) + b · ∇u− div(cu) + du,

under appropriate structural and regularity assumptions on the coefficients A ∈
Mn×n(R),b, c ∈ Rn, d ∈ R (essentially the maximum principle should hold), is
contained in [32].

Proposition 2.3. Let f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω). Then there exists a unique
solution u ∈ L1(Ω) of problem (23) in the sense of Definition 2.1. Moreover
there exists C = C(Ω, L) > 0 such that

||u||L1(Ω) ≤ C(||f ||L1(Ω;ρ) + ||h||L1(∂Ω)) (24)

and u satisfies

−
∫

Ω

u+L
∗φ dx ≤

∫
Ω

f(sgn +u)φdx−
∫
∂Ω

∂Aφh+ dσ (25)

and

−
∫

Ω

|u|L∗φdx ≤
∫

Ω

f(sgnu)φdx−
∫
∂Ω

∂Aφ |h|dσ, (26)
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for every non negative φ ∈ C2
0 (Ω̄). We have used the notation

sgn r =

 1 if r > 0,
0 if r = 0,
−1 if r < 0,

sgn +r =

{
1 if r ≥ 0,
0 if r < 0.

Proof of Theorem 1.2. Uniqueness, monotonicity and estimate (12) follow from
Proposition 2.3. Indeed, assume that u1 and u2 are solutions of (7) with data
f1, h1 and f2, h2 respectively. It means that there exist b1(x) ∈ β(u1(x)) and
b2(x) ∈ β(u2(x)) such that (11) holds. This implies that w = u1 − u2 is a
solution of {

− Lw = f∗ = f1 − f2 − b1 + b2 in Ω,

w = h∗ = h1 − h2 on ∂Ω.
(27)

Then, estimate (12) follows from (25) when applied to w with test function φ0

solution of {
− L∗φ0 = 1 in Ω,

φ0 = 0 on ∂Ω.
(28)

Also monotonicity follows from estimate (25) when applied to w with test func-
tion φ0. Uniqueness can be derived with the same procedure from (26).

Existence. We consider the Yosida approximation βµ of β, maximal monotone
graph of R2, which we know to be a Lipschitz increasing function (see [13]). We
look for a solution of the problem{

− Lu+ βµ(u) = f in Ω,

u = h on ∂Ω.
(29)

The solution of such a problem is a straightforward generalisation of Proposition
2.1.2 in [26].

Let us call uµ the solution of (29), and let consider f ∈ L∞(Ω) and h ∈
L∞(∂Ω). Then, by the monotonicity of solutions, one have the upper bound
uµ ≤ M = max(supΩ f, sup∂Ω h) for all µ > 0. Also {βµ(uµ)} is uniformly
bounded in L∞(Ω) (see [14]).

We now show that {uµ} and {βµ} are Cauchy sequences in L2(Ω). Given
λ, µ > 0, we subtract the equations for uλ and uµ, multiply the result for uλ−uµ
and integrate to obtain, with the use of Lemma 2.2,

0 =

∫
Ω

−L(uλ − uµ)(uλ − uµ) +

∫
Ω

(βλ(uλ)− βµ(uµ))((uλ − uµ))

≥ C||uλ − uµ||2L2(Ω) + (βλ(uλ)− βµ(uµ), (uλ − uµ))L2(Ω),

which, following [14], gives

C||uλ − uµ||2L2(Ω) + (βλ(uλ)− βµ(uµ), λβλ(uλ)− µβµ(uµ))L2(Ω) ≤ 0.

Sending λ, µ → 0 and remembering that {βµ(uµ)} is uniformly bounded in
L∞(Ω), we get that ||uλ − uµ||L2(Ω) → 0. We set u := limµ→0 uµ. By Lemma
2.4 of [16] also βµ(uµ) is a Cauchy sequence in L2(Ω) and its limit b ∈ L∞(Ω)

14



satisfies that b(x) ∈ β(u(x)) since β is maximal. Passing to the limit in the
definition of solution we have

0 = −
∫

Ω

uµL
∗ϕdx+ λ

∫
Ω

βµ(uµ)ϕdx−
∫

Ω

fϕdx+

∫
∂Ω

h∂Aϕdσ →

−
∫

Ω

uL∗ϕdx+ λ

∫
Ω

b ϕdx−
∫

Ω

fϕdx+

∫
∂Ω

h∂Aϕdσ

(30)

for any ϕ ∈ C2
0 (Ω̄). Hence u is a solution of (7).

If (f, h) ∈ L1(Ω; ρ) × L1(∂Ω) we consider {(fn, hn)} ⊂ L∞(Ω) × L∞(∂Ω)
which converges to (f, h) in L1(Ω; ρ)×L1(∂Ω). Call un the solution of (7) with
data fn and hn. Thanks to (13), un and bn are Cauchy sequences in L1(Ω) and
hence converges to functions u, b respectively. Since β is maximal b(x) ∈ β(u(x))
and passing to the limit in the definition of solution we find that u solves (7).

2.2 Proof of Theorem 1.10

We start this part by giving a result on the corresponding linear problem
ut − Lu = f(t, x) in QT ,

u = h(t, x) on ΣT ,

u(0, x) = u0(x) on Ω.

