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“Es ist wahr, ein Mathematiker, der nicht etwas Poet ist, wird nimmer ein vollkommener

Mathematiker sein.”

“It is true that a mathematician who is not somewhat of a poet, will never be a perfect

mathematician.”

Karl Weierstraß





ABSTRACT

Combinatorial Structure of Polytopes associated to Fuzzy Measures

by PEDRO GARCÍA SEGADOR

Abstract in English

This PhD thesis is devoted to the study of geometric and combinatorial aspects of

polytopes associated to fuzzy measures. Fuzzy measures are an essential tool, since they

generalize the concept of probability. This greater generality allows applications to be

developed in various fields, from the Decision Theory to the Game Theory.

The set formed by all fuzzy measures on a referential set is a polytope. In the same way,

many of the most relevant subfamilies of fuzzy measures are also polytopes. Studying

the combinatorial structure of these polytopes arises as a natural problem that allows

us to better understand the properties of the associated fuzzy measures.

Knowing the combinatorial structure of these polytopes helps us to develop algorithms to

generate points uniformly at random inside these polytopes. Generating points uniform-

ly inside a polytope is a complex problem from both a theoretical and a computational

point of view. Having algorithms that allow us to sample uniformly in polytopes associ-

ated to fuzzy measures allows us to solve many problems, among them the identification

problem, i.e. estimate the fuzzy measure that underlies an observed data set.

Many of these polytopes associated with subfamilies of fuzzy measures are order poly-

topes and their combinatorial structure depends on a partially ordered set (poset). In

this way we can transform problems of a geometric nature into problems of Combina-

torics and Order Theory.

In this thesis, we start by introducing the most important results about posets and

order polytopes. Next, we focus on the problem of generating uniformly at random

linear extensions in a poset. To this end, we have developed a method, which we have

called Bottom-Up, which allows generating linear extensions for several posets quickly

and easily. The main disadvantage of this method is that it is not applicable to every

poset. The posets for which we can apply Bottom-Up are called BU-feasibles. For this

reason we study another method that we call Ideal-based method. This method is more

general than Bottom-Up and is applicable to any poset, however its computational cost

is much higher.



Among the posets that are not BU-feasible there are important cases that deserve an

individualized treatment, as is the case of the Ferrers posets. Ferrers posets are asso-

ciated to 2-symmetric measures. In this thesis, we study in detail the geometric and

combinatorial properties of the 2-symmetric measures. For this purpose we make use of

Young diagrams, which are well-known objects in combinatorics. Young diagrams allow

us to develop algorithms to generate uniformly at random 2-symmetric measures.

Next, we study the subfamily of 2-additive measures. The polytopes in this subfamily

are not order polytopes, and therefore we cannot apply the techniques we have developed

related to posets. As we have done with 2-symmetric measures, we study the faces of

these polytopes and develop a triangulation that allows us to uniformly sample 2-additive

measures.

Monotone games emerge as the non-normalized version of fuzzy measures. As they are

non-normalized, the associated polyhedra are not bounded and do not have a polytope

structure. In this case these sets form convex cones whose structure also depends on

a poset. We have called them order cones. In this thesis, we explain the link between

order cones and order polytopes. We also solve the problem of obtaining the extreme

rays of the set of monotone games using order cones.

Later in the thesis we study integration techniques to count linear extensions. These

techniques can be applied to know the volume of the associated order polytopes. In

the same way, it allows us to solve specific combinatorial problems such as counting the

number of 2-alternating permutations.

Finally, the thesis ends with a chapter on conclusions and open problems. It is con-

cluded that, in view of the results obtained in the thesis, there is a very close link

between Combinatorics, mainly Order Theory, and the geometry of the polytopes asso-

ciated with fuzzy measures. The more we improve our knowledge about the underlying

combinatorics, the better we will understand these polytopes.



Resumen en Español

La presente tesis doctoral está dedicada al estudio de distintas propiedades geométricas y

combinatorias de politopos de medidas difusas. Las medidas difusas son una herramienta

esencial puesto que generalizan el concepto de probabilidad. Esta mayor generalidad

permite desarrollar aplicaciones en diversos campos, desde la Teoŕıa de la Decisión a la

Teoŕıa de Juegos.

El conjunto formado por todas las medidas difusas sobre un referencial tiene estructura

de politopo. De la misma forma, la mayoŕıa de las subfamilias más relevantes de medidas

difusas son también politopos. Estudiar la estructura combinatoria de estos politopos

surge como un problema natural que nos permite comprender mejor las propiedades de

las medidas difusas asociadas.

Conocer la estructura combinatoria de estos politopos también nos ayuda a desarrollar

algoritmos para generar aleatoria y uniformemente puntos dentro de estos politopos.

Generar puntos de forma uniforme dentro de un politopo es un problema complejo desde

el punto de vista tanto teórico como computacional. Disponer de algoritmos que nos

permitan generar uniformemente en politopos asociados a medidas difusas nos permite

resolver muchos problemas, entre ellos el problema de identificación que trata de estimar

la medida difusa que subyace a un conjunto de datos observado.

Muchos de los politopos asociados a subfamilias de medidas difusas son politopos de

orden y su estructura combinatoria depende de un orden parcial (poset). De esta forma

podemos transformar problemas de naturaleza geométrica en problemas de Combinato-

ria y Teoŕıa del Orden.

En esta tesis, empezamos introduciendo los resultados más importantes sobre posets y

politopos de orden. A continuación nos centramos en el problema de generar extensiones

lineales de forma aleatoria para un poset. A tal fin hemos desarrollado un método, al que

hemos llamado Bottom-Up, que permite generar extensiones lineales para diversos posets

de forma rápida y sencilla. La principal desventaja de este método es que no es aplicable

a cualquier poset. A los posets que se les puede aplicar este método los llamamos BU-

factibles. Por este motivo estudiamos otro método al que llamamos método basado

en ideales (Ideal-based method). Este método es más general que el Bottom-Up y es

aplicable a cualquier poset. Sin embargo, su coste computacional es mucho mayor.

Dentro de los posets que no son BU-factibles hay casos importantes que merecen un

estudio individualizado, como es el caso de los posets de Ferrers. Los posets de Ferrers

están asociados a las medidas 2-simétricas. En esta tesis estudiamos en detalle las

propiedades geométricas y combinatorias de las medidas 2-simétricas. Para ello hacemos

uso de unos objetos muy conocidos en Combinatoria, que son los diagramas de Young.



Estos objetos nos permiten desarrollar algoritmos para generar aleatoriamente medidas

2-simétricas de forma uniforme.

A continuación estudiamos la subfamilia de medidas 2-aditivas. Los politopos de esta

subfamilia no son politopos de orden, y por tanto no podemos aplicar las técnicas que

hemos desarrollado relacionadas con posets. Al igual que hemos hecho con las medidas

2-simétricas, estudiamos las caras de estos politopos y desarrollamos una triangulación

que nos permite simular uniformemente medidas 2-aditivas.

Los juegos monótonos surgen como la versión no normalizada de las medidas difusas. Al

no estar normalizados, los poliedros asociados no están acotados y no tienen estructura

de politopo. En este caso estos conjuntos forman conos convexos cuya estructura también

depende de un poset. A estos conos los hemos llamado conos de orden (Order Cones).

En la tesis explicamos la relación existente entre conos de orden y politopos de orden.

También resolvemos el problema de obtener los rayos extremos de los juegos monótonos

usando resultados de conos de orden.

Posteriormente en la tesis estudiamos técnicas de integración para contar extensiones

lineales. Estas técnicas se pueden aplicar para conocer el volumen de los politopos de

orden asociados. De la misma forma permiten resolver problemas concretos de Combi-

natoria como el de contar el número de permutaciones 2-alternantes.

Finalmente la tesis acaba con un caṕıtulo sobre conclusiones y problemas abiertos. Se

concluye que, a la vista de los resultados obtenidos en la tesis, hay una relación muy

estrecha entre la Combinatoria, principalmente aquella asociada a la Teoŕıa del Orden,

y la geometŕıa de los politopos asociados a medidas difusas. Según podamos avanzar

en nuestros conocimientos teóricos sobre estos objetos combinatorios podremos conocer

mejor estos politopos.
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disciplina. He tenido la suerte de compartir con ellos una cantidad no numerable de

teoremas, risas, casas rurales, viajes, y también cosas malas, como suele ocurrir con los

buenos amigos. Espero que estos buenos momentos no estén acotados en el tiempo.
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Introduction

Since time began, Humanity has had to deal with situations where a decision must be

made between various alternatives. This problem remains central to the lives of all of

us. In this way, each day we must decide what clothes to wear, what time to get up,

what means of transport to use to get to work, and so on.

In many of these decisions, the consequences depend on a number of factors that cannot

be controlled by the decision maker. This makes decision-making a very complicated

process governed by uncertainty. In many occasions it is necessary to choose options in

competition with other individuals. It goes without saying that a wrong decision can

lead to major problems that can extend over a long period of time, making it necessary

to reflect on the decision to be made.

In order to try to clarify how this decision-making should be done, the Decision Theory

and the Game Theory have arisen. They propose mathematical tools that allow hu-

man behavior to be modeled in decision-making, as well as make the most appropriate

decisions for each problem.

Decision-making problems appear first in the works of Pascal and Bernoulli on Proba-

bility and in the works on voting systems by Condorcet and Borda in the late eighteenth

century. However, despite the evident importance that decision-making has, its study

from a formal point of view is quite recent. The first studies emerged in the twentieth

century and were done by Neyman and Pearson by using statistical hypothesis contrasts.

The extension to other areas of statistic is due to A. Wald. In 1944, J. von Neumann

and O. Morgenstern published a work that represents a fundamental advance both in

Decision Theory and in Game Theory.

The set of important factors which are not under the control of the decision maker

are called states of nature. Depending on the information available on the states of

nature, the Decision Theory is divided into two: Decision Theory Under Uncertainty

and Under Risk. In Decision Theory Under Uncertainty there is no information about

xiv



the actual state of nature, while in Decision Theory Under Risk we have information

that is modeled by a probability distribution on the set of states of nature.

Under these conditions, if we assume that the set of states of nature is finite, each

alternative can be identified with a vector. This vector of consequences is made numeric

by a utility or loss function. What makes decision-making difficult comes from the fact

that an alternative might be better for a state of nature but not for the others. This is

because there is not a natural order in the n-dimensional space to compare vectors. To

solve this problem, what is done is to replace each vector with a representative value that

is a real number; and then the best decision corresponds with the best representative

value.

Different ways of choosing the representative value associated with the vectors lead to

different decisions, and this gives rise to different decision criteria. If we are in a risk

environment, the most usual criterion is the criterion of expected utility, in which the

expected value of utilities is taken as representative value.

However, the expected utility criterion cannot explain some behaviors related to risk

aversion, such as the Ellsberg and Allais paradoxes, which appear both in an environment

of uncertainty and risk. These paradoxes can, however, be modeled through the use of

non-additive measures and the Choquet integral instead of mathematical probabilities

and expected values.

Another branch of the Decision Theory is the Multicriteria Decision Making. In the case

of Multicriteria Decision Making, the problem we are facing does not have a degree of

uncertainty as it did in the previous cases. In this case, we have a series of alternatives

from which one must be chosen, and we know the evaluations of each of the alternatives

with respect to each of the criteria that are important for making the decision. For

example, if we want to buy a car we consider several options among the possible cars,

such as price, comfort, ... However, the problem takes a similar form to the previous one.

Assuming that the evaluation is numerical for each criterion, the different alternatives

are identified with their corresponding evaluation vectors, and we again have the problem

of comparing vectors in the n-dimensional space. As in the previous case, the solution

is to define a representative value of each vector so that the problem is reduced to

comparing real values. This is achieved through the so-called aggregation operators.

Among the many aggregation operators that can be used, the criterion that consists

in assigning weights or amounts to the different criteria and considering a weighting

value of the partial evaluations stands out. Formally, this comes down to an expected

value. However, the use of this operator does not allow modeling situations that are

very common in Multicriteria Decision Making. For example, it does not allow to model

interactions between the criteria, nor does it allow veto or favor situations for some



criteria. However, these situations can be successfully described using non-additive

measures and their corresponding Choquet integral.

Non-additive measures, also known as capacities, monotone measures or fuzzy measures

are, from a mathematical point of view, a generalization of probability measures, in

which additivity is replaced by a weaker condition of monotonicity. They were defined

as a generalization of a measure by Choquet and have been successfully applied in fields

as diverse as Fuzzy Logic or Image Recognition. By not requiring additivity in their

definition, they allow modeling risk aversion and also interactions between criteria or

vetoes and favors. The equivalent of expected value is given in this situation by the

Choquet integral, which generalizes the Lebesgue integral.

Another field in which non-additive measures appear is the Cooperative Game Theory.

The problem here is a group of players who may or may not cooperate with each other by

forming different coalitions. In this case, the game is characterized by the profit that each

possible coalition can achieve on its own, even with the opposition of the other players.

In this way, each game is characterized by that function. The goal of Cooperative Game

Theory is, assuming that all players agree to form the entire coalition, to divide this

profit; For this, we must take into account the possible profit of the smaller coalitions.

In this context, monotonicity means that a coalition has higher profits than any coalition

contained in it. This assumption is reasonable and justifies that the function defining

the game is a non-additive measure, although not necessarily normalized.

For all these reasons, non-additive measures have been studied from many points of

view. This has led to the development of equivalent representations of the non-additive

measures that allow further interpretation. Thus, the Möbius interaction or the Shapley

interaction has been defined. Also some axiomatics have been developed that allow to

identify when a situation can be modeled by non-additive measures.

However, all this richness in terms of interpretation has its counterpart in the compu-

tational complexity of working with non-additive measures. Actually, for a probability

measure on a referential of n elements, it is enough to fix n− 1 values. However, in the

case of a non-additive measure 2n − 2 values are required. To avoid this problem, two

types of solutions have been proposed:

• First, remark that some coalitions might not make sense. These kinds of restric-

tions are very common in Game Theory, in which some coalitions are impossible.

• On the other hand, additional restrictions may be required on the definition of

non-additive measure. In this way, many subfamilies appear preserving much of



the potential of general non-additive measures in terms of interpretation, and con-

siderably reducing the number of values necessary for their definition. This option

is the most common in Decision Theory and has given rise to several subfamilies,

such as k-additive measures, k-intolerant measures, k-symmetric measures and

many more.

One of the problems appearing in the practical application of non-additive measures

is determining the measure, generally restricted to a subfamily, that models a specific

situation. This is what is known as the identification problem. Obtaining the measure

in a specific problem can be solved in different ways. For example, it is possible to assign

values to the measure of the different subsets with the help of an expert, by means of a

questionnaire. The same can be done to determine the values of other equivalent rep-

resentations (Möbius, Shapley, ...). Another solution is to use the information provided

by a sample. For example, in the case of Multicriteria Decision Making, it is possible

that there are several objects for which the score in each of the criteria and the global

score of them are known; in this case, an optimization problem must be solved in order

to find the corresponding measure or measures.

There are many ways to solve these optimization problems. Quadratic Programming

techniques, Genetic Algorithms, and many others have been used. We will mainly

use genetic algorithms and we will use the geometric properties of these subfamilies to

guarantee the effectiveness of these algorithms.

Related to the problem of testing the effectiveness of these algorithms we have the

problem of generating measures in a random way. Also, generating random points within

a polytope is a problem with a huge number of applications and much attention has

been devoted to it. One of the advantages of knowing ways to sample points randomly

and uniformly in a polytope is that it allows us to easily estimate its volume. When the

polytope studied coincides with some subfamily of non-additive measures, it is interesting

to have techniques that allow us to choose a measure at random in this set, assigning

equal probabilities to all the measures.

From a geometric point of view, when we restrict ourselves to subfamilies of non-additive

measures, it is very common for the set of non-additive measures of a subfamily to

be a convex polytope. Therefore, its points can be easily determined if we know its

vertices. Knowing the geometric structure of the different subfamilies that appear in

the application of non-additive measures helps us to solve both the problems of random

generation and the problems associated with the identification of measures. In this thesis

we are going to study some of these subfamilies.



One aspect that many of the most important subfamilies in both Game Theory and

Decision Theory have in common is that the corresponding polytopes are a special

type of polytopes known as order polytopes. The order polytopes are characterized

by the existence of a partially ordered set from which it is possible to determine the

entire combinatorial structure of the polytope. This simplifies the problem, since we

can reduce our study to the study of the properties of the associated partially ordered

set (abbreviated poset), a problem that is usually easier to tackle. Thus, for example,

it can be verified that the volume of the polytope can be obtained from the number of

linear extensions of the underlying poset. In the same way, it is possible to characterize

the vertices in terms of the poset filters, and determine if two vertices are adjacent from

the difference of these filters.

In the different chapters of this thesis we will present results for several of these problems.

Broadly speaking, the thesis can be divided into the following parts.

• Firstly, a method to generate linear extensions of a poset is studied. Obtaining

a linear extension randomly is a complex problem for which only partial results

are known. In this thesis we have developed a method, called Bottom-Up, that

allows calculating linear extensions quickly and intuitively. It is not applicable to

any poset, but for subfamilies that are order polytopes and whose posets allow its

application, it allows to find the corresponding vertices and calculate the volume.

For example, it allows uniformly generate elements of the set of non-additive mea-

sures when there are three elements; it also allows to generate elements in several

special cases of the truncated measures; and in specific cases of measures with a

restricted set of coalitions.

Extensions of this method, such as the ideals-based method, allow working with

a much wider range of cases. For example it solves the problem of generating

elements of the subfamily of 2-truncated measures. The drawback of these gener-

alizations is that they lead to a large increase in the complexity.

• Next, the polytope of 2-symmetric measures is studied. These measures are al-

so order polytopes. We have shown that the associated poset can be identified

with Young diagrams, a combinatorial structure that appears when computing

the number of partitions of a natural number. This allows us to find a method

for randomly generating measures in this polytope. We also obtain some other

interesting properties of this polytope.

• The next chapter studies the polytope of 2-additive measures. Contrary to what

happened until now, k-additive measures do not constitute an order polytope, and

they must be studied differently. The difference between the 2-additive measures



and the general k-additive measures is that the vertices of the 2-additive measures

are known and are 0/1-valued measures. In this chapter we characterize the adja-

cency in this polytope, as well as the structure and number of r-dimensional faces.

In addition, we give a triangulation of this polytope into simplices of the same

volume that allows for a quick random generation.

• The next chapter is devoted to what we have called order cones. The motivation

for the problem lies in the fact that, in the field of Game Theory, the condition of

normalization is not natural. For this reason, the polyhedra that appear are not

upper bounded. In this chapter we see that in a context of restricted cooperation,

the set of monotone cooperative games is an order cone. This allows to study its

properties again from a poset. Furthermore, we see that many of its geometric

properties can be put in terms of the order polytope associated to the underlying

poset.

• In the last chapter, we study integral techniques for counting linear extensions.

Keep in mind that finding the number of linear extensions of a poset is a complex

problem and only partial results are known. These integrals allow us to obtain

recursive formulas to get the number of linear extensions of some families of posets.

This implies that it is possible to compute the volume of the polytopes whose sub-

families of non-additive measures have an underlying set structure that is identified

with one of the families discussed in this chapter.

The thesis ends with a small chapter of conclusions and open problems. While developing

the chapters, new problems have arisen, many of which are related to complex problems

in Combinatorics or Algebra. However, we hope that this work serves as an example of

the advances that the use of algebraic and combinatorial tools can add to the study of

non-additive measures.





Introducción

Desde el principio de los tiempos, la Humanidad ha tenido que lidiar con situaciones

donde se debe tomar una decisión entre varias alternativas. Este problema sigue siendo

nuclear en la vida de todos nosotros. De esta forma cada d́ıa debemos decidir qué ropa

utilizar, a qué hora levantarnos, qué medio de transporte utilizar para llegar al trabajo,

y aśı un largo etcétera.

En muchas de estas decisiones, las consecuencias dependen de una serie de factores que

no pueden ser controlados por el hombre. Esto hace que la toma de decisiones pueda

llegar a ser un proceso muy complicado gobernado por la incertidumbre. En muchas

ocasiones es necesario elegir opciones en competencia con otros individuos. Ni que decir

tiene que una decisión errónea puede acarrear problemas importantes que se pueden

extender durante un peŕıodo prolongado de tiempo, lo que hace que sea necesario una

reflexión sobre la decisión a tomar.

Para intentar dilucidar cómo debe hacerse esta toma de decisiones surge la Teoŕıa de

la Decisión y la Teoŕıa de Juegos. En ellas se proponen herramientas matemáticas

que permiten modelar el comportamiento humano ante la toma de decisiones, aśı como

establecer las decisiones más adecuadas para cada problema.

Los problemas de toma de decisiones aparecen en primer lugar en los trabajos de Pascal

y Bernoulli sobre Probabilidad y en los trabajos sobre sistemas de votación de Condorcet

y Borda a finales del siglo XVIII. Sin embargo, a pesar de la evidente importancia que la

toma de decisiones tiene, su estudio desde un punto de vista formal es bastante reciente.

Los primeros estudios surgen en el siglo XX y son debidos a Neyman y Pearson y sus

trabajos sobre contrastes de hipótesis estad́ısticos. La extensión a otros ámbitos de la

estad́ıstica es debida a A. Wald. En 1944, J. von Neumann y O. Morgenstern publican

un trabajo que supone un avance fundamental tanto en la Teoŕıa de la Decisión como

en la Teoŕıa de Juegos.

El conjunto de factores importantes a la hora de decidir y que escapan al control del de-

cisor se llaman estados de la naturaleza. Dependiendo de la información disponible sobre

xxi



los estados de la naturaleza, la Teoŕıa de la Decisión se divide en dos: Teoŕıa de la De-

cisión Bajo Incertidumbre y Bajo Riesgo. En Teoŕıa de la Decisión Bajo Incertidumbre

no se tiene ninguna información sobre cuál puede ser el estado de la naturaleza, mien-

tras que en Teoŕıa de la Decisión Bajo Riesgo se tiene una información que se modela

mediante una distribución de probabilidad sobre el conjunto de estados de la naturaleza.

En estas condiciones, si suponemos que el conjunto de estados de la naturaleza es finito,

cada alternativa puede ser identificada con un vector. Este vector de consecuencias se

hace numérico mediante una función de utilidad o de pérdida. Lo que dificulta la toma

de decisiones viene del hecho de que una alternativa puede ser la mejor para un estado

de la naturaleza pero no para los otros. Esto se debe a que no existe un orden natural

en el espacio n-dimensional para comparar vectores. Para resolver este problema lo que

se hace es sustituir cada vector por un representante que ya es un valor real; y entonces

se toma como decisión óptima la que tenga un mejor representante.

Diferentes formas de elegir el representante asociado a los vectores conducen a distintas

decisiones, y esto da lugar a distintos criterios de decisión. Si estamos en un ambiente

de riesgo, el criterio más usual es el criterio de utilidad esperada o derivados del mismo,

en el que se toma como representante el valor esperado de las utilidades.

Sin embargo, el criterio de utilidad esperada no puede explicar algunos comportamientos

relacionados con la aversión al riesgo, como las paradojas de Ellsberg y Allais, que

aparecen tanto en ambiente de incertidumbre como de riesgo. Estas paradojas pueden

sin embargo ser modeladas mediante el uso de medidas no aditivas y la integral de

Choquet en lugar de probabilidades y esperanzas matemáticas.

Otra rama de la Teoŕıa de la Decisión es la Decisión Multicriterio. En el caso de la

Decisión Multicriterio, el problema al que nos enfrentamos no tiene un grado de in-

certidumbre como ocurŕıa en los casos anteriores. En este caso, tenemos una serie de

alternativas de entre las que se debe escoger una, y conocemos las evaluaciones de cada

una de las alternativas respecto a cada uno de los criterios que son importantes para

tomar la decisión. Por ejemplo, si queremos comprar un coche tenemos en cuenta varias

opciones entre los coches posibles, como puede ser el precio, confort, ... Sin embar-

go, el problema adopta una forma similar al anterior. Asumiendo que la evaluación es

numérica para cada criterio, las distintas alternativas se identifican con sus correspondi-

entes vectores de evaluaciones, y volvemos a tener el problema de comparar vectores en

el espacio n-dimensional. Como en el caso anterior, la solución pasa por definir un repre-

sentante de cada vector de forma que el problema se reduzca a comparar valores reales.

Esto se consigue mediante los conocidos como operadores de agregación. Entre los mu-

chos operadores de agregación que se pueden utilizar destaca el criterio que consiste en

asignar pesos o importancias a los distintos criterios y considerar una ponderación de



las evaluaciones parciales. Formalmente, esto se reduce a una esperanza matemática.

Sin embargo, el uso de este operador no permite modelar situaciones que son muy ha-

bituales en decisión multicriterio. Por ejemplo, no permite modelar interacciones entre

los criterios ni tampoco situaciones de veto o favor para algunos criterios. Sin embargo,

estas situaciones pueden ser descritas con éxito mediante las medidas no aditivas y su

correspondiente integral de Choquet.

Las medidas no aditivas, también conocidas como capacidades, medidas monótonas o

medidas difusas son, desde un punto de vista matemático, una generalización de las

medidas de probabilidad, en las que la aditividad se sustituye por una condición más

débil de monotońıa. Fueron definidas como una generalización de medida por Choquet

y han sido aplicadas con éxito en campos tan diversos como la Lógica Difusa o el Re-

conocimiento de Imágenes. Al no exigir aditividad en su definición, permiten modelar

la aversión al riesgo y también interacciones entre criterios o vetos y favores. El equiva-

lente a la esperanza matemática viene dado por la integral de Choquet, que generaliza

la integral de Lebesgue.

Otro de los campos en los que aparecen las medidas no aditivas es el la Teoŕıa de

Juegos Cooperativos. El problema en este caso consiste en un grupo de jugadores que

pueden o no cooperar entre śı formando distintas coaliciones. En este caso, el juego

queda caracterizado por la ganancia que cada posible coalición puede conseguir por si

misma, incluso con la oposición de los demás jugadores. De esta forma, cada juego queda

caracterizado por esa función. El objetivo de la teoŕıa de juegos es, suponiendo que todos

los jugadores se ponen de acuerdo para formar la coalición total, repartir esta ganancia;

para ello se debe tener en cuenta la ganancia que tendŕıa cada una de las coaliciones

más pequeñas. En este contexto, la monotońıa se traduce en que una coalición tenga

mayores ganancias que cualquier coalición contenida en ella. Este supuesto es razonable

y justifica el hecho de pensar que la función que define el juego es una medida no aditiva,

aunque no necesariamente normalizada.

Por todas estas razones, las medidas no aditivas se han estudiado desde muchos puntos

de vista. Esto ha dado lugar a la obtención de representaciones equivalentes de las

medidas no aditivas que permiten profundizar en la interpretación. Aśı, se ha definido

la interacción de Möbius o la interacción de Shapley. También se han desarrollado

axiomáticas que permiten identificar cuándo una situación puede ser modelada mediante

medidas no aditivas.

Sin embargo, toda esta riqueza en términos de interpretación tiene su contrapartida

en el gasto computacional de las medidas no aditivas. En efecto, para una medida de

probabilidad sobre un referencial de n elementos, basta almacenar n − 1 valores. Sin



embargo, en el caso de una medida no aditiva son necesarios 2n− 2 valores. Para evitar

este problema se han propuesto dos tipos de soluciones:

• En primer lugar, es posible que los valores sobre algunos conjuntos no tengan

sentido. Este tipo de restricciones son muy habituales en Teoŕıa de Juegos, en los

que algunas coaliciones son imposibles.

• Por otra parte, se pueden pedir restricciones adicionales sobre la definición de me-

dida no aditiva. De esta forma que aparecen subfamilias que conservan gran parte

del potencial de las medidas no aditivas generales en términos de interpretación,

mientras que reducen de forma considerable el número de valores necesarios para

su definición. Esta opción es la más habitual en Teoŕıa de la Decisión y ha dado

lugar a varias subfamilias, como por ejemplo las medidas k-aditivas, las medidas

k-intolerantes, las medidas k-simétricas y varias más.

Uno de los problemas que aparece en la aplicación práctica de las medidas no aditivas

es el de determinar la medida, generalmente restringida a una subfamilia, que modela

una situación concreta; esto lo que se conoce como el problema de identificación. La

obtención de la medida en un problema concreto puede resolverse de distintas maneras.

Por ejemplo, es posible asignar valores a la medida de los distintos subconjuntos con la

ayuda de un experto en el asunto, mediante un cuestionario; esto mismo puede hacerse

para determinar los valores de otras representaciones equivalentes (Möbius, Shapley,...).

Otra solución es utilizar la información que proporciona una muestra. Por ejemplo, en

el caso de Decisión Multicriterio, es posible que se disponga de varios objetos para los

que se conoce la puntuación en cada uno de los criterios y la puntuación global de los

mismos; en este caso hay que resolver un problema de optimización para hallar la medida

o medidas correspondientes.

Hay muchas formas de resolver estos problemas de optimización. Aśı, se han apli-

cado técnicas de Programación Cuadrática, Algoritmos Genéticos, y muchas otras.

Nosotros usaremos mayoritariamente algoritmos genéticos donde usaremos las diferentes

propiedades geométricas de estas subfamilias para garantizar la eficacia de estos algorit-

mos.

Relacionado con el problema de probar la eficacia de estos algoritmos tenemos el pro-

blema de generar medidas de forma aleatoria. Además, generar puntos al azar dentro

de un politopo es un problema con una inmensa cantidad de aplicaciones y al que se

le ha dedicado mucha atención. Una de las ventajas de conocer maneras de simular

puntos aleatoriamente y uniformemente en un politopo es que nos permite estimar de

forma sencilla el volumen del mismo. Cuando el politopo estudiado coincide con alguna



subfamilia de medidas no aditivas, es interesante disponer de técnicas que nos permitan

elegir una medida al azar en este conjunto asignando probabilidades iguales a todas las

medidas.

Desde un punto de vista geométrico, cuando nos restringimos a subfamilias de medidas

no aditivas, es muy común que el conjunto de medidas no aditivas dentro de una sub-

familia sea un politopo convexo. Por ello, sus puntos se pueden determinar de forma

sencilla si conocemos sus vértices. Conocer la estructura geométrica de las distintas sub-

familias que aparecen en la aplicación de las medidas no aditivas nos ayuda a resolver

tanto los problemas de generación aleatoria como los problemas asociados a la identifi-

cación de medidas. En esta memoria vamos a estudiar algunas de estas subfamilias.

Un aspecto que tienen en común muchas de las subfamilias más importantes que a-

parecen tanto en Teoŕıa de Juegos como en Teoŕıa de la Decisión es que los politopos

correspondientes son un tipo especial de politopos conocidos como politopos de orden.

Los politopos de orden se caracterizan por la existencia de un conjunto parcialmente

ordenado a partir del cual es posible determinar toda la estructura combinatoria del

politopo. Esto simplifica el problema, ya que podemos reducir nuestro estudio al estudio

de las propiedades del conjunto parcialmente ordenado (abreviado poset), un problema

que suele ser más sencillo de abordar. Aśı, por ejemplo puede comprobarse que el vo-

lumen del politopo puede ser obtenido a partir del número de extensiones lineales del

poset subyacente. De la misma forma, es posible caracterizar los vértices en términos de

los filtros del poset, y establecer si dos vértices son adyacentes a partir de la diferencia

de estos filtros.

En los distintos caṕıtulos de esta memoria iremos presentando resultados para varios de

estos problemas. A grandes rasgos, la memoria se puede dividir en las siguientes partes.

• En primer lugar, se estudia un método para generar extensiones lineales de un

poset. Obtener una extensión lineal de forma aleatoria es un problema complejo

para el que sólo se conocen resultados parciales. En esta memoria hemos desarro-

llado un método, llamado Bottom-Up, que permite calcular extensiones lineales

de forma rápida e intuitiva. No es aplicable a cualquier poset, pero para subfami-

lias que sean politopos de orden y su poset permita su aplicación, permite hallar

los vértices correspondientes y calcular el volumen. Por ejemplo permite generar

uniformemente elementos del conjunto de medidas no aditivas cuando hay tres

elementos; también permite generar elementos en varios casos especiales de las

medidas truncadas; y en casos concretos de medidas con conjunto de coaliciones

restringido.



Extensiones de este método, como el método basado en ideales, permiten trabajar

con un rango mucho más amplio de casos, por ejemplo resuelve el problema de

generar elementos de la subfamilia de las medidas 2-truncadas. El inconveniente de

estas generalizaciones reside en que conllevan un gran aumento en la complejidad

de su aplicación.

• A continuación se estudia el politopo de las medidas 2-simétricas. Estas medidas

son también politopos de orden. Hemos demostrado que el poset correspondiente

puede identificarse con diagramas de Young, una estructura combinatoria que a-

parece al calcular particiones de números. Esto nos permite hallar un método

para generar de forma aleatoria medidas en este politopo. Aśı como obtener otras

propiedades interesantes del mismo.

• El siguiente caṕıtulo estudia el politopo de las medidas 2-aditivas. Al contrario

de lo que pasaba hasta este momento, las medidas k-aditivas no constituyen un

politopo de orden, y hay que estudiarlas de manera diferente. La diferencia entre

las medidas 2-aditivas y las medidas k-aditivas generales es que los vértices de las

medidas 2-aditivas son conocidos y son medidas 0/1-valuadas. En este caṕıtulo

caracterizamos la adyacencia en este politopo, aśı como la estructura y número

de caras r-dimensionales. Además, damos una triangulación de este politopo en

śımplices del mismo volumen que permite la generación aleatoria de forma rápida.

• El siguiente caṕıtulo está dedicado a lo que hemos denominado conos de orden.

La motivación del problema radica en que en el ámbito de la Teoŕıa de Juegos

la condición de normalización no es natural. Por ello, los poliedros que aparecen

no están acotados superiormente. En este caṕıtulo vemos que en un contexto de

cooperación restringida, el conjunto de juegos cooperativos monótonos es un cono

de orden. Esto permite nuevamente estudiar sus propiedades a partir de un poset.

Además, vemos que muchas de sus propiedades geométricas se pueden poner en

términos del politopo de orden sobre el mismo poset.

• En el último caṕıtulo, se estudian técnicas de integración para contar extensiones

lineales . Hay que tener en cuenta que hallar el número de extensiones lineales de

un poset es un problema complejo y sólo se conocen resultados parciales. Estas

integrales permiten obtener fórmulas recursivas para obtener el número de exten-

siones lineales de algunas familias de posets. Esto implica que es posible calcular

el volumen de los politopos cuyas subfamilias de medidas no aditivas tienen una

estructura de conjuntos subyacente que se identifica con alguna de las familias que

se analizan en este caṕıtulo.



La memoria acaba con un pequeño caṕıtulo de conclusiones y problemas abiertos. Al

desarrollar los distintos caṕıtulos han surgido muchos problemas nuevos, muchos de los

cuáles se relacionan con problemas complejos de Combinatoria o Álgebra. Sin embargo,

esperamos que este trabajo sirva como ejemplo de los avances que el uso de herramientas

algebraicas y combinatorias pueden tener en el estudio de las medidas no aditivas.



Chapter 1

Posets and Polytopes

One of the most important structures along this thesis are the so-called order polytopes.

The reason relays in the fact that, as we will see in next chapters, order polytopes can be

used to model many subfamilies of fuzzy measures. In order to establish the definition of

order polytopes and the properties that will be applied in this thesis, it is first necessary

to give some previous results on partially ordered sets (posets for short) and convex

polytopes. This is the task we achieve in this chapter. Besides, some results that we

have derived about posets and convex polytopes are included.

1.1 Poset theory

For a general introduction on the theory of posets see [1, 2]. Elements of a poset P

are denoted x, y and so on, and also a1, a2, .... If |P | = n, we will also use the notation

P = {1, ..., n}. Subsets of P are denoted by capital letters A,B, .... In order to avoid

hard notation, we will often use i1i2 · · · in for denoting the set {i1, i2, · · · , in}, specially

for singletons and pairs. We also define
(
X
k

)
as the set of all k-element subsets of X.

Definition 1.1. Let P be a set and � be a binary relation over P . The pair (P,�) is

a partially order set (or poset for short) if � satisfies the following conditions:

i) Reflexivity: x � x, ∀x ∈ P,

ii) Antisymmetry: If x � y and y � x, then x = y, ∀x, y ∈ P,

iii) Transitivity: If x � y and y � z, then x � z, ∀x, y, z ∈ P.

