
Independent mechanisms for bright and dark image
features in a stereo correspondence task

Institute of Neuroscience, Newcastle University,
Newcastle upon Tyne, UKJenny C. A. Read

Faculty of Medical Sciences, Newcastle University,
Newcastle upon Tyne, UKXavier A. Vaz

Faculty of Psychology, Complutense University of Madrid,
Madrid, SpainIgnacio Serrano-Pedraza

A pioneering study by J. M. Harris and A. J. Parker (1995) found that disparity judgments using random-dot stereograms
were better for stimuli composed of mixed bright and dark dots than when the dots were all bright or all dark. They attribute
this to an improvement in stereo correspondence. This result is hard to explain within current models of how stereo
correspondence is achieved. However, their experiment varied task difficulty by adding disparity noise. We wondered if this
might challenge mechanisms subsequent to the solution of the correspondence problem rather than mechanisms that solve
the correspondence problem itself. If so, this would avoid the need to modify current models of stereo correspondence. We
therefore repeated Harris and Parker’s experiment using interocular decorrelation to vary task difficulty. This technique is
believed to probe stereo correspondence more specifically. We observed the efficiency increase reported by Harris and
Parker for mixed-polarity dots both using their original technique of disparity noise and using interocular decorrelation. We
show that this effect cannot be accounted for by the stereo energy or by simple modifications of it. Our results confirm Harris
and Parker’s original conclusion that mixed-polarity dots specifically benefit stereo correspondence and point up the
challenge to current models of this process.
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Introduction

Stereopsis is the 3D depth perception we have by virtue
of seeing the world through two offset eyes. The crucial
first step in this process is stereo correspondence:
correctly matching up image features in the two eyes that
are views of the same object. This process is believed to
begin in primary visual cortex with neurons that are
selectively sensitive to binocular disparity. The stereo
energy model and its variants (Ohzawa, 1998; Ohzawa,
DeAngelis, & Freeman, 1990, 1996, 1997; Qian &
Andersen, 1997; Read, Parker, & Cumming, 2002)
successfully capture many aspects of these cells’
responses, including their sensitivity to disparity in
random-dot stereograms, which contain no other cues to
depth. Energy-model units compute a local cross-correla-
tion between spectrally filtered image patches in each eye
(Fleet, Wagner, & Heeger, 1996; Qian & Zhu, 1997).
Energy- and correlation-based disparity detectors form the
basis of many physiologically based models of human
stereopsis (Banks, Gepshtein, & Landy, 2004; Filippini &

Banks, 2009; Fleet et al., 1996; Lippert & Wagner, 2002;
Mikaelian & Qian, 2000; Prince & Eagle, 2000; Qian,
1994, 1997; Qian & Andersen, 1997; Qian & Zhu, 1997;
Read, 2002a, 2002b, 2010).
However, one result in the literature challenges this

commonly accepted view of disparity encoding. Harris
and Parker (1995) measured statistical efficiency on a
simple relative disparity task. Observers were shown a
random-dot stereogram depicting two rectangular regions
at different depths, separated by a vertical boundary, and
asked to judge which side of the boundary was closer.
Task difficulty was modulated by adding Gaussian
disparity noise to each dot (Figure 1). Accurate judgments
therefore required averaging over a certain number of dots
on each side of the boundary, in order to average out the
noise. By measuring the observer’s performance, Harris
and Parker could calculate the effective number of dots
they were averaging over and, hence, their statistical
efficiency: the number of dots actually used divided by the
number of dots available in the image. Harris and Parker
showed that this efficiency measure doubled when the
random-dot stereogram consisted of black and white dots
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on a gray background compared to when it consisted of
only black or only white dots. They argued that this is
because mixed-polarity dots reduce the complexity of the
stereo correspondence problem. Random-dot stereograms
offer a multitude of false matches, because each dot in the
left eye could be matched with any of a large number of
identical dots in the right eye. If the visual system matches
black dots with black dots and white dots with white dots,
the number of potential matches is halved in mixed-
polarity dot patterns compared with those where all dots
are identical.
This explanation implicitly invokes a “feature-matching”

model of stereo correspondence, in which features such as
individual dots are matched between eyes. As we show in
this paper, this is hard to reconcile with a correlation-based
or energy-model approach. Thus, Harris and Parker’s result
presents a major challenge for models of stereo corre-
spondence based on such units.
We therefore wondered if there might be an alternative

way to explain Harris and Parker’s result. For example,
suppose performance on their task was not limited by
stereo correspondence. They made the task hard for their
subjects by adding disparity noise, but this would make
the task harder even if stereo correspondence remained
perfect. Figure 1 shows a sketch of their stimulus, viewed
top-down. Dots are scattered about the two depth planes.
Each dot is depicted with a clear position in depth, and yet
the task is hard because it requires the viewer to judge the
mean depth of a dispersed cloud of dots. This is
presumably done somewhere in the visual system after
stereo correspondence has already been achieved. Suppose
that this module of the visual system is only able to
average over a small number of same-polarity dots but is
able to average over bright and dark dots separately. This
could then explain the doubling of efficiency reported by
Harris and Parker, without needing to modify existing
models of stereo correspondence.
This alternative explanation lacks the intuitive appeal of

Harris and Parker’s original technique. It seems immedi-
ately clear that black dots should only be matched with
black dots and, therefore, obvious that changing to mixed
black and white dots halves the complexity of stereo

correspondence. It is far less obvious why the visual
system should be limited by polarity in its ability to
average disparities. However, rather than debate the
plausibility of this suggestion, we determined to test it
experimentally.
We therefore repeated Harris and Parker’s groundbreak-

ing experiment using a stimulus designed specifically to
probe the visual system’s ability to acquire disparities via
stereo correspondence rather than its ability to average
disparities once they have been acquired. To this end, we
did not add disparity noise about the depth step but
increased task difficulty by reducing the binocular corre-
lation of the stimulus. That is, we removed a certain
fraction of the dots in one eye and replaced them with dots
of identical luminance but at random locations in the
image. The decorrelated dots were in general at different
vertical locations from their original partners in the other
eye and, thus, had no valid match. We also made the
stimulus dynamic, displaying a completely new random-
dot pattern every 150 ms (with the same disparity and
binocular correlation). This effectively removes feature-
matching approaches to stereo vision, since each feature
in the image is immediately removed and masked by the
next frame. Achieving stereo correspondence in this
stimulus requires effectively identifying and discarding
the unpaired dots. However, once this has been achieved,
the task is trivial, since only one disparity is present on
each side of the edge. Thus, if the efficiency advantage of
mixed-polarity stimuli occurs after stereo correspondence,
we would not expect it to improve performance on the
reduced-correlation task, where performance is limited by
the ability to achieve stereo correspondence. If, on the
other hand, mixed-polarity dots provide an advantage at
the stereo correspondence stage, as Harris and Parker
proposed, we would expect the advantage to persist on the
reduced-correlation task.
In this paper, we therefore compare observers’ perfor-

mance on the disparity-noise and reduced-correlation
versions of the task and examine whether they show the
same increase in efficiency when the stimulus contains both
bright and dark dots compared to when it contains only
bright or only dark dots. We compare the results of human
observers to the properties of the stereo energy model with
both linear and non-linear binocular combination.