(31)

Proposition 2.4. Assume f ∈ L1(QT ; ρ) = L1(0, T ;L1(Ω; ρ)), h ∈ L1(ΣT ) and
u0 ∈ L1(Ω; ρ). Problem (31) possesses a unique very weak solution u ∈ L1(QT ),
in the sense that∫

QT

−(ζt + Lζ)u− fζ dxdt = −
∫

ΣT

h ∂Aζ dσdt+

∫
Ω

ζ(x, 0)u0 dx

for every ζ ∈ C2,1(QT ). Additionally, there hold∫
QT

−(ζt + Lζ)u+ − fζsgn +(u) dxdt

≤ −
∫

ΣT

h+ ∂Aζ dσ dt+

∫
Ω

ζ(x, 0)(u0)+ dx

(32)

and ∫
QT

−(ζt + Lζ)|u| − fζsgn (u) dx dt

≤ −
∫

ΣT

|h| ∂Aζ dσ dt+

∫
Ω

ζ(x, 0)|u0|dx,
(33)

for every non-negative ζ ∈ C2,1
0 (QT ).

Proof. The proof is exactly the same of [25] with ∆ replaced by L.

Lemma 2.5. Let f ∈ L1(QT ; ρ), h ∈ L1(ΣT ) and u0 ∈ L1(Ω; ρ). Then problem
(9) has at most one solution. If u1, u2 are solutions with data f1, h1, u01 and
f2, h2, u02 respectively, then

||u1 − u2||L1(QT ) + ||b1 − b2||L1(QT ;ρ)

≤ C
(
||f1 − f2||L1(QT ;ρ) + ||h1 − h2||L1(ΣT ) + ||u01 − u02||L1(Ω;ρ)

)
,

(34)
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with C > 0 and b1 ∈ β(u1), b2 ∈ β(u2). Furthermore, if f1 ≤ f2, h1 ≤ h2 and
u01 ≤ u02 then u1 ≤ u2.

Proof. As for the elliptic case, we set w = u1 − u2, which is solution of
wt − Lw = f1 − f2 − b1 + b2 in QT,

w = h1 − h2 on ΣT,

w(0, x) = u01 − u02 in Ω.

Take ψT solution of 
− ψt − Lψ = 1 in QT,

ψ = 0 on ΣT,

ψ(T, x) = 0 in Ω.

Estimate (34) and monotonicity follow from (32) with ψT as test function and
uniqueness follows from (33) with the same method.

Proof of Theorem 1.10. The proof of existence for the case of β a continuous
function is again an easy adaptation of previous results in the literature con-
cerning the special case of L = ∆ (see, e.g., [24] Lemma 2.7 and [25] Lemma 1.3
and Lemma 1.7: notice that the assumption of β Lipschitz assumed at the be-
ginning of the paper is not needed in both lemmas). The adaptation to the case
of L given by (6) and β multivalued is completely similar to the one presented
in the stationary case.

The continuity in t of the very weak solution will be used in our study of
the asymptotic behaviour of solutions and can be obtained by reformulating
the parabolic semilinear problem as an abstract Cauchy problem on the Banach
space X = L1(Ω; ρ),

(AP )

{
du
dt (t) +A(t)u(t) 3 f(t) in X,
u(0) = u0,

where A(t) : D(A(t))→ P(X) is the operator defined by (w, z) ∈ A(t) ⊂ X×X
iff w ∈ L1(Ω) is the very weak solution of{

−Lw + β(w) 3 z in Ω,
w(x) = h(t, x) on ∂Ω.

Here, in the definition of the operator A(t), t ∈ (0, T ) is a parameter (remember
that h ∈W 1,1(0, T ;L1(∂Ω)), hence h(t, ·) makes sense). For a.e. t ∈ (0, T ), this
operator is T − ω−accretive on X (see, e.g., [8] or [10]) for some ω ≥ 0 large
enough. Indeed, we must show that, for some µ > 0, (I + µ(A(t) + ωI))−1 is
a contraction on X and this is equivalent to show that if wi, with i = 1, 2, are
the very weak solutions of{

−µLwi + µβ(wi) + µωwi 3 zi(x) in Ω,
wi(x) = h(t, x) on ∂Ω,

(35)

for some zi ∈ L1(Ω; ρ), then∥∥∥[w1 − w2
]
+

∥∥∥
L1(Ω;ρ)

≤
∥∥∥[z1 − z2

]
+

∥∥∥
L1(Ω;ρ)

.
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But this is a trivial consequence of the estimates proven in Theorem 1.2 once
that ω is taken large enough (in particular ω > C, the constant appearing
in estimate (12) which was only dependent on Ω). In addition, for a.e. t ∈
(0, T ) this operator is m-accretive (see [8]) in the sense that R(I + µA(t)) = X.
Indeed, we must prove that problem (35) (i.e., (7)) for a given right hand side in
zi ∈ L1(Ω; ρ) has a unique solution, which, again, is a consequence of Theorem
1.2. Finally, since h ∈W 1,1(0, T ;L1(∂Ω)) we get that the t−dependence of the
solution has the same regularity: w ∈ W 1,1(0, T ;L1(Ω)) and so the Crandall-
Evans theorem ([15],[21]) can be applied ensuring the existence and uniqueness
of a mild solution u ∈ C([0, T ];L1(Ω; ρ)) of the abstract problem (AP ). Finally,
since we have uniqueness of the very weak solution of the parabolic problem, it
is easy to see (as, for instance, in [11]) that both solutions must coincide and
thus we get the desired time regularity result.