For a poset P , we can define the dual poset P ∂ = (P,�∂) such that x �∂ y ⇔ y � x.

With some abuse of notation, we will usually omit � and write P instead of (P,�) when

1
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referring to posets. We say that y covers x, denoted x l y, if x � y and there is no

z ∈ P \{x, y} satisfying x � z � y. A poset can be represented through Hasse diagrams.

We draw a Hasse diagram for a poset P representing each element of P by a distinct

point so that whenever xl y, there is an upwards segment from x to y.

Example 1.1. Figure 1.1 shows a Hasse diagram for the poset (N,�) where N =

{1, 2, 3, 4}, and � is given by 1 � 4, 2 � 4, 2 � 3 and satisfying conditions i), ii) and iii).

4 3

21

Figure 1.1: Poset N and its Hasse diagram.

An element x such that x 6≺ y,∀y ∈ P is called a maximal element. When a poset has

just one maximal, this maximal element is called maximum. Similarly, if x is such that

y 6≺ x, ∀y ∈ P, x is called a minimal element. When a poset has just one minimal, this

minimal element is called minimum. We will denote by MIN (P ) the set of minimal

elements of a poset P and m(P ) = |MIN (P )|. Similarly, we will denote by MAX (P )

the set of maximal elements of a poset P and M(P ) = |MAX (P )|.

For an element x, we define its level recursively as follows1: maximal elements are in

level 0, denoted L0. Maximal elements of P \L0 are in level L1; in general, Li is the set

of maximal elements of P \ (L0 ∪ ... ∪ Li−1).

A poset is a chain if x � y or y � x, ∀x, y ∈ P. We will denote the chain of n elements

by n; similarly, an antichain is a poset where � is given by x � y ⇔ x = y. We will

denote the antichain of n elements by n̄. If a pair of different elements (x, y) form an

antichain we denote it by x ‖ y. A chain C ⊆ P is said to be a maximal chain in P

if there is not other different chain C ′ such that C ⊂ C ′. Symmetrically, we can define

maximal antichains. The height of P , denoted by h(P ), is defined as the cardinality

of a longest chain in P. Similarly, the width of P , denoted by w(P ), is defined as the

cardinality of a largest antichain in P . Finite posets can be divided into chains and

antichains. Let P be a finite poset and let us denote by c(P ), C(P ), a(P ) and A(P ) be

the number of chains, the number of maximal chains, the number of antichains and the

number of maximal antichains, respectively.

Given an element x, we denote by ↓x the subposet of P whose elements are {y : y � x}
and by ↓ x̂ :=↓x \ {x}. Similarly, we denote by ↑x the subposet of P whose elements are

1Indeed, it may sound rather counterintuitive that in a pair of comparable elements, the greater one
has a lower level, i.e. levels are decreasing from the set of maximal elements downwards, while intuitively
it should be the opposite. This way of defining the level would be shown useful in the proofs of Chapter
3.
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{y : x � y} and by ↑ x̂ :=↑x \ {x}. These notions can be extended for a general subset

A, thus obtaining ↓A, ↑A, ↓Â and ↑Â. Finally, we will denote by lA the set of elements

related to any element of A and by lÂ =lA \A.

An ideal or downset I of P is a subset of P such that if x ∈ I, then ↓ x ⊆ I. We

will denote the set of all ideals of P by I(P ) and i(P ) := |I(P )|. An ideal with exactly

one maximum is called principal ideal. One of the most important constructions in

order theory is the poset I(P ) of down-sets ordered by inclusion. Symmetrically, a

subset F of P is a filter or upset if for any x ∈ F and any y ∈ P such that x � y,

it follows that y ∈ F. We denote by F(P ) the set of filters of P and f(P ) := |F(P )|. A

filter with exactly one minimum is called principal filter. In this thesis, we will assume

that P and the empty set are both filters and ideals, therefore I(P ) and F(P ) have both

maximum and minimum.

Two posets (P,�P ) and (Q,�Q) are isomorphic if there is a bijection f : P → Q such

that x �P y ⇔ f(x) �Q f(y), and it is denoted by P ∼= Q (or P = Q). If two posets are

isomorphic, then their corresponding Hasse diagrams are the same up to differences in

the names of the elements.

A map f : P → Q is said to be order-preserving (also monotone or a morphism) if

x �P y implies f(x) �Q f(y).

Definition 1.2. A poset (Q,�Q) with Q ⊂ P is a subposet of a poset (P,�P ) if

the inclusion mapping ι : Q ↪→ P is order-preserving. A poset (Q,�Q) is an induced

subposet (or full subposet) of (P,�P ) if there is an order-preserving injective map

g : Q → P with order-preserving inverse g−1 : g(Q) → Q. Observe that an induced

subposet Q inherits the order structure of P .

Example 1.2. Let us consider the (N,�) poset from Example 1.1. Note that the an-

tichain formed by elements 1 and 4 is a subposet of N , but it is not an induced subposet

of N , since 1 � 4. However, the chain formed by the same elements 1 and 4 is both a

subposet and an induced subposet of N.

Two elements x, y ∈ P are said to be interchangeable if there is an automorphism

f : P → P such that f(x) = y and f(y) = x.

Now we introduce some important ways of defining new posets from old. Given two

posets, (P,�P ), (Q,�Q), their direct sum, denoted P⊕Q, is a poset over the referential

P ∪ Q (disjoint union) and whose partial order �P⊕Q is defined as follows: if x, y ∈ P
then x �P⊕Q y if and only if x �P y; if x, y ∈ Q then x �P⊕Q y if and only if x �Q y;

and if x ∈ P, y ∈ Q then x �P⊕Q y. It is not difficult to show that the direct sum of
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a

b c

P

1

2 3

Q

a

b c

1

2 3

P ⊕Q

a

b c

1

2 3

Q⊕ P

Figure 1.2: Direct sum of posets.

posets is associative but not commutative, see Figure 1.2. A poset is irreducible by

direct sum if it cannot be written as a direct sum of two posets.

Similarly, the disjoint union of two posets (P,�P ), (Q,�Q), denoted P ]Q, is a poset

(P ∪Q,�P]Q) where x �P]Q y whenever x, y ∈ P and x �P y, or x, y ∈ Q and x �Q y.

It is not difficult to show that the disjoint union is commutative and associative, see

Figure 1.3. A poset which cannot be written as disjoint union of two posets is called

connected. Obviously, the Hasse diagram of a connected poset is also a connected

graph.

a

b c

P ]Q

1

2 3

1

2 3

Q ] P

a

b c

Figure 1.3: Disjoint union of posets.

Given two posets, (P,�P ), (Q,�Q), their cartesian product (or product for short)

denoted by P ×Q, is a poset over the cartesian product of sets P ×Q and whose partial

order �P×Q is defined as follows: (x1, x2) �P×Q (y1, y2) if and only if x1 �P y1, and

x2 �Q y2. It is not difficult to show that the product of posets is commutative and

associative. Let N = {1, 2, 3, 4} be the poset as in Example 1.1 and 2 the chain with

two elements. The Hasse diagram of N × 2 is depicted in Figure 1.4.
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(4,1) (3,1)

(2,1)(1,1)

(4,0) (3,0)

(2,0)(1,0)

Figure 1.4: N × 2.

Another interesting operation is the lexicographic product. Given two posets,

(P,�P ), (Q,�Q) their lexicographic product (P ∗ Q,�P∗Q) is defined over P × Q as

follows: (x1, x2) �P∗Q (y1, y2) if and only if x1 �P y1 or x1 = y1 and x2 �Q y2. The

lexicographic product is associative but not conmutative in general (see Figure 1.5.)

(a,1)

(a,3)(a,2)

(b,1)

(b,3)(b,2)

(c,1)

(c,2) (c,3)

P ∗Q

(1,a)

(1,c)(1,b)

(2,a)

(2,c)(2,b)

(3,a)

(3,b) (3,c)

Q ∗ P

Figure 1.5: Lexicographic product of posets.

Let P and Q be two posets, we define the exponential poset of Q with respect to P ,

Q<P>, by taking the set of all order-preserving maps from P to Q ordered by pointwise

order. Other notation is < P → Q >. It is easy to check that 2<3> ∼= (P({1, 2, 3}),⊆)

which is called Boolean poset of order 3, denoted B3, see Definition 1.4 and Figure 1.6

for its Hasse diagram.

Proposition 1.3. [1, 2] Some important and known properties of these operations are

the following:

• (P ]Q)×R = (P ×R) ] (Q×R).

• I(P )∂ ∼= I(P ∂).

• I(P ⊕ 1) ∼= I(P )⊕ 1 and I(1⊕ P ) ∼= 1⊕ I(P ).

• I(P ]Q) ∼= I(P )× I(Q).

• |I(P )| = |I(P \ {x})|+ |I (P \ (↓ x∪ ↑ x)) |, ∀x ∈ P and P finite.

• Let P and Q be finite posets then I(P ⊕ Q) ∼= I(P )⊕I(Q), where I(P )⊕I(Q) is

obtained from I(P )⊕I(Q) by identifying the maximum of I(P ) with the minimum

of I(Q).
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• 2<P> ∼= I(P )∂.

• (2<P>)∂ ∼= 2<P
∂>.

• (R<Q>)<P> ∼= R<P×Q>.

A very important poset is the boolean poset of order n.

Definition 1.4. We define the boolean poset (or boolean lattice) of order n, Bn,

as the poset of all subsets of a set of n elements X = {1, 2, . . . , n} ordered by inclusion

⊆, i.e. (P(X),⊆).

Figure 1.6 shows the Hasse diagram of B3.

123

2312 13

31 2

∅

Figure 1.6: Hasse diagram of B3 lattice.

This lattice will play a fundamental role when we study the polytope of fuzzy measures.

Lemma 1.5. Let X = {1, 2, . . . , n} be a set of n elements and 2n = 2 × 2 × . . . × 2.

Define φ : P(X) −→ 2n by φ(A) = (ε1, . . . , εn) where

εi =

1, if i ∈ A

0, if i /∈ A
.

Then, φ is an order-isomorphism. Thus, Bn ∼= 2n ∼= 2<n>.

Corollary 1.6. Bn+1
∼= Bn × 2.

The last result gives us a way of relating the poset Bn with Bn−1.

Proposition 1.7. For the boolean lattice, it holds I(Bn+1) ∼= 2<Bn+1> ∼= 3<Bn>.

Proof. By using the properties of the operations and the fact Bn = (Bn)∂ we have:

2<Bn+1> ∼= 2<(Bn+1)∂> ∼= (2<Bn+1>)∂ ∼= I(Bn+1).
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On the other hand, note that 2<2> has three elements, the constant function zero, the

constant function one and the identity. Thus, 2<2> ∼= 3, and

2<Bn+1> ∼= 2<Bn×2> ∼= (2<2>)<Bn> ∼= 3<Bn>.

Hence, the result holds.

Theorem 1.8. [3] Let P be a finite poset of height h(P ) = k. Then, there exists a

partition of P into k antichains, that is, P = A1 ∪ · · · ∪ Ak where Ai is an antichain

∀i ∈ {1 . . . k} and Ai ∩Aj = ∅, ∀i 6= j.

Theorem 1.9 (Dilworth). [4] Let P be a finite poset of width w(P ) = k. Then there

exists a partition of P into k chains, that is, P = A1 ∪ · · · ∪ Ak where Ai is a chain

∀i ∈ {1 . . . k} and Ai ∩Aj = ∅, ∀i 6= j.

Remark 1.10. For this thesis will be decisive to know the cardinalities of the most

relevant objects linked to posets (such as ideals or filters) and how this cardinalities

relate to each other. An essential relation between these funtions is that the number of

non-empty ideals equals the number of antichains. Indeed, let us take the next bijection

φ, that for any non-empty ideal I, φ(I) is the set of maximal elements of I which is an

antichain. The inverse of this function is given by φ−1(a) =↓a. Moreover, the next map

between filters and ideals α : I→ F, I 7→ P \ I is also a bijection. Therefore:

i(P ) = f(P ) = a(P ) + 1.

Lemma 1.11. Let P and Q be two non-empty finite posets.

i) c(P ⊕Q) = c(P ) + c(Q) + c(P )c(Q).

ii) C(P ⊕Q) = C(P )C(Q).

iii) a(P ⊕Q) = a(P ) + a(Q).

iv) A(P ⊕Q) = A(P ) +A(Q).

v) c(P ]Q) = c(P ) + c(Q).

vi) C(P ]Q) = C(P ) + C(Q).

vii) a(P ]Q) = a(P ) + a(Q) + a(P )a(Q).

viii) A(P ]Q) = A(P )A(Q).

ix) i(P ⊕Q) = i(P ) + i(Q)− 1.
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x) i(P ]Q) = i(P )i(Q).

Proof. i) There are three types of chains. Chains with all elements in P ; there are

c(P ) such chains. Chains with all elements in Q, there are c(Q) such chains. And

chains combining elements of P and Q. As x � y for all x ∈ P and y ∈ Q, these

chains can be decomposed into a chain in P and a chain in Q, so the number of

this type of chains is c(P )c(Q).

ii) It suffices to note that a maximal chain in P ⊕ Q is a combination of a maximal

chain in P and a maximal chain in Q.

iii) & iv) Any (maximal) antichain of P or Q is an (maximal) antichain of P ⊕Q. However

we cannot join elements of P and Q to get a (maximal) antichain, because Q

dominates P .

v) & vi) Any (maximal) chain of P or Q is a (maximal) chain of P ]Q. But we cannot join

elements of P and Q to get a (maximal) chain so there are not more (maximal)

chains.

vii) An antichain of P ]Q is an antichain of P or an antichain of Q or any mixture of

antichains of P and Q.

viii) The same as the last one but considering that to be a maximal antichain we need

to join maximal antichains of both P and Q.

ix) Since i(P ) = a(P ) + 1 we get

i(P ⊕Q) = a(P ⊕Q) + 1 = a(P ) + a(Q) + 1

= i(P )− 1 + i(Q)− 1 + 1 = i(P ) + i(Q)− 1.

x) Since i(P ) = a(P ) + 1 we get

i(P ]Q) = a(P ]Q) + 1 = a(P ) + a(Q) + a(P )a(Q) + 1

= i(P )− 1 + i(Q)− 1 + (i(P )− 1)(i(Q)− 1) + 1 = i(P )i(Q).

Hence, the result holds.

When working with finite posets, it is sometimes convenient to denote elements as natu-

ral numbers. A labeling is a bijective mapping L : {1, 2, . . . , |P |} → P (see [2]). There

are n! ways to define a labeling. A poset endowed with a labeling is called a labeled

poset. Observe that a labeled poset is simply a poset with different consecutive natural
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numbers assigned to its elements. It is important to distinguish between posets and

labeled posets. Let us show an example to clarify these issues. In addition, the next

example exhibits how labeled posets model preferences.

Example 1.3. Let A and B be two consumers and consider four consumer goods denoted

by numbers 1, 2, 3 and 4. Suppose that the consumer A and consumer B have preferences

as the ones shown in Figure 1.7.

43

2

1

12

4

3

Figure 1.7: Labeled posets showing the preferences of consumers A and B.

Note that these two posets are isomorphic but they are not the same as labeled posets. In

other words, they have the same shape but not the same numbers. So they are different

as labeled posets.

A labeling is natural if x � y implies L−1(x) ≤ L−1(y) with the natural numbers order.

It is well-known that every finite poset admits a natural labeling.

Let P be a poset, we can define x ∨ y as the minimum of {z ∈ P | z � x, z � y} when

it exists. Symmetrically, we can define x∧ y as the maximum of {z ∈ P | z � x, z � y}
when it exists. More generally, for a general subset S ⊆ P we can define

∨
P S as the

minimum of {z ∈ P | z � x, ∀x ∈ S} when it exists. Dually, we can define
∧
P S.

Definition 1.12. Let P be a non-empty poset. If x ∨ y and x ∧ y exist for all x, y ∈ P,
then P is called a lattice. If

∨
P S and

∧
P S exist for all S ⊆ P, then P is called a

complete lattice. A lattice with maximum and minimum elements is called bounded.

Usually, the minimum is denoted by 0̂ and the maximum by 1̂. It easy to see that every

finite lattice is bounded.

Remark 1.13. Let L be a non-empty finite lattice and x, y, z ∈ L. The following proper-

ties hold:

• If x � y ⇒ x ∨ y = y and x ∧ y = x.

• Associative law (L1): (x ∨ y) ∨ z = x ∨ (y ∨ z).

• Associative law (L1)∂ : (x ∧ y) ∧ z = x ∧ (y ∧ z).
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• Conmmutative law (L2): x ∨ y = y ∨ x.

• Conmmutative law (L2)∂ : x ∧ y = y ∧ x.

• Idempotency law (L3): x ∨ x = x.

• Idempotency law (L3)∂ : x ∧ x = x.

• Absortion law (L4): x ∨ (x ∧ y) = x.

• Absortion law (L4)∂ : x ∧ (x ∨ y) = x.

Remark 1.14. Let L be a non-empty finite lattice and x, y ∈ L. If x � y ⇒ x ∨ y = y

and x ∧ y = x.

Let L and K be lattices. A function f : L → K is a lattice homomorphism if

f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y), ∀x, y ∈ L. A bijective lattice

homomorphism is a lattice isomorphism.

An element x of a lattice L is said to be join-irreducible if x is not a minimum and

x = a ∨ b implies x = a or x = b, ∀a, b ∈ L. A meet-irreducible element is defined

dually.

A lattice L is said to be distributive if it satisfies the distributive law,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀x, y, z ∈ L.

Also, L is modular if it satisfies the modular law,

x � z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z, ∀x, y, z ∈ L.

Let ∅ 6= M ⊆ L, then M is a sublattice (or induced sublattice) of L if x, y ∈M ⇒
x ∨ y, x ∧ y ∈M for all x, y ∈M inheriting the lattice structure from L.

The following theorem gives a way of identifying distributive and modular lattices.

Theorem 1.15 (The M3-N5 characterization). [1] Let L be a lattice. Then L is

modular if and only if L has not the posets N5 as sublattice. Moreover, L is distributive

if and only if L has not the poset N5 nor M3 as sublattices. N5 and M3 posets are given

in the Figure 1.8.

Let us denote by J (L) the join-irreducible elements of a lattice L. The join-irreducible

elements encode important information about the whole lattice.
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•

•• •

•

M3

•

•

•

•

•

N5

Figure 1.8: M3 and N5 posets.

Theorem 1.16. Let P be a finite poset. Then the map f(x) =↓ x is an isomorphism

between P and J (I(P )).

The last theorem has an interesting interpretation. Note that as I(P ) is a lattice of

ideals; and ideals are subsets of P , then it is also a lattice of subsets of P . Then, the

elements of J (I(P )) are subsets of P. As P ∼= J (I(P )), we can see any finite poset P

as a poset of sets ordered by inclusion. In other words, any finite poset is isomorphic to

a subposet of the boolean lattice (Bn,⊆).

This is also true for infinite posets. For any general poset, it is enough to consider

the poset S = {↓ x : x ∈ P} ordered by inclusion. Obviously, S is isomorphic to P.

Therefore, any poset could be seen as a poset of sets ordered by inclusion.

The last theorem is an inspiration for one of the most important theorems in lattice

theory, which is the Birkhoff’s representation theorem.

Theorem 1.17 (Birkhoff’s representation theorem for finite lattices). [1]

Let L be a finite distributive lattice. Then, the map η : L → I(J (L)), x 7→ J (L)∩ ↓x
is an isomorphism between L and I(J (L)).

This way, for any distributive lattice L all the information is concentrated in the poset

J (L). Note that the number of elements of J (L) is in general much lower than the

cardinality of L. Indeed, the following proposition can be shown.

Proposition 1.18. Let L be a finite lattice. Then the following statements are equiva-

lent:

i) L is distributive.

ii) L ∼= I(J (L)).

iii) L is isomorphisc to a down-set lattice.

In Figure 1.9 we can see how Birkhoff theorem works.
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◦

•

◦ ◦

•

L

•

• •

J (L)

◦

•

◦ ◦

•

I(J (L))

Figure 1.9: Birkhoff’s representation theorem: the elements ◦ are join-irreducibles.

1.1.1 Linear extensions

Linear extensions will play an important role along this thesis because of their connection

with order polytopes.

Definition 1.19. [2, 5] A linear extension of (P,�) is a sorting of the elements of P

that is compatible with �, i.e. x � y implies that x is before y in the sorting. In other

words, if |P | = n, then a linear extension is an order-preserving bijection ε : P → n.

Example 1.4. The N poset (see Example 1.1) has 5 linear extensions which are dis-

played in Figure 1.10.

4 3

21

−→

4

3

2

1

3

4

2

1

4

3

1

2

3

4

1

2

4

1

3

2

Figure 1.10: N poset and its linear extensions.

We normally consider posets endowed with a labeling in order to give a numeric name

to its elements. With this labeling, linear extensions are labeled chains.

Linear extensions will be denoted ε1, ε2 and so on, and the i-th element of ε is denoted

ε(i). We will denote by L(P ) the set of all linear extensions of poset (P,�) and by

e(P ) = |L(P )|. Two linear extensions are said to be related by a transposition if they

are identical except for the swapping of two elements. If these elements are consecutive,

the linear extensions are said to be related by an adjacent transposition.

Definition 1.20. Let P be a finite poset and L(P ) its linear extensions. We define the

transposition graph, denoted by (L(P ), τ), as the graph having the elements in L(P )

as vertices and edges between linear extensions that are related by a transposition. The
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adjacent transposition graph, denoted (L(P ), τ∗), is the graph with vertices L(P )

and edges between linear extensions that are related by an adjacent transposition.

Lemma 1.21. [6] Let P be a finite poset. Both graphs (L(P ), τ) and (L(P ), τ∗) are

connected.

Example 1.5. Consider the N poset, given by four elements 1, 2, 3, 4 and whose corre-

sponding Hasse diagram is given in Figure 1.10 left. We have seen in Figure 1.10 right

that the linear extensions of this poset N are

(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (2, 3, 1, 4).

The corresponding transposition graph and adjacent transposition graph (they are the

same for this poset) are given in Figure 1.11 right. Note that we have used a natural

labeling for N.

4 3

21

1243

21431234

2134

2314

Figure 1.11: N poset and its (adjacent) transposition graph.

We start studying some important properties of the function e(P ). The first property is

completely elemental but it will be used intensively.

Lemma 1.22. Let P be a poset, then

e(P ) =
∑

x∈MIN (P )

e(P \ {x}) =
∑

x∈MAX (P )

e(P \ {x}).

Proof. Suppose that ε is a linear extension of P . The first element of ε must be a minimal

element of P . So the set of all linear extensions can be partitioned into so many groups

as |MIN (P )|, each one corresponding with the group of linear extensions that start

with the i-th minimal element. For maximals the proof is completely symmetric.

Lemma 1.22 can be extended as follows (see [7]).
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Lemma 1.23. Let P be a poset and let A be an antichain of P intersecting with every

maximal chain of P ; then,

e(P ) =
∑
x∈A

e(P \ {x}).

Now we are going to study some inequalities involving e function. Given a set P , several

partial orders could be defined. We say that �⊆�′, if x � y implies x �′ y for all

x, y ∈ P.

Lemma 1.24. Let (P,�) and (P,�′) be two posets such that �⊆�′ . Then e ((P,�′)) ≤
e ((P,�)). Indeed, L ((P,�′)) ⊆ L ((P,�)) .

Proof. Let ε ∈ L ((P,�′)) and let us see that ε ∈ L ((P,�)) . By definition, ε ∈ L ((P,�))

if and only if ε(i) ≺ ε(j) implies i < j. Suppose that ε(i) ≺ ε(j). Since �⊆�′, ε(i) ≺′ ε(j).
As ε ∈ L ((P,�′)) , we get i < j.

Example 1.6. In the figure 1.12, the left-hand poset (P,�) has 2 linear extensions,

(1, 2, 3) and (1, 3, 2). The right-hand poset (P,�′) satisfies �⊆�′, therefore it should

have at least 2 linear extensions. Indeed it has 3, (1, 2, 3), (1, 3, 2) and (3, 1, 2).

1

2 3

1

2 3

Figure 1.12: (P,�) and (P,�′).

Lemma 1.25. Let (P,�P ) be a finite poset and (Q,�Q) be a full subposet of P. Then

e(Q) ≤ e(P ).

Proof. Assume w.l.g. that Q = {1, . . . , q} and let ε = (ε(1), ε(2), . . . , ε(q)) be a linear

extension of Q. We will extend this linear extension with the elements of P \ Q to a

linear extension of P . For this, it suffices to include z0 ∈ P \ Q and then repeat the

process for z1 ∈ P \ {Q ∪ z0}, and so on.

Thus, consider z0 and let us define:

S1 := {x ∈ Q : x ≺ z0} S2 := {x ∈ Q : x � z0}.

We have to consider four different cases:
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• If S1 = S2 = ∅, then z0 is not related to the elements of Q, so it can be added at

any position of ε.

• If S1 = ∅, S2 6= ∅, then z0 should be located before any element in S2. For example,

it could be placed in the first position.

• If S1 6= ∅, S2 = ∅, then z0 should be located after any element in S1. For example,

it could be placed in the last position.

• If S1 6= ∅, S2 6= ∅, let h1 := max{j : ε(j) ∈ S1} and h2 := min{j : ε(j) ∈ S2}.
Note that h1 < h2; otherwise, we have i1 > i2 such that ε(i1) ∈ S1 and ε(i2) ∈ S2.

Therefore, ε(i1) ≺ z0 ≺ ε(i2) and since ε is a linear extension we get i1 < i2, a

contradiction. Then z0 can be placed in any position between h1 and h2.

Thus, we have included z0 in a way that we obtain a linear extension of the full subposet

Q ∪ {z0}. Hence, we obtain a linear extension ε′ of P from ε. As ε is contained in ε′,

different linear extensions of Q lead to different linear extensions of P . Hence, the result

holds.

Let us know focus on how e function behaves with respect to the operations between

posets, see [5].

Lemma 1.26 (Summation Lemma). Let P and Q be finite posets, then

e(P ⊕Q) = e(P )e(Q).

Example 1.7. Let Mn = 1⊕n⊕1. By the Summation lemma e(Mn) = e(1)e(n)e(1) =

n!. Similarly, e(Mn ⊕Mm) = e(Mn)e(Mm) = n!m!. If n = 2 and m = 3, see Figure

1.13, we get e(M2 ⊕M3) = 2! · 3! = 12.

Example 1.8. Consider Pn = 2⊕ n· · ·⊕2, see Figure 1.14. Then, e(Pn) = e(2⊕ n· · ·⊕2) =

e(2)n = 2n.

Remark that if e(P ) is a prime number, then by the summation lemma P cannot be

written as direct sum of posets different from chains.

The disjoint union has also an equivalent result [5].

Lemma 1.27 (Disjoint Union Lemma). Let P1 and P2 be finite posets. Then:

e(P1 ] P2) =

(
|P1|+ |P2|
|P1|

)
e(P1)e(P2).
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9

876

5

4

32

1

Figure 1.13: P = M2 ⊕M3.

1 2

3 4

5 6

...
...

2n− 1 2n

Figure 1.14: Pn = 2⊕ n· · · ⊕ 2.

Corollary 1.28. Let P1, P2, . . . , Pm be m posets. Then:

e(P1 ] P2 ] . . . ] Pm) =

( m∑
j=1

|Pj |

|P1|, |P2|, · · · , |Pm|

) m∏
i=1

e(Pi),

where

( m∑
j=1

|Pj |

|P1|, |P2|, · · · , |Pm|

)
=

 m∑
j=1

|Pj |

!

m∏
j=1

|Pj |!

is the multinomial coefficient.
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Definition 1.29. A poset P is series-parallel if it can be constructed from singletons

using the operations ⊕ and ].

For example, P = 1⊕ (1 ] 1)⊕ (1 ] 1)⊕ 1 is series-parallel. By using the Summation

and the Disjoint Union Lemmas we can compute easily the number of linear extensions

of a series-parallel poset. Moreover, series-parallel posets are elegantly characterized.

Proposition 1.30. [2] A finite poset P is series-parallel if and only if P has not the N

poset as induced subposet.

We move to another basic operation in the poset world, the cartesian product. Unlike

direct sum and disjoint union, there are not known fromulas for computing the number

of linear extensions of the product P ×Q. Instead of thinking about the general product

P ×Q, we are going to briefly study 2× P.

Definition 1.31. Let n ∈ N and σ : {1, 2, . . . , n} → {1, 2, . . . , n} be a permutation of

the set {1, 2, . . . , n}. We define the torsion poset Tn
σ as the resulting poset of adding to

n ] n the relations i � σ(i) ∀i ∈ {1, 2, . . . , n}.

To draw the Hasse diagram of Tn
σ we normally should remove some relations that hold

by transitivity, see Figure 1.15. Note that if σ = (n, n− 1, . . . , 2, 1) then Tn
σ = 2n.

1

2

3

4

5

6

→

1

2

3

4

5

6

Figure 1.15: T3
σ with σ = (2, 1, 3).

Now we can state the following result.

Lemma 1.32. Let P be a finite poset with |P | = n. Then:

e(2× P ) =
∑

ε1,ε2∈L(P )

e(Tn
σ(ε1,ε2)),

where σ(ε1, ε2) is the permutation of {1, . . . , |P |} such that σ(i) is the position that the

element ε1(i) takes up in the linear extension ε2.
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Proof. Note that every linear extension of 2×P can be written as a merge between two

linear extensions of P that we will name ε1 and ε2. So the key fact here is how many

ways of merging these linear extensions are. That is:

e(2× P ) =
∑

ε1,ε2∈L(P )

γ(ε1, ε2)

where γ(ε1, ε2) are the number of ways of merging ε1 ∈ L(P ) and ε2 ∈ L(P ). The

number of ways of merging ε1 ∈ L(P ) and ε2 ∈ L(P ) is the number of permutations of

2n numbers that respect the order of n]n and the relations between the elements of ε1

and ε2. This number equals e(Tn
σ(ε1,ε2)) by definition.

Lemma 1.32 gives us a bound for free.

Corollary 1.33. Let P be a finite poset. Then,

e(2× P ) ≥ e(P )2.

Proof. Since e(2×P ) =
∑

ε1,ε2∈L(P )

e(Tn
σ(ε1,ε2)) has e(P )2 summands which are all of them

greater than 1, the result follows.

Observe that while the number of liner extensions of the direct sum and the disjoint union

of two posets do not depend on the linear extensions of the posets and only depend on

the number of linear extensions, the product by 2 does depend on the linear extensions

of P . An interesting open problem is computing a closed formula for e(Tn
σ(ε1,ε2)). In

spite of there is not a known closed formula for this value in general, we know the value

of some specific cases. That is the case of e(Tn
id) where id = (1, 2, . . . , n) is the identity

function. We know that Catalan numbers count the number of expressions containing n

pairs of parentheses which are correctly matched. For example if n = 3 some possibilities

are ((())), ()()() or (())(). Catalan numbers are one of the most ubiquitous sequence of

numbers in combinatorics, since they appear as a the solution of many combinatorial

problems [8].

Proposition 1.34. e(Tn
id) is the n-th Catalan number Cn, i.e.

e(Tn
id) = Cn =

1

n+ 1

(
2n

n

)
.

Proof. Taking into account the shape of Tn
id (see Figure 1.16) we can consider each xi

as a left parentheses and each yi as a right one. This way we have a bijection between
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linear extensions and parentheses matchings. Therefore, the number of linear extensions

equals the n-th Catalan number.

x1

x2

...

xn

y1

y2

...

yn

Figure 1.16: Tn
id.

Example 1.9. Let us see now an example with the boolean poset. Then,

e(B3) = e(2×B2) =
∑

ε1,ε2∈L(P )

e(T4
σ(ε1,ε2)).

Remember that B2 has only 2 linear extensions ε1 = (1, 2, 3, 4) and ε2 = (1, 3, 2, 4).

Then:

e(B3) = e(T4
σ(ε1,ε1)) + e(T4

σ(ε1,ε2)) + e(T4
σ(ε2,ε1)) + e(T4

σ(ε2,ε2)).

By Proposition 1.34, e(T4
σ(ε1,ε1)) = e(T4

σ(ε2,ε2)) = 14. Besides, it can be seen that

e(T4
σ(ε1,ε2)) = e(T4

σ(ε2,ε1)) = 10, so that e(B3) = 14 + 14 + 10 + 10 = 48.

Now we are going to study some links between linear extensions and ideals. Let P be a

poset. Then, the number of linear extensions e(P ) equals the number of maximal chains

of I(P ). To see this, take a linear extension ε = (ε1, . . . , εn) and define the function

that maps ε to the maximal chain of I(P ) given by (∅, {ε(1)}, {ε(1), ε(2)}, . . . , P ). This

function is a bijection and therefore,

e(P ) = C(I(P )). (1.1)

However, counting maximal chains in I(P ) is a difficult problem [9]. So most of times,

this formula is not useful for practical purposes. The next result gives us a connection

between linear extensions and filters.

Proposition 1.35. Let P be a finite poset with width w(P ), then e(P ) ≤ w(P )|P |−1.
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Proof. In order to construct a linear extension we can proceed as follows. We start

selecting a minimal element. Since the width is w(P ), we have at most w(P ) choices for

this element. Once we have selected this element, we repeat the same argument with the

remaining elements. In the last step we have just one remaining element, so we select

it.

The last bound is not an identity because there are a lot of steps in which we have less

than w(P ) minimal elements to choose. In the next Figure 1.17 we can see the tree of

choices for constructing a linear extension from the N poset.

4 3

21

∅

1 2

• 2 1 3

• • 3 4 3 4 1 •

• • 4 3 4 3 4 •

Figure 1.17: N poset and choices tree.

Theorem 1.36. Let P be a finite poset with width w(P ), then:

e(P ) = w(P )|P |−1 −
w(P )−1∑
i=1

∑
F∈Fi

(w(P )− i)w(P )|F |−2e(P \ F ),

where Fi is the set of non-singleton filters F such that |MIN (F )| = i and we consider

e(∅) = 1.

Proof. To compute e(P ) we should remove from w(P )|P |−1 the number of non-possible

paths (dashed lines). For each filter F different from a singleton (the singleton case

correspond to the last step) we count the number of minimal elements of F , suppose

that F ∈ Fi. If this number i is different from w(P ) then we find (w(P )− i) non-possible

paths associated to this filter. This path branches |F | − 2 times so this filter forks into

(w(P ) − i)w(P )|F |−2 non-possible paths. However, we should consider that in general

there is not an only way to come to this filter, but e(P \F ) ways of doing it. Putting it

all together we get the result.
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Corollary 1.37. Let P be a finite poset with width w(P ) = 2, then

e(P ) = 2|P |−1 −
∑
F∈F1

2|F |−2e(P \ F ),

where F1 is the set of non-singleton principal filters.

1.2 Convex Polytopes

In this section, we summarize the fundamentals of polyhedral combinatorics. The theory

of polytopes is a vast area of study, with deep connections to pure (algebraic geometry,

commutative algebra, representation theory) and applied mathematics (optimization,

decision theory, cooperative game theory). For a more detailed treatment see [10, 11].

The convex hull of a finite set of points S = {x1, . . . , xn} ⊂ Rd, denoted by Conv(S),

is the set of all convex combinations of its points, i.e.

Conv(S) =


|S|∑
i=1

αixi | αi ≥ 0 ∧
|S|∑
i=1

αi = 1

 .

A hyperplane H in Rd is an affine subspace of dimension d− 1; it is given by a linear

equation H = {x ∈ Rd | αT · x = c} for some α ∈ Rd \ {0} and c ∈ R. Similarly, a

halfspace in Rd is a set of the form {x ∈ Rd : αT ·x ≤ c} for some vector α ∈ Rd \ {0}
and c ∈ R.

Definition 1.38. A polyhedron is the intersection of finitely many halfspaces, P =

{x ∈ Rd : A · x ≤ b}. An extreme point or vertex of a polyhedron P is a point in P
that cannot be expressed as a convex combination of other points in P. A polytope is

a bounded polyhedron.