Materials and methods

Subjects

Seven subjects aged between 19 and 38 years took part
in the experiments. All subjects had experience in
psychophysical experiments and only JCAR and XAV
were aware of the purpose of the experiments. All subjects
wore their normal visual correction (if any).

Figure 1. Disparity-noise task of Harris and Parker, top-down view.
The dots have a Gaussian distribution in depth, with a mean
disparity indicated by the dashed lines (disparity step stimulus).
The task is to judge which side has the nearer mean disparity.
Even when each dot is unambiguously located in depth, as shown
here, the task is hard because of the scatter between dots.
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Apparatus

The experimental apparatus was as described in Serrano-
Pedraza and Read (2009). Briefly, the stereo images were
displayed on a rear projection screen using a passive
polarization system supplied by Virtalis (Manchester,
UK). The images were carefully aligned to within a pixel
everywhere within the central region of the screen (where
the stimuli were displayed) to ensure that as far as
possible the only disparities were those introduced by
the experimenter. Stimuli were generated in real time by a
computer using the Windows XP operating system and a
GeForce Quadro FX380 graphics card. Stimuli were
programmed in Matlab 2007b (version 7.5.0.342, 32 bits;
The Mathworks, www.mathworks.com) using the Psycho-
physics Toolbox version 3.0.8 (Brainard, 1997; Pelli,
1997) and presented on two identical DLP projectors
(model FX2+ from Projection Design, Gamle Fredrikstad,
Norway). The projectors were calibrated using a photo-
meter (Minolta LS-100) to give a linear luminance
response. The images were 1400 � 1050 pixels and
occupied 71 � 53 cm on the projection screen. Observers
viewed the screen from a distance of 160 cm in a head and

chin rest (UHCOTech HeadSpot, Houston). Each pixel
therefore subtended just over 1 arcmin. Gray was 24 cd/m2,
white was 49 cd/m2, and black was 0.7 cd/m2.

Stimuli

Sample stimuli are shown in Figure 2 for cross-fusion.
The projector screen was black apart from a central square
region of 5.3 � 5.3 degrees, which was gray and
contained the random-dot patterns. Random-dot patterns
subtended 106 � 106 arcmin. Dots were circular with a
diameter of 3.2 arcmin. Anti-aliasing was used to depict
the circular dots and subpixel disparities. The number of
dots was N = 396 except where stated. There were 3
contrast conditions: mixed polarity (equal numbers of
black and white dots, Figure 2a), all black, and all white
(Figure 2b). Observers completed runs consisting of
600 trials in total, made up of 200 all-black, 200 all-
white, and 200 mixed-polarity conditions randomly
interleaved. The task was always to decide which side
of the stimulus, left or right, was closer to the observer.
Subjects were allowed to view the stimulus for as long as
they wanted; the stimulus only advanced once a response
was reported via mouse button press.
The mean disparity structure of the stimulus depicted a

vertical depth step, with a boundary running vertically
down the center of the image and the left and right sides
having equal and opposite disparities of T$/2 with respect
to the screen. To achieve a given binocular correlation C,
a fraction (1 j C) of the dots were placed at inde-
pendent locations in the two eyes (still within the 106 �
106 arcmin extent of the stimulus). The remaining CN dots
were placed in identical vertical locations on the screen,
with horizontal disparity randomly drawn from a Gaussian
distribution about the mean, with standard deviation A.
We did not slope the stimulus disparity back to zero at the
edges of the screen, as Harris and Parker did, meaning that
our stimulus offered a monocular cue to depth. In practice,
this cue was much less helpful than the disparity cue, and
the fact that we obtained the same results as Harris and
Parker indicates that this difference in the stimulus was
not important.
Where both black and white dots are present, over-

lapping dots present a problem. Allowing one dot to
occlude the other presents a cue to their relative depth. If
this agrees with the disparity cue, it offers a way of doing
the task without using the stereo mechanisms we are
trying to probe. If it conflicts with the disparity cue, it
risks disturbing the stereo mechanisms we are trying to
probe. Setting the luminance to the gray background
where the dots overlap would be one option but risks
giving the image a strange half-eaten appearance. In our
“no-overlap” condition, we therefore decided to arrange
the dots so that none of them overlapped, thereby side-
stepping the problem. This is the solution adopted by
Harris and Parker (personal communication). We also

Figure 2. Sample stimuli. (a) Mixed-polarity stimulus (black and
white dots). (b) Same-polarity stimulus. Stimulus parameters: N =
396 dots, no overlap, binocular correlation C = 100%, disparity
step $ = 1.4V, disparity noise A = 3.0V (when viewed in
experimental apparatus). These stimuli can be viewed either with
crossed or with divergent fusion; it will simply reverse the sign of
the disparity step.

Journal of Vision (2011) 11(12):4, 1–14 Read, Vaz, & Serrano-Pedraza 3

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932791/ on 04/11/2016

www.mathworks.com


examined an “occlusion” condition, in which dots were
simply scattered at random so that there were many places
where dots overlapped. In this case, for the mixed-polarity
condition, regions of overlap were given the color of
whichever dot was drawn last. We used a slightly larger
number of dots, 480, so that the amount of gray
background was similar despite the overlap.

Stimulus generation algorithm

To generate the stimulus, then, we added dots one at a
time. For each dot, we first decided at random whether it
was binocularly correlated or not. If it was correlated
(probability C), we picked a random cyclopean position
(x, y), with x and y drawn independently with uniform
probability from the range [jW, W], where W was the
stimulus half-width and (0, 0) was the center of the
stimulus. We gave the dot disparity %, drawn at random
from a Gaussian distribution with mean T sign(xc) � $/2
and standard deviation A. The T controls whether the left
side or right side is nearer; on each trial, either + or j was
chosen at random. We use a sign convention in which near
disparity is negative. After adding this disparity, the dot’s
position in the left and right eyes was (xL, yL) = (xc j %/2, y)
and (xR, yR) = (xc + %/2, y), respectively. If the dot was not
binocularly correlated (probability 1 j C), we drew (xL,
yL) and (xR, yR) independently from [jW, W].
We then looked to see whether this dot overlapped with

any dots already placed in the stimulus. That is, we
computed the distances between (xL, yL) and the centers of
all dots already in place in the left eye and similarly for
the right eye. If any of these distances exceeded the dot
diameter, we rejected that position and generated a new
pair (xL, yL) and (xR, yR). We repeated this process until a
non-overlapping position had been found. For the mixed-
polarity condition, we finally chose the dot’s color, black
or white with equal probability. This process was repeated

until all N dots had been placed in the stimulus. Figure 2
shows two sample stimuli.