3 On the stabilization when t→ +∞
Remember that the solutions of the parabolic problem (9) and the elliptic prob-
lem (7) will be indicated with u and u∞ respectively.

Proof of Theorem 1.12. We follow some of the ideas contained in [18] (see also
references therein). We define

Un(s, x) = u(tn + s, x), Fn(s, x) = f(tn + s, x), Hn(s, x) = h(tn + s, x),

where tn → ∞ when n → ∞. By Theorem 1.10 we know that there exists
b ∈ L1(0, T ;L1(Ω; ρ)) such that b(t, x) ∈ β(u(t, x)) a.e. in QT . Thus we also
define Bn(s, x) = b(tn + s, x). Then it is clear that

∂Un
∂s
− LUn + λBn(s, x) = Fn(s, x) in (−1, 1)× Ω,

Un = Hn(s, x) on (−1, 1)× ∂Ω.
(36)

for all n > 1. Then from the estimate of Theorem 1.10 (which coincides with
(1.26) of [25] easily adapted to the case in which L is given by (6)),

‖Un‖L1((−1,1)×Ω) + λ ‖Bn‖L1((−1,1);L1(Ω;ρ))

≤ C
(
‖Fn‖L1((−1,1);L1(Ω;ρ)) + ‖Hn‖L1((−1,1);L1(∂Ω)) + ‖Un(−1, ·)‖L1(Ω;ρ))

)
.

Assumptions (20) and (21) imply that Fn → F∞, and Hn → H∞ strongly in
L1((−1, 1);L1(Ω; ρ)) and L1((−1, 1);L1(∂Ω)) respectively, where F∞ and H∞
are defined as F∞(s, x) = f∞(x) and H∞(s, x) = H∞(x). Moreover, from as-
sumption (22), ‖Un(−1, ·)‖L1(Ω;ρ)) is bounded independently of n. Consequently,

due to assumption (19), {ρBn} is a bounded sequence in Lp((−1, 1);Lp(Ω)) with
p = 1/q if q ∈ (0, 1) and for every p > 1 if q = 0. Thus,

ρBn ⇀ ρB∞

weakly in Lp((−1, 1);Lp(Ω)) (after passing to a subsequence), for some B∞ in
Lp((−1, 1);Lp(Ω)) . Then, by [25] (Lemma 1.6 (ii) easily adapted to the case
in which L 6= ∆), we get that Un → U∞ (strongly) in C([−1 + ε, 1];L1(Ω; ρ))
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for some U∞ ∈ C([−1 + ε, 1];L1(Ω; ρ)) for any ε ∈ (0, 2). Indeed, since problem
(36) is linear we can use the decomposition

Un = P(Fn − λBn, 0, 0) + P(0, Hn, 0) + P(0, 0, Un(−1)),

where P is the solution mapping (see [25] Lemma 1.6). The operator P(Fn −
λBn, 0, 0) is compact from Lp((−1+ε, 1)×Ω)×{0}×{0} → C([−1+ε, 1]×Ω),
since in general w = P(q, 0, 0) is given by

w(s, x) =

∫ 1

−1

∫
Ω

GL(x, y, s, τ) q(y, τ) dy dτ

(remember that the Green function GL(x, ·, s, ·) ∈ C0([−1 + ε, 1] × Ω). The
compactness of the other terms P(0, Hn, 0) and P(0, 0, Un(−1)) was shown in
Lemma 1.6 (ii) of the mentioned reference. In our case, we know the continuity
in time of the functions (Proposition 1.10). In particular, since Un → U∞ in
C([−1 + ε, 1];L1(Ω)), we find that {Un(−1 + ε, ·)} is a Cauchy sequence in
L1(Ω; ρ).
Then, by applying an estimate similar to (13) but for the parabolic problem
(see estimate (1.26) of [25] easily adapted to the case in which L is given by
(6)), we get

‖Un − Um‖L1((−1+ε,1)×Ω) + λ ‖Bn −Bm‖L1((−1+ε,1);L1(Ω;ρ))

≤ C
(
‖Fn − Fm‖L1((−1+ε,1);L1(Ω;ρ)) + ‖Hn −Hm‖L1((−1+ε,1);L1(∂Ω))

+ ‖Un(−1 + ε)− Um(−1 + ε)‖L1(Ω;ρ)

)
,

which proves that {ρBn} is a Cauchy sequence in L1((−1 + ε, 1);L1(Ω)) and
so ρBn → ρB∞ strongly in L1((−1 + ε, 1);L1(Ω)). Then, since β is maximal
monotone, we conclude (see [9]) that B∞(s, x) ∈ β(U∞ (s, x)) for a.e. (s, x) ∈
(−1 + ε, 1)× Ω.
It only remains to prove that U∞ (s, x) = u∞(x), with u∞ the (unique) very
weak solution of (7) with data f∞, h∞. Since

ess sup
tn+s∈(0,+∞)