We will use calligraphic letters P,Q, ... for polyhedra and polytopes. There are two

equivalent ways of defining convex polytopes: by using halfspaces or vertices.

The V-description: A convex polytope P is the convex hull of finitely many points

v1, . . . , vn in Rd, P = Conv({v1, . . . , vn}).
The H-description: A convex polytope P is a bounded intersection of finitely many

halfspaces in Rd.

These two descriptions are equivalent, as next theorem shows.

Theorem 1.39. [10] A subset P ⊆ Rd is the convex hull of a finite set of points if and

only if it is a bounded intersection of finitely many halfspaces.
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Remark 1.40. Some examples of simple polytopes are:

• The stardard simplex: ∆d−1 = Conv({e1, . . . , ed}), where e1, . . . , ed is the canonical

basis.

• The cube Cd = Conv({±e1 ± · · · ± ed for any choice of signs}).

• The crosspolytope CSd = Conv({−e1, e1, . . . ,−ed, ed}).

Definition 1.41. Consider d + 1 affinely independent points in Rm,m ≥ n, i.e. d + 1

points x0,x1, . . . ,xd of Rm where the vectors x1−x0, . . . ,xd−x0 are linearly indepen-

dent. The convex hull of these points is called a d-simplex. When a face of a polytope

is a simplex, it is called a simplicial face.

This notion is a generalization of the notion of triangle for the m-dimensional space.

Note that all vertices of a simplex are adjacent to each other (although there are non-

simplicial polytopes in which every two vertices are adjacent, see [10]).

The dimension of a polytope P is defined as the dimension of the smallest affine

subspace containing its vertices v1, . . . , vk. This affine subspace is denoted by aff(P).

Observe that:

aff(P) = {α1v1 + · · ·+ αkvk | αi ∈ R ∀i, α1 + · · ·+ αk = 1} .

For instance, dim(∆d−1) = d−1 since ∆d−1 is contained in the hyperplane x1+· · ·+xd =

1 in Rd.

Definition 1.42. Let P be a convex polytope and x be a non-collinear point, i.e x /∈
aff(P). Point x is called apex. We define a pyramid with base P and apex x, denoted

by pyr(P,x), as the polytope whose vertices are the ones of P and x. Observe that x is

adjacent to every vertex in P.

Remark that if we consider y 6∈ aff(pyr(P,x)) then y is a possible apex for pyr(P,x), and

we can define a new pyramid pyr(pyr(P,x),y), denoted cpyr(P, {x,y}). In general, we

can iterate this process to define a consecutive pyramid with apexesA = {x1, . . . ,xr},
denoted by cpyr(P,A).

Definition 1.43. A face of a polytope P is defined as a subset F ⊆ P satisfying that

there exists a vector α and a constant c ∈ R such that

αT · x ≤ c, ∀x ∈ P and F = P ∩ {αT · x = c}.
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We will denote the face defined via α and c by Fα,c. Obviously, a face is also a polytope.

The faces of dimension 0, 1, d−2, d−1 are called vertices, edges, ridges, and facets,

respectively. The empty set and P itself are considered faces and they are called improper

faces.

Remark 1.44. [10] Some basics facts about faces of polytopes are:

• A polytope is the convex hull of its vertices.

• Note that if C is the set of vertices of a face F , then F = Conv(C). When this is

the case, we will denote by FC the face defined by vertices in C.

• A polytope is the intersection of the halfspaces determined by its facets.

• The vertices of a face are the vertices of P in F .

• The intersection of two faces of P is a face of P.

• If F is a face of P, then any face of F is a face of P.

There is a simple way to find faces containing x for a pyramid that we write below.

Proposition 1.45. For a pyramid of apex x and base P, the k-dimensional faces con-

taining x are given by the (k − 1)-dimensional faces of P.

The interior of a polytope is equal to its topological interior.

Let P be a polytope in Rd and suppose without loss of generality that 0 ∈ int(P ). The

polar polytope P∆ of P is defined as P∆ =
{
a ∈ Rd | a · x ≤ 1, ∀x ∈ P

}
. It holds

that P = (P∆)∆. For example, the cube Cd and the crosspolytope CSd are duals to each

other.

The face lattice L(P) of a polytope P is the poset of faces of P, ordered by inclusion.

Moreover, this poset is a lattice by considering F ∧G = F ∩G and F ∨G the intersection

of all facets that contains both F and G.

We say that a poset P is graded if it can be equipped with a rank function ρ : P → N
verifying that x lP y ⇒ ρ(y) = ρ(x) + 1. The face lattice is graded with rank function

ρ(F) = dim(F) + 1.

Two polytopes P and Q are combinatorially isomorphic (or combinatorially e-

quivalent) if L(P) ∼= L(Q). We say that two polytopes P and Q are affinely isomor-

phic iff there is a square regular matrix A and some vector v such that P = AQ+ v. If

two polytopes P and Q are affinely isomorphic then they are combinatorially isomorphic.
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Remark 1.46. [12, 13] The face lattice of the polar polytope is the dual face lattice

L(P∆) ∼= L(P)∂ .

A d-polytope P is simplicial if every face is a simplex and simple if every vertex is on

exactly d facets. Indeed, P is simplicial if and only if P∆ is simple.

We say that a polytope is combinatorial [14] if its vertices are {0, 1}-valued and for

each pair of non-adjacent vertices u, v there exist two other vertices w, h such that

u+ v = w + h.

Let us see now a simple but useful lemma.

Lemma 1.47. Let P ⊂ Rn be a convex polytope and u1, u2, v1, v2 ∈ P be vertices of the

polytope such that u1 +u2 = v1 +v2. Then, for any face F ⊆ P, u1, u2 ∈ F ⇔ v1, v2 ∈ F .

Proof. Consider Fα,c the face defined by the vector α and c ∈ R. By definition of face

α · x ≤ c, ∀x ∈ P and α · x = c, ∀x ∈ Fα,c.

⇒) Since u1, u2 ∈ Fα,c, we get

α · u1 = c

α · u2 = c

}
⇒ α · (v1 + v2) = α · (u1 + u2) = 2c.

If v1 6∈ Fα,c, then, α · v1 < c, and thus α · v2 > c, implying v2 6∈ P, a contradiction.

Thus, v1 ∈ Fα,c, so that α · v1 = c, and hence α · v2 = c, thus concluding v2 ∈ Fα,c.

⇐) Completely symmetric to the previous case.

Definition 1.48. The f-vector of a d-polytope P is

fP = (f0, f1, . . . , fd−1, fd),

where fk is the number of (k − 1)-dimensional faces and f0 = fd = 1.

There are few general results concerning f -vectors, one of the most important ones is the

McMullen’s Upper Bound Theorem [10] that states that for any polytope P of dimension

d with m vertices, fi(P) ≤ fi(Cd(m)) for i ∈ {0, 1, . . . , d − 1} where Cd(m) is the cyclic

polytope, that is defined by Cd(m) = Conv({(1, ti, t2i , . . . , t
d−1
i ) | 1 ≤ i ≤ m}) for some

t1 < · · · < tm.
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1.2.1 Triangulations

Triangulations are one of the most important concepts in combinatorics and discrete

geometry, playing also an important role in optimization [12, 15]. Triangulations provide

a lot of information about the geometry of a polytope and help us to solve applied

problems as sampling points inside a specific polytope. Consider a finite set of labeled

points in the real affine space Rm, A = {v1, . . . ,vn}.

Definition 1.49. An abstract simplicial complex ∆ on the vertex set A is a collec-

tion of subsets of A such that

• {v} ∈ ∆ for all v ∈ A.

• If G ∈ ∆ and F ⊆ G then F ∈ ∆.

The elements of ∆ are called faces. A face F has dimension d and write dim(F ) = d if

d = |F | − 1.

Example 1.10. Consider a triangle ABC. The collection of faces is given by the empty

face, vertices, edges, and the triangle itself:

∆ = {∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}}.

Note that ∆ is an abstract simplicial complex on the vertex set {A,B,C}.

Definition 1.50. A geometric simplicial complex K in Rm is a nonempty collection

of simplices of different dimensions in Rm such that

• Every face of a simplex in K is in K.

• The intersection of any two simplices of K is a (possibly empty) common face.

If we assign a simplex to each subset of an abstract simplicial complex we get a geometric

simplicial complex. This assignment is done by linking a d-dimensional simplex SF to

each d-dimensional face F ∈ ∆ in a way that if F ⊆ G then SF ⊆ SG, ∀F,G ∈ ∆.

From any geometric simplicial complex K we can get an abstract simplicial complex

∆(K) by letting the faces of ∆(K) be the set of vertices of the simplices of K (see

again Example 1.10). It can be shown that every abstract simplicial complex ∆ can

be obtained in this way [15]. In fact, there are many ways of choosing K such that

∆(K) = ∆. Although an abstract simplicial complex K has associated many geometric
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simplicial complexes, all of them are unique up to homeomorphism [5, 16]. We refer to

this unique topological space as the geometric realization of ∆ and denote it by ‖∆‖.
Now we move to the concept of triangulation. Let us consider a polytope whose vertices

lay in a finite set A.

Definition 1.51. A triangulation of a set of vertices A is a collection ∆ of simplices,

whose vertices lay in A, satisfying the following properties:

i) Clausure Property: All faces of simplices of ∆ are in ∆.

ii) Intersection Property: If F ,F ′ ∈ ∆⇒ F ∩ F ′ is a (possibly empty) common face

of F and F ′.

iii) Union Property: The union of all these simplices equals Conv(A).

In other words, a triangulation is just a simplicial complex whose set of vertices is

contained in A and covering Conv(A). Observe that a triangulation ∆ is completely

determined by its highest dimensional simplices. Thus, sometimes we just write the

highest dimensional simplices to determine the triangulation ∆. A triangulation where

we allow the simplices to be general polytopes is called a subdivision.

Definition 1.52. A triangulation ∆ of A = {a1, . . . ,an} is regular or coherent if

there is a weight vector w ∈ Rn for which the following condition holds: a subset

{i1, . . . , ik} is a face of ∆ if and only if there exists a vector c ∈ Rm with aj · c = wj

for j ∈ {i1, . . . , ik}, and aj · c < wj otherwise. In this case, we denote by ∆w the

triangulation ∆.

The regular triangulation ∆w, can also be constructed geometrically:

i) Using the coordinates of w as “heights”, we lift the vertex set A into the next

dimension. The result is the vertex set Â = {(a1, w1), . . . , (an, wn)} ⊂ Rm+1.

ii) The “lower faces” of the cone pos(Â) := {λ1u1 + · · ·λnun : λ1, . . . , λn ∈ R+} form

a m-dimensional polyhedral complex. A face is “lower” if it has a normal vector

with negative last coordinate. The triangulation ∆w is the image of this complex

under projection onto the first m coordinates. Figure 1.18 illustrates the process

for a hexagon.
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Figure 1.18: A regular triangulation of a hexagon.

Remark 1.53. • Every vertex set has a regular triangulation. Therefore, every poly-

tope has a regular triangulation, see [15] for a proof.

• Obviously, different choices of lifting may produce different triangulations. When

we take heights w(i) = ‖vi‖2 for each vi ∈ A the obtained triangulation is called

Delaunay triangulation.

• Consider the two concentric triangles of Figure 1.19. It can be shown that the

triangulation appearing in Figure 1.19 is not produced by any choice of heights

and therefore it is not regular [15]. This shows that there are non-regular triangu-

lations.

Figure 1.19: A non-regular triangulation.

• To every poset P we can associate an abstract simplicial complex ∆(P ) called

the order complex of P , defined as follows [5]: The vertices of ∆(P ) are the

elements of P and the faces are the chains.

• From an abstract simplicial complex ∆ we can also construct a poset, called the

face poset P (∆) which is the poset of nonempty faces ordered by inclusion.
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• The order complex ∆(P (∆)) is known as barycentric subdivision of ∆ (see

[16]). The geometric realizations of these complexes are always homeomorphic,

i.e.

‖∆‖ ∼= ‖∆(P (∆))‖.

Triangulations arise when dealing with the problem of random generating points in a

polytope. Generating points in a polytope is a complex problem and several methods,

not completely satisfactory, have been presented to cope with this problem [17, 18].

Among them, we have the triangulation methods [17]. The triangulation method

takes advantage of the fact that random generation in simplices is very simple and fast

as we will see below. The triangulation method is based on the decomposition of the

polytope into simplices such that any pair of simplices intersects in a (possibly empty)

common face. This matchs with the definition of triangulation, but in this case we are

only interested in the highest dimensional simplices. Once the triangulation is obtained,

we assign to each highest dimensional simplex a probability proportional to its volume;

next, these probabilities are used for selecting one of the simplices; finally, a random m-

uple in the simplex is generated. The main drawback of this method is that in general it

is not easy to split a polytope into simplices. Moreover, even if we are able to decompose

the polytope in a suitable way, we have to deal with the problem of determining the

volume of each simplex in order to randomly select one of them. Computing the volume

of a polytope is a complex problem and only partial results are known. However, in the

case of simplices, the volume is given in next result.

Lemma 1.54. [19] Let ∆ be a k-dimensional simplex in Rn with vertices v1, . . . , vk+1.

Then, the k-dimensional volume of ∆ is:

Volk(∆) =

√
(−1)k+1

2k(k!)2
det(CM∆),

where det(CM∆) is the Cayley-Menger determinant

det(CM∆) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1 1

1 0 d2
1,2 · · · d2

1,k d2
1,k+1

1 d2
2,1 0 · · · d2

2,k d2
2,k+1

· · · · · · · · · · · · · · · · · ·
1 d2

k+1,1 d2
k+1,2 · · · d2

k+1,k 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
being d2

i,j the square of the distance between vi and vj .
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Now we are going to explain how to sample uniformly in a simplex [20]. We start

studying the special case of the n-dimensional simplex

Hn := {x ∈ Rn : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1}.

Observe that Hn has as vertices:

(0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1), (0, 0, . . . , 1, 1), . . . , (0, 1, . . . , 1, 1) and (1, 1, . . . , 1, 1).

For generating a uniformly distributed vector in Hn, we generate an independent and

identically distributed sample Û1 . . . , Ûn with uniform distribution U(0, 1). Then sort the

Ûi to give the order statistics with natural order U1 ≤ U2 ≤ . . . ≤ Un. This generates a

uniformly distributed vector U in Hn.

Now let us call S a n-dimensional general simplex. To sample uniformly in S we consider

an affine transformation from Hn to S, S = A ·U +V0 which maps Hn into the desired

simplex S. Suppose that S = Conv(v0,v1, . . . ,vn). Then, V0 = v0 and A is the matrix

satisfying S′ = A·U ′, where S′ is the matrix with column vectors v1−v0,v2−v0, . . . ,vn−
v0 and U ′ is the matrix with the vertices of Hn different from the zero vertex. Note that

if h(u) is the density function of U , then the density g(s) of S would be

g(s) = h(u)| det(A)|−1.

Consequently, if h(u) is uniform in Hn, then g(s) is uniform in S, because |det(A)| is

a constant value.

1.2.2 Cones

A cone is a non-empty subset C of Rn such that if x ∈ C, then αx ∈ C for all α ≥ 0.

Note that 0 is in any cone. Additionally, we say that the cone is convex if it is a convex

set of Rn; equivalently, a cone is convex if for any x,y ∈ C, it follows

x+ y ∈ C.

Given a set S, we define its conic hull (or conic extension) as the smallest cone

containing S.

A convex cone C is polyhedral if additionally it is a polyhedron. This means that it

can be written as
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C := {x : Ax ≤ 0}, (1.2)

for some matrix A ∈ Mm×n of binding conditions. Two polyhedral cones are affinely

isomorphic if there is a bijective affine map from one cone onto the other. Given a

polyhedral cone C and x ∈ C,x 6= 0, the set {αx : α ≥ 0} is called a ray. In general

we will identify a ray with the point x. Notice also that for polyhedral cones, all rays

pass through 0. Point x defines an extremal ray if x ∈ C and there are n− 1 binding

conditions for x that are linearly independent. Equivalently, x cannot be written as a

convex combination of two linearly independent points of C.

It is well-known that a convex polyhedron only has a finite set of vertices and a finite

set of extremal rays. The following result is well-known for convex polyhedra:

Theorem 1.55. Let P be a convex polyhedron on Rn. Let us denote by x1, ...,xr the

vertices of P and by v1, ...,vs the vectors defining extremal rays. Then, for any x ∈ P ,

there exists α1, ..., αr such that α1 + ... + αr = 1, αi ≥ 0, i = 1, ..., r, and β1, ..., βs such

that βi ≥ 0, i = 1, ..., s, satisfying that

x =
r∑
i=1

αixi +
s∑
j=1

βjvj .

Given a polyhedral cone, if x ∈ C,x 6= 0, it follows that x cannot be a vertex of C.
Thus, for a polyhedral cone, the only possible vertex is 0. Thus, for the particular case

of polyhedral cones, Theorem 1.55 writes as follows.

Corollary 1.56. For a polyhedral cone C whose extremal rays are defined by v1, ...,vs,

any x ∈ C can be written as

x =
s∑
j=1

βjvj , βj ≥ 0, j = 1, ..., s.

Consequently, in order to determine the polyhedral cone it suffices to obtain the extremal

rays.

We will say that a cone is pointed if 0 is a vertex. The following result characterizes

pointed cones.

Theorem 1.57. For a polyhedral cone C the following statements are equivalent:

• C is pointed.
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• C contains no line.

• C ∩ (−C) = 0.

For polyhedral cones, the definitions of face and dimension are practically the same as

those given for the case of polytopes. Indeed, given a polyhedron P ⊆ Rn, a non-empty

subset F ⊆ P is a face if there exist v ∈ Rn, c ∈ R such that

vtx ≤ c,∀x ∈ P, vtx = c,∀x ∈ F .

We denote this face as Fv,c. The dimension of a face is the dimension of the smallest

affine space containing the face. A common way to obtain faces is turning into equalities

some of the inequalities of (1.2) defining P.

Theorem 1.58. [21] Let A ∈ Mm×n. Then any non-empty face of P = {x : Ax ≤ b}
corresponds to the set of solutions to

∑
j

aijxj = bi for all i ∈ I

∑
j

aijxj ≤ bi for all i /∈ I,

for some set I ⊆ {1, . . . ,m}.

As in the case of polytopes, the set of faces with the inclusion relation determines a

lattice known as the face lattice of the polyhedron. In Chapter 6, we will study a

specific type of cones, called order cones.

1.3 Order Polytopes

In this section we study a family of polytopes which models many relevant families of

fuzzy measures. We recall the most important aspects of the geometry of these polytopes

and also enhance a bit this study with some own results.

Definition 1.59. Given a poset (P,�) with n elements, it is possible to associate to P ,

in a natural way, a polytope, denoted by O(P ), in Rn, called the order polytope of

P , see [22–24]. The polytope O(P ) is formed by the n-tuples f of real numbers indexed

by the elements of P satisfying
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i) 0 ≤ f(x) ≤ 1 for every x ∈ P,

ii) f(x) ≤ f(y) whenever x ≤ y in P.

Thus, the polytope O(P ) consists in the order-preserving functions from P to [0, 1]. The

following facts are discussed in [22]. It is a well-known fact that O(P ) is a 0/1-polytope,

i.e., its extreme points are all in {0, 1}n. Indeed, it is easy to prove that the vertices of

O(P ) are the characteristic functions vJ of filters J of P .

vJ(x) :=

1 if x ∈ J ,

0 otherwise.

Therefore O(P ) = Conv (vJ : J ⊆ P filter) and moreover these points are in convex

position, i.e., vJ /∈ Conv (vJ ′ : J 6= J ′ ⊆ P filter) .

For example, the order polytope of an antichain with n elements is the n-dimensional

unit cube and the order polytope of a chain with n elements is a n-dimensional simplex.

In particular, the number of vertices of O(P ) is the number of filters of P . Any facet is

obtained by adding some of the next inequalities which define the polytope:

f(x) = 0, for some minimal x ∈ P,

f(x) = 1, for some maximal x ∈ P,

f(x) = f(y), for some y covering x in P .

The number of facets of O(P ) is cov(P ) + m(P ) + M(P ), where cov(P ) is the num-

ber of cover relations in P. Also, O(P ) is always a full-dimensional polytope, that is,

dim(O(P )) = |P |.

There are several ways to understand the combinatorial structure of an order polytope.

Stanley [22] gave the first combinatorial characterization of the faces of O(P ). Let

P̂ = 0̂⊕P ⊕ 1̂ be the poset P with a maximum 1̂ and a minimum 0̂ added. For any face

F of O(P ), we can define the next equivalence relation on P̂ :

x ∼ y if and only if f(x) = f(y) for all f ∈ F ,

where we set f(0̂) := 0 and f(1̂) := 1 ∀f ∈ F . Denote by B(F) = {B1, · · · , Bm} the

set of equivalence classes, which form a partition of P̂ . Such a partition is called a face
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partition. We will denote by B0̂ and B1̂ the blocks containing the elements 0̂ and 1̂

respectively. Since any face could be obtained by the intersection of facets, the distinct

faces yield distint face partitions.

Similarly, for a collection C of vertices of O(P ), we can define the following equivalence

relation on P̂ : x ∼ y ⇔ f(x) = f(y), ∀f ∈ Conv(C). This determines a partition

B(C) on P̂ which is called the block partition of P̂ associated to C. It can be proved

that B(F) = B(V(F)), where V(F) is the collection of vertices defining F , i.e. F =

Conv (V(F)) .

A partition B = {B1, · · · , Bm} of P̂ is called connected if the blocksBi, i ∈ {1, 2, · · · ,m}
are connected as induced subposets of P̂ . A partition B = {B1, · · · , Bm} of P̂ is called

compatible if the binary relation �B on B defined by Bi � Bj if x � y for some x ∈ Bi
and y ∈ Bj is a partial order.

A partition B = {B1, · · · , Bm} associated to a collection of vertices C is said to be closed

if for any i 6= j there exists g ∈ Conv(C) such that g(Bi) 6= g(Bj). Every partition B
has a unique closed coarsening B′ such that B′(C) = B(C).

Theorem 1.60. [22] Let P be a finite poset. A partition B of P̂ is a closed face partition

if and only if it is connected and compatible.

However, this is not the only way of characterizing the faces of O(P ). There is another

characterization which is less known but is more useful for obtaining faces of small

dimension. For a collection L ⊆ F(P ) of filters we shall write F(L) := Conv(vJ : J ∈ L).

An induced subposet L ⊆ F(P ) is said to be an embedded sublattice if for any two

filters J, J ′ ∈ F(P )

J ∪ J ′, J ∩ J ′ ∈ L⇔ J, J ′ ∈ L.

Theorem 1.61. [25] Let P be a finite poset and L ⊆ F(P ) a collection of filters.

Then, F(L) is a face of O(P ) if and only if L is an embedded sublattice. In this case,

dim (F(L)) = h(L)− 1, where h(L) is the height of the subposet L.

These two points of view are equivalent to each other. Indeed, we can provide a more

compact version of the last two characterizations. We say that a collection C is B-

maximal if there is no collection of vertices C′ ! C such that B(C′) = B(C).

Theorem 1.62 (Combinatorial structure of Order Polytopes). [22, 26, 27] Let

P be a finite poset with |P | = n and C a collection of vertices of O(P ) with associated

collection of filters L ⊆ F(P ). Let also B(C) = {B0̂, B1̂, B1, · · · , Br} be the block partition

of P̂ associated to C. Then the following are equivalent:
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i) Conv(C) is a k-dimensional face of O(P ).

ii) L is an embedded sublattice and h(L)− 1 = k.

iii) B(C) is a B-maximal, connected and compatible partition with |B(C)| − 2 = k.

It can be proved that faces of order polytopes are again order polytopes (see [22]).

Theorem 1.63. Let P be a finite poset and F be a face of O(P ) with associated face

partition B(F) = {B0̂, B1̂, B1, · · · , Br}. Then (B(F),�B(F)) is a poset and F is affinely

equivalent to the order polytope O
(
(B(F) \ {B0̂, B1̂},�B(F))

)
. The dimension of this

face is |B(F)| − 2.

Now we are going to anwser the question of when a collection of vertices are in the same

k-dimensional face.

Theorem 1.64. Let P be a finite poset with |P | = n and C be a collection of vertices of

O(P ) with associated collection of filters L ⊆ F(P ). Let also be B(C) = {B0̂, B1̂, B1, · · · , Br}
the block partition of P̂ associated to C. Then the vertices in C are in the same k-

dimensional face but not in the same (k − 1)-dimensional face if and only if

r∑
i=1

Φ(Bi) = k,

where Φ(Q) counts the number of connected components of a poset Q and k ∈ [n].

Proof. Consider x ∈ O(P ) and A ⊆ P. We define:

XA : O(P )→ R

x→ XA(x) =
∑
i∈A

xi

χA : O(P )→ R

x→ χA(x) =
∑
i�P j

(xj − xi)

(1.3)

Let us show first that all vertices in C are in a k-dimensional face with k as defined in

the theorem. Consider the halfspace

X⋂
J∈L J

(x) ≤ |
⋂
J∈L

J |+X(
⋃

J∈L J)
c(x) +

r∑
i=1

χBi
(x).
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Since any vertex is 0/1-valued , for any x ∈ O(P ), we have

X⋂
J∈L J

(x) =
∑
i∈

⋂
J

J∈L

xi ≤ |
⋂
J∈L

J |.

Moreover, X(
⋃

J∈L J)
c(x) ≥ 0 and χBi

(x) ≥ 0 because x ∈ O(P ). Consequently, O(P )

is in the halfspace.

Consider now a point x ∈ C. As x is a vertex in C, it is associated to a filter J ∈ L.
Thus, x = vJ and then, xi = 1 if i ∈

⋂
J∈L J. Hence,

X⋂
J∈L J

(x) = |
⋂
J∈L

J |.

Besides, xi = 0 if i /∈
⋃
J∈L J, so that X(

⋃
J∈L J)

c(x) = 0.

Finally, for every Bk ∈ B(C), it is xi = xj ∀i, j ∈ Bk. Then,

χBi
(x) = 0, ∀Bi ∈ B(C).

We conclude that x ∈ C satisfies the equality.

Let us denote by F the face that is defined via the previous halfspace and let us study

its dimension. For this, we cannot apply Theorem 1.63 because it could happen that

other vertices outside C are in F . Such a vertex y would satisfy:

X⋂
J∈L J

(y) = |
⋂
J∈L

J |; X(
⋃

J∈L J)
c(y) = 0; χBi

(y) = 0.

Take Bi and assume that Bi =
⊎h(i)
h=1C

i
h, i.e. Bi can be decomposed into the connected

components Ci1, . . . , C
i
h(i). Since

0 = χBi
(y) =

h(i)∑
h=1

χCi
h
(y),

we conclude that χCi
h
(y) = 0. Thus, yj = yk, ∀j, k ∈ Cih and the block partition

corresponding to F is

{B0̂, B1̂, C
i
h : i = 1, . . . , r, h = 1, . . . , h(i)}.
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Applying Theorem 1.63 we conclude that

k = dim(F) =
r∑
i=1

h(i)∑
h=1

1 =
r∑
i=1

Φ(Bi).

It rests to show that it is not possible to find a face F ′ ⊂ F such that C ⊆ F ′. Consider

such a face and suppose its block partition is

B(F ′) = {B0̂, B1̂, B1, · · · , Bs}.

As dim(F ′) < dim(F), this implies that B(F ′) has less blocks than B(F), i.e. |B(F ′)| <
|B(F)|. Consequently, there exists Bs∗ such that

Bs∗ = Ci1h1 ∪ . . . ∪ C
it
ht
, t ≥ 2.

If i1 = i2 = · · · = it, then Bs∗ is disconnected, a contradiction. If, say i1 6= i2, then Bs∗

contains parts of Bi1 and Bi2 . As C is constant on Bs∗ , then C is constant on Bi1 ∪Bi2 ,
a contradiction with the fact that B(C) = {B0̂, B1̂, B1, · · · , Br}.

Corollary 1.65. Let P be a finite poset and C be a collection of vertices of O(P ) with

associated collection of filters L ⊆ F(P ). The face with lower dimension containing C is

the intersection of O(P ) with the hyperplane

X⋂
J∈L J

(x) = |
⋂
J∈L

J |+X(
⋃

J∈L J)
c(x) +

r∑
i=1

χBi
(x). (1.4)

Example 1.11. Let P = 3 be the antichain of three elements. Every subset is a filter in

this case, therefore F(P ) = {∅, 1, 2, 3, 12, 13, 23, 123}. Indeed, O(P ) is the unit cube, see

Figure 1.20. Let xi be the variable associated to the element i ∈ P and take the collection

of filters L1 = {1, 123}. For this collection its block partition is B0̂ = ∅, B1̂ = {1} and

B1 = {2, 3}. Since there is no pair of related elements in B1 we get χ(B1) = 0. Applying

Equation 1.4 the smallest face containing the vertices associated to these filters is

x1 = 1 + 0 + 0.

In this case this is obvious from the Figure 1.20. It is trivial that L1 is not a face. For

example, note that L1 is not an embedded sublattice because 13 ∪ 12 = 123 ∈ L1 and

12 ∩ 13 = 1 ∈ L1 but 12 and 13 are not in L1. Besides, B1 is not a connected poset.
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Consider now the edge L2 = {2, 12}. For this collection its block partition is B0̂ =

{3}, B1̂ = {2} and B1 = {1}. Applying Equation 1.4 the smallest face containing the

vertices associated to L2 is

x2 = 1 + x3 + 0.

Since L2 gives us a face, all the blocks are connected.

Finally take L3 = {∅, 1, 23, 123}. For this collection its block partition is B0̂ = ∅, B1̂ =

∅ and B1 = {1, 2, 3}. Applying Equation 1.4 the smallest face containing the vertices

associated to L3 is

0 = 0 + 0 + 0,

that is the whole polytope. Note that neither L3 is a face nor it is an embedded sublattice.

x1

x2

x3

1

13 123

12

∅

3 23

2

Figure 1.20: Polytope O(3).

However, it is not essential to work with block partitions in order to get the last result.

Observe that
⊎r
i=1Bi =

((⋂
J∈L J

)
∪
(⋃

J∈L J
)c)c

, that is, we could remove the special

blocks B0̂ and B1̂ where the vertices of C take value zero and one respectively. Let us

consider L = {J1, . . . , Js} ⊆ F(P ). We define the generalized symmetric difference

as

∆(J1, J2, · · · , Js) :=

((
s⋂
i=1

Ji

)
∪

(
s⋃
i=1

Ji

)c)c
=

((⋂
J∈L

J

)
∪

(⋃
J∈L

J

)c)c
.
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Note that

∆(J1, J2, · · · , Js) =

((
s⋂
i=1

Ji

)
∪

(
s⋃
i=1

Ji

)c)c
=

(
s⋂
i=1

Ji

)c
∩

(
s⋃
i=1

Ji

)
=

(
s⋃
i=1

Ji

)
∩

(
s⋃
i=1

Jci

)
.

Now we can state the last theorem in the following way:

Corollary 1.66. Let P be a finite poset with |P | = n and C a collection of vertices of

O(P ) with associated collection of filters L = {J1, · · · , Js} ⊆ F(P ). Then the vertices in

C are in the same k-dimensional face but not in the same (k − 1)-dimensional face if

and only if

Φ (∆(J1, J2, · · · , Js)) = k,

where k ∈ [n].

Proof. Let B(C) = {B0̂, B1̂, B1, · · · , Br} be the block partition of P̂ associated to C.

Note that

r∑
i=1

Φ(Bi) = Φ

(
r⊎
i=1

Bi

)
and

r⊎
i=1

Bi = ∆(J1, J2, · · · , Js).

In particular for r = 2 :

Corollary 1.67. Let P be a finite poset with |P | = n and two filters J1, J2 ∈ F(P ).

Then the vertices vJ1 and vJ2 are in the same k-dimensional face but not in the same

(k − 1)-dimensional face if and only if

Φ(J1∆J2) = k,

where ∆ is the simmetric difference, i.e. J1∆J2 = (J1 \ J2) ] (J2 \ J1) and k ∈ [n].

Remark 1.68. • From Equation 1.4 it follows that a vertex vJ is in the smallest face

containing C if and only if vJ is constant on each block of B(C) = {B0̂, B1̂, B1, · · · , Br}
having value zero at B0̂ and one at B1̂.

• The last claim can be stated in another way. Observe that to determine a face

partition B(F) it is of course sufficient to work just with the non-singleton blocks

so we define the reduced face partition of F as B◦(F) = {Bi ∈ B(F) : |Bi| > 1}.
Let us denote Ĵ = J ∪ {1̂} for any filter J. Let F ⊆ O(P ) be a face with reduced

face partition B◦ = {B1, · · · , Bm} and let J ∈ F(P ) be a filter. Then vJ ∈ F if

and only if for all i = 1, · · · ,m

Ĵ ∩Bi = ∅ or Ĵ ∩Bi = Bi.

That is, vJ belongs to F iff for all i ∈ [m], the filter Ĵ does not separate any two

elements in Bi.
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• From Corollary 1.67 we know that two vertices vJ and vJ ′ are adjacent in O(P )

iff its symmetric difference is connected as induced subposet, see [23]. Therefore,

these results are generalizations of the results given in [23].

• We can use these results to know when two collection of filters corresponding with

two r-dimensional faces F1 and F2 are in the same s-dimensional face. By the last

result it happens when Φ(∆(L1 ∪ L2)) = s, where Li is the set of filters defining

the face Fi, for i ∈ {1, 2}.

We end this subsection with some important remarks on order polytopes.

Remark 1.69. • The center of gravity cP of O(P ) can be computed as follows:

cP =
1

m+ 1
H(P ),

where H(P )(a) :=
1

e(P )

∑
ε∈L(P ) hε(a) being hε(a) = |{x ∈ P : x �ε a}|. In other

words, hε(a) is the height of a in the linear extension ε [24].

• Let P be a finite poset, the chain polytope C(P ) [22] associated to P is defined

as

0 ≤ g(x) for every x ∈ P,

g(x1) + g(x2) + · · ·+ g(xk) ≤ 1 for every chain x1 < x2 < · · · < xk of P.

This polytope has as vertices the characteristic functions of the antichains of P . It

can be shown that the two polytopes O(P ) and C(P ) are affinely equivalent and

hence combinatorially equivalent.

1.3.1 Triangulating O(P ) via linear extensions

We are ready to describe Stanley’s triangulation of the order polytopeO(P ), see [22]. Let

P be a finite poset and consider a maximal chain C of filters in F(P ), J0 ⊂ J1 ⊂ · · · ⊂ Jn.
Observe that K(C) := Conv(vJi : Ji ∈ C) is a simplex of dimension n. If we put together

all these simplices we get a triangulation of O(P ). Since the number of maximal chains

of F(P ) equals e(P ) (see Eq. 1.1), we can relate each highest dimensional simplex of the

last triangulation with a linear extension of P . Using Cayley-Menger determinant (see

Lemma 1.54) is easy to show that all of these simplices share the same volume.

Theorem 1.70. [22, 24] Let P be a poset of n elements.



Chapter 1. Posets and Polytopes 40

i) Let C be a maximal chain of filters in F(P ). The convex hull of the vertices asso-

ciated to these filters K(C) := Conv(vJi : Ji ∈ C) is a simplex of dimension n and

volume 1
n! .

ii) The collection ∆ = {K(C) : C is a maximal chain of F(P )} is a triangulation of

O(P ). Therefore,

Vol(O(P )) =
e(P )

n!
. (1.5)

Remark 1.71. • From the last result we draw an important conclusion: computing

the volume of O(P ) is equivalent to compute e(P ). We will exploit this idea along

this thesis. However, the problem of counting the number of linear extensions of a

general poset is a ]P -complete problem [28]. Therefore, obtaining procedures with

low complexity for counting linear extensions in a family of posets is a relevant

and interesting problem.

• With respect to the problem of generating points uniformly in O(P ), it suffices

to generate randomly a linear extension of P and then generate a point in the

corresponding simplex.

• The abstract simplicial complex underlying this triangulation ∆ is the order com-

plex of F(P ), ∆ (F(P )) .

Example 1.12. Consider the poset P = 1 ] 2. Its order polytope O(P ) is a half-

cube as it can be seen in Figure 1.21 left. Note that e(P ) = 3 and therefore we can

split this polyhedron into three simplices, see Figure 1.21 right. Moreover, in this case

Vol(O(P )) = e(P )/3! = 3/6 = 1/2.