Ideal observers and statistical efficiency

Following Harris and Parker (1995), we assume that an
ideal observer would perform this task by accurately
assigning dots to the left- or right-hand side of the depth
boundary and averaging the disparity of dots on either side
of the boundary. We further assume that the disparity of
each dot is available with an effective noise level s,
reflecting both the externally applied disparity noise A and
any internal noise. Finally, we assume that human
observers manage to average only some fraction E of the
available dots, where E is by definition the statistical
efficiency of the observer. If the observer averages the
disparity of M dots, each of which has disparity drawn
from the normal distribution N($/2, s), the resulting
average disparity is drawn from N($/2, s/¾M), where $
is the relative disparity between the two surfaces separated
by the disparity step. The distributions of this average
signal on either side of the depth boundary are shown in
Figure 3. We assume that the observer judges which side
is closer by comparing the two numbers drawn from these
distributions and assigns the closer side to be that with the
smaller number. The observer’s probability of getting the
correct answer is then

P $;A;Mð Þ ¼ 1

2
1þ erf

$
ffiffiffiffiffi
M

p

2s

� �� �
; ð1Þ

where s is an unknown function of A and erf is the
Gaussian error function or probability integral. We can
rearrange this to derive the number of dots that the
observer is using from each side of the depth boundary,
given their performance level P:

M ¼ 2s

$
� erfj1 2Pj 1ð Þ

� �2
: ð2Þ

Since on each side of the boundary there are CN/2 dots
carrying disparity information, where C is the binocular
correlation, we can then calculate the observer’s efficiency
as

E ¼ 2M

CN
¼ 8s2

CN$2
erfj1 2Pj 1ð Þ�2:
h

ð3Þ

For our purposes, the relevant quantity is the ratio of the
efficiency in the mixed-contrast condition (BW) to that in

Figure 3. Probability density functions for the disparity signals on
either side of the depth boundary, if the observer averages over M
dots.
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the same-contrast condition (B or W), comparing stimuli
where the parameters dot number N, correlation C,
relative disparity $, and disparity noise A are all the
same. If we average trials in the two same-contrast
conditions, the efficiency ratio is then

R ¼ erfj1ð2PBW j 1Þ
erfj1ðPB þ PW j 1Þ

� �2
: ð4Þ

We used Monte Carlo resampling to estimate confidence
intervals for each estimate of R. For each condition (B, W,
BW), Pcondition is defined as ncorrect/ntrials. We used the
binornd function in Matlab to generate a new nresamp from
a binomial distribution with parameters Pcondition and ntrials.
This produced a new estimate of Pcondition, Presamp =
nresamp/ntrials. We did this for each condition so as to arrive
at a new Rresamp. We repeated this 10,000 times and took
the 95% confidence limits to be the 2.5% and 97.5%
percentiles of the resulting set of Rresamp.

Setting the optimal performance level

Clearly, if the task is too easy, performance will be
100% for all conditions, and we will not be able to
measure the efficiency; conversely, if the task is too hard,
performance will be at chance and again we will not be
able to assess efficiency. If we assume that the efficiency

ratio R is constant independent of the stimulus parameters,
we can ask how we should adjust task difficulty in order to
maximize the difference in performance between same-
and mixed-polarity conditions. Suppose that Psame is the
proportion correct in both same-contrast conditions (PB =
PW = Psame), and PBW is the proportion correct in the
mixed-contrast condition. Define Pmean = (PBW + Psame) /
2 and $P = PBW j Psame. Then

R ¼ erfj1ð2Pmean þ $Pj 1Þ
erfj1ð2Pmeanj $Pj 1Þ

� �2
: ð5Þ

Figure 4 shows how the value of $P satisfying Equation 5
varies as a function of Pmean, for 4 sample values of R.
Obviously, larger performance differences are possible
when the efficiency advantage of mixed-polarity dots is
greater. However, over a very wide range of R including
the value of È2 reported by Harris and Parker, the
difference is maximized if mean performance is around
83–85%. In the experiments reported below, therefore, we
tried to adjust the stimulus parameters for individual
subjects so as to set mean performance at about this level.
Thus, as well as the results below, each subject initially
collected a small amount of pilot data at a few different
difficulty levels, starting with the zero-noise, 100%
correlation condition in order to familiarize them with
the task.

Energy-model simulations

The simulations of disparity-selective neurons were
written in Matlab (www.mathworks.com) and are avail-
able in the Supplementary materials. The images were
random-dot patterns similar to those in the experiments
(see Figure 11) but using square dots since this was easier
to code and makes no difference to the output of the
model.
We simulated the response of a population of binocular

neurons tuned to a range of horizontal disparities. The left
and right receptive fields were vertically oriented Gabor
functions of sine (7 = :/2) and cosine phases (7 = 0), with
a carrier frequency of f = 0.025 cycle per pixel and an
envelope standard deviation of A = 10 pixels:

G f ;A;7; x0ð Þ ¼ exp j
ðxjx0Þ2 þ y2

2A2

" #
cos 2:f xjx0ð Þþ7½ �:

ð6Þ

The disparity tuning was given by a positional offset
between the peak of the envelope, x0, in the left and right
eyes.

Figure 4. Predicted difference in performance for same vs. mixed
polarity, for different efficiency ratios R. The solid vertical lines
mark the Pmean at which $P peaks for a given R, while the dashed
lines to either side mark the corresponding values of Psame and
PBW. For example, for R = 2, the greatest possible difference in
performance is $P = 0.083, obtained when performance is Psame =
0.795 for the same-polarity stimulus and PBW = 0.878 for the
mixed-polarity stimulus.