‖u(tn + s, .)‖L1(Ω;ρ) ≤ C,

then there exists a (stationary) Radon measure µ∞ ∈M(Ω; ρ) such that u(tn +
s, ·) ⇀ µ∞ weakly in M(Ω; ρ). Moreover, u(tn + s, ·)→ U∞ (s, x) (strongly) in
C([−1 + ε, 1];L1(Ω; ρ)) ⊂ C([−1 + ε, 1];M(Ω; ρ)). Then, by the uniqueness of
the limit, we deduce that U∞ (s, ·) = µ∞(·) for any s ∈ [−1 + ε, 1], so that the
singular part of the measure µ∞(·) vanishes (i.e., µ∞ ∈ L1(Ω; ρ)). Let us denote
now u∞(x) ≡ µ∞(x). Then U∞ (s, x) = u∞(x) for any s ∈ [−1 + ε, 1]. By the
same reasons (thanks to the assumption on β) we get that B∞(s, x) = b∞(x)
for a.e. s ∈ [−1 + ε, 1], for some b∞ ∈ L1(Ω; ρ) such that b∞(x) ∈ β(u∞ (x))
for a.e. x ∈ Ω. Finally, we take as test function in the definition of very weak
solution of the parabolic problem ϕ(s, x) = ψ(s)ζ(x), with ζ ∈ W 2,∞(Ω) ∩
W 1,∞

0 (Ω) and ψ ∈ C1([−1, 1]) such that ψ|[−1,−1+ε] = ψ(1) = 0 and such that∫ +1

−1+ε
ψ(s)ds = 1 . Obviously such special ϕ(s, x) is a correct test function since

ϕ ∈ W 1,∞(−1, 1;L∞(Ω)) ∩ L∞(−1, 1;W 2,∞(Ω) ∩ W 1,∞
0 (Ω)) and ϕ(1, ·) = 0.

Then, from the definition of very weak solution, we get that
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−
∫ 1

−1+ε

∫
Ω

Un(s, x)ψ′(s)ζ(x) dxds+

∫ 1

−1+ε

∫
Ω

ψ(s)Un(s, x)L∗ζ(x) dxds

+ λ

∫ 1

−1+ε

∫
Ω

Bn(s, x)ψ(s)ζ(x) dxds

=

∫
Ω

Un(−1, x)ψ(−1)ζ(x) dx+

∫ 1

−1+ε

∫
Ω

Fn(s, x)ψ(s)ζ(x) dxds

−
∫ 1

−1+ε

∫
∂Ω

ψ(s)Hn(s, σ)
∂ζ(σ)

∂n
dσds.

Passing to the limit, as n→ +∞, and using that ψ(−1 + ε) = 0, we arrive to

−
(∫ 1

−1+ε

ψ′(s) ds

)(∫
Ω

u∞(x)ζ(x) dx

)
+

∫ 1

−1+ε

ψ(s) ds

∫
Ω

u∞(x)L∗ζ(x) dx

+ λ

∫ 1

−1+ε

∫
Ω

B∞(s, x)ψ(s)ζ(x) dx

=

∫ 1

−1+ε

ψ(s) ds

∫
Ω

f∞(x)ζ(x) dx−
∫ 1

−1+ε

ψ(s) ds

∫
∂Ω

h∞(σ)
∂ζ(σ)

∂n
dσ.

But ∫ 1

−1+ε

ψ′(s)ds = 0,

and since
∫ +1

−1+ε
ψ(s)ds = 1 we get that∫

Ω

u∞(x)L∗ζ(x)dx+ λ

∫
Ω

b∞(x)ζ(x) dxds

=

∫
Ω

f∞(x)ψ(s)ζ(x) dx−
∫
∂Ω

h∞(σ)
∂ζ(σ)

∂n
dσ,

which shows that u∞ coincides with the (unique) very weak solution of the
stationary problem.

Remark 3.1. Notice that the boundedness of the trajectories assumption is
considerably weaker than the usual for weak solutions (see, e.g, [18]) which is
of the type u ∈ L∞(0,+∞;H1(Ω)). Notice also that this condition is necessary
once we assume that the conclusion of Theorem 1.12 holds.

A sufficient condition leading to the boundedness of the trajectories (as-
sumption (22)) can be obtained by the method of super and subsolutions as in
Proposition 3 of [18].
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Proposition 3.2. Assume that the stationary problem (7) admits a bounded
weak solution u∞. Let f, f∞ and h, h∞ satisfy (20) and (21) respectively.
Suppose the existence of fu, fd ∈ L1((0, T ) × Ω) for any T > 0 and hu, hd ∈
L1((0, T )× ∂Ω) with fu, hu (fd, hd) non-increasing (decreasing) in t such that

− f(x) ≤ fd(t, x) ≤ f(t, x) ≤ fu(t, x) ≤ f(x),

− h(x) ≤ hd(t, x) ≤ h(t, x) ≤ hu(t, x) ≤ h(x),

for 0 ≤ f̄ = div c with c ∈ Lp(Ω)N , 0 ≤ h̄ ∈ L1(∂Ω) and

lim
t→∞

fu(t, x) = lim
t→∞

fd(t, x) = f∞(x) in L1(Ω; ρ),

lim
t→∞

hu(t, x) = lim
t→∞

hd(t, x) = h∞(x) in L1(∂Ω).
(37)

Let u, uu, ud be bounded weak solutions of (9) associated to the data (f, h, u0),
(fu, hu, ū0) and (fd, hd, u0) with ū0, u0 solutions of (7) with data f̄ , h̄ and −f̄ ,−h̄
respectively. If uu, ud ∈ L∞((t0,∞);L1(Ω)) for some t0 > 0 then the conclusion
of Theorem 1.12 holds.