Figure 1.21: Polytope O(1]2) (left) and its triangulation via linear extensions (right)





Chapter 2

Fuzzy measures and Games

2.1 Introduction

In this chapter we give a brief introduction to fuzzy measures (also called non-additive

measures or capacities). We study many important subfamilies of fuzzy measures. The

main goal of this work is to be able to provide as much information as possible about

the geometry of these subfamilies. In concrete terms, it is very important to know which

of these subfamilies correspond to order polytopes, since we have many results about

the geometry of these objects (see Chapter 1). In this chapter we will also study some

aspects of cooperative game theory and we will see the basic properties of the Choquet

Integral. Choquet Integral appears as an essential part of the Identification problem.

In what follows, let X = {1, . . . , n} be a finite referential set for n elements. Elements

of X are criteria in the field of Multicriteria Decision Making, players in Cooperative

Game Theory, and so on. We will denote subsets of X by A,B, .... The set of subsets

of X is denoted by P(X).

2.2 Fuzzy measures

In this section we introduce the basic definitions related to fuzzy measures, see [29].

Definition 2.1. A fuzzy measure is a map µ : P(X)→ R that is:

i) Grounded: µ(∅) = 0,

ii) Monotone: µ(A) ≤ µ(B), ∀A ⊆ B.

42
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A normalized fuzzy measure is a fuzzy measure which also is:

iii) Normalized: µ(X) = 1.

Sometimes we just call them fuzzy measures when the property of µ(X) = 1 is clear

from the context. This way we can see normalized fuzzy measures as a generalization

of probability measures where the additivity axiom has been removed and monotonicity

is imposed instead. The term “fuzzy measure” was coined by Sugeno [30]. The notion

of fuzzy measure was also proposed independently by Denneberg under the name of

non-additive measure [31] and by Choquet under the name of capacity [32].

Capacities are mainly used in decision theory and game theory. There are two main

interpretations of these functions. The first one is to consider capacities as a means to

represent the importance/power/worth of a group. Here the subsets A ⊆ X represent a

set of persons, usually called players, agents, voters, experts, criteria, etc., depending on

the specific issues addressed. In game theory, a group of individuals A is usually called

coalition. The second interpretation is about the representation of uncertainty. In this

case, X is the set of possible outcomes of some experiment, and it is supposed that X is

exhaustive (i.e., any experiment produces an outcome that belongs to X), and that each

experiment produces a single outcome. Any subset A ⊆ X is called an event, and µ(A)

quantifies the uncertainty that the event A contains the outcome of an experiment.

The set of normalized fuzzy measures on the referential X is denoted by FM(X). It can

be seen that FM(X) is a polytope. Indeed, monotonicity (µ(A) ≤ µ(B) if A ⊆ B) gives

the hyperplanes defining the polyhedron and the grounded (µ(∅) = 0) and normalized

(µ(X) = 1) conditions ensure the boundedness. Moreover, FM(X) is an order polytope.

Indeed, it is bounded between 0 and 1 and the associated poset is the Boolean lattice with

the empty and total sets removed, since they take constant values 0 and 1 respectively.

Therefore if X = [n],

FM(X) = O(Bn \ {∅, X}).

The Hasse diagram of the Boolean poset B4 \ {∅, X} is given in Figure 2.1.

Fuzzy measures are a specific type of set functions.

Definition 2.2. A set function on X is a map ξ : P(X) → R, associating to each

subset of X a real number. A set function is

i) Additive if ξ(A ∪B) = ξ(A) + ξ(B), ∀A,B ⊆ X such that A ∩B = ∅;



Chapter 2. Fuzzy measures and Games 44

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

Figure 2.1: Hasse diagrams of the Boolean poset for |X| = 4.

ii) Monotone if ξ(A) ≤ ξ(B), ∀A ⊆ B;

iii) Grounded if ξ(∅) = 0;

iv) Normalized if ξ(X) = 1;

v) a Measure if ξ is nonnegative and additive;

vi) Symmetric if ξ(A) = ξ(B) whenever |A| = |B|;

Remark 2.3. • A fuzzy measure is just a grounded and monotone set function. Also

a normalized measure is a probability measure.

• The value of any additive set function on A ⊆ X is ξ(A) =
∑

x∈A ξ({x}), therefore

if we know the value of ξ on every singleton {x}, we know the value of ξ on any

subset. Even more, as ξ(X) = 1, just n− 1 values suffice to define ξ.

• The normalized and additive fuzzy measures are the well known probability mea-

sures on X, denoted by PM(X). They are not order polytopes because of the

condition
∑

i∈X P (i) = 1.

Let us introduce a few ways of getting new set functions from old.

Definition 2.4. Let ξ be a set function on X. The monotone cover of ξ, denoted

mc(ξ), is the smallest fuzzy measure µ such that µ ≥ ξ. It is defined by

mc(ξ)(A) = max
B⊆A

ξ(B).

Now let us define the conjugate of a set function.

Definition 2.5. Let ξ be a set function on X. We define its conjugate or dual as:

ξ(A) = ξ(X)− ξ(Ac),
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for all A ⊆ X.

The following properties concerning conjugation can be easily proved .

Lemma 2.6. [29] Let ξ : P(X)→ R be a set function. Then:

• If ξ(∅) = 0, then ξ(X) = ξ(X) and ξ = ξ.

• If ξ is monotone, then ξ is monotone.

• If ξ is additive, then ξ = ξ.

Let us now define some important types of fuzzy measures.

Definition 2.7. A fuzzy measure µ on X is

i) a 0/1-capacity if µ(A) ∈ {0, 1}, ∀A ⊆ X;

ii) a unanimity game centered on ∅ ⊂ A ⊆ X, uA, if

uA(B) =

1, if B ⊇ A

0, otherwise.

When A = {x}, uA is called the Dirac measure centered at x. The set

{uA : ∅ ⊂ A ⊆ X} determines a base of FM(X), i.e. it is possible to write

µ =
∑
∅⊂A⊆X αAuA for some αA, ∀µ ∈ FM(X).

iii) k-monotone (for k ≥ 2) if ∀A1, A2, . . . , Ak ⊆ X,

µ

(
k⋃
i=1

Ai

)
≥

∑
I⊆{1,...,k}

I 6=∅

(−1)|I|+1µ

(⋂
i∈I

Ai

)
.

If a fuzzy measure µ is k-monotone for all k ≥ 2 we say that it is totally monotone

(or ∞-monotone).

iv) k-alternating (for k ≥ 2) if ∀A1, A2, . . . , Ak ⊆ X,

µ

(
k⋂
i=1

Ai

)
≤

∑
I⊆{1,...,k}

I 6=∅

(−1)|I|+1µ

(⋃
i∈I

Ai

)
.

If a fuzzy measure µ is k-alternating for all k ≥ 2 we say that it is totally

alternating (or ∞-alternating).
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v) a belief (plausibility) measure on X is normalized and totally monotone (alter-

nating) fuzzy measure.

vi) a λ-measure for λ > −1 if it is normalized and satisfies

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B),

for every A,B ⊆ X such that A ∩ B = ∅. The conjugate of a λ-measure is a λ′-

measure with λ′ = − λ

λ+ 1
. A λ-measure is a belief measure if and only if λ > 0,

and is a plausibility measure otherwise (λ ∈ (−1, 0)).

Remark 2.8. • The last definitions could be generalized to grounded set functions

(also called games, see Section 2.7).

• A 0/1-capacity is uniquely determined by the antichain of its minimal winning

coalitions. A set A is a winning coalition for µ if µ(A) = 1. It is minimal if

in addition µ(B) = 0 for all B ⊂ A. Note that two minimal winning coalitions

are incomparable by inclusion. Hence the collection of minimal winning coalitions

of µ is an antichain in P(X) and any antichain in P(X) can be identified to the

set of minimal winning coalitions of a 0/1-capacity. The number of antichains in

the Boolean lattice Bn is known as the Dedekind number M(n), see Table 2.1.

For M(n) the empty set is considered as an antichain. Since the number of filters

equals the number of antichains (counting the empty set), the Dedekind numbers

also count the filters of Bn. Therefore, the number of 0/1-capacities is M(n)− 2.

In other words, the number of vertices of FM(X) is M(n)− 2.

n M(n)

0 2

1 3

2 6

3 20

4 168

5 7 581

6 7 828 354

7 2 414 682 040 998

8 56 130 437 228 687 557 907 788

Table 2.1: First Dedekind numbers.

Remark the exponential growth of M(n). There is not known closed-form formula

for an easy computation of these numbers.

• k-monotonicity implies k′-monotonicity for all 2 ≤ k′ ≤ k.
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• k-monotonicity and the k-alternating properties generalize the Inclusion-Exclusion

Principle, which holds for any additive measure:

µ

(
k⋃
i=1

Ai

)
=

∑
I⊆{1,...,k}

I 6=∅

(−1)|I|+1µ

(⋂
i∈I

Ai

)
.

This equality comes from the classic identity:

∣∣∣ k⋃
i=1

Ai

∣∣∣ =
∑

I⊆{1,...,k}
I 6=∅

(−1)|I|+1
∣∣∣⋂
i∈I

Ai

∣∣∣.
• ∀k ≥ 2, µ is a k-monotone game (respectively, k-alternating) if and only if µ is a

k-alternating game (respectively, k-monotone).

2.3 Choquet Integral

Consider a given function f : X → [0, 1], whose corresponding scores on each criterium

are f(x1), . . . , f(xn). To compare different functions, we need to obtain an overall score

from f(x1), . . . , f(xn). This is done through an aggregation operator. The Choquet

integral [32] is one of the most popular.

Definition 2.9. Let (X,X ) be a measurable space and f : X → R. We say that f is a

measurable function if {x|f(x) ≥ α} is in the σ-algebra X for any α ≥ 0.

The Choquet integral can be defined as follows.

Definition 2.10. Let µ be a fuzzy measure on (X,X ) and f : X → R+ a measurable

function. The Choquet integral of f with respect to µ is defined by

Cµ(f) := (C)
∫
X
fdµ =

∫ ∞
0

µ ({x|f(x) > α}) dα.

In the case of finite referential sets X = {x1, x2, . . . , xn}, the last expression simplifies

to

Cµ(f) =
n∑
i=1

(
f(x(i))− f(x(i−1))

)
µ(Bi),

where {x(1), . . . , x(n)} is a permutation of the set X satisfying
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0 = f(x(0)) ≤ f(x(1)) ≤ f(x(2)) ≤ · · · ≤ f(x(n)),

and Bi = {x(i), . . . , x(n)}.

Remark 2.11. • The Choquet integral is a generalization of the Lebesgue integral,

i.e. it can be shown that for any additive measure the Choquet and the Lebesque

integral give the same result. Thus, we can see that the Choquet integral is a

generalization of the concept of expected value for non-additive measures. This

allows to generalize the Expected Utility Theory (see Section 2.4).

• For finite referential sets X, the chosen σ-algebra X is P(X), this way every

measure is measurable.

In the case of general functions (not necessarily positive) we can also define the Choquet

integral; however in this case a couple of possible definitions are available. Let us denote

the positive and negative parts of a function f by f+ = f ∨ 0 and f− = (−f) ∨ 0.

Definition 2.12. Let µ be a fuzzy measure on (X,X ) and f : X → R a measurable

function. The (asymmetric) Choquet integral of f with respect to µ is defined by

Cµ(f) := Cµ(f+)− Cµ(f−).

Definition 2.13. Let µ be a fuzzy measure on (X,X ) and f : X → R a measurable

function. The (symmetric) Choquet integral or Šipoš integral of f with respect

to µ is defined by

Čµ(f) := Cµ(f+)− Cµ(f−).

Without further indication, by “Choquet integral” we always mean its asymmetric ex-

tension. We will now examine some properties of the Choquet integral.

Definition 2.14. Two functions f, g : X → R are comonotonic if

(f(x)− f(y))(g(x)− g(y)) ≥ 0, ∀x, y ∈ X.

Proposition 2.15. Let µ be a normalized fuzzy measure on (X,X ) and f, g : X → R
two measurable functions. Then,

i) Cµ(1A) = µ(A) for all A ∈ X , where 1A(x) = 1 if x ∈ A, and 1A(x) = 0 otherwise.
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ii) Cµ(af) = aCµ(f) for every a ≥ 0.

iii) Cµ(−f) = −Cµ(f).

iv) If f ≥ g, then Cµ(f) ≥ Cµ(g).

v) Cµ(f + a) = Cµ(f) + a, for every a ∈ R.

vi) If f, g are comonotonic functions, then Cµ(f + g) = Cµ(f) + Cµ(g).

2.4 Applications in Decision Theory

In this section we introduce some applications of fuzzy measures, and more exactly, of

Choquet integral, in the framework of Decision Theory. Decision Theory is the branch

of Mathematics treating decision problems in which a person or a group of people (called

the decision maker) must make a choice among some options or alternatives.

Fuzzy integrals have been applied to subjective evaluation of objects whose character-

istics are depending on multiple criteria. This first application was given by Sugeno in

[30].

The section is divided into two parts:

• The first part is devoted to Decision under Uncertainty and Risk. It is also subdi-

vided into two different parts. For decision under risk and uncertainty, pioneering

works using Choquet integral are due to Schmeidler and Quiggin [33].

• The second part of the Chapter deals with Multicriteria Decision Making (MCDM).

In MCDM we look for an aggregation operator for compounding a group of evalu-

ations. We give a survey of the usual properties required to such function. Then,

we see that Choquet integral is a suitable operator.

These are the two fundamental situations treated by Decision Theory. Anyway, this is

not an exhaustive description; for example, we are not concerned with the Theory of

Social Choice developed by Arrow [34].

2.4.1 Decision under Uncertainty

For Decision under Uncertainty and under Risk, it is supposed that the consequences of

the choice depend on some incertitude factors that cannot be controlled by the decision

maker. This section is divided in two parts. In the first one, we describe some of the
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usual criteria for solving a problem of Decision under Uncertainty. In the second part,

we deal with Expected Utility Theory.

The fundamental elements of a decision problem in Decision under Uncertainty and

Decision under Risk are the set of states of the world, denoted by S; over S we have a

σ-algebra of subsets, denoted by S; hence, (S,S) is a measurable space. The set of states

of the world represents the possible situations that can happen and we assume that only

one of them happens but we do not know which one (it will be known after making our

decision). The set of possible consequences is denoted by X. The set of possible acts is

F , where an act f is a mapping from S to X. For any state of the world s ∈ S and

for any act f ∈ F , there is a consequence f(s) ∈ X (not necessarily a numerical value)

representing the gain or loss if we choose act f when the state of the world is s. When

these consequences are numerical they are usually called utilities. Hence F is XS or is

limited to a subset of it. In decision problems it is usually required that there exist a

mapping u : X 7→ R, that allows us to work with utilities.

Consequently, acts can be compared in terms of its corresponding consequences (utili-

ties). Let us explain these concepts through an example:

Example 2.1. An economist must choose among some investments v1, v2, v3, v4. The

benefits of each investment depend on the future economical situation of the country.

The possible situations are inflation, recession and depression.

In this problem, we have five possible acts F = {f1, ..., f5} where fi denotes that the

economist makes the investment vi, i = 1, ..., 4 and f5 denotes the fact that the economist

decides to keep the money at the bank. The set of states of the world is the set of possible

economical situations; thus, we have three possible states of the world: s1 (inflation), s2

(recession) and s3 (depression). Now suppose that we have the following table of utilities,

each value representing the expected benefit in million euros.

x1 x2 x3

f1 1 0.5 -0.1

f2 0.7 2 -0.6

f3 0.2 -0.5 -1

f4 -0.6 0 1.5

f5 0 0 0

In the next section, we will give some methods to solve this problem.

In order to make a decision, we need to establish a rationality criterion; this criterion

leads to a “representative value” for each act and then the act with the best represen-

tative value is chosen.
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For Decision under Uncertainty, we assume that we do not have any prior objective

information about which is the real state of the world. For Decision under Risk, we

suppose that we have a probability distribution on S.

2.4.1.1 Some criteria for making decision under Uncertainty

As we have seen, the solution of this problem is given by a rationality criterion. Let us

recall the most commonly used criteria in the literature; for each of them we will solve

the problem given in Example 2.1. For the rest of this section, we will assume that the

consequences are measured in terms of utilities.

The MaxiMin criterium

This is a pessimist criterium where the decision maker considers that the worst situation

will happen, i.e. the representative value for act f is inf
s∈S

f(s). Then, the optimal act

should be the one maximizing the worst value; mathematically,

sup
f∈F

inf
s∈S

f(s).

A decision maker acts following this criterion when he is very conservative or cautious.

Example 2.2. In our example

x1 x2 x3 Min

f1 1 0.5 -0.1 -0.1

f2 0.7 2 -0.6 -0.6

f3 0.2 -0.5 -1 -1

f4 -0.6 0 1.5 -0.6

f5 0 0 0 0

Then, the investor should keep the money at the bank (as expected).

The MaxiMax criterium

The MaxiMin criterium has its counterpart in the MaxiMax criterium. For this criteri-

um, the decision maker is optimist and considers that the true state of world will be the

best situation for this act, i.e. the representative value for act f is sup
s∈S

f(s). Then, the

optimal act should be the one maximizing the best value; formally,

sup
f∈F

sup
s∈S

f(s).
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Example 2.3. In our example

x1 x2 x3 Max

f1 1 0.5 -0.1 1

f2 0.7 2 -0.6 2

f3 0.2 -0.5 -1 0.2

f4 -0.6 0 1.5 1.5

f5 0 0 0 0

Then, the investor should choose the second investment.

The Hurwicz criterium

This criterium is a middle term between the MaxiMin and the MaxiMax. For this

criterium, the decision maker has a degree of optimism given by a value α ∈ [0, 1] and

then the value considered for an act f is α sup
s∈S

f(s) + (1− α) inf
s∈S

f(s). Then, the optimal

act should be the one maximizing the representative value; mathematically,

sup
f∈F

[
α sup
s∈S

f(s) + (1− α) inf
s∈S

f(s)

]
.

Example 2.4. In our example for α = 0.2,

x1 x2 x3 H0.4

f1 1 0.5 -0.1 0.12

f2 0.7 2 -0.6 -0.08

f3 0.2 -0.5 -1 -0.76

f4 -0.6 0 1.5 -0.18

f5 0 0 0 0

Then, the investor should choose the first investment.

It is interesting to remark that this criterion only uses the best and the worst possiblities

for each act.

2.4.1.2 The Expected Utility Model

Suppose that we have a preference relation � on F . Assume that this relation is a

complete preorder (i.e. it is reflexive, transitive, and two acts can always be compared)

so that it can be represented by some functional V : F 7→ R; we will denote by � the
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strict preference and by ∼ the indifference. We want to extract some properties about

the behaviour of the decision maker that leads to this functional.

In this section we address the Bayesian model of Anscombe and Aumann [35] leading

to an additive model, i.e. we assume that the preference relation on F can be modelled

by the expected utility

f � g ⇔
∫
S
u(f(s))dP ≤

∫
S
u(g(s))dP,

where P is a probability distribution over (S,S), and u : X 7→ R is an utility function.

For introducing the axiomatic structure proposed by Anscombe and Aumann we need

to introduce some previous notations and definitions:

• We denote by Y the set of all finite gambles on X, the set of consequences, where

it is assumed that X has at least two elements. From a formal point of view,

y ∈ Y ⇔ y : X 7→ [0, 1], y(x) 6= 0 only for a finite number of consequences and∑
x∈X

y(x) = 1.

• We denote by L0 the set of simple acts, i.e. the set of acts f defined by

f(s) =
n∑
i=1

yi(1Ai(s)), yi ∈ Y, Ai ∈ S,
n⋃
i=1

Ai = S.

Now, the axioms are:

• A1. Ranking: (F ,�) is a complete preorder.

Here, it must be noted that the set of constant acts, LC0 = {f ∈ L0, f(s) = y, ∀s ∈ S}
induces a complete preorder on Y , that is denoted �, too.

• A2. Independence: ∀f, g, h ∈ L0, ∀α ∈ (0, 1],

f � g ⇔ αf + (1− α)h � αg + (1− α)h.

• A3. Continuity: ∀f, g, h ∈ L0, f � g � h, ∃α, β ∈ (0, 1) such that

αf + (1− α)h � g � βf + (1− β)h.

Given two acts f, g, let us now denote by (fA, gAc) the act that coincides with f in A

and with g in Ac.
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• A4. Strict monotonicity: ∀f, g ∈ L0, ∀y, z ∈ Y, A ∈ S, if f � g with f =

(yA, fAc), g = (zA, gAc), then y � z.

• A5. Non-triviality: ∃f, g ∈ L0 such that f � g.

Lemma 2.16. If A1 and A4 hold, then the following axiom holds:

• A4’. Monotonicity: ∀f, g ∈ L0, f(s) � g(s), ∀s ∈ S, then f � g.

Then, the following can be proved:

Theorem 2.17. [35] If � satisfies A1, A2, A3, A4 and A5, then there exists a unique

probability measure on (S,S) and an affine 1 utility function u : Y 7→ R such that for

all f, g ∈ L0

f � g ⇔
∫
u(f) dP ≥

∫
u(g) dP. (2.1)

u is unique up to positive affine transformation2.

Moreover, if � can be represented by Equation (2.1), then it satisfies A1 to A5.

It must be remarked that this is not the only the only axiomatic structure of Expected

Utility Theory. Another model has been proposed by Savage in [36].

2.4.1.3 Some drawbacks of Expected Utility Theory

In this section we give two examples where problems arise if the Expected Utility Model

is used.

Ellsberg’s paradox

This example is in the framework of Decision under Uncertainty. It was proposed in

[37].

Consider a box with 90 balls. There are 30 red balls and other 60 balls that are either

black or white, but we do not know exactly how many black or white balls there are.

A ball is extracted from the box and the decision maker must choose between betting

for a red ball (f1) or betting for a white ball (g1). In a second step, he is asked to choose

between betting for a red or black ball (f2) against betting for a white or black ball (g2).

1 u(αy + (1− α)z) = αu(y) + (1− α)u(z), ∀α ∈ (0, 1), ∀y, z ∈ Y
2v = αu+ β, α ≥ 0, β ∈ R
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Typical preferences are f1 � g1 and f2 ≺ g2. In the first case he knows that there are

30 red balls and he does not know the number of black balls; then he feels more sure to

bet for red ball, even if maybe there are 60 black balls, because the possibility of 0 black

balls makes him conservative. In the second case, the situation reverses because now he

knows that there are 60 balls that are either black or white, but he does not know how

many balls either red or white are; then, as in the first situation, he prefers security.

This example violates the Independence Principle (A2) and then no probability distri-

bution over the states of the world is able to represent the behaviour of the decision

maker.

Allais’ paradox

This example is in the framework of Decision under Risk. It was proposed in [38].

Suppose that a decision maker is faced to the following acts:

• f1: he wins 300 euros.

• f2: he wins 400 euros with probability 0.8 and nothing with probability 0.2.

• f3: he wins 300 euros with probability 0.25 and nothing with probability 0.75.

• f4: he wins 400 euros with probability 0.2 and nothing with probability 0.8.

Usual preferences are f1 � f2 and f3 ≺ f4. However, this contradicts the independence

axiom A2 as f3 = 0.25f1 + 0.75f0, f4 = 0.25f2 + 0.75f0, with f0 the act that gives a

gain of 0 euros with probability 1. Indeed, for the first choice the decision maker prefers

having a sure gain instead of risking; in the second choice he has not a sure gain and

then he decides to risk a little bit more to obtain a higher gain. It can be said that in

the second situation he thinks that he may not win and then he prefers risking.

The reason for both paradoxes is the fact that the decision maker has a risk aversion

and this cannot be modelled with a probability distribution. We will see that these

paradoxes can be modelled with the Choquet Expected Utility Model.

2.4.1.4 Choquet Expected Utility Model

We have seen in last section that the Expected Utility fails to model some behaviors

which exhibit risk aversion. Schmeidler [39] proposed to replace probability measures

by a general non additive measure and the classical expected value by Choquet integral.
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The central part of Choquet Expected Utility Model is to change the independence

axiom A2 by a weaker axiom of independence restricted to comonotone acts:

• Sch2. Comonotonic independence. For all pairwise comonotonic acts f, g, h and

for all α ∈ (0, 1), then f � g implies αf + (1− α)h � αg + (1− α)h.

The result of Schmeidler is:

Theorem 2.18. [39] Suppose that � satisfies A1, Sch2, A3, A4’, A5. Then, there

exists a unique capacity µ on (S,S) and an affine function u : Y 7→ R, unique up to

affine transformation, such that

f � g ⇔ (C)
∫
u(f) dµ ≥ (C)

∫
u(g) dµ.

Reciprocally, if there exist µ and u in these conditions, then � satisfies A1, Sch2, A3,

A4’, A5.

We have seen that Choquet integral is a generalization of Lebesgue integral. Then,

Schmeidler model is a generalization of the Expected Utility model.

Let us now see another axiomatic, called the Schmeidler simplified model, proposed in

[40] by Chateauneuf. Let us denote now the set F of all acts such that F = {f : S 7→
R, f measurable }. Consider the following axioms:

• Cha1. Ranking: � is a non-trivial complete preorder.

• Cha2. Continuity: [fn, f, g ∈ F , fn � g, fn ↓ f ]⇒ f � g.

[fn, f, g ∈ F , fn � g, fn ↑ f ]⇒ g � f.

• Cha3. Monotonicity: f(s) ≥ g(s) + ε, ∀s ∈ S, ε > 0, ⇒ f � g.

• Cha4. Comonotonic independence: For all pairwise comonotonic acts f, g, h ∈ F ,

we have f ∼ g implies f + h ∼ g + h.

Then, the following can be proved:

Theorem 2.19. [40] Let � be a preference relation over the set of acts. The following

statements are equivalent:

• � satisfies Cha 1, Cha 2, Cha 3, Cha4.
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• The preference relation can be represented by a Choquet integral with respect to a

fuzzy measure, i.e.

f � g ⇔ (C)
∫
f dµ ≥ (C)

∫
g dµ.

Moreover, µ is unique.

Consider the following axiom:

• Cha4’. For all f, g, h ∈ F with h, g comonotone,

f ∼ g ⇒ f + h � g + h.

The following holds:

Theorem 2.20. [40] � satisfies Cha1, Cha2, Cha3, Cha4’ if and only if the pref-

erence relation can be represented by a Choquet integral with respect to a convex fuzzy

measure (Definition 2.33).

Let us now return to the Ellsberg’s paradox. In this case, S = {R,B,W}. The available

information in terms of probability is P (R) =
1

3
, P (W,B) =

2

3
. Let us denote by P

the set of all probability distributions over (S,P(S)) that are compatible with this

information. Let us define

µ(A) = inf
P∈P

P (A), ∀A ⊂ S.

Then, µ is given by

A ∅ R B W R,B R,W W,B R,W,B

µ 0 1
3 0 0 1

3
1
3

2
3 1

Then, representing our preferences by the Choquet integral with respect to µ we obtain:

(C)
∫
f1 dµ = 100µ(R) =

100

3
.

(C)
∫
g1 dµ = 100µ(B) = 0.

Thus, f1 � g1. On the other hand

(C)
∫
f2 dµ = 100µ(R,W ) =

100

3
.

(C)
∫
g2 dµ = 100µ(B,W ) =

200

3
.
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Thus, f2 ≺ g2.

In respect of Allais paradox, we can also use the Choquet Expected Utility model to

find a solution. In this case, to represent risk aversion, we apply a distorsion function ϕ

to the probability distribution of each lottery being ϕ an increasing bijection on [0, 1].

This way we use Choquet integral with respect to µ = ϕ ◦P, where P is the probability

distribution of the lottery,

(C)
∫
f dµ =

∑
i

fiϕ(pi).

This way, by taking Choquet integrals, the preference f1 � f2 translates into

300 > 400ϕ(0.8)

hence we should have 0 < ϕ(0.8) < 0.75. Next, the preference f3 ≺ f4 imposes

300ϕ(0.25) < 400ϕ(0.2)

i.e., ϕ(0.2)/ϕ(0.25) ∈ (0.75, 1). For instance, this is achieved by taking ϕ(0.2) = 0.2 and

ϕ(0.25) = 0.25.

2.4.2 Multicriteria Decision Making

For Multicriteria Decision Making we start from a set of criteria, N = {1, ..., n}, repre-

senting the different factors that can influence the decision maker in making a decision.

The set of potential alternatives is X = X1 × ...×Xn, where each factor is related to a

descriptor or attribute, whose possible values belong to a set Xi. It must be remarked

that in many practical situations we do not have all potential alternatives, but only a

subset of X. Fixing an alternative x = (x1, ..., xn) ∈ X and a criterion i, xi is the value

(possibly non-numerical) of attribute i for alternative x. The next step is to map the

spaces Xi to a common scale in R, so as to reflect preferences. This is done through n

functions ui : Xi 7→ R, called utility functions. ui(xi) represents the “score” of alter-

native x with respect to criterion i. In order that the construction makes sense, all ui

must be commensurable, i.e. if ui(xi) = uj(xj), then the decision maker should feels an

equal satisfaction for xi and xj . Finally, scores ui(xi), i = 1, ..., n are aggregated into

an overall score representing the satisfaction degree of x.
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Example 2.5. A customer wants to buy a car and he must decide among five different

models f1, ..., f5. His choice is based on some characteristics of the car, namely price,

consumption and security system. Let us suppose that for any criterion we have six

possibilities, namely that, for this criterion, the car is very bad, bad, average, good, very

good or excellent, denoted by V B,B,A,G, V G and E, respectively. Then, he has the

following table of scores:

Price Consumption Security

f1 G B A

f2 VG E VB

f3 B G VG

f4 E A VB

f5 B A G

In this example, the set of alternatives is the set of cars and the set of criteria is the

set of characteristics (price, comsumption, security) that will play a role in the decision.

For each criterion, the set Xi takes six different values (V B,B,A,G, V G,E). Now, in

order to have numerical values, we can define ui : Xi 7→ R by

ui(V B) = 0, ui(B) = 1, ui(A) = 2, ui(G) = 3, ui(V G) = 4, ui(E) = 5, i = 1, 2, 3.

Finally, if the aggregation function is defined by the sum of partial numerical scores, we

have that the overall evaluations are

V (f1) = 6, V (f2) = 9, V (f3) = 8, V (f4) = 7, V (f5) = 6.

Then, the best car is the second one.

Assume that there is more than one criterion; then, the decision should depend on

the evaluations of each alternative over each criterion. It must be remarked that in a

Multicriteria Decision problem we have no uncertainty. The difficulty of the problem

comes from the definition of the aggregation function.

The idea consists in assigning to any object x ∈ X, a representative numerical value

aggregating the values of x over each criterium. Thus, we would obtain a total order over

the set of alternatives, and the best object should be the one with maximal representative

value. In other words, we want to build an aggregation function V : X 7→ R such that

x � y ⇔ V (x) ≥ V (y),

where x � y represents the fact that alternative x is preferred to alternative y.
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There are a lot of functions aggregating scores. A simple way to solve this problem is

to consider V defined by the aggregation of unidimensional utility functions. As we are

in the finite case, this reduces to

V (x1, ..., xn) = H(u1(x1), ..., un(xn)),

where H is called an aggregation operator. Usually, the values of ui(xi) are supposed to

be normalized, i.e. in [0,1]. Then, aggregation operators are defined by:

Definition 2.21. [41, 42] An aggregation operator (or aggregation operation) is

a function H : [0, 1]n 7→ [0, 1] satisfying:

• H(0, ..., 0) = 0, H(1, ..., 1) = 1.

• H is non decreasing for any argument.

Of course, an aggregation operator can be required to satisfy some additional properties.

Usual properties required for aggregation operators are [43]:

• Idempotence:

H(c, ..., c) = c, ∀c ∈ [0, 1].

• Conmutativity (or symmetry): For any permutation π on the set of indices,

it is

H(f1, ..., fn) = H(fπ(1), ...fπ(n)).

• Decomposition:

Hn(f1, ..., fk, fk+1, ..., fn) = Hn(a, ..., a, fk+1, ..., fn),

with a = Hk(f1, ..., fk).

Other behavioural properties can be asked, namely:

• H must be able to assign weights to the different criteria if necessary.

• H is able to model the decision maker way of acting (tolerance, intolerance).

• H is easy to understand, i.e. we can derive some properties about the way the

decision maker acts.

• H is able to model compensatory effects, as interaction among criteria.
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Let us see some examples of aggregation operators.

• Quasi-arithmetic means:

Hh(f) = h−1

[
1

n

n∑
i=1

h(fi)

]
,

with h : R 7→ R being a continuous strictly increasing function. This family

includes usual means as arithmetic means, geometric means, ...

• Weighted minimum and maximum:

wmaxw1,...,wn(f1, ..., fn) =

n∨
i=1

[wi ∧ fi]

wminw1,...,wn(f1, ..., fn) =

n∧
i=1

[(1− wi) ∨ fi],

for w1, ..., wn ∈ [0, 1] and
n∨
i=1

wi = 1.

• Ordered weighted averaging (OWA) operators operators :

OWAw(f) :=
n∑
i=1

wif(i),

where w is a weight vector, w = (w1, . . . , wn) ∈ [0, 1]n, such that
∑n

i=1wi = 1 and

the f(i) are defined as in the Choquet Integral.

2.4.2.1 Choquet integral as aggregation operator

We turn now to Choquet integral. The Choquet integral is an aggregation operator.

Moreover, this integral satisfies the following properties (see [29, 42, 44] for the proofs):

Proposition 2.22. Let Cµ be the Choquet integral with respect to a normalized fuzzy

measure µ, then:

i) min(f1, ..., fn) ≤ Cµ(f1, ...., fn) ≤ max(f1, ..., fn), ∀µ.

ii) Choquet integral is stable for linear transformations.

iii) If µ is additive, Cµ is the weighted arithmetic mean where the weights wi are given

by µ({i}).
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iv) Cµ = OWAw if and only if µ is symmetric, with wi = µ (Cn−i+1) − µ (Cn−i),

i = 2, . . . , n, and w1 = 1−
∑n

i=2, where Ci is any subset of X with |Ci| = i.

v) Choquet integral contains all statistical orderings (in particular the maximum and

minimum).

Based on the last proposition, in Section 2.6.3, we give a generalization of OWA oper-

ator to k-symmetric OWA operators. To achieve that, we need to define k-symmetric

measures which generalize the concept of symmetry for fuzzy measures.

As seen above, Choquet integral can be considered and used as aggregation operator. In

addition, Choquet integral is able to represent interaction among different criteria (see

[29, 44]).

Definition 2.23. Let µ be a fuzzy measure on X. The interaction index between the

elements i and j is defined by

Iij =
∑

A⊂X\{i,j}

(n− |A| − 2)!|A|!
(n− 1)!

[µ(A ∪ {i, j})− µ(A ∪ {i})− µ(A ∪ {j}) + µ(A)] .

When Iij > 0 (resp. < 0), it is said that i and j are complementary (resp. substitutive)

or that there exists a cooperation (resp. a conflict). When Iij = 0, criteria i and j are

said to be independent.

This definition can be generalized to general subsets (see [45]).

Definition 2.24. Let µ be a fuzzy measure on X. The Shapley interaction index

of A ⊂ X, is defined by:

Iµ(A) =
∑

B⊂X\A

(n− b− a)!b!

(n− a+ 1)!

∑
C⊂A

(−1)a−cµ(B ∪ C),

with a = |A|, b = |B| and c = |C|.

The Shapley interaction index is an alternative representation of fuzzy measures. For

some subfamilies of fuzzy measures, the Choquet integral with respect to a fuzzy measure

µ only depends on the Shapley interaction indexes of 2-elements subsets, which corre-

spond to interaction indexes Iij . This is the case of 2-additive measures (see Section

2.6.4).

We finish studying the role of fuzzy measures in modelling vetos, favors and interactions

among criteria.
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Definition 2.25. [46] Suppose H is an aggregation operator. A criterion i is a veto for

H if for any n-uple (x1, ..., xn) ∈ Rn of scores

H(x1, ..., xn) ≤ xi.

Similarly, criterion i is a favor if for any n-uple (x1, ..., xn) of scores,

H(x1, ..., xn) ≥ xi.