Journal of Vision (2011) 11(12):4, 1–14 Read, Vaz, & Serrano-Pedraza 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932791/ on 04/11/2016

www.mathworks.com


We computed the inner product of the left- and right-
eye images, IL(x, y) and IR(x, y), with odd and even
receptive fields:

vLE $xð Þ ¼
ZZ

dxdyG f ;A; 0;j
$x

2

� �
IL x; yð Þ;

vLO $xð Þ ¼
ZZ

dxdyG f ;A;
:

2
;j

$x

2

� �
IL x; yð Þ;

vRE $xð Þ ¼
ZZ

dxdyG f ;A; 0;
$x

2

� �
IR x; yð Þ;

vRO $xð Þ ¼
ZZ

dxdyG f ;A;
:

2
;
$x

2

� �
IR x; yð Þ: ð7Þ

In this paper, we present results for 4 different types
of disparity-tuned neurons. We include both “tuned-
excitatory” and “near”-type neurons (Poggio & Fischer,
1977; Read & Cumming, 2004), i.e., cells whose disparity
tuning function is symmetric about a central peak and
those with one peak and one trough. We include both
complex cells, whose response is independent of stimulus
phase, and simple cells, whose response depends on
phase. Finally, we use both the original energy model of
Ohzawa et al. (1990), in which monocular inputs are
combined linearly (“ODF”), and the modified version
proposed by Read et al. (2002), in which monocular inputs
are thresholded before being combined (“RPC”). The
response of these four types is given as follows:

i) A tuned-excitatory ODF complex cell:
CODF:TE($X) = (vLE + vRE)

2 + (vLO + vRO)
2

ii) A near ODF simple cell:
CODF:NE($X) = (vLO j vRE)

2

iii) A tuned-excitatory RPC complex cell:
CRPC:TE($X) = ([vLE] + [vRE]

2 + ([vLO] + [vRO])
2

iv) A near RPC simple cell:
CRPC:TE($X) = ([vLO] j [vRE])

2.

Results

Performance of human observers
The efficiency advantage of mixed-polarity stimulus
is destroyed by occlusion

We first replicated Harris and Parker’s (1995) original
results. We kept the disparity noise A constant at 3 arcmin
as used by Harris and Parker and varied the size of the
disparity step so as to obtain average performance at
around 0.8 correct.
Figure 5 shows results for 5 subjects on the stimulus

designed to be as close as possible to that of Harris and
Parker. The symbols show the proportion correct, and the
error bars show the 95% score confidence intervals
assuming simple binomial statistics (Agresti & Coull,
1998). As reported by Harris and Parker, performance is
not significantly different for all-white versus all-black
dots but is significantly better for mixed-polarity stimuli,
i.e., those containing equal numbers of black and white
dots. Figure 6 presents these results as efficiency ratios,
using Equation 4. For each subject, the efficiency ratio is
significantly above 1 and is around 2, consistent with
Harris and Parker’s report. This confirms that we are able
to replicate their results with our subjects and apparatus.
The lack of dot overlap is crucial. Figure 7 shows

performance of three subjects on the same disparity-noise
task but this time with dots scattered at random and
allowed to overlap. This time, there was no significant
improvement for the mixed-polarity condition. For 2/3
subjects, the efficiency ratios are not significantly different
from 1, while the remaining subject MBAC actually
performed worse with mixed black and white dots than
when the dots were all black or all white. We suggest that
this may be because the regions of overlap provide an
occlusion cue to relative distance that sometimes agrees
and sometimes conflicts with the cue provided by
binocular disparity. Apparently, this conflict is enough to
destroy the advantage offered by mixed-polarity stimuli in

Figure 5. Performance on the disparity-noise task with no dot overlap, for 5 different subjects. Symbols show performance in the 3 different
conditions; error bars show 95% confidence intervals assuming simple binomial statistics. The code above each panel identifies the
subject. Stimulus parameters: N = 396 dots, no overlap, binocular correlation C = 100%. Disparity step $ and disparity noise A were
adjusted for each subject individually, and subjects performed at least 200 repetitions of each condition, as indicated in each panel.
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exploiting binocular disparity and, for some subjects,
make them less useful than same-polarity stimuli. Harris
and Parker also avoided dot overlap in their stimuli.

Similar results are obtained when decorrelation is used
instead of disparity noise

Having replicated Harris and Parker’s results in our
apparatus, we then performed a different version of their
experiment, in which task difficulty was increased not by
adding disparity noise (so now A = 0) but by reducing the
interocular correlation (so now C G 1). We also made the
stimulus dynamic, changing every 150 ms. As outlined
above, we argued that this stimulus might challenge stereo

correspondence more specifically than the disparity-noise
stimulus, which is still difficult even when correspondence
is perfect. We therefore felt it important to verify that
mixed-polarity stimuli continue to have an advantage in
this configuration.
Figure 8 shows the results of this experiment for 4

subjects, and Figure 9 shows the resulting efficiency
ratios. In 3/4 subjects, the efficiency ratio is still
significantly above 1; indeed, the mean over all 4 subjects
is now 3.7. For subject JAD, the estimated efficiency ratio
was 1, but this may be because we did not manage to
select the best correlation for this subject: his performance
was close to chance, and hence, the error on our estimate
of his efficiency ratio is large (95% confidence interval
ranges from 0.2 to 3.6). Overall, however, it is clear that
the advantage of mixed-polarity dots persists with the new
stimulus. Indeed, for most subjects, moving from a static
stimulus with disparity noise to a dynamic stimulus with
decorrelation has enhanced the performance advantage of
mixed-polarity dots.
For subject XAV, we also redid both experiments with

fewer dots (N = 100). The efficiency ratios are shown in
Figure 10. The efficiency ratios are somewhat reduced for
the smaller dot number but are still well above 1,
especially in the decorrelated stimulus.

Response of energy-model units for same- vs.
mixed-polarity stimuli

Overall, then, it is clear that we have replicated Harris
and Parker’s finding of improved performance with mixed
black and white dots, not only with their original
disparity-noise stimulus but also with our decorrelated
stimulus. In the Introduction section, we stated that this
improved performance is puzzling given the properties of
the stereo energy model. We now examine the perform-
ance of various models to these stimuli, as shown in
Figure 11. We used 4 different types of model. First, we
considered the original “ODF” energy model introduced

Figure 6. Efficiency ratios for the disparity-noise task with no dot
overlap. Error bars are 95% confidence intervals, estimated by
resampling as described in the Materials and methods section.
The solid line marks an efficiency ratio of 1 (no advantage for
either condition), and the dashed line marks an efficiency ratio of 2
(efficiency twice as good for mixed vs. same polarity). Stimulus
parameters: N = 396 dots, no overlap, binocular correlation C =
100%. Disparity step $ and disparity noise A were adjusted for
each subject individually, and subjects performed at least 200
repetitions of each condition, as indicated in Figure 5.