4 On the half plane problems

Before starting with proving existence and uniqueness we shall show some results
concerning the boundedness of the support of solutions. For this purpose we
assume that

β(u) = uq, λ = 1, suph = 1. (38)

This hypothesis on λ and h is not a restriction as, taking it off, all calculations
can be performed in the same way. Moreover the proof of Theorems 1.4 and 1.5
for the multivalued case (which formally corresponds to make q = 0 in all the
above expressions) follows, word by word, the same proof of the case in which
q ∈ (0, 1) and replacing the identity symbol = by the one of containing 3. The
details about local super and subsolutions can be seen also in the book [17]
(Theorem 2.16, Chapter 2).

In this first part we study some comparison functions which are essential,
first of all, to give sense to the formulation of problem (15), especially to its
boundary conditions, fundamental in the definition of “limit very weak solu-
tion”. Secondly, they are important also in the study of the behaviour of solu-
tions near the origin.

Assuming (38), we repeat the same procedure of [20], looking for local su-
persolutions, which are solutions of{

− Lu+ uq = 0 in BR(x0),

u = 1 on ∂BR(x0),
(39)

where BR(x0) is the ball with radius R and centered in x0. The problem is
that, differently from [20], we do not know exact radial solution for (39). So we
introduce a family of radial supersolution for (39).

Assume that y(x) = η(|x − x0|) is a radially symmetric function defined in
BR(x0). Then, if we denote with r = |x− x0|, we have
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Ly(x) = η′′
∑
ij

aij
xixj
r2

+
η′

r

∑
i

aii −
∑
ij

aij
xixj
r2

 . (40)

Considering that∑
i

aii − ν ≤
∑
i

aii −
∑
ij

aij
xixj
r2
≤
∑
i

aii − µ, (41)

we can define the quantity

BA = sup
x∈Ω

∑
i

aii −
∑
ij

aij
xixj
r2

 .

In particular, if we assume η′, η′′ ≥ 0,

−Ly ≥ −νη′′ − BA
r
η′. (42)

We introduce the operator

Lν(η) = νη′′ +
BA
r
η′, (43)

which operates on functions of a real scalar variable and we study the properties
of the solutions to the problem{

− Lνη + ηq = 0 r ∈ (0, R),

η(0) = 0, η(R) = 1,
(44)

whenever R ∈ R+. We set the constants

C0 =

(
(1− q)2

2ν(q + 1) + 2BA(1− q)

)1/(1−q)
, R0 =

1

C
(1−q)/2
0

(45)

and introduce the function

η0(r) = C0r
2

1−q , r ∈ [0, R0].

It is a direct computation to see that η0 is the solution of (44). For R > R0 we
do not know the analytic form of the solution ηR of (44) but we know that the
function

ηR(r) =

{
0 r ∈ [0, R−R0],
η0(r − (R−R0)) r ∈ [R−R0, R],

(46)

is a supersolution. The next lemma gives the proof of this fact.

Lemma 4.1. The function ηR, for R > R0, defined by (46) is a supersolution
of (44).
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Proof. For r ∈ (0, R − R0), −LνηR + ηqR = 0. For r ∈ (R − R0, R), calling
s = r − (R−R0),

−LνηR + ηqR = −νη′′0 (s)− BA
s+R−R0

η′0(s) + ηq0(s)

≥ −νη′′0 (s)− BA
s
η′0(s) + ηq0(s)

= −Lνη0 + ηq0 = 0,

where the inequality is due to the fact that η′0 ≥ 0 and R − R0 ≥ 0. This
inequality combined with the values of ηR at the boundary, i.e., ηR(0) = 0 and
ηR(R) = 1, makes of ηR a supersolution for problem (44).

The following lemma is the conclusion of this line of reasoning.

Lemma 4.2. Suppose that uR is solution of (39). Then the function yR(x) =
ηR(|x− x0|) satisfies yR ≥ uR in BR(x0).

Proof. The proof uses the comparison principle. Just notice, recalling (42) and
Lemma 4.1, that

−LyR + yqR ≥ −LνηR + ηqR ≥ 0 = −LuR + uqR.

Checking the boundary conditions we obtain the statement.

Using the results on local supersolutions just given, we can find a function
ρ : (R0,∞)→ R+ such that if R > R0 and if ηR is the solution of (44) in (0, R)
then

ηR = 0 in [0, ρ(R)] and ηR > 0 in (ρ(R), R].