The concepts of veto and favor can be generalized to subsets as follows:

Definition 2.26. [47] Suppose H is an aggregation operator. A subset A is a veto for

H if for any n-uple (x1, ..., xn) ∈ Rn of scores

H(x1, ..., xn) ≤
∧
i∈A

xi.

Similarly, subset A is a favor if for any n-uple (x1, ..., xn) of scores,

H(x1, ..., xn) ≥
∨
i∈A

xi.

If criterion i is a veto, it means that if the evaluation over i is high, it has no effect on

the evaluation, but if it is low, then the global score will be low too; similarly we can

obtain a dual interpretation for favor. These two concepts have been already proposed

in the context of social choice functions [48].

A veto and a favor can be represented by a fuzzy measure as follows:

Proposition 2.27. [47] If we consider as aggregation operator the Choquet integral, i

is a veto if and only if the fuzzy measure satisfies µ(A) = 0 whenever i 6∈ A. Similarly,

i is a favor if and only if the fuzzy measure satisfies µ(A) = 1 whenever i ∈ A, or

equivalently, when µ(i) = 1.

In terms of Shapley interaction, vetos and favors are characterized for 2-additive mea-

sures (see Section 2.6.4) by:

Proposition 2.28. [47] Let µ be a 2-additive measure. Criterion i is a veto for the

Choquet integral if and only if the following conditions are satisfied:

1. Iik ≥ 0, ∀k 6= i.

2. Ikl = 0, ∀k, l 6= i.
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3. ϕk = 1
2Iik, ∀k 6= i.

Similarly, i is a favor if and only if

1. Iik ≤ 0, ∀k 6= i.

2. Ikl = 0, ∀k, l 6= i.

3. ϕk = −1
2Iik, ∀k 6= i.

where ϕi is the Shapley value of the measure (see Section 2.7.1.2).

Note that it is not possible to have a veto on i and a favor on j since H(x1, ..., xn) ≤ xi
and H(x1, ..., xn) ≥ xj are not compatible in general.

2.5 The Möbius Transform

Definition 2.29. [49] Let µ be a set function (not necessarily a fuzzy measure) on X.

The Möbius transform (or inverse) of µ is another set function on X defined by

mµ(A) :=
∑
B⊆A

(−1)|A\B|µ(B), ∀A ⊆ X.

We write m instead of mµ when the measure µ is clear from the context.

The Möbius transform is an alternative representation of fuzzy measures, in the sense

that given the Möbius transform m of a fuzzy measure µ, this measure can be recovered

through the Zeta transform [50]:

µ(A) =
∑
B⊆A

mµ(B).

The Möbius transform corresponds to the basic probability mass assignment in Dempster-

Shafer theory of evidence [51] and the Harsanyi dividends [52] in Cooperative Game

Theory. From the point of view of Game Theory, the Möbius transform gives a measure

of the importance of a coalition by itself, without taking account of its different parts.

As explained before, the Möbius transform can be applied to any set function; if related

to a fuzzy measure, the Möbius transform can be characterized as follows.

Proposition 2.30. [50] A set of 2n coefficients m(A), A ⊆ N, corresponds to the Möbius

transform of a normalized fuzzy measure if and only if
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1. m(∅) = 0,
∑
A⊆N

m(A) = 1,

2.
∑

i∈B⊆A
m(B) ≥ 0, for all A ⊆ N, ∀i ∈ A.

Let us see some other important properties of the Möbius transform [29].

Proposition 2.31. Let v be a grounded set function (also called game, see Section 2.7):

i) v is additive if and only if mv(A) = 0 for all A ⊆ X, |A| > 1.

ii) v is monotone if and only if for all K ⊆ X, i ∈ K holds

∑
i∈L⊆K

mv(L) ≥ 0.

iii) Let k ≥ 2 be fixed. v is k-monotone if and only if for all A,B ⊆ X, A ⊆ B and

2 ≤ |A| ≤ k

∑
L∈[A,B]

mv(L) ≥ 0.

iv) If v is k-monotone for some k ≥ 2, then mv ≥ 0 for all A ⊆ X such that 2 ≤
|A| ≤ k.

v) v is a nonnegative totally monotone game if and only if mv ≥ 0.

vi) The Möbius transform of a unanimity game uA is

muA(B) =

1, if B = A

0, otherwise.

vii) The coefficients of expressing a measure µ using the basis of unanimity games are

given by the Möbius transform mµ, i.e. µ =
∑

A⊆X m
µ(A)uA.

viii) The polytope of belief measures B(X) expressed using the basis of unanimity games

read as follows

B(X) = {m ∈ R2|X|−1 | m(A) ≥ 0, ∅ 6= A ⊆ X ∧
∑

A⊆X,A 6=∅

m(A) = 1}.

ix) The Möbius transform of λ-measure µ is given by

mµ(A) = λ|A|−1
∏
i∈A

µ(i), A 6= ∅.
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Normalized capacities take their value in [0, 1]. One may think that the Möbius trans-

form of normalized capacities takes values in the symmetrized interval [−1, 1]. The fol-

lowing result shows that this is not true [29].

Theorem 2.32. For any normalized capacity µ, its Möbius transform satisfies for any

A ⊆ N , |A| > 1:

−
(
|A| − 1

l′|A|

)
6 mµ(A) 6

(
|A| − 1

l|A|

)
,

with

l|A| = 2

⌊
|A|
4

⌋
, l′|A| = 2

⌊
|A| − 1

4

⌋
+ 1 (2.2)

and for |A| = 1 < n:

0 6 mµ(A) 6 1,

and mµ(A) = 1 if |A| = n = 1. These upper and lower bounds are attained by the

normalized capacities µ∗A, µA∗, respectively:

µ∗A(B) =

1, if |A| − l|A| 6 |B ∩A| 6 |A|

0, otherwise
, µA∗(B) =

1, if |A| − l′|A| 6 |B ∩A| 6 |A|

0, otherwise

for any B ⊆ N .

We give in Table 2.2 the first values of the bounds. Using the well-known Stirling’s

|A| 1 2 3 4 5 6 7 8 9 10 11 12

u.b. of mµ(A) 1 1 1 3 6 10 15 35 70 126 210 462

l.b. of mµ(A) 1(0) −1 −2 −3 −4 −10 −20 −35 −56 −126 −252 −462

Table 2.2: Lower and upper bounds for the Möbius transform of a normalized capacity

approximation
(

2n
n

)
' 4n√

πn
for n→∞, we deduce that

− 4
n
2√
πn
2

6 mµ(N) 6
4

n
2√
πn
2

when n tends to infinity.

2.6 Subfamilies of fuzzy measures

As we have explained before, fuzzy measures can be applied in many different fields.

However, this flexibility has to be paid via an increment in the complexity; in this sense,

for a referential set of n elements, 2n−2 values are needed to completely define the fuzzy

measure. In order to reduce this complexity, several attempts have been proposed. For
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example, we could just reduce the number of coalitions allowed to happen; this situation

is perfectly justified in many cases in Game Theory (see e.g., [53]). Another way to

reduce the complexity is to consider some subfamilies of fuzzy measures, aiming to

combine flexibility with a reduction in the number of coefficients; following this line,

many subfamilies have been proposed, as for example k-additive measures [45, 54], k-

symmetric measures [55], k-intolerant measures [56], and many others. In this section

we study some of the most important subfamilies of fuzzy measures. Let us start with

some of them.

Definition 2.33. A fuzzy measure µ on X is

i) superadditive if ∀A,B ⊆ X, such that A ∩B = ∅,

v(A ∩B) ≥ µ(A) + µ(B).

The fuzzy measures is subadditive if µ(A ∩B) ≤ µ(A) + µ(B).

ii) supermodular if ∀A,B ⊆ X,

µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B).

The fuzzy measures is submodular if the reverse inequality holds. Supermod-

ular measures are also called convex measures. A fuzzy measure that is both

supermodular and submodular is said to be modular.

iii) maxitive if ∀A,B ⊆ X,

µ(A ∪B) = max{µ(A), µ(B)}.

iv) minitive if ∀A,B ⊆ X,

µ(A ∩B) = min{µ(A), µ(B)}.

v) a possibility (necessity) measure if it is normalized and maxitive (minitive).

Remark 2.34. • The last definitions can also be applied to general set functions.

• Super(sub)modularity implies super(sub)additivity but not the converse [29]. Also,

it is easy to check that additivity and modularity are equivalent properties [29].

This is no longer true when fuzzy measures are defined on subcollections of P(X)

[29].
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• 2-monotonicity corresponds to supermodularity, while the 2-alternating property

corresponds to submodularity.

• If µ is a superadditive grounded set function, then µ ≥ µ.

• A λ-measure is superadditive if λ > 0, and subadditive otherwise.

• The set of supermodular grounded set functions (as well as the set of submodular

grounded set functions) is a non-pointed cone [29].

• If µ ≥ 0 is a supermodular grounded set function, then µ is monotone.

• µ is maxitive if and only if µ is minitive.

• The set of possibility (or necessity) measures is a polytope affinely isomorphic to

the order polytope O(n) = Cn. Indeed, it is sufficient to specify the value of each

singleton Π(A) =
∨
x∈A Π({x}) and Nec(A) =

∧
x∈ANec({x}).

Figure 2.2 shows a diagram with the relations between the different subfamilies of nor-

malized fuzzy measures.

As the set of normalized fuzzy measures is a polytope, whichever property from above

may be mixed with normalized fuzzy measures to get new polytopes. For example, the

polytope of normalized supperadditive games. Removing µ(X) = 1, leads to convex

cones, as the set of non-normalized fuzzy measures that we will study later in Chapter

6.

2.6.1 Fuzzy Measures with restricted cooperation

Let ξ : P(X) → R, be a set function. Sometimes there are situations in which the

players of some coalition A ⊆ X do not cooperate together, thus A is not in the domain

of ξ. In these cases we say that the problem has restricted cooperation and the domain

of ξ is changed for a general collection of subsets Ω. Limiting the number of coalitions

is also a good way to reduce the complexity of the problem.

Definition 2.35. Let X be a finite set and Ω ⊆ P(X). We define a Ω-restricted set

function as a set function on Ω, ξ : Ω→ R.

All the definitions on fuzzy measures seen previously could be generalized to the Ω-

restricted case. One can think of Ω as the collection of feasible coalitions. If ∅, X ∈ Ω

then Ω is said to be a set system [53]. Observe that (Ω,⊆) is a poset and the

set of Ω-restricted normalized fuzzy measures RFM (Ω) is the order polytope
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Figure 2.2: Several families of normalized fuzzy measures on a finite set.

O (Ω \ {∅, X}) . Since any poset is isomorphic to a subposet of the Boolean lattice, for ev-

ery poset P there is some collection of feasible coalitions Ω(P ) such thatRFM (Ω(P )) =

O (P \ {∅, X}) . In other words, every poset P models some problem with possibly re-

stricted cooperation. Obviously, when Ω = P(X)⇒ RFM (Ω) = FM(X).

In the rest of the work we will be devoted to the study of the geometry of particular

choices of the poset of feasible coalitions Ω.

2.6.2 k-intolerant fuzzy measures

Here we introduce the k-intolerant and k-tolerant fuzzy measures [56].

Definition 2.36. Let |X| = n and k ∈ [n]. A fuzzy measure µ is k-intolerant if

µ(A) = 0 for all A ⊆ X such that |A| ≤ n−k and there is A∗ ⊆ X, with |A∗| = n−k+1,
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such that µ(A∗) 6= 0. Symmetrically, µ is k-tolerant if µ(A) = 1 for all A ⊆ X such

that |A| ≥ k and there is A∗ ⊆ X, with |A∗| = k − 1, such that µ(A∗) 6= 1.

Observe that assigning a specific value to a set A is equivalent to remove this set from

the set of feasible coalitions. Therefore the set of normalized k-intolerant measures

can be identified with the Ω-restricted normalized measures set RFM(Ω) such that

Ω = {A ∈ P(X) | |A| > n−k}. Hence, the geometric properties of k-intolerant measures

are the same as the properties of the order polytope O(Ω).

Similarly, for the k-tolerant fuzzy measures we get RFM(Ω) such that Ω = {A ∈
P(X) | |A| < k}. Again we get an order polytope. All the theory about order polytopes

from Chapter 1 (see Section 1.3) can be applied to know the combinatorial structure

(vertices, faces, etc.) of the order polytopes associated to k-intolerant and k-tolerant

measures. In particular, the linear extensions of poset (Ω,⊆) gives us a triangulation (see

Section 1.3.1) of these order polytopes and therefore a way to sample points uniformly

inside it. We will study more closely how to sample points inside these polytopes in

Chapter 3.

2.6.3 k-symmetric measures

Let us now introduce the concept of k-symmetry. For this concept, the notion of subset

of indifference is the crux of the issue.

Definition 2.37. [55] Let µ : P(X) → [0, 1] be a fuzzy measure. Given a subset

A ⊆ X, we say that A is a subset of indifference for µ if for any B1, B2 ⊂ A, such

that |B1| = |B2| and for any C ⊆ X \A, then

µ(B1 ∪ C) = µ(B2 ∪ C).

From the point of view of Game Theory, this definition translates the idea that we do

not care about which elements inside A are included in a coalition, and we just need to

know how many of them take part in it. Remark that if A is a subset of indifference,

so is any B ⊆ A. Moreover, for a given fuzzy measure µ, X can always be partitioned

in {A1, ..., Ak} subsets of indifference for a suitable value of k; there may be several

partitions of X in subsets of indifference, but it can be proved that there is a partition

that is the coarsest one [55], being any other refinement of this partition another partition

in subsets of indifference for µ.

Definition 2.38. [55] Let µ ∈ FM(X). We say that µ is a k−symmetric measure if

and only if the (unique) coarsest partition of the referential set in subsets of indifference

has k non-empty subsets.
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In particular, if we consider the partition {X} we recover the set of symmetric fuzzy

measures, i.e., measures µ satisfying µ(A) = µ(B) whenever |A| = |B|. These measures

and their corresponding Choquet integral are very important in Fuzzy Logic, where they

are related to OWA operators [57]. Therefore, k-symmetric measures define a gradation

between symmetric measures (where we just care about the number of elements in the

subset) and general fuzzy measures.

The Proposition 2.22 shows the equivalence of the OWA operators with symmetric Cho-

quet integrals, themselves being bijectively related to symmetric capacities. Following

this line, we can generalize the concept of OWA operator by considering Choquet inte-

grals with respect to k-symmetric measures.

Definition 2.39. An operator H, is said to be a k-symmetric OWA if there is a k-

symmetric normalized capacity such that H = Cµ.

The expression of a k-symmetric OWA is given in the next proposition [42].

Proposition 2.40. Let µ be a k-symmetric fuzzy measure on X with indifference par-

tition {A1, . . . , Ak}. Then, for all x = (x1, . . . , xn) ∈ [0, 1]n, the Choquet integral w.r.t

µ is given by

Cµ(x) =

k∑
i=1

Cµ|Ai
(x|Ai

) +
∑

A*Aj ,∀j

mµ(A)
∧
i∈A

xi,

where µ|Ai
is the restriction of µ to Ai.

If {A1, A2, · · · , Ak} is a partition of X, the set of all fuzzy measures µ such that

{A1, A2, · · · , Ak} is a partition of indifference for µ is denoted by FM(A1, A2, · · · , Ak).
Note that µ ∈ FM(A1, A2, · · · , Ak) does not imply that {A1, A2, · · · , Ak} is the coars-

est partition in subsets of indifference for µ; indeed, all symmetric measures belong to

FM(A1, A2, · · · , Ak), no matter the partition.

As all elements in a subset of indifference have the same behavior, when dealing with a

fuzzy measure in FM(A1, ..., Ak), it suffices to know the number of elements of each Ai

that belong to a given subset C of the referential set X. Therefore, the following result

holds:

Lemma 2.41. [55] If {A1, ..., Ak} is a partition of X, then any C ⊆ X can be identified

with a k-dimensional vector (c1, ..., ck) with ci := |C ∩Ai|.

Then, ci ∈ {0, ..., |Ai|} and in order to build a k−symmetric measure we just need

(|A1|+ 1)× (|A2|+ 1)× · · · × (|Ak|+ 1)− 2
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coefficients, a number far away from 2n − 2 needed for a general fuzzy measure.

Observe that the set FM(A1, ..., Ak) is the order polytope associated to the poset

(P (A1, ..., Ak),�), where

P (A1, ..., Ak) := {(i1, ..., ik) : ij ∈ {0, ..., |Aj |}}\{(0, ..., 0), (|A1|, ..., |Ak|)}, (2.3)

and � is given by (c1, ..., ck) � (b1, ..., bk) ⇔ ci ≤ bi, i = 1, ..., k (see [23]). The Hasse

diagrams of P ({1, 2}, {3, 4}) is given in Figure 2.3.

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(2, 1) (1, 2)

Figure 2.3: Hasse diagrams of the poset P ({1, 2}, {3, 4}).

Thus, the problem of random generation of points in FM(X) and FM(A1, ..., Ak) re-

duces to obtain a random procedure for generating points in an order polytope (see

Section 1.3.1). In Chapter 4 we will study more about k-symmetric measures, in partic-

ular about 2-symmetric measures.

2.6.4 k-additive games

As explained above, the Möbius transform gives a measure of the importance of a coali-

tion by itself, without taking account of its different parts. Sometimes it could be difficult

for an expert to assess values to the interactions of say, 4 criteria, and interpret what

these interactions mean. Then, it makes sense to restrict the range of allowed interac-

tions to coalitions of a reduced number of criteria, i.e. no interactions among more than

k criteria are permitted. This translates into the condition m(A) = 0 if |A| > k. Based

on this fact, we arrive to the concept of k-additivity in a natural way.

Definition 2.42. [54] A fuzzy measure µ is said to be k-additive if its Möbius transform

vanishes for any A ⊆ X such that |A| > k and there exists at least one subset A of exactly

k elements such that m(A) 6= 0.
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From this definition, it follows that a probability measure is just a 1-additive measure;

therefore, k-additive measures generalize probability measures and constitute a grada-

tion between probability measures and general fuzzy measures (n-additive measures).

For a k-additive measure, the number of coefficients is reduced to

k∑
i=1

(
n

i

)
− 1,

a middle term between n−1 (probabilities) and 2n−2 (general fuzzy measures). We will

denote by FMk(X) the set of all normalized fuzzy measures being at most k-additive.

Specially appealing is the 2-additive case, that allows to model interactions between two

criteria, that are the most important ones, while keeping a reduced (indeed quadratic)

complexity. The same considerations can be done for non-normalized measures denoting

the set of at most k-additive measures as MGk(X). Moreover, simple expressions for

µ in terms of the Möbius transform, and the corresponding Choquet integral can be

obtained (see [54]). For example, for 2-additive measures the following holds:

Proposition 2.43. Let µ a 2-additive fuzzy measure and f = (f1, . . . , fn) takes positive

values. Then,

Cµ(f) =
∑
i∈X

ϕi(µ)fi −
1

2

∑
{i,j}⊆X

Iij |fi − fj |,

where ϕi(µ) is the Shapley value of µ (see Section 2.7.1.2) and the interaction indexes

are the ones of Definition 2.23.

Unlike other subfamilies of fuzzy measures, k-additive measures are not order polytopes.

Hence, we cannot use the theory of order polytopes to study the geometry of k-additive

measures. We will study in more depth the k-additive measures in Chapter 5, in par-

ticular we will see the combinatorial structure of 2-additive measures and a method to

triangulate the 2-additive measures polytope.

2.7 Games

A grounded set function is also called a game. We denote the set of games on X by

G(X). The set of games G(X) has a natural structure of vectorial space of dimension

2|X| − 1. The collection of Dirac games {δA}A∈P(X)\{∅} and the collection of unanimity

measures {uA}A∈P(X)\{∅} are bases.
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Observe that a fuzzy measure is just a monotone game. In other words, a monotone

game is a non-normalized fuzzy measure. Let us denote the set of fuzzy measures, that

is the set of monotone games, as MG(X). In what follows, we will use ξ for general set

functions, v for games and µ for fuzzy measures.

The value v(A) represents the minimum gain that can be achieved by cooperation of

the players in the coalition A, even if the other players do everything possible against

coalition A.

All properties and subfamilies defined in the previous sections can be straightforwardly

extended in the framework of cooperative games. Some of these sets are convex cones.

We will study the properties of some of these cones in Chapter 6.

In the case of restricted cooperation, Ω ⊂ P(X), the set of Ω-restricted monotone

games MGΩ (X) is a cone whose geometric properties depend on the poset (Ω,⊆), as

we will see in Chapter 6.

2.7.1 Cooperative Game Theory

In cooperative game theory each element i in the referential set X represents a player

and each subset A ⊆ X represents a coalition [29]. The main assumption in cooperative

game theory is that the total coalition X will form. The challenge is then to allocate

the total payoff v(X) of the game v among the players in some fair way satisfying∑|X|
i=1 xi = v(X). There are several ways of allocating this total payoff. Normally,

these methods are classified into two big groups of solutions: one-point solutions and

set solutions. The most famous concepts of solutions are the core (set solution) and the

Shapley value (one-point value).

2.7.1.1 Core of games

A set solution to the payoff allocation problem is given by a set of “reasonable” payoffs

according to some criterion. Let us denote by G(X,Ω) the set of Ω-restricted games

being Ω a set system. The core of a game v ∈ G(X,Ω) is defined by

core(v) = {x ∈ R|X| : x(S) ≥ v(S), ∀S ∈ Ω, x(X) = v(X)},

where x(S) is a shorthand for
∑

i∈S xi. By convention, x(∅) = 0. Note that the core(v) is

a convex polyhedron which may be empty. We say that a collection B of non-empty sets is

a balanced collection if given A ∈ B, there exists λA > 0 satisfying
∑

A∈B, i∈A λA = 1,
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∀i ∈ X. In shorter form
∑

A∈B λA1A = 1X . We say that the quantities λA form a system

of balancing weights. Here we use the notation y(A) =
∑

i∈A yi.

Theorem 2.44. [29] A collection B of nonempty sets is balanced if and only if for

every vector y ∈ R|X| such that y(X) = 0, either y(S) = 0 for every S ∈ B or there exist

S, T ∈ B such that y(S) > 0 and y(T ) < 0.

A game v on X is balanced if for any balanced collection B it holds

v(X) ≥
∑
A∈B

λAv(A).

Theorem 2.45 (Bondareva-Shapley Theorem, weak form). [29] Let v ∈ G(X).

Then core(v) is nonempty if and only if v is balanced.

We say that a balanced collection is minimal if it does not contain a proper subcollection

that is balanced.

Theorem 2.46 (Bondareva-Shapley Theorem, sharp form). [29] Let v ∈ G(X).

Then core(v) is nonempty if and only if for any minimal balanced collection B with

system of balancing weights {λA}A∈B, we have

v(X) ≥
∑
A∈B

λAv(A).

Let σ ∈ Sn and v ∈ G(X) we define its marginal vector xσ,v ∈ R|X| as xσ,vσ(i) =

v({σ(1), σ(2), . . . , σ(i)})− v({σ(1), σ(2), . . . , σ(i− 1)}). The convex hull of the marginal

vectors is called the Weber set, Web(v) = Conv(xσ,v : σ ∈ Sn). The Weber set is

another important set solution highly related to the core.

Proposition 2.47. i) For any game v ∈ G(X), core(v) ⊆Web(v).

ii) If v, v′ are supermodular games, then core(v) + core(v′) = core(v + v′).

iii) core(v) + core(v′) ⊆ core(v + v′), where v, v′ are balanced games.

iv) Web(v) + Web(v′) ⊇Web(v + v′), where v, v′ are balanced games.

Theorem 2.48 (Structure of the core of supermodular games). Let v be a game

in G(X). The following are equivalents.

i) v is supermodular.

ii) xσ,v ∈ core(v) for all σ ∈ Sn.
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iii) core(v) = Web(v).

iv) The vertives of core(v) are the marginal vectors xσ,v with σ ∈ Sn.

This way the core equals the Weber set for supermodular games. In this case its vertices

are the marginal vectors. For references on other famous concepts of set solutions as the

selectope see [29].

2.7.1.2 Shapley value

Shapley value is one of the most famous solution concepts in game theory. This is a

one-point solution since the value gives just one possible payoff allocation. Let v ∈ G(X)

then its Shapley value [29] is given by:

ϕi(v) =
∑

S⊆X\{i}

|S|! (|X| − |S| − 1)!

|X|!
(v(S ∪ {i})− v(S)).

Theorem 2.49. [29] Let v ∈ G(X). The Shapley value ϕi(v) is the only payment rule

satisfying:

i) Efficiency :
∑

i∈X ϕi(v) = v(X).

ii) Symmetry : If i, j ∈ X are equivalent in the sense that v(S ∪ {i}) = v(S ∪ {j}),
∀S ⊆ X \ {i, j} then ϕi(v) = ϕj(v).

iii) Linearity : ϕi(v + w) = ϕi(v) + ϕi(w) for all i ∈ X.

iv) Null player : If i is a player such that v(S ∪ {i}) = v(S), ∀S ⊆ X \ {i} then

ϕi(v) = 0.

The Shapley value can also be seen as the solution of some optimization problem.

Theorem 2.50. Let v ∈ G(X). Consider the optimization problem:

min
ϕ∈RX

∑
S⊆X

αS (v(S)− ϕ(S))2

subject to ϕ(X) = v(X). Then, the Shapley value is the unique solution when the coeffi-

cients αS are given by

αS =
1(|X|−2
|S|−1

) , ∅ 6= S ⊆ X.
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Other alternative definition of the Shapley value can be expressed in terms of all possible

orders of the players. Let σ ∈ Sn be a permutation that assigns to each position k the

player σ(k). Given a permutation σ, let us denote by Prei(σ) the set of predecessors of

the player i in the order σ, that is Prei(σ) = {σ(1), σ(2), . . . , σ(k − 1)} where i = σ(k).

In this case, the Shapley value can be expressed in the following way:

ϕi(v) =
1

n!

∑
σ∈Sn

(
v
(
Prei(σ) ∪ i

)
− v

(
Prei(σ)

))
, ∀i ∈ [n].

The last expression is the population mean value of the variable χi(σ) = v
(
Prei(σ) ∪ i

)
−

v
(
Prei(σ)

)
with respect to the uniform distribution on the set of permutations Sn, that

is

ϕi(v) =
1

n!

∑
σ∈Sn

χi(σ).

Sometimes computing the Shapley value involves too many computations, then we can

use statistical sampling theory to estimate the Shapley value, see [58, 59]. In a sampling

with replacement scheme and equal probabilities if we choose a sample {σ1, σ2, . . . , σm}
of m permutations we can estimate the Shapley value as:

ϕ̂i(v) =
1

m

m∑
j=1

χi(σj).

This estimator is unbiased and consistent with variance V ar(ϕ̂i(v)) =
σ2
i

m
, where

σ2
i =

1

n!

∑
σ∈Sn (χi(σ)− ϕi(v))2 .

The last construction can be generalized to Ω-restricted games v ∈ G(X,Ω) having the

additional structure of augmenting systems [60].

Definition 2.51. A set system Ω ⊆ P(X) is an augmenting system if

i) ∅ ∈ Ω,

ii) for S, T ∈ Ω with S ∩ T 6= ∅, we have S ∪ T ∈ Ω,

iii) for S, T ∈ Ω with S ⊂ T, there exists i ∈ T \ S such that S ∪ i ∈ Ω.

Let Ω ⊆ P(X) be an augmenting system and v ∈ G(X,Ω), the Shapley value for a player

i ∈ X is defined as [60]
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ϕi(v,Ω) =
1

C(Ω)

∑
C∈Ch(Ω)

(
v
(
Prei(C) ∪ i

)
− v

(
Prei(C)

))
,

where Ch(Ω) is the set of all maximal chains of Ω and Prei(C) is the set in the chain C be-

ing inmediately before the smallest set in C containing i. By definition, both Prei(C)∪ i
and Prei(C) belong to Ω. This generalization of the Shapley value preserves good axiom-

atization properties [60]. Let us denote χi(C) = v
(
Prei(C) ∪ i

)
− v

(
Prei(C)

)
. Recall

that maximal chains of distributive lattices are in bijection with the linear extensions of

the poset of join-irreducible elements of the lattice (see Equation 1.1). Therefore, if Ω

is in addition a distributive lattice with J (Ω) ∼= P we get

ϕi(v,Ω) =
1

e(P )

∑
ε∈L(P )

(
v
(
Prei(ε) ∪ i

)
− v

(
Prei(ε)

))
,

where Prei(ε) is the set of element in the linear extension ε being inmediately before

i. Let us denote χi(ε) = v
(
Prei(ε) ∪ i

)
− v

(
Prei(ε)

)
. Following the same reasoning as

above, sometimes this Shapley value is really difficult to compute since the number of

linear extensions could be huge. In this case we can use statistical sampling to get a good

estimation of this value. In a sampling with replacement scheme and equal probabilities

if we choose a sample {ε1, ε2, . . . , εm} of m linear extensions of P ∼= J (Ω) we can estimate

the Shapley value as:

ϕ̂i(v,Ω) =
1

m

m∑
j=1

χi(εj).

This estimator is unbiased and consistent with variance V ar(ϕ̂i(v,Ω)) =
σ2
i

m
, where

σ2
i =

1

e(P )

∑
ε∈L(P )

(χi(ε)− ϕi(v,Ω))2 .

This constitutes an application of linear extensions to cooperative game theory.

2.8 Identification of fuzzy measures

Consider a situation that can be modeled by the Choquet integral with respect to an

unknown fuzzy measure µ. How can we get µ? This is known as the identification

problem. The identification problem when sample data are available can be stated
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as follows: Consider m objects represented by the functions f1, . . . , fm. Assume the

aggregation operator applied to obtain an overall score is the Choquet integral and that

the corresponding value of function fi is yi , i = 1, . . . ,m. Consider a subfamily of fuzzy

measures F. We look for µ ∈ F minimizing

m∑
i=1

(Cµ(fi)− yi)2

That is, we look for the fuzzy measure µ in F that best fits our data, with the squared

error as a criterion of fitness. Note, however, that other criteria might be applied instead

of the squared error. The problem of identifying fuzzy measures from sample data can

be written as a quadratic problem if F is convex (see [61]) and then solved with the

usual methods. This approach will always lead to the exact solution, but it can be very

time-consuming and has a strong tendency to overfit, thus leading to bad approximations

when there exists some noise in the data. We will study how to overcome these drawbacks

using genetic algorithms in Chapter 4.





Chapter 3

BU-feasible posets and random

linear extension sampling

3.1 Introduction

In the last chapters we have seen that the problem of sampling uniformly inside a

polytope associated to certain subfamilies of fuzzy measures is linked to the problem of

sampling linear extensions from posets. This way the problem of generating a point in

an order polytope can be turned into the problem of generating a linear extension of

the subjacent poset in a random way. In this chapter we will study several methods for

sampling and counting linear extensions. As stated in Chapter 1, this problem has drawn

the attention of many researchers and many algorithms have been proposed to cope with

it (see e.g. [6, 62–65] for generating all linear extensions of a poset and [7, 66, 67] for

counting the number of linear extensions).

The classic methods for sampling linear extensions could be divided into three types.

The first type is the simplest one. This method relies on the generation of all linear

extensions to randomly choose one. One of the most classical algorithms to do that is

Kahn algorithm (see [68], [69]). Kahn Algorithm works by choosing vertices in the same

order as the eventual topological sort. This algorithm has complexity O(n·e(P )). In 1994

Pruesse and Ruskey [65] introduce the first constant amortized time algorithm reaching

complexity O(e(P )). Note that even in the best case with amortized time O(e(P )) the

computational cost of these algorithms depends on the size of the set of linear extensions

which is huge most of times. Therefore, for big posets these techniques cannot be applied

due to its high computational cost. Indeed, Brightwell and Winkler have shown in [28]

that, for general posets the problem of counting the number of linear extensions is a

81
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]P -complete problem, and consequently, it is not possible to derive an easy procedure

for sampling linear extensions for general posets using these methods.

The second kind of solutions is based on a geometrical approach. These methods have

received little attention. The best known approach of this kind was made by Peter

Matthews in 1991 [70]. This technique uses a coupling for a random walk on a polygonal

subset of the unit sphere in Rn. This method is not exact but we can choose the

precision of the algorithm. If the precision is required to be higher, the computational

cost increases but our sampled linear extension will be closer to uniform distribution.

The convergence time of this method is about O(n8 · log(n)), which is a polynomial but

very high cost.

The third and last type of method is based on Markov chains and follows the work

of Karzanov and Khachiyan [71] (see also [72] for an introduction on mixing Markov

chains). The idea is to generate a sequence of linear extensions and consider the n-th

term of the sequence. It has been proved [73] that it is possible to obtain a bound n

such that for the n-th element in the sequence, all linear extensions of the poset have the

same probability of appearence, no matter the initial linear extension considered. Thus,

a way to generate a linear extension is to follow the sequence until the n-th term. Some

work in this line can be seen e.g. in [74–77]. The number of steps required to reach this

target is called the mixing time of the chain. Note that most of these methods analyse

just the mixing time cost, which can be reduced to O(n3 · log(n)). However, this is not

the computational cost of the algorithm because we should add some cost referred to

the above computational complexities.

The main difficulty when trying to generate a random linear extension relies in the

combinatorial nature of the problem. Usually, the quantities appearing in the problem

are very large and grow very fast when the cardinality of the poset grows, and then

are considered intractable (see unsolvable) for generating a linear extension in a random

way.

In this chapter we present a new procedure for generating linear extensions, that we

have called Bottom-Up method (Sections 3.2 to 3.6) [78]. We will see how to use the

Bottom-Up method to sample linear extensions in a simple way. However, this method

just applies to some posets. For this reason, we will look for some generalizations of the

Bottom-Up method (see Section 3.7). We will discuss some generalizations relying on

the number of ideals of P . The most important generalization is the Ideal-based method.

Finally, we introduce this method and use it to solve some interesting problems. Among

these problems we highlight the problem of sampling uniformly inside the 2-truncated

capacities polytope.
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3.2 Bottom-Up method

Briefly speaking, in the Bottom-Up method we look for a vector of weights w∗ on the

elements of P, so that an element has a probability to be selected as the next element of

the linear extension given by the quotient between its weight and the sum of all elements

that can be selected for this position. The problem we solve in this section is how to

obtain a weight vector so that any linear extension has the same probability of being

obtained. We will see that this can be done by solving a linear system of equations.

Moreover, this system does not depend on the number of linear extensions, but on the

number of what we have called positioned antichains, whose number is usually very small

compared with the number of linear extensions. As it will become apparent below, the

algorithm is simple and fast; besides, it allows one to compute the number of linear

extensions of the poset very easily. Moreover, once the weight vector w∗ is obtained, the

computational cost of deriving a random extension is very reduced. This is because it

just suffices to consider the possible next elements and select one of them with probability

proportional to the corresponding weight. On the other hand, this method cannot be

applied to every poset and indeed, we show that the existence of a suitable weight w∗

depends on whether a linear system has an infinite number of solutions. We show some

examples of families of posets where it can be applied, illustrating the procedure. We

also provide some sufficient conditions on the poset to admit such a weight vector and

study how this weight vector can be obtained.

Let us consider a poset (P,�) and let us treat the problem of building a linear extension.

The first element of the linear extension is a minimal element of P , say x1, next an

element in MIN (P\{x1}) is selected, say x2, then a minimal element of P\{x1, x2}
and so on. In order to generate a random linear extension, the problem we have to face

is the way each minimal element is selected. In what follows, we develop a procedure

that assigns to each element of the poset a weight value, so that the probability of

selecting this element in a step is proportional to the quotient between its weight and

the sum of the weights of all minimal elements of the corresponding subposet. The basic

steps of our algorithm are given in Algorithm 1.

Lemma 3.1. Let w = (w1, ..., wn) be a weight vector for poset P such that wi > 0, ∀i,
and suppose that we derive a linear extension via the previous algorithm. Then, we

obtain a probability distribution on L(P ).
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Algorithm 1 BOTTOM-UP

1. ASSIGNING WEIGHTS
Step 1.1: For any x ∈ P, assign a weight value wx > 0.

2. SAMPLING STEP
P ′ ← P . Initialization
S ← ∅

while |P ′| > 0 do
Step 2.1: Select a minimal element x of P ′ with probability the quotient between

wx and the sum of the weights of MIN (P ′) and S ← S ∪ x.
Step 2.2: P ′ ← P ′\{x}.

end
return S

Proof. By construction, we know that P (ε) > 0 for any ε ∈ L(P ). Thus, it suffices to

show
∑

ε∈L(P ) P (ε) = 1. We will prove it by induction on |P |.