Figure 7. Performance on the disparity-noise task with occlusion, for 3 different subjects. As Figure 5 except for stimulus parameters: N =
480 dots, randomly scattered with overlap. Last panel shows efficiency ratios, as in Figure 6.
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by Ohzawa et al. (1990), with pure position disparity
(“ODF TE”) and with phase disparity (“ODF Near”). This
effectively implements cross-correlation between a filtered
version of the left- and right-eye images. Second, we
considered the “RPC” variant introduced by Read et al.
(2002). This contains a non-linearity prior to binocular
combination, which means that it no longer implements
simple cross-correlation. The threshold non-linearity
means that this model responds differently to bright and
dark features, unlike the energy model that was designed
as a model of complex cells and that responds equally to
bright and dark features of equal contrast.
Figure 11 shows the mean population response of these

4 different types of neuronal models to 10,000 random-dot
patterns with either mixed black-and-white dots (top row)

or all-white dots (bottom row). The results with all-black
dots are the same as with all-white dots, so they are not
shown here. The stimuli all had a uniform disparity of
10 pixels. In the top row, the mean population response
modulates strongly as a function of preferred disparity. For
the tuned-excitatory neurons, which are the simplest to
decode, the stimulus disparity can be immediately read off
from the location of the peak in the population. In the
bottom row, however, this modulation is much weaker.
The shape is still the same, but the amplitude of
modulation is a much smaller fraction of the baseline. If
we assume constant noise in both cases, this would make
any readout more error-prone for same-polarity dots. It is
tempting to conclude that this property of energy-like
models is the neuronal basis for the impaired perfor-
mance of human observers on same-polarity versus mixed-
polarity dot patterns.
However, this would be premature. The reduced

amplitude in Figure 11 is a side effect of the way
luminance was represented in the two eyes’ images, IL

Figure 8. Performance on the decorrelation task with no dot overlap, for 4 different subjects. As Figure 5 except for stimulus parameters: N =
480 dots, not overlapping, disparity noise A = 0. Disparity step $ and binocular correlation C were adjusted for each subject individually,
and subjects performed at least 200 repetitions of each condition, as indicated in each panel.

Figure 9. Efficiency ratios for the decorrelation task with no dot
overlap. The solid line marks an efficiency ratio of 1 (no advantage
for either condition), and the dashed line marks an efficiency ratio
of 2 (efficiency twice as good for mixed vs. same polarity). Error
bars are 95% confidence intervals. Stimulus parameters: N =
480 dots, not overlapping, disparity noise A = 0. Disparity step $

and binocular correlation C were adjusted for each subject
individually, and subjects performed at least 200 repetitions of
each condition, as indicated in Figure 8.

Figure 10. Efficiency ratios for subject XAV, for the noise and
decorrelation tasks with N = 100 dots (light bars) and N = 396
(dark bars). Stimulus parameters: |$| = 1.4V throughout; for
“Noise”, A = 3Vand C = 100%; for “Decorr”, A = 0Vand C = 50%.
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and IR (Equation 7). In Figure 11, the gray background
was represented by 0, white dots by +1, and black dots by
j1. This means that the mixed-polarity images have near-
zero DC component and thus that their autocorrelation is
zero for large offsets, as is usually assumed for random-
dot stereograms (Prince, Pointon, Cumming, & Parker,
2002; Read & Cumming, 2003; Read et al., 2002). This in
turn means that the amplitude of the modulation in firing
rate as a function of disparity is equal to the baseline
response, defined as the mean response to disparities far
from the preferred disparity or equivalently to binocularly
uncorrelated stimuli (strictly, it is equal to the baseline
only for tuned-excitatory or very narrow-band cells; the

ratio is slightly less than 1 for odd-symmetric finite-
bandwidth cells). For the same-contrast stimuli in
Figure 11, the image functions were positive or zero
everywhere. Their DC component and, hence, autocorre-
lation were always positive. This means that the baseline
response greatly increases relative to the amplitude of
modulation. As we show in Appendix A, the ratio of
amplitude to baseline is always maximized if the images
have zero DC component. Non-zero DC component,
either positive or negative, reduces the amplitude. The
amplitude measured with all-white or all-black dots is
therefore lower than when measured with mixed black-
and-white dots.

Figure 11. Mean population response of model neurons to random-dot patterns with mixed-polarity (top, red curves) and same-polarity
(bottom, blue curves) dots. The stimuli had a uniform disparity of 10 pixels, while the preferred disparity of the neurons (i.e., the positional
offset between the left and right receptive field envelopes) is shown on the horizontal axis. The curves show the mean response to 10,000
randomly generated dot patterns, normalized to 1. In this version, the same-polarity (white) images had much higher mean value than the
mixed-polarity images. We have not shown tuning curves for images with all-black dots, since these are exactly the same as the all-white
dot results.

Figure 12. As Figure 11, except that both mixed- and same-polarity images had the same mean value.

Journal of Vision (2011) 11(12):4, 1–14 Read, Vaz, & Serrano-Pedraza 9

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932791/ on 04/11/2016



Figure 12 shows the results of simulations that are
identical except that the DC components of the images
have been removed. That is, the gray background in the
all-white dot patterns has been made slightly darker than
in the black-and-white patterns, such that the mean
luminance is zero in both cases. Now, the model neurons
show no difference in the amplitude of their modulation,
regardless of whether the images contain mixed- or same-
polarity dots. This is so both for the original energy model
and for a modified version of it in which the response
from each eye is thresholded prior to binocular combina-
tion (Read et al., 2002). Again, the results for all-black
dots are the same as for all-white dots and so are not
shown here.
The responses shown in Figure 12 suggest that perfor-

mance should be equal for mixed-polarity and same-polarity
dots. Admittedly, by normalizing all the curves to the
same peak value, we have concealed the fact that the raw
numbers are larger for the mixed-polarity case, because of
its larger contrast. However, this effect is unlikely to
explain the better human performance for mixed-polarity
stimuli. It would predict that performance would be better
for brighter white dots than for dimmer white dots. In
fact, stereoacuity is generally not very sensitive to small
variations in contrast well above threshold, and Harris and
Parker controlled for this in their original experiments.
Of course, in reality, the luminance of the images is

non-zero everywhere. There is nothing intrinsically
special about the gray level of the background, except
insofar as it represents the average luminance of the
image. Most workers in the field either tacitly or explicitly
assume that the encoding of disparity effectively removes
this DC component, either across the whole image or on a
more local scale, when computing the match between left-
and right-eye images. If this assumption is incorrect, the

amplitude of disparity modulation could be reduced for
same-polarity relative to mixed-polarity stimuli. For
example, suppose that preprocessing prior to the dis-
parity computation effectively subtracts off the gray
background of the screen, not the mean luminance of the
particular images. This would give the results shown in
Figure 11.
It seems very unlikely that this effect underlies Harris

and Parker’s results. Certainly if it did, it would clearly be
a completely different phenomenon from the one Harris
and Parker claimed to have found. It does not depend on
matching like-polarity features and is oblivious to whether
the stimulus contains same-polarity or mixed-polarity
dots, simply reflecting the mean luminance of the
stimulus. Harris and Parker carefully examined whether
their effect could be an artifact of changes in luminance or
contrast. They reported that efficiency for their observers
did not vary over a wide range of dot luminance levels.
However, perhaps the simplest way to test this explanation
is to measure human performance with the stimuli of
Figure 12, i.e., keeping the mean luminance constant, and
see if this removes the advantage of the mixed-polarity
stimulus.
Results from two observers are shown in Figure 13. The

stimulus was the disparity-noise stimulus of Harris and
Parker (1995), with 100% correlation. In these results, the
three polarity conditions were tested in separate blocks
rather than interleaved. The gray background was varied
so that the mean luminance across the whole stimulus was
constant, as described above for Figure 12. For the energy
model, this manipulation has a major effect, as shown in
Figures 11 and 12, abolishing the advantage of mixed-
polarity dots. For our human observers, it has no
discernible effect. The advantage of mixed-polarity dots
is still strong for large dot numbers and weaker for lower
dot numbers, as above.