We define the function

d(R) = R− ρ(R), R > R0, (47)

and the following properties hold:

Lemma 4.3. It holds

(i) R0 < R1 < R2 ⇒ d(R1) ≥ d(R2),

(ii) lim
R→∞

d(R) = cνq,

with

cνq =
(2ν(1 + q))1/2

1− q . (48)

Proof. Point (i) is exactly the same as in [20]. The second statement follows
the same line too but we sketch it to show the details. We already know that
on [0, ρ(R)] the solution is zero since ηR is zero. We focus on the problem{

− Lνη + ηq = 0 r ∈ (ρ(R), R),

η(ρ(R)) = 0, η(R) = 1.

22



We set w(r) = η(R− r) and we transform the problem into
− νw′′ + Bs

R− rw
′ + wq = 0 in (0, d(R0)),

w ≥ 0,

w(0) = 1, w(d(R0)) = 0.

(49)

We note that the second extreme of the domain in (49) should be d(R) =
R − ρ(R), which, according to point (i), is smaller than d(R0). This does not
affect the result since w = 0 in (d(R), d(R0)). We multiply (49) by w′ and
integrate over (r, d(R0))

0 = −ν
2

∫ d(R0)

r

d

ds
(w′)2 ds+

∫ d(R0)

r

Bs
R− r (w′)2 ds+

1

q + 1

∫ d(R0)

r

d

ds
wq+1 ds

≥ ν

2
(w′)2(r)− 1

q + 1
wq+1(r).

The inequality in the second line is due to the non-negativity of the second term
of the right-hand side in the first line. Since 0 ≤ w ≤ 1 we conclude that

|w′(r)| ≤
(

2

ν(q + 1)

)1/2

, 0 ≤ r ≤ d(R0).

We have found that the family of solutions {w(r,R) : R > R0} is equicontinuous
in [0, d(R0)] and from compactness argument we can extract a subsequence
{w(·, Rn)} with Rn →∞ and a function w̄ ∈ C([0,∞)) such that w(·, Rn)→ w̄
uniformly on compact sets. Actually what really matters is the convergence on
[0, d(R0)] as w(r,R) = 0 for r > d(R0) and R > R0. In the limit, the equation
for w̄ becomes 

− νw′′ + wq = 0,

w ≥ 0,

w(0) = 1, w(∞) = 0,

(50)

whose unique solution is

z(t) =

[(
1− t

cνq

)
+

]2/(1−q)

. (51)

The convergence of w(·, R) to the solution of (50) implies that d(R) → cνq as
R→∞.

Lemma 4.4. Let uR be the solution of (39). Then uR(x) ≤ yR(x) = ηR(|x −
x0|).
Remark 4.5. If in (39) we set the value at the boundary to be ε instead of
one, all results just shown change just in the value of the constants. To be more
specific, the constant C0 appearing in (45) remains the same while R0 should
be changed into Rε = ε(1−q)/2C0 and cνq in cνqε = ε(1−q)/2cνq.

We remind that the Heaviside function Hv is given by

Hv(x1) =

{
0 x1 ∈ (−∞, 0),
1 x1 ∈ (0,∞).

(52)
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Lemma 4.6. Let u be a solution of (7) in the setting of Hhp with h the Heaviside
function. Then

S(u) ⊂ {(x, y) ∈ Ω : x ≥ 0, y < cνq} ∪ {(x, y) ∈ Ω : x ≤ 0, r < cνq}.

Proof. The proof is the same as the one proposed in [20] and uses the technique
of local supersolutions. We start by giving a bound in the x2 direction. For
R > R0 we consider the function yR as in Lemma 4.4 and we set

ū(x1, x2; ξ) = yR (x1 − ξ, x2 −R)

defined in BR(ξ,R). Since ū = 1 in ∂BR(ξ,R), by the comparison principle we
obtain that ū ≥ u in BR(ξ,R). As we have chosen ξ ∈ R arbitrarily we deduce
that

u(x1, x2) = 0 for all x1 ∈ R, d(R) ≤ x2 ≤ 2R− d(R).

Letting R→∞ and thanks to Lemma 4.3 we have that

u(x1, x2) = 0 for all x1 ∈ R, x2 ≥ cνq.

The boundedness for x1 < 0 works similarly. Again we set

ū(x1, x2; θ) = yR (x1 −R cos θ, x2 −R sin θ) for π/2 ≤ θ ≤ π,

this time defined on Σθ = BR(R cos θ,R sin θ)∩Ω. The boundary of Σθ consists
of the part of ∂BR(R cos θ,R sin θ) which is in Ω and where ū = 1 and u ≤ 1
and a part of ∂Ω with x1 < 0 where ū ≥ 0 and u = 0. Once again, because we
can move θ ∈ [π/2, π], by the comparison principle we obtain that

u(x1, x2) = 0 in {(x1, x2) : x1 ≤ 0, d(R) < r < 2R− d(R)},

with r = (x2
1 + x2

2)1/2. Letting R→∞,

u(x1, x2) = 0 in {(x1, x2) : x1 ≤ 0, r ≥ cνq)}.

Remark 4.7. As in Remark 4.5, if in Lemma 4.6 we substitute Hv with εHv,
the result is the same but with cνq replaced by cνqε.

4.1 Proof of Theorem 1.5

For the proof of Theorem 1.5 we start by showing (ii) for h = εHv. We will
use this result later to prove (ii) for a general boundary datum. In a second
moment we will show (i) and give a numerical representation of the behaviour
of C(q) and C(q) when ε = 1.