For |P | = 2 we have a chain or an antichain, and the result trivially holds in both cases.

Assume the result holds for |P | ≤ n and consider the case |P | = n+1. Let m1, ...,mr be

the minimal elements of P . Then, one of them is the first element in the linear extension

and thus,

∑
ε∈L(P )

P (ε) =
r∑
i=1

P (ε(1) = mi)
∑

ε′∈L(P\{mi})

P
(
ε′
)

=
r∑
i=1

wmi∑r
j=1wmj

∑
ε′∈L(P\{mi})

P
(
ε′
)

=
r∑
i=1

wmi∑r
j=1wmj

=

∑r
i=1wmi∑r
j=1wmj

= 1.

Thus, the result holds.

With some abuse of notation, we will denote wA =
∑

x∈Awx. Note that for a given linear

extension ε and a weight function w, the probability of the appearance of ε is given by

P (ε) =
wε(1)

wMIN (P )
×

wε(2)

wMIN (P\{ε(1)})
× · · · =

n∏
i=1

wε(i)

wMIN (P\{ε(1),...,ε(i−1)})
. (3.1)

We look for a weight vector satisfying that all linear extensions share the same probabil-

ity, that we will denote by w∗. The critical point in this procedure is the way we assign

weights to elements in P so that w∗ serves this purpose. Two questions arise:

1. Is it possible to derive such a weight for any poset?
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2. If a poset admits a weight vector in these conditions, how can it be computed?

The answer to the first question is negative, as our next example shows.

Example 3.1. Consider the poset given in Figure 3.1, some of its linear extensions are:

ε1 = (1, 2, 4, 3, 5), ε2 = (1, 2, 4, 5, 3), ε3 = (5, 2, 1, 3, 4), ε4 = (5, 2, 3, 1, 4), ε5 = (1, 5, 2, 3, 4)

and ε6 = (5, 1, 2, 3, 4).

4 3

21

5

Figure 3.1: Example of a poset where w∗ does not exist.

Then, if w∗ exists, P (ε1) = P (ε2) leads to w∗3 = w∗5; next, P (ε3) = P (ε4) leads to

w∗1 = w∗3 + w∗4; finally, P (ε5) = P (ε6) leads to w∗1 = w∗5. As a conclusion, no w∗

satisfying w∗i > 0,∀i ∈ P exists.

If a poset P admits a weight vector w∗ > 0, we say that P is BU-feasible.

Assume P is BU-feasible; we treat the problem of obtaining w∗ below. Let us start with

an example.

Example 3.2. Consider the poset N (see Figure 1.1) and let w = (w1, w2, w3, w4) be a

(possible) vector of weights. Then, for each linear extension of poset N , we obtain the

probabilities:

ε1 = (1, 2, 3, 4) ⇒ p(ε1) =
w1

w1 + w2
× w2

w2
× w3

w3 + w4
× w4

w4

ε2 = (1, 2, 4, 3) ⇒ p(ε2) =
w1

w1 + w2
× w2

w2
× w4

w3 + w4
× w3

w3

ε3 = (2, 1, 3, 4) ⇒ p(ε3) =
w2

w1 + w2
× w1

w1 + w3
× w3

w3 + w4
× w4

w4

ε4 = (2, 1, 4, 3) ⇒ p(ε4) =
w2

w1 + w2
× w1

w1 + w3
× w4

w3 + w4
× w3

w3

ε5 = (2, 3, 1, 4) ⇒ p(ε5) =
w2

w1 + w2
× w3

w1 + w3
× w1

w1
× w4

w4

In order to sample uniformly, we should get a vector w = (w1, w2, w3, w4) such that

p(ε1) = p(ε2) = p(ε3) = p(ε4) = p(ε5). It is easy to see that w∗ = (2, 3, 1, 1) satisfies

these conditions.

Note that we have two problems to face: First, as it can be seen in the previous example,

we have to solve a non-linear system of equations. This is the case for general posets.
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Second, the system involves e(P )−1 equations and relies on the knowledge of the whole

set of linear extensions. Therefore, the problem is intractable at this stage. Below we

will see that it is possible to derive an equivalent linear system involving a reduced

number of equations and such that it does not depend on the knowledge of L(P ).

We start transforming the system into an equivalent one just involving linear equation-

s. To achieve this, we will use our knowledge about the adjacent transposition graph

(L(P ), τ∗), see Definition 1.20.

Lemma 3.2. Let us consider two adjacent linear extensions ε1, ε2 in (L(P ), τ∗). Then,

the equation p(ε1) = p(ε2) is linear.

Proof. Let ε1 and ε2 be two adjacent linear extensions in (L(P ), τ∗). They can be writ-

ten as ε1 = (a1, a2, . . . , ak, x, y, b1, b2, . . . , bs) and ε2 = (a1, a2, . . . , ak, y, x, b1, b2, . . . , bs).

Now, denoting Pi = P\{ε1(1), ..., ε1(i− 1)} and P ′i = P \ {ε2(1), ..., ε2(i− 1)},

P (ε1) =
wa1

wMIN (P1)
×· · ·× wak

wMIN (Pk)
× wx
wMIN (Pk+1)

× wy
wMIN (Pk+2)

× wb1
wMIN (Pk+3)

×· · ·× wbs
wPn

,

P (ε2) =
wa1

wMIN (P ′1)
×· · ·× wak

wMIN (P ′k)
× wy
wMIN (P ′k+1)

× wx
wMIN (P ′k+2)

× wb1
wMIN (P ′k+3)

×· · ·× wbs
w′Pn

.

Notice that wMIN (Pi) = wMIN (P ′i ), if i 6= k + 2. Consequently,

P (ε1) = P (ε2)⇔ wMIN (P ′k+2) = wMIN (Pk+2).

Hence, we have obtained a linear equation.

From this result we can transform the system of equations into a linear system.

Theorem 3.3. Let P be a finite poset. The system of e(P ) − 1 non-linear equations

p(ε1) = p(ε2) = . . . = p(εe(P )) can be transformed into a linear system of the same

number of equations.

Proof. Consider a linear extension ε1. As (L(P ), τ∗) is connected by Lemma 1.21, there

exists a linear extension ε2 being adjacent to ε1. Applying the previous Lemma 3.2, we

conclude that p(ε1) = p(ε2) is a linear equation. Now, there exists ε3 ∈ L(P )\{ε1, ε2}
adjacent to one of them, say ε2. Therefore, p(ε2) = p(ε3) is linear. Acting like this, we

obtain a system of e(P )− 1 linear equations.
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Example 3.3. In Table 3.1, we show the way to obtain the weight vector for poset N .

In the first column, we consider the set of adjacent linear extensions. Although there are

five pairs of adjacent linear extensions (see Fig. 1.11), note that we just need four of

them in order to define the system involving all linear extensions. Moreover, note that

there are just three different equations, as some of them coincide.

Linear extensions Equation Incomparable pair V

p(ε1) = p(ε2) w3 = w4 {3, 4} ∅
p(ε1) = p(ε3) w2 = w1 + w3 {1, 2} ∅
p(ε2) = p(ε4) w2 = w1 + w3 {1, 2} ∅
p(ε3) = p(ε4) w3 = w4 {3, 4} ∅
p(ε3) = p(ε5) w1 = w3 + w4 {1, 3} ∅

Table 3.1: Linear system for poset N .

Therefore, we obtain the following linear system:


w3 = w4

w2 = w1 + w3

w1 = w3 + w4

whose solution is w∗ = (2λ, 3λ, λ, λ), λ > 0.

Now, a problem may be considered: How can the adjacent linear extensions be chosen?

Of course, the natural answer is to consider a Hamiltonian path in the graph (L(P ), τ∗).

However, such a path does not exist in general and it is indeed a problem that has

attracted the attention of many researchers (see [6] and references therein). We will

show below that the problem can be solved in a more suitable way without the need

of considering linear extensions and connections between them, so we can avoid this

problem.

Let us now deal with the problem of reducing the number of equations of the linear

system. To shed light on what follows, let us have a look to the system obtained in

Example 3.3. As we have seen in this example, it could be the case that some equations

coming from different pairs of adjacent linear extensions in (L(P ), τ∗) coincide. This is

the case for p(ε1) = p(ε2) and p(ε3) = p(ε4), or p(ε1) = p(ε3) and p(ε2) = p(ε4). Let us

take a deeper look at these equations. As they come from adjacent linear extensions,

they differ in two consecutive uncomparable elements that have swapped positions, the

position of the other elements remaining unaltered. Thus, as we have shown in Lemma

3.2, the equation depends on these pairs of elements. Moreover, as the equations rely on

the minimal elements of the corresponding subposets when these elements are selected,

we have to take into account the elements that have been selected before (or equivalently,
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that will be selected after). The elements in ↓ x̂∪ ↓ ŷ are of course selected before x, y,

and elements in ↑ x̂∪ ↑ ŷ are selected after. Then, it just suffices to know which are

the elements outside these subsets that have been selected before x, y. This is the set

V in the fourth column and it is an ideal of P\ l{x, y}. This leads us to the following

definition.

Definition 3.4. Let P be a finite poset. We say that (a = {x, y}, V ) is a positioned

antichain if a = {x, y} is an antichain in P and V is an ideal of P\ l {x, y}. Notice

that V can be the empty set.

Let us denote by PA(P ) the set of all positioned antichains for P and by pa(P ) its

cardinality. Note that for any pair of adjacent linear extensions in (L(P ), τ∗), a posi-

tioned antichain is associated with the pair, but it could be the case that several pairs

of adjacent linear extensions share the same positioned antichain, as we have seen in the

previous example. Therefore, the linear system based on adjacent linear extensions can

be transformed into another one based on positioned antichains. This is formally shown

below.

Definition 3.5. Let P be a finite poset and (a, V ) a positioned antichain of P with

a = {x, y}. We define the set of linear extensions generated by (a, V ) as

G(a, V ) := {ε = (ε1, ε2, ε3) ∈ L(P ) : ε1 ∈ L(↓ x̂∪ ↓ ŷ∪V ), ε2 ∈ L(a), ε3 ∈ L(↑ x̂∪ ↑ ŷ∪V c
a )}

where V c
a := P\(l{x, y} ∪ V ). Notice that ε2 = (x, y) or ε2 = (y, x).

Lemma 3.6. Let us consider a pair of adjacent linear extensions (ε1, ε2) in (L(P ), τ∗).

Then, there is a unique positioned antichain (a, V ) such that ε1, ε2 ∈ G(a, V ) and ε2 is

obtained by interchanging the elements of a in ε1. We call it the positioned antichain

associated with the pair (ε1, ε2).

Proof. Let ε1 = (a1, a2, . . . , ak, x, y, b1, b2, . . . , bs) and ε2 = (a1, a2, . . . , ak, y, x, b1, b2, . . . , bs).

Now we necessarily have to choose a = {x, y} and V = (P\ l{x, y}) ∩ {a1, a2, . . . , ak}.
Since ε1 and ε2 are linear extensions, then V is an ideal of P\ l {x, y}. Finally

ε1, ε2 ∈ G(a, V ).

Note that for any positioned antichain (a = {x, y}, V ), it is always possible to obtain

a pair of linear extensions (ε1, ε2) such that ε1 and ε2 are adjacent in (L(P ), τ∗) and

whose associated positioned antichain is (a, V ). To see this, it just suffices to consider

ε1 = (ε11, x, y, ε
3
1) ∈ G(a, V ) and ε2 = (ε11, y, x, ε

3
1).

Theorem 3.7. Let us consider two pairs of adjacent linear extensions (ε1, ε2) and (ε3, ε4)

in (L(P ), τ∗) and suppose they share the same positioned antichain. Then, the linear
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equations for p(ε1) = p(ε2) and p(ε3) = p(ε4) are the same. Consequently, it just suffices

to consider the linear equations corresponding to different positioned antichains.

Proof. Let (a, V ), where a = {x, y}, denotes the common positioned antichain associated

with both pairs. From the proof of Lemma 3.2, we know that the linear equations

for p(ε1) = p(ε2) and p(ε3) = p(ε4) only depend on the terms corresponding to the

(consecutive) positions for x, y in the linear extension. On the other hand, these terms

depend only on the elements appearing before in the linear extension. As these elements

are in both cases ↓ x̂∪ ↓ ŷ ∪ V , the result holds.

Definition 3.8. We define the linear equation associated with the positioned an-

tichain (a = {x, y}, V ) as the equation given by

w(MIN (P \ (↓ â ∪ V ∪ {x}))) = w(MIN (P \ (↓ â ∪ V ∪ {y}))). (3.2)

Note that this equation arises for p(ε1) = p(ε2) where (ε1, ε2) is a pair of two adjacent

linear extensions whose associated positioned antichain is (a, V ).

3.3 pa(P ) ≤ e(P )

Now, the following question is of relevance: Does the system based on positioned an-

tichains involve a reduced number of equations? For this, we have to compare pa(P )

and e(P ); the following holds:

Theorem 3.9. Let P be a finite poset. Then, pa(P ) ≤ e(P ).

This section is devoted to prove this theorem. In an attempt to clarify the proof, we

have considered some previous results before the main part of the proof. In what follows,

we will denote Px := P \ {x}.

Lemma 3.10. Let P be a finite poset. The following holds:

i) For every x ∈MIN (P ), i(Px) ≤ i(P ) ≤ 2i(Px).

ii) pa(P ) =
∑

(x,y)∈A2(P ) i(P\ l{x, y}), where A2(P ) denotes the set of antichains of

two elements of P .

iii) pa(P1 ⊕ P2) = pa(P1) + pa(P2).

iv) pa(P1]P2) = i(P2)pa(P1)+i(P1)pa(P2)+
∑

(x,y)∈P1×P2
i((P1\ l{x})](P2\ l{y})).
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v) Let P be a poset with m(P ) = 2. Suppose that P has a minimal element x1 less

than every non-minimal element in P ; then, pa(P ) = pa(Px1) + 1. Therefore, if

P ∗ is a poset with an only minimum, then pa(P ∗ ] 1) = pa(P ∗x1 ] 1) + 1.

vi) Let P be a poset with m(P ) = 3. Suppose that P has a minimal element x1 less

than every non-minimal element in P ; then, pa(P ) = pa(Px1) + 5. Therefore, if

P ∗ is a poset with an only minimum, then pa(P ∗ ] 1 ] 1) = pa(P ∗x1 ] 1 ] 1) + 5.

vii) i(P ) = i(P ∂) and pa(P ) = pa(P ∂).

Proof. i) Consider x ∈MIN (P ) fixed and let us define

F : I(Px) → I(P )

I 7→ I ∪ {x}

As x ∈MIN (P ), if I ∈ I(Px), it follows that I ∪ {x} ∈ I(P ), and F is injective,

and hence the first inequality holds.

Let us now consider the function G : I(P )→ I(Px)× 2 given by

G(I) =


(I, 0), x /∈ I

(I \ {x}, 1), x ∈ I 6= {x}
(∅, 1), I = {x}

Note that if x 6∈ I then I ∈ I(Px); on the other hand, if x ∈ I, then I\{x} ∈ I(Px);

we conclude that G is well-defined. As G is injective, the second inequality holds.

ii) For a fixed antichain {x, y} of two elements, the number of positioned antichains

associated with {x, y} is given by i(P\ l{x, y}). Then,

pa(P ) =
∑

(x,y)∈A2(P )

i(P\ l{x, y}).

iii) As P = P1 ⊕ P2 ⊕ ... ⊕ Pn, if x ∈ Pi, y ∈ Pj , i < j, it always holds that x ≺ y.

Therefore, positioned antichain in P is always a positioned antichain in Pi for some

i.

By definition of ⊕, given x ∈ Pi and y ∈ Pj with i < j, x �P y. Consequently, any

antichain in P contains elements from a single Pi. Therefore, P\ l{x, y} = Pi\ l
{x, y} and we conclude that V is an ideal of Pi\ l{x, y}.

Finally,

PA(P ) =

n⋃
i=1

PA(Pi),
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and therefore pa (P1 ⊕ P2 ⊕ ...⊕ Pn) =
∑n

i=1 pa(Pi). In particular, pa(P1 ⊕ P2) =

pa(P1) + pa(P2).

iv) The set PA(P1 ]P2) can be partitioned into three parts in terms of the antichain

a: a ⊆ P1, a ⊆ P2 and a = {x, y}, x ∈ P1, y ∈ P2. Then, if A2(P ) denotes the set

of antichains of two elements of P , iii) implies that pa(P1 ] P2) is given by

∑
(x,y)∈A2(P1)

i((P1\ la)]P2)+
∑

(x,y)∈A2(P2)

i(P1](P2\ la))+
∑

(x,y)∈P1×P2

i((P1\ l{x})](P2\ l{y})).

On the other hand, note that i((P1\ la) ] P2) = i(P1\ la)i(P2). Therefore,

∑
(x,y)∈A2(P1)

i((P1\ la) ] P2) = pa(P1)i(P2).

Similarly,

∑
(x,y)∈A2(P2)

i(P1 ] (P2\ la)) = i(P1)pa(P2).

v) Let x1, x2 be the minimal elements of P . Observe that x2 is the only element in P

that is not related to x1. Then, every antichain of two elements a in P is related

to or contains x1. Therefore, P\ l a = Px1\ l a and I(P\ l a) = I(Px1\ l a).

Then, if (a, V ) is a positioned antichain of P such that x1 /∈ a then (a, V ) is a

positioned antichain of Px1 . Also, if (a, V ) is a positioned antichain of Px1 , then

(a, V ) is a positioned antichain of P . Then, the positioned antichains in P are

the same as Px1 plus the positioned antichains with x1 ∈ a. Since x1 is less than

every element apart from x2, then the only position antichain with x1 ∈ a is

(a = {x1, x2}, V = ∅). Therefore, pa(P ) = pa(Px1) + 1.

vi) Let x1, x2, x3 be the minimal elements of P and let us study the different kinds of

positioned antichains (a, V ) in P and Px1 .

• Suppose a contains some element in ↑ x̂1. Then, x1 /∈ V and P\ la = Px1\ la;

thus, V is an ideal of Px1 , and then (a, V ) is a positioned antichain for Px1 .

Reciprocally, any (a, V ) ∈ PA(Px1) satisfying a∩ ↑ x̂1 6= ∅ can be associated

with (a, V ) ∈ PA(P ). Then,

f : I(P\ la) → I(Px1\ la)

V → V

is a bijective function.
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• Suppose on the other hand that a∩ ↑ x̂1 = ∅. Observe that this case only arises

if a ⊂ {x1, x2, x3}, since x1 is related to every non-minimal element. The

possible positioned antichains are (a = {x1, x2}, V = ∅), (a = {x1, x3}, V =

∅), (a = {x1, x2}, V = {x3}), (a = {x1, x3}, V = {x2}) and the positioned

antichains for a = {x2, x3}. Note that the first four positioned antichains are

not positioned antichains of Px1 .

Let us then turn to positioned antichains with a = {x2, x3}. We have two

possible choices for V in this case: either x1 ∈ V or V = ∅. In the first case,

note that

f : I(P\ l{x2, x3}) → I(Px1\ l{x2, x3})
V → V \ {x1}

is a bijective function. Then, the number of ideals associated with the posi-

tioned antichain a = {x2, x3} in P is the number of ideals associated with the

positioned antichain a = {x2, x3} in Px1 plus one (the remaining case V = ∅).
This positioned antichain plus the four ones above which were not in Px1 give

us the result pa(P ) = pa(Px1) + 5.

vii) Note that i(P ) = i(P ∂) because A ∈ I(P )⇔ Ac ∈ F(P ) = I(P ∂).

Let us now prove that pa(P ) = pa(P ∂). Let a be an antichain in P ; then, a

is an antichain in P ∂ . On the other hand, the number of positioned antichains

associated with this antichain in P is i(P\ l a), and the number of positioned

antichains associated with a in P ∂ is i(P ∂\ la). Since P ∂\ la = (P\ la)∂ , then

i(P ∂\ la) = i((P\ la)∂) = i(P\ la). By iii) we get pa(P ) = pa(P ∂).

Then, the result holds.

Lemma 3.11. Let P be a finite poset with exactly one minimal element x; then

pa(P ) = pa(Px).

Proof. Obviously, pa(P ) ≥ pa(Px). Now, as x � y, ∀y ∈ Px, for any positioned antichain

(a, V ) in P , it follows that x 6∈ a, x 6∈ V . Consequently, any positioned antichain in P

is also a positioned antichain in Px, and hence pa(P ) ≤ pa(Px) and thus, pa(P ) =

pa(Px).

Lemma 3.12. Let P be a finite poset such that m(P ) ≥ 4. Then,

pa(P ) ≤
∑

x∈MIN (P )

pa(Px).
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Proof. The set PA(P ) (resp. PA(Px)) can be partitioned into three sets attending the

number of minimal elements of P in the antichain, PA0(P ),PA1(P ), PA2(P ) (resp.

PA0(Px),PA1(Px),PA2(Px)). We will show that for each of these three cases the result

holds.

• Case 1: a = {a1, a2}, a1, a2 6∈ MIN (P ). Consider an element x(a1, a2) ∈
MIN (P ) such that x(a1, a2) ∈↓ â. Then, x(a1, a2) 6∈ a, x(a1, a2) 6∈ V, and hence

(a, V ) ∈ PA(Px(a1,a2)). Consequently,

pa0(P ) ≤
∑

x∈MIN (P )

pa0(Px).

• Case 2: a = {x, a0}, a0 6∈ MIN (P ), x ∈ MIN (P ). As in the previous case,

there exists an element x(a0) ∈ MIN (P ), x(a0) 6= x such that x(a0) ∈↓a. Then,

x(a0) 6∈ a, x(a0) 6∈ V, so that (a, V ) ∈ PA(Px(a0)). Consequently,

pa1(P ) ≤
∑

x∈MIN (P )

pa1(Px).

• Case 3: a = {xi, xj}, xi, xj ∈ MIN (P ). Note that for fixed {xi, xj} the number

of possible positioned antichains in P (resp. Px, for x ∈ MIN (P )\{xi, xj}) is

given by i(P\ ↑{xi, xj}) (resp. i(Px\ ↑{xi, xj})). Thus, by Lemma 3.10 iii),

pa2(P ) =
∑

(xi,xj)∈MIN (P )2

i(P\ ↑{xi, xj}),

∑
x∈MIN (P )

pa2(Px) =
∑

x∈MIN (P )

∑
(xi,xj)∈(MIN (P )\{x})2

i(Px\ ↑{xi, xj}).

Now, defining P ij = P\ ↑{xi, xj}, we have

∑
x∈MIN (P )

∑
(xi,xj)∈(MIN (P )\{x})2

i(Px\ ↑{xi, xj}) =
∑

x∈MIN (P )

∑
(xi,xj)∈(MIN (P )\{x})2

i(P ij \ {x})

=
∑

(xi,xj)∈MIN (P )2

∑
x∈MIN (P )\{xi,xj}

i(P ij \ {x})

Since there are at least four minimal elements in P, the last expression has at least

two addends. If x∗i,j is the minimal element with least i(P ij \ {x∗i,j}), it follows

from Lemma 3.10 ii)
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∑
(xi,xj)∈MIN (P )2

∑
x∈MIN (P )\{xi,xj}

i(P ij \ {x}) ≥
∑

(xi,xj)∈MIN (P )2

2i(P ij \ {x∗i,j})

≥
∑

(xi,xj)∈MIN (P )2

i(P ij)

=
∑

(xi,xj)∈MIN (P )2

i(P\ ↑{xi, xj})

= pa2(P )

Adding up these three cases, the result holds.

It is not difficult to find examples showing that there are not similar results to Lemmas

3.11 and 3.12 when m(P ) = 2 and m(P ) = 3. However, there are special cases where a

similar result holds.

Lemma 3.13. Let P be a finite poset such that m(P ) = 2 and P has at least two

maximal elements which are both non-minimal elements. Then:

pa(P ) ≤ pa(Px1) + pa(Px2).

Proof. The proof is quite similar to the previous one. The set PA(P ) (and PA(Px1),

PA(Px2)) can be partitioned into three sets, PA0(P ),PA1(P ), PA2(P ) (resp. PA0(Pxi),

PA1(Pxi), PA2(Pxi)) attending the number of minimal elements of P in the antichain.

The first two cases can be treated as in the previous lemma. In particular, if we consider

M1 and M2 maximal and non-minimal elements then ({M1,M2}, V = ∅) is linked to

({M1,M2}, ∅) in, say, PA(Px1), with x1 ∈↓{M1,M2}.

Let us then deal with the case of PA2(P ). In this case, the only positioned antichain

is given by (a = {x1, x2}, V = ∅). Then, we can link this positioned antichain to

(a = {M1,M2}, V = ∅) ∈ PA(Px2), which has not been linked to any other positioned

antichain.

Lemma 3.14. Let P be a finite poset such that MIN (P ) = {x1, x2, x3} and P has at

least three maximal elements which are non-minimals. Then,

pa(P ) ≤ pa(Px1) + pa(Px2) + pa(Px3).

Proof. The proof is very similar to the previous proofs. The set PA(P ) (and PA(Pxi), xi ∈
MIN (P )) can be partitioned into three sets, PA0(P ), PA1(P ), PA2(P ) (resp. PA0(Pxi),

PA1(Pxi), PA2(Pxi)) attending the number of minimal elements of P in the antichain
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a. The first two cases can be treated as in Lemma 3.12. In particular, if we de-

note by M1,M2,M3 three maximal non-minimal elements, the positioned antichain

(a = {Mi,Mj}, V = ∅) is linked to (a, V ) ∈ PA(Px(Mi,Mj)) for a x(Mi,Mj) ∈↓{Mi,Mj}.

Let us then deal with the situation where a = {xi, xj} and consider the positioned

antichain (a, V ). In this case, either V = ∅ or xk ∈ V , where xk is the minimal outside a.

If xk ∈ V , we link (a, V ) to (a, V \{xk}) ∈ PA(Pxk). If V = ∅, we link (a = {xi, xj}, V =

∅) to (a = {Mi,Mj}, V = ∅) ∈ PA(Px∗(Mi,Mj)) for x∗(Mi,Mj) 6= x(Mi,Mj).

Lemma 3.15. Let P be a finite poset with 2 minimals x1 and x2 and such that P \
{x1, x2} is neither the empty set nor a chain. Then,

∑
x∈P

i(P\ lx) ≤ (|P | − 1)e(P )

Proof. We are going to build an injective function F from
⋃
x∈P I(P\ l x) × {x} to

L(P )×{1, 2, . . . , |P |−1}. Define f : P → {1, 2, . . . , |P |−1} such that f(x1) = f(x2) = 1,

f(P \ {x1, x2}) = {2, ..., |P | − 1} and f is a natural labeling between P \ {x1, x2} and

{2, ..., |P | − 1}, thus f(i) < f(j) if i � j.

Take x ∈ P \{x1, x2} and consider (I, x) ∈ I(P\ lx)×{x}. We define F (I, x) = (ε, f(x)),

where ε is a linear extension given by ε := (↓ x̂, I, x,R) where R := P \ (I∪ ↓x) and such

that the order in the elements of each part are given according to f and x1 is placed

before x2 when they are in the same part. F is well-defined: note that I∩ ↓x = ∅ and

there is no contradiction with the order if we place elements of I after elements of ↓ x̂.
Indeed, if y ∈ I, z ∈↓ x̂, y � z, then y ∈↓ x, and hence y ∈ I∩ ↓ x = ∅, that is not

possible. Also, if x � y then x would be related to some element of I which is in P\ lx,

what is impossible, so we can place x after I. Similarly, there is no contradiction placing

elements of R after I or ↓ x. Note that F is injective so far. Indeed, as f is bijective

on P \ {x1, x2}, the value f(x) provides element x. And then, I can be found as the

elements placed before x and outside ↓ x̂.

Consider now (I, xk) ∈ I(P\ l xk) × {xk}. We define F (I, xk) = (ε, 1). Let us then

define ε:

• If I 6= ∅ (then I contains a minimal element) then we define ε = (I, xk, R) where

elements in I and in R are placed in increasing order according to f .

• Finally, F (∅, x1) = (x1, x2, R
∗) and F (∅, x2) = (x2, x1, R

∗), where R∗ is a linear

extension of P \ {x1, x2} such that it is not in increasing order according to f .

Note that this is always possible as P \ {x1, x2} 6= ∅ and it is not a chain.
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Note that this function is injective.

Now we can prove the principal theorem of this section.

Proof of Theorem 3.9: We are going to prove it by induction on n = |P |.

For n = 1 the only poset is 1 with pa(1) = 0 < 1 = e(1).

Assume pa(P ) ≤ e(P ) holds if |P | ≤ n and let us prove the result for a poset with n+ 1

elements. We have several cases:

• Case 1: m(P ) = 1. Applying the induction hypothesis and Lemma 3.11, if x is

the minimum,

pa(P ) = pa(Px) ≤ e(Px) = e(P ),

hence the result.

• Case 2: m(P ) ≥ 4. Applying the induction hypothesis and Lemma 3.12

pa(P ) ≤
∑

x∈MIN (P )

pa(Px) ≤
∑

x∈MIN (P )

e(Px) = e(P ),

hence the result.

• Case 3: m(P ) = 2. We consider several cases in terms of the number of maximal

elements that are not minimal in P . Let us denote this set by S.

– If |S| = 0, then P = 2 and pa(2) = 1 < 2 = e(2).

– If |S| = 1, then either P has a maximum or P = P ∗ ] 1, where P ∗ has

an only minimum and an only maximum. If P has a maximum, applying

pa(P ) = pa(P ∂) (Lemma 3.10 viii)), e(P ) = e(P ∂) and the first case,

pa(P ) = pa(P ∂) ≤ e(P ∂) = e(P ).

Otherwise, if P = P ∗ ] 1, where P ∗ has an only minimum, we can apply

Lemma 3.10 i), vi) and the induction hypothesis, so that

pa(P ∗ ] 1) = pa(P ∗x1 ] 1) + 1 ≤ e(P ∗x1 ] 1) + 1 = (|P ∗x1 |+ 1)e(P ∗x1) + 1

≤ (|P ∗x1 |+1)e(P ∗x1)+e(P ∗x1) = (|P ∗x1 |+2)e(P ∗x1) = (|P ∗|+1)e(P ∗) = e(P ∗]1).
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– If |S| ≥ 2, then we can use Lemma 3.13 and the induction hypothesis to

conclude

pa(P ) ≤ pa(Px1) + pa(Px2) ≤ e(Px1) + e(Px2) = e(P ).

• Case 4: m(P ) = 3. In this last case we can suppose that P has exactly 3 maximal

elements because otherwise we can apply Lemma 3.10 viii), e(P ) = e(P ∂) and the

corresponding case studied before to conclude:

pa(P ) = pa(P ∂) ≤ e(P ∂) = e(P ).

Then, let us suppose that P has three maximal elements; let us denote by S the

set of maximal elements of P that are not minimal. We consider different cases in

terms of |S|.

– If |S| = 0, then P = 3 and pa(3) = 6 = e(3).

– If |S| = 1, then P = P ∗ ] 1 ] 1, where P ∗ has just one minimal x1. Then,

applying Lemma 3.10 vii) and the induction hypothesis,

pa(P ) = pa(Px1) + 5 ≤ e(Px1) + 5.

We will prove that in this case e(Px1) + 5 ≤ e(P ). To prove this, observe

that if we take any linear extension of Px1 , it can be obtained from a linear

extension of P removing x1. Then, the map

G : L(P ) → L(Px1)

(ε1, ..., εi, x1, εi+2, ..., εn) → (ε1, ..., εi, εi+2, ..., εn)

is a surjective function. Note that:

∗ G(x1, x2, x3, z, . . .) = G(x2, x1, x3, z, . . .) = G(x2, x3, x1, z, . . .) = (x2, x3, z, . . .).

∗ G(x1, x3, x2, z, . . .) = G(x3, x1, x2, z, . . .) = G(x3, x2, x1, z, . . .) = (x3, x2, z, . . .).

∗ G(x1, x3, z, x2, . . .) = G(x3, x1, z, x2, . . .) = (x3, z, x2, . . .).

Thus, e(P ) ≥ e(Px1) + 5 and the result holds.

– If |S| = 2, then P = P ∗ ] 1, where P ∗ is a poset with 2 minimal elements

and two (different) maximal elements. Then, we can apply Lemma 3.10 v),

Lemma 3.15 and the induction hypothesis to conclude

pa(P ∗ ] 1) = 2pa(P ∗) +
∑
x∈P ∗

i(P ∗\ lx) ≤ 2e(P ∗) +
∑
x∈P ∗

i(P ∗\ lx)

≤ 2e(P ∗) + (|P ∗| − 1)e(P ∗) = (|P ∗|+ 1)e(P ∗) = e(P ∗ ] 1).
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– If |S| = 3, we can use Lemma 3.14 and the induction hypothesis to conclude

pa(P ) ≤ pa(Px1) + pa(Px2) + pa(Px3) ≤ e(Px1) + e(Px2) + e(Px3) = e(P ).

Therefore we have proved the inductive step for any P with n + 1 elements, and then

by induction the result holds.

In general, pa(P ) < e(P ) and pa(P ) is very small compared to e(P ). Note however that

it could be the case that the number of linear extensions and the number of positioned

antichains could be the same.

Example 3.4. Consider the antichain of three elements, 3̄. In this case, there are six

linear extensions. On the other hand, each pair of elements are uncomparable, and V

can be either the element outside the antichain or the empty set. Then, there are six

positioned antichains.

Finally, it is important to note that the number of equations could be further reduced,

as redundances may appear. Next example illustrates this situation and shows how

positioned antichains can reduce the complexity of the problem.

Example 3.5. Let us consider the case of the Boolean poset of order three B3 (Figure

3.2), that has 48 linear extensions.

123

2312 13

31 2

∅

Figure 3.2: B3 lattice.

Note that the empty set and the total set have fixed positions and any weight is valid

for these elements. If we remove these two elements we obtain an irreducible poset. We

have the following positioned antichains and equations:
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Positioned Antichain Equation Positioned Antichain Equation

(12, 13) V = ∅ w13 = w12 (12, 13) V = 23 w13 = w12

(12, 23) V = ∅ w12 = w23 (12, 23) V = 13 w12 = w23

(13, 23) V = ∅ w13 = w23 (13, 23) V = 12 w13 = w23

(1, 23) V = ∅ w1 = w12 + w13 + w23 (2, 13) V = ∅ w2 = w12 + w13 + w23

(3, 12) V = ∅ w3 = w12 + w13 + w23 (1, 2) V = ∅ w1 = w2

(1, 2) V = 3 w1 + w23 = w2 + w13 (1, 3) V = ∅ w1 = w3

(1, 3) V = 2 w1 + w23 = w3 + w12 (2, 3) V = ∅ w2 = w3

(2, 3) V = 1 w2 + w13 = w3 + w12

Note that we have reduced the number of equations from 47 to 15. In fact, the number

of equations can be further reduced to:



w12 = w13 = w23

w1 = w12 + w13 + w23

w2 = w12 + w13 + w23

w3 = w12 + w13 + w23

Then, a solution is w∗ = (w∗1, w
∗
2, w

∗
3, w

∗
12, w

∗
13, w

∗
23) = (3, 3, 3, 1, 1, 1) or, with w∗∅ = 1

and w∗123 = 1, w∗ = (1, 3, 3, 3, 1, 1, 1, 1).

Remark 3.16. Let P be BU-feasible. Then, ∀ε ∈ L(P ), it is possible to obtain P (ε)

applying Eq. (3.1). On the other hand, P (ε) =
1

e(P )
, and hence e(P ) =

1

P (ε)
.

For example, considering B3, it can be checked that:

P (ε = (∅, 1, 2, 3, 12, 13, 23, 123)) = 1 · 3

9
· 3

6
· 3

4
· 1

3
· 1

2
· 1 · 1 =

1

48
⇒ e(B3) = 48.

Thus, our procedure also provides an easy way to obtain the number of linear extensions.