Discussion

In 1995, Harris and Parker demonstrated an advantage
for mixed-polarity dots over same-polarity dots in a depth
task. The efficiency gain was around 2, suggesting that
twice as many dots are used in the mixed-polarity
condition as in the same condition. Harris and Parker
attributed this to improved stereo correspondence in the
mixed-polarity condition, concluding that stereo corre-
spondence proceeds in separate “bright” and “dark”
channels.
This hypothesis is hard to reconcile with the successful

and widely used stereo energy model of disparity-
selective neurons or with more abstract variants such as
correlation-based matching. Such models do not pay
attention to image features, and it is hard to see how to
build separate “bright” and “dark” channels into them.

Figure 13. Efficiency ratios for two subjects, for the disparity-noise
task with constant mean luminance. Stimulus parameters: N as
indicated in each bar; C = 100%, A = 2V; for JCAR, |$| = 2V
throughout; for PFA, |$| = 2Vfor N = 100 and |$| = 1.4Vfor N = 396.
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Previous models have postulated an output non-linearity
before binocular combination (Read & Cumming, 2003;
Read et al., 2002; Tanaka & Ohzawa, 2006), but our
simulations show that this modification has no effect on
the response to same- versus mixed-polarity patterns. It is
certainly easy to build implementations of the energy
model that respond more strongly to mixed-polarity than
to same-polarity dot patterns, but on closer examination,
this property turns out to be due to confounding differ-
ences in the image contrast or mean luminance, not to the
polarity of the image features per se. Control experiments
demonstrate that Harris and Parker’s effect does not stem
from differences in overall image contrast or luminance.
Given this, we wondered if we could place Harris and

Parker’s separate neuronal channels at a later stage of
visual processing. We argued that their disparity-noise
task may not challenge stereo correspondence so much as
subsequent depth processing. Even if the disparity of each
dot is correctly identified, the scatter in disparities means
that it is still challenging to compute the sign of the depth
boundary. This task is presumably computed by higher
visual areas responsible for depth perception. Perhaps
these higher areas contain separate neuronal channels for
bright and dark image features. If so, this would mean we
could keep the existing energy model as a description of
disparity encoding in early visual cortex, avoiding the
need to modify it so as to include bright and dark
channels.
To test this suggestion, we redid Harris and Parker’s

task using a slightly different stimulus, designed to
specifically challenge stereo correspondence. We made
the task hard by reducing the correlation between the two
eyes. Many dots had no valid match in the other eye, but
all matching dot pairs depicted the same magnitude of
disparity. Once valid matches have been identified and the
other dots discarded, the task is trivial. We hypothesized
that with this stimulus, the advantage of mixed-polarity
dots might vanish.
However, this hypothesis was comprehensively dispro-

ven. For most subjects, the advantage of mixed-polarity
dots not only persisted with the decorrelation stimulus but
also actually increased: the mean efficiency ratio, aver-
aged across subjects, rose from 2 to nearly 4. If anything,
this suggests that the advantage of mixed-polarity dots
may arise at the initial stereo correspondence phase more
than from the subsequent depth processing.
Our results do not completely support Harris and

Parker’s conclusions. They found an efficiency ratio of
close to 2 throughout, largely independent of dot number,
and this led them to postulate 2 independent channels. The
larger efficiency ratios we find with our new stimulus
(Figure 9) do not fit so well with this proposal. In addition,
while we have not systematically investigated the effect of
dot number, we do seem to find a stronger dependence on
dot number than Harris and Parker, with efficiency ratios
falling below 2 when the stimulus contains 100 dots
(Figures 10 and 13).

Harris and Parker’s (1995) work is just one of several
studies examining whether ON and OFF pathways are
pooled or processed separately in different aspects of
visual processing. When attention can be directed sepa-
rately to bright and dark elements, the two pathways are
generally processed separately. So, for example, Hibbard,
Bradshaw, and Eagle (2000) compared Dmax, the max-
imum step size to detect apparent motion, and found that
it was limited by the number of bright or dark dots rather
than the total number of stimuli. Similarly on a global
motion coherence task, Croner and Albright (1997) found
that motion coherence thresholds are improved if the
signal dots have a different contrast polarity from the
noise dots. On tasks that are not helped by feature-based
attention directed to one or the other polarity, the picture
that has emerged is that ON and OFF pathways are
processed separately when the task involves extracting
form or segregating objects in some way (Badcock,
Clifford, & Khuu, 2005; Brooks & van der Zwan, 2002;
Wenderoth, 1996; Wilson, Switkes, & De Valois, 2004)
and pooled when the task involves extracting global
properties (Edwards, 2009; Edwards & Badcock, 1994;
Snowden & Edmunds, 1999).
So, for example, Edwards and Badcock (1994) found no

difference in global motion coherence thresholds for
same-polarity stimuli consisting of 100 bright dots versus
mixed-polarity stimuli consisting of 50 bright and 50 dark
dots, in which the signal dots were all light. In these
stimuli, at threshold, only a small number of light dots
carry the signal and most light dots are moving incoher-
ently (as are all the bright dots). The signal does not,
therefore, pop out even if attention is directed solely to the
bright dots. Under these circumstances, mixed-polarity
stimuli had no advantage. That is, motion with 14 bright
signal dots, 36 bright noise dots, and 50 dark noise dots
was no more visible than motion with 14 bright signal
dots and 86 bright noise dots, indicating that the relative
signal-to-noise ratio is that of all dots together (i.e., 16%
in both cases) rather than in ON pathway alone (39% in
the former case vs. 16% in the second). Thus, in this
global motion detection task, information from the ON
and OFF pathways appears to be pooled, as it is in the
motion energy models on which the stereo energy model
was based (Adelson & Bergen, 1985, 1986; Watson &
Ahumada, 1985). Conversely, in a form-based motion task
where observers had to track a square defined by four
moving dots, Edwards (2009) found evidence that ON and
OFF pathways are processed separately. Observers could
tolerate higher numbers of noise dots if the noise dots
were mixed polarity compared to when they were all the
same polarity as the signal dots defining the moving
square. Edwards argued that ON and OFF pathways are
processed separately for processing form and pooled for
processing global information. He argued that Harris and
Parker’s result reflects the use of stereo information in
object grouping and segmentation. If so, this raises the
question of whether a different stereo taskVsay, a global
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motion-in-depth taskVmight produce a different result.
However, the distinction between global motion and form
processing is not clear-cut; for example, Bell and Badcock
(2008) found that bright and dark information appears to
be pooled in the detection of radial frequency contours,
even though this is a form-detection task, and thus, ON
and OFF channels might have been expected to make
separate contributions.