4.2 Heaviside function

Problem (7) under assumption Hhp and with h = εHv is{
− Lu+ uq = 0 in Ω,

u(x1, 0) = εHv(x1) x1 ∈ R.
(53)
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We remind that the symmetric matrix A

A =

(
a11 a12

a21 a22

)
satisfies

µ|ξ|2 ≤ ξTAξ ≤ ν|ξ|2, for all ξ ∈ R2, (54)

for some µ, ν > 0.

Remark 4.8. The existence of µ > 0 such that condition (54) holds is equiva-
lent to the fact that

a2
12 < a22a11. (55)

Indeed, if we set ξ = (ξ1, ξ2), we have

ξTAξ = a11ξ
2
1 + 2a12ξ1ξ2 + a22ξ

2
2

= µ(ξ2
1 + ξ2

2) +
(
(a11 − µ)ξ2

1 + 2a12ξ1ξ2 + (a22 − µ)ξ2
2

)
.

In order for the second term to be greater or equal to zero for all ξ1, ξ2 ∈ R,
it must hold

a2
12 < (a11 − µ)(a22 − µ) < a11a22.

This fact is used later on to obtain a subsolution.

In order to study the positivity set for the solution of (53) we look for a
proper subsolution. What we are really interested in is the behavior of the
solution in a neighborhood of the origin, i.e., the point (0, 0). We will show
that, although the boundary datum εHv is zero for x1 < 0, the solution is
positive for x1 > −ζµε and x2 sufficiently small, for some ζµε > 0.

The procedure to obtain a proper lower bound u for u is the same as the one
in [20]. We look for a u solution of

− Lu = −εq in R× (0, cνq),

u(x1, 0) = εH(x1) x1 ∈ R,
u(x1, cνqε) ≤ 0 x1 ∈ R.

(56)

If such u exists, and remembering the bounds 0 ≤ u ≤ ε where u is solution of
(53), we get

−L(u− u) = −εq + uq ≤ 0.

This property, by the comparison principle, assures that u ≥ u.
To find out an explicit formula for u, we split u = u1 + u2 with{

− Lu1 = −εq x1 ∈ R, 0 < x2 < cνqε,

u1(x1, 0) = 0, u1(x1, cνqε) = −ε x1 ∈ R,
(57)

and

{
− Lu2 = 0 x1 ∈ R, 0 < x2 < cνqε,

u2(x1, 0) = εH(x1), u2(x1, cνqε) ≤ ε x1 ∈ R.
(58)
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We try, as in [20], to find a u2 which depends only on the ratio m = x1/x2.
Calling f such a function, we have

2∑
i,j=1

aij
∂2

∂xi∂xj
f(x1/x2) =

1

x2
2

(
(a22m

2 − 2a12m+ a11)f ′′ + 2(a22m− a12)f ′
)
.

Since x2 > 0, we look for a solution of the differential equation

(a22m
2 − 2a12m+ a11)f ′′ + 2(a22m− a12)f ′ = 0,

which we see to be equivalent to gf ′′ + g′f ′ = (gf ′)′ = 0, where g(m) =
a22m

2−2a12m+a11. We deduce that f ′ = Cg−1, where C is a constant. Hence
f is given by the indefinite integral

f = C

∫
1

a22m2 − 2a12m+ a11
.

From (55) we know that a2
12 < a11a22, which implies that

f(m) = C̄ + C
1

(a11a12 − a2
12)1/2

arctan

(
a22m− a12

a11a12 − a2
12

)
.

We set
u2(x1, x2) = fε(x1/x2),

where fε is f with the constant C̄ = C̄ε and C = Cε chosen for the specific
problem. Let us check the boundary conditions: we fix x1 6= 0 and send x2 → 0.
If x1 < 0, then x1/x2 → −∞ and fε(x1/x2) → C̄ε − Cε π2 (a11a12 − a2

12)−1/2.

Setting Cε = επ−1(a11a12 − a2
12)1/2 and C̄ε = ε/2 we have that fε(x1/x2) →

0. For x1 > 0, we see that fε(x1/x2) → ε. Since, with these values for the
constants, 0 ≤ fε ≤ ε, also the other boundary condition is satisfied.

For u1 we choose

u1(x1, x2) = −
(

ε

cνqε
+
εqcνqε

2

)
x2 +

εq

2
x2

2. (59)

It is immediate to verify that u1 given by (59) is solution of (57).
Now we check that u is positive in a neighbourhood of the origin. We know

that, for x2 = 0 and x1 < 0, u is zero. We want to understand if it is positive
for some x2 > 0. We compute

∂u

∂x2
= −

(
ε

cνqε
+
cνqε

2

)
+ x2 −

Cεx1

a22x2
1 − a12x1x2 + a11x2

2

,

and evaluate it in x2 = 0,

∂u

∂x2
(x1, 0) = −

(
ε

cνqε
+
cνqε

2

)
− Cε
a22x1

.