Note that, as already pointed out in the introduction, the problem of counting all linear

extensions of a poset is a hard problem.

3.4 Properties of BU-feasible posets

Let us now show some properties regarding BU-feasibility.

Proposition 3.17. Let P1, ..., Pn be finite posets and consider P := P1 ⊕ P2 ⊕ ...⊕ Pn.

Then, there exists a weight vector w∗P if and only if there exists w∗Pi
, i = 1, ..., n. In
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other words, P is BU-feasible if and only if Pi is BU-feasible ∀i = 1, ..., n. Moreover,

w∗P = (w∗P1
, ..., w∗Pn

).

Proof. Let P = P1 ⊕ P2 ⊕ ...⊕ Pn, as we saw in proof of Lemma 3.10 iii),

PA(P ) =

n⋃
i=1

PA(Pi).

For a positioned antichain (a = {x, y}, V ) in Pi, notice that the minimal elements of

P \ (↓ â ∪ V ∪ {x}) and P \ (↓ â ∪ V ∪ {y}) belong to Pi. Therefore, we obtain a linear

equation that just involves elements in Pi, and it is the same equation arising when

dealing with Pi instead of P.

Therefore, the equations for P can be divided in n groups of equations, each of them

just involving elements of a Pi. Thus, it is possible to obtain a weight vector w∗P if and

only if it is possible to obtain a group of n weight vectors w∗P1
, ..., w∗Pn

and in this case

w∗P = (w∗P1
, ..., w∗Pn

).

Now, we prove an important property about feasibility of subposets.

Theorem 3.18. Let P be a BU-feasible finite poset with weight vector w∗P . If F is a

filter of P, then F is BU-feasible and w∗F := w∗P |F is a possible weight vector for the

subposet F .

Proof. We will prove that every linear equation associated with the linear system gen-

erated by F is in the linear system generated by P . Consider a positioned antichain

(aF = {a1, a2}, VF ) in F. The associated equation for this positioned antichain is given

by (see Eq. (3.2))

w(MIN (F \ (↓ âF ∪ VF ∪ {a1}))) = w(MIN (F \ (↓ âF ∪ VF ∪ {a2}))).

Consider (a, V ), where a = aF and V = VF ∪ F c
a where F c

a := F c\ la. First, note that

V is an ideal of P\ la. As F c is an ideal of P , then F c\ la = F c
a is an ideal of P\ la.

Take x ∈ V and z � x, z ∈ P\ la. Then, if x ∈ F c
a so is z. Suppose on the other hand

that x ∈ VF . If z ∈ F, then z ∈ VF because VF is an ideal of F\ la. Otherwise, z ∈ F c

and z ∈ P\ la, so that z ∈ F c
a ⊆ V.

Then (a, V ) is a positioned antichain of P and the associated equation is
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w(MIN (P \ (↓ â ∪ V ∪ {a1}))) = w(MIN (P \ (↓ â ∪ V ∪ {a2})))⇔

w(MIN (P \ (↓ âF ∪ (VF ∪ F c
a ) ∪ {a1}))) = w(MIN (P \ (↓ âF ∪ (VF ∪ F c

a ) ∪ {a2})))⇔

w(MIN (P \ (↓ âF ∪ VF ∪ {a1} ∪ (F c\ ↑aF )))) = w(MIN (P \ (↓ âF ∪ VF ∪ {a2} ∪ (F c\ ↑aF ))))⇔

w(MIN (P \ (↓ âF ∪ VF ∪ {a1} ∪ F c))) = w(MIN (P \ (↓ âF ∪ VF ∪ {a2} ∪ F c)))⇔

w(MIN (F \ (↓ âF ∪ VF ∪ {a1}))) = w(MIN (F \ (↓ âF ∪ VF ∪ {a2}))).

Observe that we have used above that F c\ ↑ aF = F c since ↑ aF ⊆ F . Finally, as the

system for P has a positive solution, then so has the one for F , and a possible solution

is the restriction of w∗P to F .

Note however that this does not mean that BU-feasibility for every proper filter F implies

BU-feasibility for P (see the poset of Example 3.1).

Corollary 3.19. Let P1, P2, . . . , Pn be a collection of finite connected posets. If P =

P1]P2]. . .]Pn is BU-feasible, then each Pi is BU-feasible and w∗Pi
= w∗P |Pi

is a possible

weight vector.

Proof. As Pi is a filter of P , it just suffices to apply Theorem 3.18.

Lemma 3.20. Let P be a finite poset and let M = L0 = {m1,m2, . . . ,ms} be the set of

maximal elements of P . If P is BU-feasible, then w∗mi
= w∗mj

,∀mi,mj ∈M.

Proof. For every pair of maximal elements mi,mj , consider the positioned antichain

({mi,mj}, V = P \ (↓mi∪ ↓mj)). Then, P \ (↓m̂i∪ ↓m̂j ∪ V ) = {mi,mj}, and hence

MIN (P \ (↓m̂i∪ ↓m̂j ∪ V ∪mj) = {mi} and MIN (P \ (↓m̂i∪ ↓m̂j ∪ V ∪mi)) =

{mj} and thus by Eq. (3.2), the corresponding equation is wmi = wmj .

Let us now deal with the problem of BU-feasibility of a general poset P . From Propo-

sition 3.17, we just need to focus on the case of posets P that are irreducible by direct

sum
⊕

.

Theorem 3.21. Let P be a finite poset irreducible by direct sum ⊕. Then, P is BU-

feasible if and only if the system (3.2) has infinitely many solutions.

Proof. ⇒) Note that the system based on positioned antichains has the null vector as

trivial solution, but this vector is not a valid weight vector as weights should be positive.

Thus, BU-feasibility implies that the linear system has infinitely many solutions.
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⇐) Let us prove that if the system generated by the positioned antichains has infinitely

many solutions, then it is possible to obtain a weight vector; i.e. we shall prove that a

vector with positive coordinates can be always obtained.

We are going to show it by induction on the levels of P . Let us start proving the induction

step. Suppose that there is a solution w which is positive on the first k levels of P . Now

we are going to show it for the elements in Lk+1. As P is irreducible, there exist at least

two elements in ∪ki=0Li and there exists at least one x ∈ Lk+1 such that it is not covered

by every element in ∪ki=0Li. If there are several elements in ∪ki=0Li non-related to x we

choose an element y in the Lt with lowest t, therefore in Lt−1 every element is related

to x. Consider the positioned antichain ({x, y}, V ) where V = P\ l{x, y}. Then, from

Def. 3.8, the corresponding equation is given by

wx = wy +
∑

h∈∪ki=0Li,y 6�h,xlh

wh. (3.3)

By the induction hypothesis, the right hand side of the last equation is positive so

wx > 0. Consider now an element z ∈ Lk+1 such that it is covered by any element in

∪ki=0Li. Since there exists x ∈ Lk+1 that is not covered by all elements in ∪ki=0Li, let us

consider the positioned antichain ({z, x}, V ) where V = P\ l {x, z}. Again, this leads

to the equation

wz = wx +
∑

h∈∪ki=0Li,x 6�h,zlh

wh. (3.4)

The right hand side of the last equation is also positive. Hence, the induction step is

finished. It just remains to show the basis step. So we have to prove that there is a

solution having positive value for the maximals of P , that is for L0. First, let us show

that if the system has infinitely many solutions, then there exists a solution such that

wmi 6= 0 for a maximal element. If any solution has wmi = 0 for all maximal elements,

we can apply Eqs. (3.3) and (3.4) to conclude that wx = 0, ∀x ∈ L1. But then, we can

repeat the procedure to conclude wx = 0, ∀x ∈ L2; and so on. Then, wx = 0, ∀x ∈ P,
and hence the system has just an only solution, which is a contradiction.

Assume then that we have a solution for the system satisfying wmi 6= 0, for a maximal

element mi. We can fix this value to be wmi = 1. Now, all maximal elements have the

same positive weight by Lemma 4, so the induction is finished.

The proof of the last theorem has many interesting consequences. First, observe that

in the case of an irreducible BU-feasible poset we can compute all the values of w∗ by
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applying Eqs. (3.3) and (3.4). In this sense, just these equations are needed. However,

the rest of equations derived from positioned antichains play an important role in the BU-

feasibility of the poset, as they determine whether the previous solution holds. Moreover,

the following corollaries follow as a direct consequence of this result.

Corollary 3.22. Let P be a BU-feasible finite poset irreducible by direct sum ⊕. If w∗1

and w∗2 are two possible weights, then ∃λ ∈ R+ such that w∗1 = λ · w∗2.

Proof. Applying equations (3.3) and (3.4), it can be concluded that all the coordinates

in a suitable weight vector w∗ depend on the (common) value of the maximal elements.

If we multiply the value corresponding to the maximal elements by a coefficient λ, all

other coordinates of the weight vector are also multiplied by λ just by linearity.

Corollary 3.23. Let P be a BU-feasible finite poset irreducible by direct sum ⊕. If

x ≺ y then wx > wy.

Proof. If we apply Equations 3.3 and 3.4 on each level and we use induction on k ≥ 1,

where the induction step supposes that the statement is true for the first k levels, ∪ki=0Li,

we get the result.

Corollary 3.24. Let P be a finite poset irreducible by direct sum ⊕. If pa(P ) < |P |,
then there is a positive solution w∗.

Joining Theorem 3.21, Proposition 3.17 and Corollary 3.24, the following results hold.

Corollary 3.25. Let P = P1 ⊕ P2 ⊕ · · · ⊕ Pn. Then, there exists w∗P if and only if the

linear systems associated with Pi, i = 1, ..., n have infinitely many solutions.

Corollary 3.26. Let P = P1 ⊕ P2 ⊕ · · · ⊕ Pn. If pa(Pi) < |Pi|, i = 1, ..., n, then there

exists a weight vector w∗P .

Note that this condition is sufficient but not necessary (see for example the boolean

lattice B3 developed in Example 3.5).

Next, we are going to study a useful tool to compute w∗.

Proposition 3.27. Let P be a BU-feasible finite poset and x, y ∈ P . If x and y are

interchangeable, then w∗x = w∗y.

Proof. Note that if x and y are interchangeable, then there is an automorphism f : P →
P such that f(x) = y and f(y) = x. If x and y are maximals, then w∗x = w∗y by Lemma

3.20 and we are done, so we can suppose that they are not maximals. Since f is an
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isomorphism, then ↑{x, y} ∼=f↑{f(x), f(y)} =↑{x, y}. Therefore, f is an automorphism

on ↑ {x, y}. Note that ↑ {x, y} =↑ x∪ ↑ y and define F1 :=↑ x̂∪ ↑ y and F2 :=↑ x∪ ↑ ŷ;

then, F1
∼=f F2. Now, since P is BU-feasible and F1, F2 are filters of P then, by Theorem

3.18, we know that w∗F1
= w∗P |F1

and w∗F2
= w∗P |F2

. Next, let us write F1 and F2 as sum of

irreducible subposets, so that F1 = F 1
1 ⊕. . .⊕F s1 and F2 = F 1

2 ⊕. . .⊕F s2 , where obviously

F i1
∼=f F

i
2. If x and y are related to every non-minimal element of ↑ x∪ ↑ y, then the

associated equation to (a = {x, y}, V = P\ l{x, y}) is w∗x = w∗y and we are done, so we

can suppose that x and y are not related to every non-minimal of ↑x∪ ↑y. Then, F 1
1 and

F 1
2 have at least 2 elements and there exists some common element z ∈ F 1

1 ∩ F 1
2 . Now,

since F 1
1 is isomorphic to F 1

2 , then w∗
F 1
1

and w∗
F 1
2

are solutions for the same subposet,

and hence by Corollary 3.22 w∗
F 1
1

and w∗
F 1
2

are equal or proportional. Since both vectors

have a common element z with a common weight w∗z , we conclude that they are equal

and thus, w∗x = w∗f(x) = w∗y.

The final version of the Bottom-Up algorithm is given in Algorithm 2.

Algorithm 2 BOTTOM-UP

1. ASSIGNING WEIGHTS
Step 1.1: Compute all possible positioned antichains.
Step 1.2: For any positioned antichain, build the corresponding linear equation.
Step 1.3: Solve the system of linear equations and choose a weight vector (if

possible).
return w∗

2. SAMPLING STEP
P ′ ← P . Initialization
S ← ∅

while |P ′| > 0 do
Step 2.1: Select a minimal element x of P ′ with probability the quotient between

wx and the sum of the weights of MIN (P ′) and S ← S ∪ x.
Step 2.2: P ′ ← P ′\{x}.

end
return S

Finally, note that sometimes we find that P is not BU-feasible but P ∂ is. Since there is

an easy bijection between L(P ) and L(P ∂), we can use Bottom-Up with P ∂ and then

change ε∗ ∈ L(P ∂) for the corresponding ε ∈ L(P ).
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3.5 Some relevant BU-feasible posets

In this section, we apply the Bottom-Up method to some families of posets in order to

illustrate the performance of this algorithm.

3.5.1 Rooted Trees

In this case we are going to show that every rooted tree is BU-feasible. A rooted tree

T [5] is a poset satisfying that its Hasse diagram (considered as an undirected graph)

is connected and has no cycles, and it has just one minimal element (called root). An

example of a rooted tree can be seen in Figure 3.3.

8 9

7654

32

1

Figure 3.3: Rooted tree.

Consider a positioned antichain (a = {x, y}, V ) for a rooted tree. Note that, as T has

no cycles and for any z ∈MIN (P \ (↓ â ∪ V )), z 6= x, y, it follows

z ∈MIN (P \ (↓ â ∪ V ∪ {x})) ∩MIN (P \ (↓ â ∪ V ∪ {y})),

we can conclude that for two positioned antichains (a, V ) and (a, V ′) with common

antichain a, they share the same associated equation. In other words, the choice of the

ideal V is not relevant.

Now, for x ∈ T, let us consider λx := |{y ∈ T |y � x}|. As T has no cycles, it is easy to

see by induction on the level that λx = 1+
∑

xlh λh. Then, for a = {x, y}, the associated

equation is

wx +
∑
ylz

wz = wy +
∑
xlh

wh.

Taking wx = λx, we have
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wx+
∑
ylz

wz = λx+
∑
ylz

λz = 1+
∑
xlh

λh+
∑
ylz

λz =
∑
xlh

λh+1+
∑
ylz

λz =
∑
xlh

λh+λy = wy+
∑
xlh

wh.

Consequently, any rooted tree is BU-feasible and w∗x = λx is a possible solution. Observe

that the last argument remains valid for disjoint union of rooted trees by the same

reasoning.

Finally, let us compute e(Tn) for any rooted tree with n elements. Again, we have to

keep in mind that λx = 1 +
∑

xlh λh. Then, it can be easily seen by induction that for

a disjoint union of rooted trees P ,
∑

x∈MIN (P ) λx = n holds with n = |P |. Therefore,

for any linear extension ε of a rooted tree

P (ε) =
λroot

n
· λx1
n− 1

· λx2
n− 2

. . . ,

hence

e(Tn) =
n!∏

x∈Tn λx
. (3.5)

This formula was already shown by Stanley [5].

3.5.2 Pn family

Let us consider the following family of posets Pn, where Pn has n+ 1 levels, starting on

level 0 for minimals1. In each level, we have an antichain of two elements, and they are

related to the previous and the next level in the following way: one of the elements is

related to any element of these levels, while the other one is related only to one element

in each level; to fix notation, we assume that level i consists in {2i + 1, 2i + 2} and

odd numbers are related to all the elements of the previous and next level, while even

numbers are related to odd numbers in the previous and next level. Figure 3.4 shows

the Hasse diagrams of P1, P2 and P3.

Thus labeled, the possible positioned antichains for Pn are: ({2i − 1, 2i}, V = ∅) and

({2i, 2i + 2}, V = ∅). Consequently, there are 2n + 1 positioned antichains and 2n + 2

elements. By Corollary 3.24, we conclude that Pn is BU-feasible. Let us then compute

a weight vector w∗.

1Here we are reversing the definition of level of Chapter 1. However, the results for this example are
more easy to follow with this change.
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43

12

56

43

12

87

56

43

12

Figure 3.4: P1, P2 and P3.

Applying Lemma 3.20, we can assign w∗2n+1 = 1, w∗2n+2 = 1 to the two top elements.

Now, considering the positioned antichain ({2n, 2n + 2}, V = ∅), we obtain w∗2n =

w∗2n+1 + w∗2n+2 = 2. For ({2n − 1, 2n}, V = ∅), we obtain w∗2n−1 = w∗2n + w∗2n+2 = 3.

And we can continue this process until we reach the first level. For example, for P3 we

obtain the vector w∗ = (17, 12, 7, 5, 3, 2, 1, 1).

In order to derive a general formula, it is convenient to reverse the order, so that

element i is assigned to w∗2n+3−i; for example, for P3 we would obtain the vector

w∗ = (1, 1, 2, 3, 5, 7, 12, 17). Let us denote by on the n-th odd number of this sequence

and en the n-th even number; then, it is easy to show by induction that


on = on−1 + en−1

en = on + on−1

o1 = e1 = 1

Merging the second equation into the first one we have on = 2on−1 + on−2 with o0 = 0

and o1 = 1. Let us solve this recursive equation through generating functions [79]. Let

F (x) :=

∞∑
k=0

xkok. Observe that:

F (x) = o0 + o1x+

∞∑
k=2

xkok = x+ 2

∞∑
k=2

xkok−1 +

∞∑
k=2

xkok−2 = x+ 2xF (x) + x2F (x).

Thus, F (x) =
x

1− 2x− x2
and it can be written as

F (x) =
A

1− αx
+

B

1− βx
=
A+B − (βA+ αB)x

(1− αx)(1− βx)
.
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As (1− αx)(1− βx) = 1− 2x− x2, we obtain that α and β satisfyαβ = −1

α+ β = 2

and hence α =
2 +
√

4 + 4

2
= 1+

√
2 and β =

2−
√

4 + 4

2
= 1−

√
2. On the other hand,

A+B = 0

βA+ αB = −1

}
⇒ A =

1

2
√

2
, B = − 1

2
√

2
.

F (x) =
A

1− αx
+

B

1− βx
= A

∞∑
k=0

αkxk +B
∞∑
k=0

βkxk,

and hence

on = Aαn +Bβn =
1

2
√

2

[
(1 +

√
2)n − (1−

√
2)n
]

and

en = on + on−1 =
1

2
√

2

[
(1 +

√
2)n − (1−

√
2)n + (1 +

√
2)n−1 − (1−

√
2)n−1

]
=

1

2

[
(1 +

√
2)n + (1−

√
2)n
]
.

Finally, let us obtain the number of linear extensions for Pn. Note that:

P (ε = (2, 1, 4, 3, ..., 2n+ 2, 2n+ 1)) =
on+1

on+1 + en+1
· 1 · on

on + en
· 1 · on−1

on−1 + en−1
· . . . o2

o2 + e2
· 1 · 1

o1 + e1
· 1

=
on+1

on+2
· 1 · on

on+1
· 1 · on−1

on
· . . . o2

o3
· 1 · 1

o2
· 1

=
1

on+2
.

Hence, e(Pn) =
1

2
√

2

[
(1 +

√
2)n+2 − (1−

√
2)n+2

]
. The first values of e(Pn) are given

in Table 3.2.

n 2 3 4 5

e(Pn) 12 29 70 169

Table 3.2: Number of linear extensions of Pn.
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3.5.3 Family Hk
n

In this example we are going to study a more complex family of posets.

Definition 3.28. We define the poset Hk
n as the poset having levels from 0 to n with k

elements on each level. Every element of level k > 0 is lower than k−1 elements of level

k − 1 in such a way that two elements of level k cannot be lower than the same k − 1

elements of level k − 1.

See Figure 3.5 for a figure showing H3
1 , H

3
2 and H3

3 . Observe that Hk
n is well-defined,

because if we take two posets Akn, B
k
n satisfying the last definition for some k and n we

can get an isomorphism f : Akn → Bk
n. Indeed, let us send minimals of Akn to minimals

of Bk
n (level n) in some order, for every i in level n− 1 we make f(i) = k, where i is the

unique element in Akn covering i1, . . . , ik−1 and k is the unique element in Bk
n covering

f(i1), . . . , f(ik−1). For levels n−2, . . . , 1, 0 we continue inductively to get an isomorphism

f . The last argument proves that minimals elements of Hk
n are interchangeable to

each other. With a similar argument we can see that elements of the same level are

interchangeable for any level. This way, in case of existing some solution w∗, it should

be constant on each level.

We are not going to compute all positioned antichains but we are going to use the

properties we know about it. As an example, consider H3
3 . The 3 maximals should have

equal weight, by Lemma 3.20. Every positioned antichain with an antichain involving

only maximals give us this condition. Now consider the next level and take an antichain,

for example, (a = (7, 12), V = ∅). For this antichain we have w∗7 = w∗10 +w∗11 +w∗12 = 3.

Note that this is the only choice for V and by symmetry we have w∗7 = w∗8 = w∗9 = 3.

64 5

31 2

97 8

64 5

31 2

1210 11

97 8

64 5

31 2

Figure 3.5: H3
1 , H

3
2 and H3

3 .

Every row is just related with the one above and below. Now let do the same with

the next level. To (a = (4, 9), V = ∅) we obtain w∗4 = w∗7 + w∗8 + w∗9 = 9. Therefore

w∗4 = w∗5 = w∗6 = 9 and w∗1 = w∗2 = w∗3 = 27. Note that this solution satisfies every
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equation because every positioned antichain has been considered. We can generalise this

result and we obtain for H3
n:

w∗3 = (3n, 3n, 3n, · · · , 3, 3, 3, 1, 1, 1)

Finally, for ε = (1, 2, 3, 4, · · · , 3n− 2, 3n− 1, 3n) we get:

P (ε) =
1

3
· 1

2
· 3n

3n−1 + 3n
· 1

3
· 1

2
· 3n−1

3n−2 + 3n−1
· · · 1

3
· 1

2
· 1 =

1

3n+1
· 1

2n+1
·
(

3

4

)n
=

1

6 · 8n

Then,

e(H3
n) = 6 · 8n.

Note that H3
1 is B3 without maximum and minimum (see Chapter 1) and has 6 · 8 = 48

linear extensions.

Now we can consider k = 4, i.e. we take 4 elements on each level. See Figure 3.6.

8765

4321

1211109

8765

4321

16151413

1211109

8765

4321

Figure 3.6: H4
1 , H

4
2 and H4

3 .

Note that every element is connected with the above element and the next 2 elements

from the above level, where it comes to the end it starts again. By a similar argument

as the last one we get:

w∗4 = (4n, 4n, 4n, 4n, · · · , 4, 4, 4, 4, 1, 1, 1, 1)

Moreover, for ε = (1, 2, 3, 4, · · · , 4n− 2, 4n− 1, 4n) we get:

P (ε) =
1

4
·1
3
·1
2
· 4n

4n−1 + 4n
·1
4
·1
3
·1
2
· 4n−1

4n−2 + 3n−1
· · · 1

4
·1
3
·1
2
·1 =

1

4n+1
· 1

3n+1
· 1

2n+1
·
(

4

5

)n
=

1

24 · 30n

Then

e(H4
n) = 24 · 30n

Now in the general case for Hk
n, by symmetry, we just have to take into account one

positioned antichain between elements of different levels. This way we always obtain

w∗ = 1 for maximals and for level k > 0 we get
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w∗k = w∗k−1 + k. . .+ w∗k−1 = k · w∗k−1,

where w∗s is the value of the solution on the level s. This way we obtain that Hk
n is

BU-feasible for every n ≥ 1 and k ≥ 3, with solution:

w∗k = (kn, kn, · · · , kn, kn, · · · , k, k, · · · , k, k, 1, 1, · · · , 1, 1)

And

e(Hk
n) = kn+1 · (k − 1)n+1 · · · 2n+1 ·

(
k + 1

k

)n
= k![(k + 1) · (k − 1)!]n.

3.5.4 TBn(2, 2) twisted band

In the following examples we are going to study a family of posets consisting in two chains

and different connections between them. We call this kind of posets bands. Specifically,

when each element of the first chain is connected with the one which is k1 levels above

in the other chain and the elements of the second chain are connected with the elements

which are in the first chain k2 levels above we call this poset (k1,k2)− twisted band

or for short TB(k1, k2). Observe that (1, 1)−twisted bands are just 2⊕ 2⊕ 2 · · · . In this

example we are going to study the (2, 2)- twisted bands. See Figure 3.7.
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Figure 3.7: TB4(2, 2), TB5(2, 2) and TB6(2, 2) .

Observe that every antichain must have one element of the first chain and one of the

second chain. Then, the only choice for V is the emptyset. Also by symmetry, the

elements in the same level have the same weight. Working with TB4(2, 2) we have that
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w∗7 = w∗8 = 1. The antichain a = (5, 8) give us w∗5 = w∗7 + w∗8 = 2. And by symmetry

w∗6 = 2. For the following level, we have a = (3, 6) with w∗3 = w∗5 + w∗6 = 4. We can

use this argument for every level and we will be considering every positioned antichain.

Indeed, for level k we get

w∗k = 2w∗k−1,

where w∗s is the value of the solution on the level s.

Thus, in general TBn(2, 2) is BU-feasible and

w∗ = (2n, 2n, 2n−1, 2n−1, · · · , 4, 4, 2, 2, 1, 1)

Moreover,

P (ε = id) =
1

2
· 2n

2n + 2n−1
· 1

2
· 2n−1

2n−1 + 2n−2
· · · 1

2
· 1 =

1

2n
·
(

2

3

)n−1

=
1

2 · 3n−1
.

Thus:

e(TBn(2, 2)) = 2 · 3n−1.

3.5.5 TBn(1, 2) twisted band

In this example we are going to study the (1, 2)-twisted bands. See Figure 3.8.
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Figure 3.8: TB4(1, 2), TB5(1, 2) and TB6(1, 2).
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As before, observe that every antichain must have one element of the first chain and

one of the second chain. Then the only choice for V is the emptyset. Working with

TB4(1, 2) we have that w∗7 = w∗8 = 1. Now for the next level we can consider the

antichain a = (6, 7) which link the elements between the first and the second level. This

antichain give us w∗6 = w∗7 + w∗8 = 2. Now considering the antichain a = (5, 6) which

link 2 elements in the same level we have w∗5 = w∗6 + w∗7 = 1 + 2 = 3. Now for the

next level we have a = (4, 5) with w∗4 = w∗5 + w∗6 = 3 + 2 = 5 and a = (3, 4) with

w∗3 = w∗4 + w∗5 = 5 + 3 = 8.

We can follow this procedure to obtain a solution w∗ for TBn(1, 2). If we consider an

antichain with two elements of the same level k we get the equation on w∗

w∗k,l = w∗k,r + w∗k−1,l,

where w∗s,t is the weight associated to element of level s on the right if t = r or on the

left if t = l. For an antichain with two elements of different levels k and k − 1 we get

w∗k,r = w∗k−1,r + w∗k−1,l.

Observe that if we label the elements of TBn(1, 2) as in Figure 3.8 we get that the value

of w∗i is the sum of the last 2 values, w∗i = w∗i−1 + w∗i−2. Then we obtain a BU-feasible

poset with weights:

w∗n = fn

where fn is the n-th Fibonacci number. Remember that

fn =
1√
5

[(
(1 +

√
5)

2

)n
−

(
(1−

√
5)

2

)n]
.

For example for TB4(1, 2) we get w∗ = (21, 13, 8, 5, 3, 2, 1, 1). Finally we have, if ε =

(2, 1, 4, 3, 6, 5, · · · , 2n, 2n− 1):

P (ε = id) =
f2n−1

f2n + f2n−1
· 1 · f2n−3

f2n−2 + f2n−3
· 1 · · · f1

f2 + f1
· 1 =

=
f2n−1

f2n+1
· 1 · f2n−3

f2n−1
· 1 · · · f1

f3
· 1 =

f1

f2n+1
.

Thus:

e(TBn(1, 2)) = f2n+1.
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3.6 Application to fuzzy measures

As we saw in Section 2.6.1, fuzzy measures can be generalized to the case of a re-

stricted collection of coalitions Ω ⊆ P(X). In this context, (Ω,⊆) is a poset and the

set of Ω-restricted normalized fuzzy measures, RFM (Ω) , is the order polytope O (Ω) .

Moreover, for every poset P there is some collection of feasible coalitions Ω(P ) such that

RFM (Ω(P )) = O (P ) . In other words, for some finite poset P, its order polytope O(P )

models some set of restricted normalized fuzzy measures. To sample points uniformly

inside O(P ) we need to know how to sample linear extensions (see Section 1.3.1). In

order to achieve this, when the poset P is BU-feasible, we can use the BU-method. In

this section, we study the performance of BU-method to some relevant families of fuzzy

measures.

Unfortunately, the Boolean lattice Bn is not BU-feasible if and only if n ≥ 3. This way

the polytope of unrestricted normalized fuzzy measures on a referential X, FM(X),

cannot be studied via BU-method when |X| > 3.

Some other interesting subfamilies of FM(X) are associated to BU-feasible posets. As

we saw in Section 2.6.2, a k-tolerant capacity can be identified with a fuzzy measure

restricted to sets of size lower than k. We can generalize this concept by considering

sets of k different cardinalities, not necessarily the first k cardinalities.

3.6.1 Boolean lattice Bn, n > 3

For n > 3, Bn is not BU-feasible. Consider B4, see Figure 3.9.

1234

234134124123

342423141312

4321

0

Figure 3.9: B4 lattice.

We are going to see that the associated linear system of equations does not have any

positive solution. The maximal and the minimal elements are not important and we can
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remove them to work. The maximal elements 123,124,134 and 234 have the same value

of w∗ by Lemma 3.20. Now we take the positioned antichain with a = (12, 134) and V

the set of all the elements not related to a. Then we get w∗12 = w∗123 + w∗124 + w∗134 = 6.

By simmetry, every element in the same level has the same value w∗. Now for the first

level we can choose a = (1, 23) and V all the elements not related to a. Then, we get

w∗12 + w∗13 + w∗14 + w∗23 = w∗1 + w∗234 ⇔ w∗1 = 22. Now, taking a = (1, 23) and V = ∅ we

get w∗1 = w∗12 + w∗13 + w∗14 + w∗23 = 24, and then there is no solution to this system, so

B4 is not BU-feasible. Now since Bn = 2 × Bn−1 we know that Bn−1 is a filter of Bn.

Thus, by Theorem 3.18, Bn is not BU-feasible for n ≥ 4.

On the number of linear extensions of Bn, observe that for n ≥ 3, pa(Bn) ≥ 2
(
n
2

)
i(Bn−2).

To see this, it is enough to count the positioned antichains where the antichain a consists

of 2 singletons or 2 subsets with n − 1 elements. Observe that i(Bn) are the Dedekind

numbers M(n) (see Section 2.2). As pa(Bn) ≤ e(Bn) we get the following inequality:

e(Bn) ≥ 2

(
n

2

)
M(n− 2).

This statement allows to know that e(Bn) grows at least as quickly as the Dedekind

numbers, that is surprisingly fast.

3.6.2 Boolean lattice Bn, n ≤ 3

For n ≤ 3, Bn is BU-feasible. For n = 1, 2 is obvious. If n = 3 we have seen in Example

3.5 that B3 is BU-feasible with w∗ = (1, 6, 6, 6, 2, 2, 2, 1) where coordinates 2, 3, 4 stand

for singletons and coordinates 5, 6, 7 for subsets of two elements (we have multiplied

by 2 the solution obtained in the Example 3.5, since the only important things are the

proportions).

3.6.3 k-truncated fuzzy measures.

Let us define now the concept of k-truncated fuzzy measures.

Definition 3.29. We say that a fuzzy measure over a referential set of size n is k-

truncated with respect to some cardinalities r1, . . . , rk if the set of feasible subsets

is the set of all subsets whose cardinalities are r1, . . . , rk. We will denote the set of

k-truncated fuzzy measures by T FMn(r1, . . . , rk).

Note that k-truncated measures are the Ω-restricted capacities where Ω is the collection

of all sets with k different cardinalities r1, . . . , rk.
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In a similar way, we denote by Bn
k (r1, . . . , rk) the Boolean poset (without maximum and

minimum) restricted to the sets of size r1, . . . , rk. In the next section we will study the

case T FMn(1, n− 1).

3.6.4 Truncated fuzzy measures T FMn(1, n− 1).

In this section we study the set of truncated fuzzy measures T FMn(1, n−1). By defini-

tion, T FMn(1, n− 1) is the order polytope associated to Bn
2 (1, n− 1). Let n ∈ N, X =

{1, ..., n} and consider the poset Bn
2 (1, n− 1) consisting of all the subsets of X that are

either singleton or whose complementary is a singleton, and consider the order relation

given by x ≺ y ⇔ x ⊂ y. Figure 3.10 shows B3
2(1, 2), B4

2(1, 3) and B5
2(1, 4).

231312

321

234134124123

4321

23451345124512351234

54321

Figure 3.10: B3
2(1, 2), B4

2(1, 3) and B5
2(1, 4).

Let us first find out the possible positioned antichains. We have three different cases:

• Case 1: Derived from {i, j}. We have
(
n
2

)
possibilities. For each of them, we have

the n− 2 singletons that are incomparable to both of them, so that we have 2n−2

possible choices of V .

• Case 2: Derived from {X\{i}, X\{j}}. As in the previous case, there are
(
n
2

)
possibilities. For each of them, we have the n− 2 subsets of cardinality n− 1 that

are incomparable to both of them, so that we have 2n−2 possible choices of V .

• Case 3: Derived from {i,X\{i}}. In this case, there are n possibilities and any

other element in the poset compares to one of them, so that V = ∅.

Then, we have n(n − 1)2n−2 + n positioned antichains, a number much larger than

|Bn
2 (1, n − 1)| = 2n and consequently, Corollary 3.24 cannot be applied. However, we

will show that in this case it is possible to find a weight vector w∗.

Note that by Lemma 3.20, we know that if w∗ exists, then all maximal elements have

the same weight, say 1; thus w∗X\{i} = 1, ∀i ∈ X. Now, take i ∈ X and consider the

positioned antichain ({i,X\{i}}, ∅); then, it follows that w∗i = n. It suffices to show that

no contradiction arises for any other condition derived from other positioned antichain.

• For ({i, j}, V ) we derive w∗i = w∗j .
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• For ({X\{i}, X\{j}}, V ) we derive w∗X\{i} = w∗X\{j}.

Thus, our solution fits all the equations. For example, for B4
2(1, 3), B5

2(1, 4) and B5
2(1, 5)

the corresponding weight vectors are (3, 3, 3, 1, 1, 1), (4, 4, 4, 4, 1, 1, 1, 1) and (5, 5, 5, 5, 5, 1, 1, 1, 1, 1),

respectively, and for Bn
2 (1, n− 1) we obtain w∗ = (n, ..., n, 1, ..., 1).

Finally, let us use this vector to compute e(Bn
2 (1, n − 1)). If we choose an extension ε

whose first n elements are the singletons, we obtain:

p(ε) =
n

n2
· n

(n− 1)n
· n

(n− 2)n
. . .

n

2n
· n

n+ 1
· 1

n
· 1

n− 1
. . .

1

3
· 1

2
· 1 =

n

n!(n+ 1)!
.

Therefore,

e(Bn
2 (1, n− 1)) = (n+ 1)!(n− 1)!.

3.7 Extensions of BU method: Ideal-based method

In this section we provide a generalization of the Bottom-Up method which can be

applied to any poset. However, the complexity of the associated algorithm will increase

significantly.

Definition 3.30. Let P be a finite poset, I ⊆ P be an ideal of P and x ∈MIN (P \ I).

Then, we define the conditional probability of x given I as

P (x|I) =
e (P \ (I ∪ {x}))

e(P \ I)
.

Remark 3.31. • Note that this probability represents the proportion of linear exten-

sions of P \ I which start by x. Obviously, if we sum P (x|I) over all the minimal

elements x ∈ MIN (P \ I) we get
∑

x∈MIN (P\I)

P (x|I) = 1. Thus, the conditional

probability is a probability distribution on MIN (P \ I) for a fixed ideal I.

• If I is an ideal such that P \ I ∼= n, being n the antichain of n elements then for

any x ∈ P \ I, P (x|I) =
1

n
because e (P \ (I ∪ {x})) = (n− 1)! and e (P \ I) = n!.