Appendix A

The amplitude of disparity tuning
is maximized when the images’ DC
component is removed by preprocessing

In this appendix, we justify our claim that the amplitude
of disparity tuning in stereo energy-model units is always
maximized when the images supplied to the model have
zero DC component. Our starting point is the response of
an energy-model simple cell:

C ¼ v2L þ v2L þ 2vLvR; ðA1Þ

where vL and vR are the inner product of each image with
that eye’s receptive field, as in Equation 7. To compute
the average response of this unit over many random
images, first consider the average of the last term:

bvLvRÀ ¼
ZZ

dxdy

ZZ
dxVdyV>Lðx; yÞ>RðxV; yVÞ

I bILðx; yÞIRðxV; yVÞÀ; ðA2Þ

where >L and >R represent the receptive fields (for this
proof, they need not be Gabor functions). For uniform
disparity stimuli in which the left and right images are
identical apart from a horizontal offset of $x, this becomes

bvLvRÀð$xÞ ¼
ZZ

dxdy

ZZ
dxVdyV>Lðx; yÞ>RðxV; yVÞ

I bIðx; yÞIðxVj $x; yVÞÀ: ðA3Þ

Suppose that the mean luminance of the random images
is 2. That is, we can write

Iðx; yÞ ¼ 2þ &ðx; yÞ; ðA4Þ

where ( is a random variable, picked independently for
each x and y from a distribution with zero mean. For

example, for a random-dot pattern with black and white
dots, 2 represents the luminance of the background and (
has three peaks: a peak at 0 for background pixels and
symmetric peaks on either side of zero for the black and
white dots. For an all-white dot pattern with more back-
ground pixels than dots, 2 is slightly higher than the
luminance of the background, and ( has two peaks arranged
asymmetrically about 0: a small peak at a positive value,
representing the white dots, and a larger peak at a negative
value closer to zero, representing the gray background.
For non-corresponding points in the images (i.e.,

x m xVj $x or y m yV), the values of ( are uncorrelated, and
so the product of the images averages to 22. For
corresponding points (i.e., where x = xVj $x and y = yV),
the values of ( are identical, and so there we pick up an
additional term that depends on the variance of (:

bIðx; yÞIðxVj $x; yVÞÀ ¼ bðþ&Þðþ&VÞÀ ¼ 22

þ b&2À%Diracðx j xVþ $x; y j yVÞ:
ðA5Þ

Thus,

bvLvRÀð$xÞ ¼ 22

ZZ
dxdy>Lðx; yÞ

ZZ
dxVdyV>RðxV; yVÞ

þ b&2À
ZZ

dxdy>Lðx; yÞ>Rðxþ $x; yÞ; ðA6Þ

and similarly

bvL
2À ¼ 22

ZZ
dxdy>Lðx; yÞ

� �2
þ b&2À

ZZ
dxdy>2Lðx; yÞ;

ðA7Þ

for bvR
2À. Using these results, we can write the mean

energy-model response as

bEÀ ¼ 22ðLþ RÞ2 þ b&2À½M þ Bð$xÞ�; ðA8Þ

where

L ¼
ZZ

dxdy>Lðx; yÞ; R ¼
ZZ

dxdy>Rðx; yÞ;

M ¼
ZZ

dxdy >L
2ðx; yÞ þ >2Lðx; yÞ

� 	
;

Bð$xÞ ¼ 2

ZZ
dxdy>Lðx; yÞ>Rðxþ $x; yÞ:

ðA9Þ
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From Equation A8, we can divide this mean response into
a baseline response that would be observed even with
binocularly uncorrelated stimuli

U ¼ 22ðLþ RÞ2 þ b&2ÀM ðA10Þ

and a disparity-modulated term b(2ÀB($x). In the unin-
teresting case where the images are blank, b(2À = 0 and so
there is no disparity modulation. Otherwise, the amplitude
of the disparity tuning curve relative to the baseline is

A ¼ Bð$xprefÞ
M þ ðLþRÞ222

b&2À

; ðA11Þ

where $xpref is defined as the disparity that maximizes the
magnitude of the disparity-modulated term. L, R, M, and
$xpref all depend only on the particular receptive field
functions, i.e., the properties of the neuronal population
encoding disparity. The only term that depends on the image
statistics is 22/b(2À. This term is multiplied by (L + R), the
integral of the receptive field functions. For the special case
of odd-symmetric or very narrow-band cells, this integral is
zero. In this case, the amplitude ceases to depend on the
image statistics and is simply A = B($pref)/M. Where the
integral (L + R) is non-zero, it is clear by inspecting
Equation A11 that A is maximized when the image has no
DC component, i.e., 2 = 0. Then, A = B($pref)/M. Any non-
zero value of 2 reduces A, the amplitude of the disparity-
modulated response. This is the reason for the difference
between the mixed- and same-polarity stimuli in Figure 11.

Acknowledgments

This work was supported by the Royal Society
(University Research Fellowship UF041260 to JCAR) and
Medical Research Council (New Investigator Award 80154
to JCAR supporting ISP). The data were collected by XAV
and submitted as a dissertation in partial satisfaction of
the requirements for a B.Sc. in Biomedical Sciences at
Newcastle University.

Commercial relationships: none.
Corresponding author: Jenny C. A. Read.
Email: J.C.A.Read@ncl.ac.uk.
Address: Institute of Neuroscience, Newcastle University,
Newcastle upon Tyne, NE2 4HH, UK.

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal
energy models for the perception of motion. Journal
of the Optical Society of America A, 2, 284–299.

Adelson, E. H., & Bergen, J. R. (1986, May 7–9). The
extraction of spatio-temporal energy in human and
machine vision. Paper presented at the Workshop on
Motion: Representation and Analysis, Charleston, SC.

Agresti, A., & Coull, B. (1998). Approximate is better
than “exact” for interval estimation of binomial
proportions. American Statistician, 52, 119–126.

Badcock, D. R., Clifford, C. W., & Khuu, S. K. (2005).
Interactions between luminance and contrast signals in
global form detection. Vision Research, 45, 881–889.