One can see that it is strictly positive for x1 < 0 sufficiently close to zero,
precisely in a neighbourhood of (−ζνε, 0)× {0}, where

ζνε =
2Cεcνqε

a22(2ε+ c2νqε)
.
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4.3 General data

In this part we show that the behaviour displayed by the solution of (53) can
be found also in the solutions of (1) where h is continuous, depending on the
decay rate of h near zero. If h is sufficiently big when x1 ∼ 0, then the free
boundary is not connected with S(h).

We select the family of functions {hδ} ⊂ C(R) of the form

hδ(x1) =


0 x1 ≤ 0,

Cx
2

1−q 0 < x1 ≤ xδ,
1 x > xδ.

(60)

Proof of Theorem 1.5. For what concerns (i), consider the solution u of (53)
with ε = 1 and boundary data given by H(x1 − xδ). It is immediate to check
that H(x1 − xδ) ≤ hδ(x1) for all x1 ∈ R. This implies that u ≤ uδ where uδ is
the solution of (53) with boundary data hδ. So if

xδ =

(
1

C

) 1−q
2

is such that xδ < ζν then there exists V , neighbourhood of (0, 0) in R2, such
that u > 0 in V ∩ {x1 < 0, x2 > 0}. But this is true whenever

C >

(
1

ζν

) 2
1−q

.

It is enough to set C = ζ
−2/(1−q)
ν , ε = 1 and x1,ε = (1/C)(1−q)/2. The statement

follows since u ≤ uδ.
One can also try to repeat the same proof with εH(x1−xδ) and compare the

results to find the best lower bound for which the expansion on the boundary of
the support property holds.

For the proof of (ii) it is enough to consider the special case of hε(x1) =

Cx
2

1−q

1 for a.e. x1 ∈ (0, x1,ε) and hε(x1) = ε for a.e. x1 ∈ (x1,ε,+∞). Indeed, if
h ≤ hε then we know that the correspondent limit very weak solutions u and uε
satisfy that 0 ≤ u ≤ uε. So, if the non-diffusion of the boundary of the support
property holds for uε then it also holds for u.

Consider the function u = w(x1 + vx2) where

w(s) = Cs
2

1−q

+ ,

with C > 0. We compute

−Lu+ uq = −(a11 + 2a12v + a22v
2)w′′ + wq

= x
2/(1−q)
+

(
−(a11 + 2a12v + a22v

2)
2(1 + q)

(1− q)2
C + Cq

)
.

(61)

If we take

C ≤ (1− q)2

2(1 + q)(a11 + 2a12v + a22v2)
, (62)

we have that −Lu+ uq ≥ 0, hence u is a supersolution. We notice that

u(θ, r) = 0 for θ ∈ Θ = (−π/2, arctan(−v)),
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Figure 5: Graphs of C(q) and C(q)

where θ = arctan(x1/x2). Again, taking C smaller than (62) and choosing x1,ε

and ε such that hε ≤ ū, we have that u ≤ uε ≤ u; so we obtain that u is zero in
the sector Θ.

Let us restrict our attention on the family of boundary data hδ. Each func-
tion is defined completely by the value of C, since xδ can be deduced by C and
the continuity property. Of course for consistency we expect C ≤ C. But can
we affirm that equality holds? Actually, with our method we can not say. In
fact, let us consider for example the case of L = ∆, which means A = Id. We
computed the values

C =

(
π(q2 − q + 2)

(1− q)
√

2(q + 1)

) 2
1−q

and C =
(1− q)2

2(1 + q)
.

We see from the graphs in Figure 5 that C < C for q ∈ (0, 0.2), and the difference
is quite big. For q ∈ (0.2, 1) the difference becomes even bigger as C is decreasing
while C is increasing. The question of what happen when C < C < C is still
open and a different approach or a finer analysis is needed.

Proof of Corollary 1.6. The additional properties are a by-product of the proof
of Theorem 1.5. Indeed, for (1), since the supersolution w already satisfies
this property, so does the solution because it is non-negative. Point (2) is true
because we have shown that u ≥ u1+u2 with u1 and u2 solutions of the problems
(57) and (58) respectively and u = u1 + u2 satisfies the required properties.

4.4 Proof of Corollary 1.13

In the case of (i) we can use the same supersolution (which we denote now by
u(x)) as for the stationary case. Since our initial condition is u0 = 0, then,
applying the comparison result, we get that 0 ≤ u(t, x) ≤ u(x) for any t > 0
and a.e. (x1, x2) ∈ R× [0,∞).
The proof of part (ii) comes from the fact that u1(x1, x2) + u2(x1, x2) is a
subsolution for the parabolic problem for t ∈ (0, T ].
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[14] H. Brézis and W. A. Strauss. Semi-linear second-order elliptic equations in
L1. J. Math. Soc. Japan, 25:565–590, 1973.

29



[15] M. G. Crandall and L. C. Evans. On the relation of the operator
∂/∂s+ ∂/∂τ to evolution governed by accretive operators. Israel J. Math.,
21(4):261–278, 1975.

[16] M. G. Crandall and A. Pazy. Semi-groups of nonlinear contractions and
dissipative sets. J. Functional Analysis, 3:376–418, 1969.

[17] J. I. Dı́az. Nonlinear partial differential equations and free boundaries.
Vol. I, volume 106 of Research Notes in Mathematics. Pitman (Advanced
Publishing Program), Boston, MA, 1985. Elliptic equations.
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