Banks, M. S., Gepshtein, S., & Landy, M. S. (2004). Why
is spatial stereoresolution so low? Journal of Neuro-
science, 24, 2077–2089.

Bell, J., & Badcock, D. R. (2008). Luminance and contrast
cues are integrated in global shape detection with
contours. Vision Research, 48, 2336–2344.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10, 433–436.

Brooks, A., & van der Zwan, R. (2002). The role of
ON- and OFF-channel processing in the detection
of bilateral symmetry. Perception, 31, 1061–1072.

Croner, L. J., & Albright, T. D. (1997). Image segmenta-
tion enhances discrimination of motion in visual
noise. Vision Research, 37, 1415–1427.

Edwards, M. (2009). Common-fate motion processing:
Interaction of the On and Off pathways. Vision
Research, 49, 429–438.

Edwards, M., & Badcock, D. R. (1994). Global motion
perception: Interaction of the ON and OFF pathways.
Vision Research, 34, 2849–2858.

Filippini, H. R., & Banks, M. S. (2009). Limits of stereopsis
explained by local cross-correlation. Journal of
Vision, 9(1):8, 1–18, http://www.journalofvision.org/
content/9/1/8, doi:10.1167/9.1.8. [PubMed] [Article]

Fleet, D., Wagner, H., & Heeger, D. (1996). Neural
encoding of binocular disparity: Energy models,
position shifts and phase shifts. Vision Research, 36,
1839–1857.

Harris, J. M., & Parker, A. J. (1995). Independent neural
mechanisms for bright and dark information in
binocular stereopsis. Nature, 374, 808–811.

Hibbard, P. B., Bradshaw, M. F., & Eagle, R. A. (2000).
Cue combination in the motion correspondence prob-
lem. Proceedings of the Royal Society B: Biological
Sciences, 267, 1369–1374.

Lippert, J., & Wagner, H. (2002). Visual depth encoding
in populations of neurons with localized receptive
fields. Biological Cybernetics, 87, 249–261.

Mikaelian, S., & Qian, N. (2000). A physiologically-based
explanation of disparity attraction and repulsion.
Vision Research, 40, 2999–3016.

Journal of Vision (2011) 11(12):4, 1–14 Read, Vaz, & Serrano-Pedraza 13

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932791/ on 04/11/2016

http://www.ncbi.nlm.nih.gov/pubmed/19271878
http://www.journalofvision.org/content/9/1/8


Ohzawa, I. (1998). Mechanisms of stereoscopic vision:
The disparity energy model. Current Opinion in
Neurobiology, 8, 509–515.

Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990).
Stereoscopic depth discrimination in the visual
cortex: Neurons ideally suited as disparity detectors.
Science, 249, 1037–1041.

Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1996).
Encoding of binocular disparity by simple cells in the
cat’s visual cortex. Journal of Neurophysiology, 75,
1779–1805.

Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1997).
Encoding of binocular disparity by complex cells in
the cat’s visual cortex. Journal of Neurophysiology,
77, 2879–2909.

Pelli, D. G. (1997). The VideoToolbox software for visual
psychophysics: Transforming numbers into movies.
Spatial Vision, 10, 437–442.

Poggio, G. F., & Fischer, B. (1977). Binocular interaction
and depth sensitivity of striate and prestriate cortex of
behaving rhesus monkey. Journal of Neurophysiology,
40, 1392–1405.

Prince, S. J., Pointon, A. D., Cumming, B. G., & Parker,
A. J. (2002). Quantitative analysis of the responses of
V1 neurons to horizontal disparity in dynamic
random-dot stereograms. Journal of Neurophysiology,
87, 191–208.

Prince, S. J. P., & Eagle, R. E. (2000). Weighted
directional energy model of human stereo correspond-
ence. Vision Research, 40, 1143–1155.

Qian, N. (1994). Computing stereo disparity and motion
with known binocular cell properties. Neural Compu-
tation, 6, 390–404.

Qian, N. (1997). Binocular disparity and the perception of
depth. Neuron, 18, 359–368.

Qian, N., & Andersen, R. A. (1997). A physiological
model for motion-stereo integration and a unified
explanation of Pulfrich-like phenomena. Vision
Research, 37, 1683–1698.

Qian, N., & Zhu, Y. (1997). Physiological computa-
tion of binocular disparity. Vision Research, 37,
1811–1827.

Read, J. C. A. (2002a). A Bayesian approach to the stereo
correspondence problem. Neural Computation, 14,
1371–1392.

Read, J. C. A. (2002b). A Bayesian model of stereopsis
depth and motion direction discrimination. Biological
Cybernetics, 86, 117–136.

Read, J. C. A. (2010). Vertical binocular disparity is
encoded implicitly within a model neuronal popula-
tion tuned to horizontal disparity and orientation.
PLoS Computational Biology, 6, e1000754.

Read, J. C. A., & Cumming, B. G. (2003). Testing
quantitative models of binocular disparity selectivity
in primary visual cortex. Journal of Neurophysiology,
90, 2795–2817.

Read, J. C. A., & Cumming, B. G. (2004). Ocular
dominance predicts neither strength nor class of
disparity selectivity with random-dot stimuli in pri-
mate V1. Journal of Neurophysiology, 91, 1271–1281.

Read, J. C. A., Parker, A. J., & Cumming, B. G. (2002). A
simple model accounts for the reduced response of
disparity-tuned V1 neurons to anti-correlated images.
Visual Neuroscience, 19, 735–753.

Serrano-Pedraza, I., & Read, J. C. A. (2009). Stereo
vision requires an explicit encoding of vertical
disparity. Journal of Vision, 9(4):3, 1–13, http://www.
journalofvision.org/content/9/4/3, doi:10.1167/9.4.3.
[PubMed] [Article]

Snowden, R. J., & Edmunds, R. (1999). Colour and
polarity contributions to global motion perception.
Vision Research, 39, 1813–1822.

Tanaka, H., & Ohzawa, I. (2006). Neural basis for
stereopsis from second-order contrast cues. Journal
of Neuroscience, 26, 4370–4382.

Watson, A. B., & Ahumada, A. J., Jr. (1985). Model of
human visual-motion sensing. Journal of the Optical
Society of America A, 2, 322–341.

Wenderoth, P. (1996). The effects of the contrast polarity
of dot-pair partners on the detection of bilateral
symmetry. Perception, 25, 757–771.

Wilson, J. A., Switkes, E., & De Valois, R. L. (2004).
Glass pattern studies of local and global processing of
contrast variations. Vision Research, 44, 2629–2641.

Journal of Vision (2011) 11(12):4, 1–14 Read, Vaz, & Serrano-Pedraza 14

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932791/ on 04/11/2016

http://www.ncbi.nlm.nih.gov/pubmed/19757912
http://www.journalofvision.org/content/9/4/3