• We can extend the last definition to any x ∈ P by doing P (x|I) = 0 for any

x /∈MIN (P \ I), so that we obtain a probability distribution on P \ I.

In what follows, let us denote Px = P \ {x} and Pxy = P \ {x, y}.

Lemma 3.32. Let P be a finite poset, I ⊆ P be an ideal of P, and x, y ∈MIN (P \ I).

Then
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P (x|I) · P (y|I ∪ {x}) = P (y|I) · P (x|I ∪ {y}). (3.6)

Proof. It follows almost trivially:

P (x|I) · P (y|I ∪ {x}) =
e (Px \ I)

e(P \ I)
· e (Pxy \ I)

e(Px \ I)
=

=
e (Py \ I)

e(P \ I)
· e (Pxy \ I)

e(Py \ I)
= P (y|I) · P (x|I ∪ {y}).

Therefore, the result holds.

By the last lemma, we can compute the probabilities P (x|I) where |I| = m if we know

the probabilities associated to the ideals with one element more P (x|I ′), with |I| = m+1.

On the other hand, if I ′ = Px then P (x|I ′) = 1 and we can obtain inductively the value of

P (x|I) for smaller ideals I. Indeed, the way of doing this is as simple as solving the next

linear system. Fix m ∈ N and consider that we know the value of P (x|I ′) for any ideal I ′

with m+1 elements and x ∈MIN (P \I ′). SupposeMIN (P \I) = {x1, x2, . . . , xk}. The

goal is to compute P (xi|I), by using P (xi|I) ·P (xj |I ∪ {xi}) = P (xj |I) ·P (xi|I ∪ {xj}).
Now,



1 1 1 · · · 1

p1,2 −p2,1 0 · · · 0

p1,3 0 −p3,1 · · · 0

· · · · · · · · · · · · · · ·
p1,k 0 0 · · · −pk,1


·


P (x1|I)

P (x2|I)

· · ·
P (xk|I)

 =


1

0

· · ·
0

 (3.7)

where pi,j = P (xj |I ∪ {xi}). The first equation comes from Remark 3.31 and the next

ones form Equation 3.6. If we call A to the last matrix of probabilities, by making the

numbers under the first element of the matrix into zero using Gauss-Jordan elimination

it is straightforward to show that

det(A) = (−1)k−1
k∏
i=2

pi,1

(
1 +

k∑
i=2

p1,i

pi,1

)
6= 0.

Then, A is invertible with inverse
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A−1 =



1

(1 + Σ)

1

p2,1 (1 + Σ)

1

p3,1 (1 + Σ)
· · · 1

pk,1 (1 + Σ)
p1,2

p2,1 (1 + Σ)

p1,2 − p2,1 (1 + Σ)

p2
2,1 (1 + Σ)

p1,2

p2,1p3,1 (1 + Σ)
· · · p1,2

p2,1pk,1 (1 + Σ)
p1,3

p3,1 (1 + Σ)

p1,3

p2,1p3,1 (1 + Σ)

p1,3 − p3,1 (1 + Σ)

p2
3,1 (1 + Σ)

· · · p1,3

p3,1pk,1 (1 + Σ)

· · · · · · · · · · · · · · ·
p1,k

pk,1 (1 + Σ)

p1,k

p2,1pk,1 (1 + Σ)

p1,k

p3,1pk,1 (1 + Σ)
· · ·

p1,k − pk,1 (1 + Σ)

p2
k,1 (1 + Σ)



where Σ =
∑k

i=2

p1,i

pi,1
. Therefore,

P (x1|I) =
1

(1 + Σ)
, P (xi|I) =

p1,i

pi,1 (1 + Σ)
i 6= 1.

Thus, if we know the value of P (x|I ′) for any ideal I ′ with m+ 1 elements we can easily

compute the value of P (x|I) for every ideal I with m elements. Applying the last idea

a finite number of times we get the value of P (x|I) for every ideal I and x ∈ P \ I.

Remark 3.33. • We can use these ideas to sample linear extensions uniformly in a

similar way as we do with the Bottom-Up method. Indeed, the Ideal-based method

is a generalization of the Bottom-Up method. As we do with the BU algorithm

we choose a minimal element in each step with a given probability, then we save

the chosen element x and continue with the minimal elements after removing x.

In the Ideal-based method we can do the same, we draw a minimal element x with

probability proportional to P (x|I), where I is the set of elements that have already

been drawn. This way we get a linear extension with uniform probability,

P (ε) = P (x1|∅) · P (x2|x1) · · ·P (xn|P \ xn−1) =
e(Px1)

e(P )
· e(Px1x2)

e(Px1)
· · · 1 =

1

e(P )
.

Thus, we can also use this method to compute the number of linear extensions.

• The main advantage of the Ideal-based method is that it can be applied to ev-

ery poset. Indeed, we just need to compute P (x|I) for any combination of x ∈
MIN (P \ I) and I ∈ I(P ).

• The main disadvantage of the Ideal-based method is that we need to know every

ideal of P in advance. Sometimes, there are too many ideals to work with and

this method is unfeasible to apply. Even in the case of knowing the structure of

the different ideals, we need to do a lot of computations to get the value of every
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probability. Note however that the number of these probabilities is bounded by

w(P ) · i(P ).

• If P is BU-feasible, then we know that there are some wx > 0, ∀x ∈ P, such that

P (x|I) =
wx∑

z∈MIN (P\I)wz
.

In this case the BU method allows us to compute all the probabilities P (x|I),

for every ideal I and x ∈ P \ I, by solving an easier system of linear equations

involving just |P | variables.

• For any series-parallel poset P we can compute all the conditional probabilities

associated to each ideal recursively by following the next two rules. If P \ I is a

disjoint union of filters C1 ] C2 such that x ∈MIN (C1), we get

P (x|I) =
e(Px \ I)

e(P \ I)
=

(|C1|+|C2|−1
|C1|−1,|C2|

)
e(C1 \ {x})e(C2)(|C1|+|C2|

|C1|,|C2|
)
e(C1)e(C2)

=
|C1|

|C1|+ |C2|
· e(C1 \ {x})

e(C1)
,

where
e(C1 \ {x})
e(C1)

is a probability associated to a smaller filter. This way we can

focus on the connected component where x belongs. Similarly if P \ I is a direct

sum C1 ⊕ C2 and x ∈MIN (C1) ,

P (x|I) =
e(Px \ I)

e(P \ I)
=
e(C1 \ {x})e(C2)

e(C1)e(C2)
=
e(C1 \ {x})
e(C1)

,

this way the direct sum factors can be removed to compute conditional probabili-

ties.

The Ideal-based algorithm is given in Algorithm 3. Similar algorithms can be found in

the literature (see [9]):

Example 3.6. Let us see a simple example of the last method. For the N poset (see Fig-

ure 1.1) we have the following ideals I(N) = {∅, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}, {1, 2, 4}, N},
and the probabilities can be computed recursively obtaining the ones in Table 3.3.
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Algorithm 3 IDEAL-BASED ALGORITHM

1. COMPUTING IDEALS
Step 1.1: Compute all possible ideals (see [9] for an algorithm doing this).

2. COMPUTING PROBABILITIES
Step 2.1: Compute recursively all possible conditional probabilities by starting

with the biggest ideals.
3. SAMPLING STEP

P ′ ← P . Initialization
S ← ∅

while |P ′| > 0 do
Step 3.1: Select a minimal element x of P ′ with probability P (x|S).
Step 3.2: P ′ ← P ′\{x} and S ← S ∪ {x}.

end
return S

Elements / Ideals ∅ {1} {2} {1, 2} {2, 3} {1, 2, 3} {1, 2, 4}
1 2/5 0 2/3 0 1 0 0
2 3/5 1 0 0 0 0 0
3 0 0 1/3 1/2 0 0 1
4 0 0 0 1/2 0 1 0

Table 3.3: Ideal-Based method for N , each cell contains P (x|I).

These values have been obtained as follows:

P (1|{2})P (3|{1, 2}) = P (3|{2})P (1|{2, 3}) ⇔ P (1|{2}) · 1

2
= P (3|{2}) · 1⇒

P (1|{2}) =
2

3
, and P (3|{2}) =

1

3
.

P (1|∅)P (2|{1}) = P (2|∅)P (1|{2}) ⇔ P (1|∅) · 1 = P (2|∅) · 2

3
⇒

P (1|∅) =
2

5
, and P (2|∅) =

3

5
.

As we already know, this poset is BU-feasible indeed, for examples regarding the perfor-

mance of Ideal-based method on non BU-feasible posets see Section 3.7.1.

Observe that most of the probabilities P (x|I) take trivial values 0 or 1, sometimes

because P \ I contains just one element, or in other cases because x is not a minimal of

P \ I. As we will see below, all the non-trivial probabilities are associated to positioned

antichains of P . We say that Equation 3.6 is not trivial for some ideal I and x, y ∈ P \ I
if this equation is different from 0 = 0 and 1 = 1.

Lemma 3.34. Let P be a finite poset, I some ideal of P and x, y ∈ P \ I. Then:

i) The Equation 3.6 is not trivial if and only if x, y ∈MIN (P \ I).
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ii) If Equation 3.6 is not trivial, then (a = (x, y), I\ ↓ â) is a positioned antichain of

P.

Proof. i) ⇒) Since P (x|I) ·P (y|I∪{x}) 6= 0 we get P (x|I) 6= 0 and P (y|I∪{x}) 6= 0.

Similarly, P (y|I) 6= 0 and P (x|I ∪{y}) 6= 0. Since P (x|I) 6= 0 and P (y|I) 6= 0 then

x, y ∈MIN (P \ I).

⇐) In this case, P (x|I) =
e(Px \ I)

e(P \ I)
/∈ {0, 1} because we have at least two minimal

elements and P (y|I ∪ {x}) =
e(Pxy \ I)

e(Px \ I)
6= 0. The same is obtained for P (y|I) and

P (x|I ∪ {y}), therefore the equation

P (x|I) · P (y|I ∪ {x}) = P (y|I) · P (x|I ∪ {y}),

is not trivial.

ii) Now, let us suppose that the Equation 3.6 is not trivial. By i), we know that

x, y ∈ MIN (P \ I). Clearly, a = (x, y) is an antichain and I\ l a is an ideal of

P\ l a. As x, y ∈ MIN (P \ I) thus I\ l a = I\ ↓ â. Obviously I\ l a ⊆ I\ ↓ â.
For proving I\ ↓ â ⊆ I\ la, let z ∈ I\ ↓ â and let us check that z /∈↑a. As z ∈ I
and a ∩ I = ∅, thus z 6= x and z 6= y. Assume that z ∈↑ â and suppose without

loss of generality that z � x. Since z ∈ I, which is an ideal, we get x ∈ I, which

is a contradiction. Consequently I\ l a = I\ ↓ â and (a, I\ ↓ â) is a positioned

antichain of P .

Then, the result holds.

This way it is enough to compute all the positioned antichains (a = (x, y), V ) and use

recursively from big to small ideals the equation

P (x|V ∪ ↓ â) · P (y|V ∪ ↓ â ∪ {x}) = P (y|V ∪ ↓ â) · P (x|V ∪ ↓ â ∪ {y}).

This technique leads to a system where the probabilities which are out of the system are

trivial, i.e. which value 0 or 1. Observe that in the Ideal-based method the positioned

antichains plays a similar role that in BU method. However, here we do not work with

any weight wx, but we work directly with the conditional probabilities P (x|I).

These equations are not linear but can be transformed into linear equations by taking

logarithms.

log (P (x|V ∪ ↓ â)) + log (P (y|V ∪ ↓ â ∪ {x})) = log (P (y|V ∪ ↓ â)) + log (P (x|V ∪ ↓ â ∪ {y})).
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This way, by Lemma 3.34, we obtain a system of pa(P ) linear equations with unique

solution. Using the last idea we can state Algorithm 3 using positioned antichains,

see Algorithm 4. Computing all the positioned antichains is an easy combinatorial

problem for posets with small width. For big width posets, computing all the positioned

antichains is a problem as difficult as the problem of computing all the ideals (see [9]).

Algorithm 4 IDEAL-BASED ALGORITHM 2.0

1. COMPUTING POSITIONED ANTICHAINS
Step 1.1: Compute all possible positioned antichains.

2. COMPUTING PROBABILITIES
Step 2.1: Solve the system of linear equation associated to the non-trivial prob-

abilities.
3. SAMPLING STEP

P ′ ← P . Initialization
S ← ∅

while |P ′| > 0 do
Step 3.1: Select a minimal element x of P ′ with probability P (x|S).
Step 3.2: P ′ ← P ′\{x} and S ← S ∪ {x}.

end
return S

3.7.1 Application of Ideal-based method

In this section we are going to study some applications of the Ideal-based method. In

general we could compute all the neccesary probabilities with a computer, however in

some cases we are able to use the last theory to derive closed or recursive formulas.

3.7.1.1 Poset 2× n

Ideal-based method give us an easy recursive formula for computing the conditional

probabilities of 2× n, see Figure 3.11.

Note that the positioned antichains of 2×n are the ones of the form (a = (xi, yj), V = ∅)
where i > j. Let us denote by γi,j to the ideal associated to (a = (xi, yj), V = ∅), i.e.

γi,j =↓ {xi, yj}. By Equation 3.6 follows:

P (xi+1|γi,j) · P (yj+1|γi+1,j) = P (yj+1|γi,j) · P (xi+1|γi,j+1).

Therefore,
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x1

x2

...

xn

y1

y2

...

yn

Figure 3.11: Poset 2× n.

P (xi+1|γi,j) =
P (xi+1|γi,j+1)

P (xi+1|γi,j+1) + P (yj+1|γi+1,j)
,

P (yj+1|γi,j) =
P (yj+1|γi+1,j)

P (xi+1|γi,j+1) + P (yj+1|γi+1,j)
.

Obviously P (xn|γn−1,n−2) = P (yn−1|γn−1,n−2) = 1 are the initial values of the last

recursion.

3.7.1.2 Family GSn

Consider the poset GSn with 4n + 2 elements consisting in two antichains of 2n + 1

points, {x1, . . . , x2n+1} and {y1, . . . , y2n+1}, and such that any point in the antichain

{x1, . . . , x2n+1} is dominated by any point in the antichain {y1, . . . , y2n+1}, except an

element in the first antichain, say xn+1, that is not dominated by other element of the

second antichain, say yn+1. Figure 3.12 shows the Hasse diagrams of GS1 and GS2.

y3y2y1

x3x2x1

y5y4y3y2y1

x5x4x3x2x1

Figure 3.12: GS1 and GS2 .

In this example, it is not possible to find a vector w∗. In other words, these posets

are not BU-feasible. To see this, consider the positioned antichain (x1, xn+1), V = ∅;
then, we obtain the equation w∗x1 = w∗xn+1

. On the other hand, consider the positioned

antichain (x1, xn+1), V = {x2, ..., xn, xn+2, ..., x2n+1}; in this case, we obtain the equation

w∗x1 = w∗xn+1
+ w∗yn+1

. As w∗yn+1
> 0, no solution can be obtained.
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However, we can use the Ideal-based method to derive a way of sampling linear extensions

uniformly. For this, we should compute all the non trivial probabilities P (x|I). Start

observing the easy cases:

• If {x1, x2, . . . , x2n+1} ⊆ I, then GSn \ I is an antichain and P (yk|I) =
1

|GSn \ I|
,

∀yk ∈ GSn \ I.

• If xn+1 ∈ I but {x1, x2, . . . , x2n+1} * I, then all the minimal elements are inter-

changeable to each other so P (xk|I) =
1

|MIN (GSn \ I)|
, ∀xk ∈ GSn \ I.

So it suffices to study the case xn+1 /∈ I. If I = I0 = {x1, x2, . . . , xn, xn+2, . . . , x2n+1}.
In this caseMIN (GSn \ I0) = {xn+1, yn+1}, or in other words, we are working with the

positioned antichain (a = (xn+1, yn+1), V = ∅). Via Equation 3.6,

P (xn+1|I0) · P (yn+1|I0 ∪ {xn+1}) = P (yn+1|I0) · P (xn+1|I0 ∪ {yn+1}).

Hence,

P (xn+1|I0) · 1

2n+ 1
= P (yn+1|I0) · 1,

and thus P (xn+1|I0) =
2n+ 1

2n+ 2
and P (yn+1|I0) =

1

2n+ 2
.

The remaining cases are the ones where xn+1 /∈ I and I ⊂ {x1, x2, . . . , xn, xn+2, . . . , x2n+1}.
Let us call Ik to some of these ideals satisfying |I ∩ {x1, x2, . . . , xn, xn+2, . . . , x2n+1}| =
2n − k. Since the non-central elements xi ∈ Ik are interchangeable, then all the ideals

with 2n − k elements in {x1, x2, . . . , xn, xn+2, . . . , x2n+1} are isomorphic to each other.

Let us see the case k = 1,

P (xn+1|I1) · P (xi|I1 ∪ {xn+1}) = P (xi|I1) · P (xn+1|I1 ∪ {xi})

Hence,

P (xn+1|I1) · 1 = P (xi|I1) · 2n+ 1

2n+ 2
,

and thus P (xn+1|I1) =
2n+ 1

4n+ 3
and P (xi|I1) =

2n+ 2

4n+ 3
. For k > 1, there is a strong link

between Ik+1 and Ik. Indeed,

P (xn+1|Ik+1) · P (xi|Ik+1 ∪ {xn+1}) = P (xi|Ik+1) · P (xn+1|Ik)
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Hence,

P (xn+1|Ik+1) · 1

k + 1
= P (xi|Ik+1) · P (xn+1|Ik),

and also (k + 1) · P (xi|Ik+1) + P (xn+1|Ik+1) = 1. Therefore,

P (xi|Ik+1) =
P (xn+1|Ik+1)

(k + 1)P (xn+1|Ik)
,

and

P (xn+1|Ik+1)

P (xn+1|Ik)
+ P (xn+1|Ik+1) = 1⇔ 1

P (xn+1|Ik+1)
= 1 +

1

P (xn+1|Ik)
.

As the initial condition, k = 1, for the last recursive formula is
1

P (xn+1|I1)
= 2+

1

2n+ 1
,

we get

1

P (xn+1|Ik)
= (k + 1) +

1

2n+ 1
.

Therefore, we obtain for 1 ≤ k ≤ 2n:

P (xn+1|Ik) =
2n+ 1

(k + 1)(2n+ 1) + 1
,

and since P (xn+1|Ik) + kP (xi|Ik) = 1,

P (xi|Ik) =
k(2n+ 1) + 1

k(k + 1)(2n+ 1) + k
.

In particular, P (xn+1|I2n) =
2n+ 1

(2n+ 1)2 + 1
and we can use this to compute e(GSn). As

we did in the BU method take ε = (xn+1, x1, x2, . . . , x2n+1, y1, y2, . . . , y2n+1) then:

e(GSn) =
1

P (ε)
=

(2n+ 1)2 + 1

2n+ 1
·(2n)·(2n−1) · · · 1·(2n+1)·(2n) · · · 1 = [(2n)!]2 (4n2+4n+2).

3.7.1.3 2-truncated fuzzy measures

As we saw in Section 3.6, we can generalize the concept of k-intolerant measures by

considering measures restricted to all sets of k different cardinalities, T FMn(r1, . . . , rk).

This section is devoted to the case of 2-truncated fuzzy measures over sets of cardinalities
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r1 and r2, T FMn(r1, r2) over a referential set of size n, especially we will study the

case r1 = 1. We also denote by Bn
2 (r1, r2) the Boolean poset (without maximum and

minimum) restricted to the sets of size r1 and r2 (see Figure 3.13). It is obvious that

T FMn(r1, r2) is an order polytope with associated poset Bn
2 (r1, r2).

342423141312

4321

Figure 3.13: Hasse diagram of B4
2(1, 2).

Remark that T FMn(1, 2) is the set of 3-tolerant fuzzy measures and T FMn(n−2, n−1)

is the set of 3-intolerant fuzzy measures. Here we are going to solve the problem of sam-

pling uniformly capacities of T FMn(1, r2) by sampling linear extensions of Bn
2 (1, r2).

The case r1 6= 1 involves more complex computations and it is an open problem. How-

ever, if r2 = n− 1, then Bn
2 (r1, n− 1)∂ ∼= Bn

2 (1, n− r1) and hences if we solve the case

Bn
2 (1, r2), the case Bn

2 (r1, n− 1) follows by duality. Note that I is an ideal of P if and

only if F = P \ I is a filter. For convenience reasons, we will work with filters instead of

ideals. In this case, the Ideal-based method could be used to draw a minimal element

of F on each step with the proper probability. Let us compute this probability. Before

this, let us show that the filters of Bn
2 (1, r2), just depend on the number of singletons

and r2-subsets in it.

Lemma 3.35. Let F be a filter of Bn
2 (1, r2), with 2 or more singletons. If {x}, {y} ∈ F

then F \ {x} ∼= F \ {y}.

Proof. Let φ : F \ {x} → F \ {y} be a map such that interchanges x and y, i.e.

φ(A) =

A, if x /∈ A

(A \ {x}) ∪ {y}, otherwise

It is clear that A ⊆ B ⇔ φ(A) ⊆ φ(B) so F \ {x} ∼= F \ {y}.

This way, all singletons are interchangeable (see Section 1.1).

Lemma 3.36. Let F1 and F2 be two filters of Bn
2 (1, r2). Then F1

∼= F2 ⇔ F1 and F2

have the same number of singletons and r2-subsets.

Proof. Let us denote

F1 = {x1, . . . , xs, A1, . . . , Al, B1, . . . , Bp},
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where x1, . . . , xs are the singletons in F1, A1, . . . , Al are the r2-subsets in F1 such

that Ai ∩ {x1, . . . , xs} 6= ∅, and B1, . . . , Bp are the r2-subsets in F1 such that Bi ∩
{x1, . . . , xs} = ∅.

Thus defined, filter F1 can be written as F1 = G1 ]H1, where

G1 :=↑x1∪ ↑x2 ∪ · · · ∪ ↑xs = {x1, . . . , xs, A1, . . . , Al}

and H1 := {B1, . . . , Bp}. Similarly, F2 = G2 ]H2.

Now, F1
∼= F2 ⇔ G1

∼= G2 and H1
∼= H2. As H1 and H2 are antichains, H1

∼= H2 ⇔
|H1| = |H2|.

Let us now show that G1
∼= G2 iff they have the same number of singletons.

⇒) If G1
∼= G2, then they have exactly the same number of minimal elements, and

minimal elements are exactly the singletons.

⇐) Let us denote by {x1, . . . , xs} and {y1, . . . , ys} the singletons in G1 and G2 re-

spectively. Now, for A ∈ G1, A = {xi1 , . . . , xiq , z1, . . . , zh}, let us define a function

φ(A) ∈ G2 given by φ(A) = {yi1 , . . . , yiq , z1, . . . , zh}. Thus, A ⊆ B ⇔ φ(A) ⊆ φ(B), so

G1
∼= G2.

From now on we will denote by F (t1, t2) to some filter having t1 singletons and t2 r2-

subsets. We can ask about how many r2-subsets cover some of the t1 singletons. If

we consider all the posible
(
n
r2

)
r2-subsets and take away the

(
n−t1
r2

)
r2-subsets without

any of the t1 singletons we get that the number of r2-subsets covering some of the t1

singletons is
(
n
r2

)
−
(
n−t1
r2

)
. Then, 0 ≤ t1 ≤ n and

(
n
r2

)
−
(
n−t1
r2

)
≤ t2 ≤

(
n
r2

)
.

Corollary 3.37. The number of non-isomorphic filters of Bn
2 (1, r2) is

(
n+1
r2+1

)
+ n+ 1.

Proof. Since F (t1, t2) are non-isomorphic filters for different values of 0 ≤ t1 ≤ n and(
n
r2

)
−
(
n−t1
r2

)
≤ t2 ≤

(
n
r2

)
, it holds

n∑
t1=0

[(
n

r2

)
−
((

n

r2

)
−
(
n− t1
r2

))
+ 1

]
=

n∑
t1=0

(
n− t1
r2

)
+ n+ 1

=

n∑
h=r2

(
h

r2

)
+ n+ 1 =

(
n+ 1

r2 + 1

)
+ n+ 1.

Hence, the result holds.
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Theorem 3.38. Let F (t1, t2) be a filter of Bn
2 (1, r2) and let us denote I(t1, t2) =

Bn
2 (1, r2) \ F (t1, t2) to its associated ideal. Let x be a singleton of MIN (F (t1, t2))

and y a r2-subset of MIN (F (t1, t2)). Then:

P (x|I(t1, t2)) =
t1 +

(
n
r2

)
−
(
n−t1
r2

)
t1(t1 + t2)

, P (y|I(t1, t2)) =
1

t1 + t2
.

Proof. As we know by the last lemmas, F (t1, t2) has t1 interchangeable singletons, all

of them minimals and T = t2 +
(
n−t1
r2

)
−
(
n
r2

)
minimal interchangeable r2-subsets. Let

α = P (x|I(t1, t2)) and β = P (y|I(t1, t2)). Since these minimals can be interchanged if

they have the same size then t1α + Tβ = 1. The key fact here is to apply the Disjoint

union Lemma 1.27,

β =
e(F (t1, t2) \ {y})
e(F (t1, t2))

=
e(F (t1, T − t2) ] T − 1)

e(F (t1, T − t2) ] T )

=

(|F (t1,T−t2)|+T−1
T−1

)
e(F (t1, T − t2))(T − 1)!(|F (t1,T−t2)|+T

T

)
e(F (t1, T − t2))T !

=
1

|F (t1, T − t2)|+ T
.

Since T = t2 +
(
n−t1
r2

)
−
(
n
r2

)
and |F (t1, T − t2)| = t1 +

(
n
r2

)
−
(
n−t1
r2

)
, then

β =
1

t1 + t2
=

1

|F (t1, t2)|
.

From t1α+ Tβ = 1 we obtain the value of α,

α =
1− βT
t1

=
t1 +

(
n
r2

)
−
(
n−t1
r2

)
t1(t1 + t2)

=
|F (t1, T − t2)|
t1|F (t1, t2)|

.

Therefore, the result holds.

With the last probabilities we can sample linear extensions of Bn
2 (1, r2) and therefore

we can sample 2-truncated fuzzy measures of the form T FMn(1, r2). Finally, we can

use the last result to get the number of linear extensions of Bn
2 (1, r2).

Theorem 3.39. The number of linear extensions of the 2-truncated boolean poset Bn
2 (1, r2)

is given by:

e (Bn
2 (1, r2)) = n!

n∏
t=r2

( t−1
r2−1)∏
j=1

[
n+

(
n

r2

)
− (j − 1)− t−

(
t− 1

r2

)]
.
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Proof. As we know, the number of linear extensions is the inverse of the probability of

any linear extension of being uniformly drawn. The extension which we are going to

choose is the one starting by singletons until some r2-subset becomes minimal. If some

r2-subset becomes minimal, then we draw it, else we continue selecting singletons. In

the first r2−1 drawn elements we do not get any r2-subset as a new minimal. From then

on we get on each step
(
t
r2

)
−
(
t−1
r2

)
=
(
t−1
r2−1

)
new minimal r2-subsets. The size of the

filter when we have removed t singletons and its associated
(
t−1
r2

)
r2-subset involving the

first t−1 singletons is given by n+
(
n
r2

)
− t−

(
t−1
r2

)
. Therefore, inverting probabilities and

using the last theorem P (y|I(t1, t2)) =
1

t1 + t2
we get the result. Observe that the factor

n! is because when we select singletons the probability is
1

k
for each one. When r2-subset

are released (for r2 ≤ t ≤ n) the inverse of the probability is just the cardinality of the

remaining filter which is n +
(
n
r2

)
− t −

(
t−1
r2

)
minus the number of r2-subsets already

selected j − 1.

The first values of e(Bn
2 (1, r2)) are given in Table 3.4. Observe that the number of linear

extensions of Bn
2 (1, n− 1) were computed in Subsection 3.6.4.

n \ r2 2 3 4 5

2 2

3 48 6

4 34 560 720 24

5 1 383 782 400 746 496 000 17 280 120

Table 3.4: First values of e(Bn2 (1, r2)).

3.7.1.4 Treefication

We finish this section with a construction that allows to generalize the results about

rooted trees seen in Section 3.5.1 in an easy way. Let us start with the definition of

treefication.

Definition 3.40. Let T be a rooted tree and P a finite poset. We define the treefica-

tion of P based on T as the lexicographic product T ∗ P.

Example 3.7. Let N be the poset from Example 1.1 and T be the rooted tree of Figure

3.3, see Figure 3.14 for the Hasse diagram of the treefication of poset N based on T ,
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T ∗P . In general the lexicographic product of BU-feasible posets is not BU-feasible. For

proving this, we take the filter F = N ] 1. We know by Example 3.1 that F is not

BU-feasible and then by Theorem 3.18 the treefication T ∗ P is not BU-feasible. Indeed,

T ∗ P is not BU-feasible in this example.

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Figure 3.14: Treefication T ∗N .

Let us denote |T | = n and |P | = p.

Theorem 3.41. Consider a rooted tree T and a poset P . Let I be an ideal of the

treefication of P based on T , T ∗ P, and x ∈MIN ((T ∗ P ) \ I) , then

P (x|I) =
| ↑ P (x) \ I|
|T ∗ P \ I|

· PP (x|IP ),

where P (x) is the copy of P in T ∗ P where x lives, IP = I ∩ P (x), and PP is the

probability inside poset P (x).

Proof. Let C1, . . . , Ck the connected components of (T ∗ P ) \ I, and suppose, without

loss of generality, that x ∈ C1. Then by using the Disjoint Union Lemma 1.27,

e((T ∗ Px) \ I)

e((T ∗ P ) \ I)
=

(|C1|+|C2|+···+|Ck|−1
|C1|−1,|C2|,··· ,|Ck|

)
e(C1 \ {x})

∏k
i=2 e(Ci)(|C1|+|C2|+···+|Ck|

|C1|,|C2|,··· ,|Ck|
)
e(C1)

∏k
i=2 e(Ci)
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=
|C1|∑k
i=1 |Ci|

e(C1 \ {x})
e(C1)

=
| ↑ P (x) \ I|
|(T ∗ P ) \ I|

· PP (x|IP ).

Hence, the result holds.

This theorem is an extension of the case seen in Subsection 3.5.1.

When P is BU-feasible we can compute all the conditional probabilities from the weights

wi,

P (x|I) =
| ↑ P (x) \ I|
|T ∗ P \ I|

· wx∑
z∈MIN (P\IP )wz

.

Finally, we can give a generalization of the formula counting the number of linear ex-

tension of rooted trees, see Equation 3.5.

Theorem 3.42. Consider a rooted tree T and a poset P . Then the number of linear

extensions of the treefication of P based on T , T ∗ P , is

e(T ∗ P ) = e(P )n
∏n
i=1

(
ip
p

)∏
x∈T

(
λxp
p

) ,
where ∀x ∈ T, λx := |{y ∈ T |y � x}|.

Proof. Since any linear extension has the same probability we are going to choose one

linear extension passing through all the elements of each copy of P consecutively. Mul-

tiplying the inverse of the probabilities we get that the factors PP (x|IP ) team up n

times to get e(P )n. The other factors are
|T ∗ P \ I|
| ↑ P (x) \ I|

for each ideal. Since the ide-

al has one element less on each step,
∏
I |T ∗ P \ I| = (np)!. Let P (x) be the copy

of P associated to some element x in T ∗ P, the product of the ideals inside P (x) is∏
I | ↑ P (x) \ I| = (λxp)(λxp− 1) · · · (λxp− p+ 1) =

(λxp)!

(λx(p− 1))!
. Therefore,

e(T ∗ P ) = e(P )n
(np)!∏

x∈T
(λxp)!

(λx(p− 1))!

= e(P )n

(np)!

(p!)n∏
x∈T

(λxp)!

(λx(p− 1))!p!

= e(P )n
∏n
i=1

(
ip
p

)∏
x∈T

(
λxp
p

) .
This finishes the proof.





Chapter 4

Combinatorial structure of the

polytope of 2-symmetric fuzzy

measures

In this chapter we apply Young diagrams, a well-known object appearing in Combina-

torics and Group Representation Theory, to study some properties of the polytope of

2-symmetric fuzzy measures with respect to a given partition. The main result in this

chapter allows to build a simple and fast algorithm for generating points on this polytope

in a random fashion. Besides, we also study some other properties of this polytope, as

for example its volume. In the last section, we give an application of this result to the

problem of identification of general fuzzy measures [80].

4.1 Young diagrams and Ferrers posets

In this section, we are going to introduce the basic properties of Young diagrams. Young

diagrams are not only a useful combinatorial structure but also play an important role

in other branches of mathematics such as Representation Theory or Schubert Calculus

[81].

Definition 4.1. Consider a natural number n. A partition of n (do not confuse this

concept with the partition of a set) is a sequence of natural numbers λ = (λ1, ..., λk)

such that λ1 ≥ λ2 ≥ ... ≥ λk ≥ 1 and
∑k

i=1 λi = n.

Each partition represents a way to obtain n as a sum of natural numbers. Partitions of

n are represented through Young diagrams (see e.g., [82, 83] for the basic properties of

this object).

134



Chapter 4. Combinatorial structure of the polytope of 2-symmetric fuzzy measures 135

Definition 4.2. Let λ be a partition of a natural number n ∈ N. Then, we define the

Young diagram (or Ferrers diagram) of shape λ = (λ1, ..., λk), X(λ), as an array of

cells, xi,j , arranged in left-justified rows1, i = 0, · · · , k − 1 and j = 0, . . . , λi − 1.

Example 4.1. For instance, if λ = (5, 4, 4, 1) we obtain the Young diagram for n = 14

shown in Figure 4.1 left.

(0, 0)

(0, 1) (1, 0)

(0, 2) (1, 1) (2, 0)

(0, 3) (1, 2) (2, 1) (3, 0)

(0, 4) (1, 3) (2, 2)

(2, 4)

Figure 4.1: Young diagram associated to λ = (5, 4, 4, 1) and its corresponding Ferrers
poset.

Definition 4.3. Let λ be a partition of n. A Young tableau (plural Young tableaux)

of shape λ is an assignment of the integers 1, . . . , n to the cells in the diagram of shape

λ. A Young tableau is said to be standard if all rows and columns form increasing

sequences.

Example 4.2. A (standard) Young tableau for the Young diagram of shape λ = (5, 4, 4, 1)

is presented in Figure 4.2.

1 4 6 7 10

2 8 11 12

3 9 13 14

5

Figure 4.2: (Standard) Young tableau of shape (5,4,4,1).

Let us now introduce Hook-length formula. For this, some previous concepts are needed.

1Although it is usual to name the cells in a Young diagram indexing i from 1 to k and j from 1 to λi,
we have decided in this chapter to start at value 0. This provides a deeper insight into the relationship
between 2-symmetric measures and Young diagrams, in the sense that subset (i, j) will be associated to
cell (i, j) (see Lemma 4.8 below).
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Definition 4.4. Let X(λ) be a Young diagram of shape λ. For a cell (i, j) in the

diagram, the Hook of cell (i, j), denoted Hλ(i, j), consists of the cells that are either

below (i, j) in column j or to the right of (i, j) in row i, along with (i, j) itself. That is:

Hλ(i, j) := {(a, b) ∈ X(λ)|(a = i, b ≥ j) ∨ (a ≥ i, b = j)}.

The Hook length hλ(i, j) is the number of cells in the hook Hλ(i, j).

Example 4.3. For the example with λ = (5, 4, 4, 1), the set H(0, 0) is drawn in Figure

4.3.

Figure 4.3: Hook Hλ(0, 0) with λ = (5, 4, 4, 1).

In this case, hλ(0, 0) = 8.

The number of standard Young tableaux of shape λ can be written in terms of the Hook

lengths of the different cells. This is the famous Hook-length formula.

Theorem 4.5. [82, 83] Let λ be a partition of n and dλ be the number of standard

Young tableaux of shape λ. Then,

dλ =
n!∏

(i,j)∈X(λ) hλ(i, j)
.

Finally, let us introduce Ferrers posets. For a given Young diagram, we can build a

poset (P,�) in the following way. Elements of P are the cells (written as the pair of

coordinates) and given two cells (i, j), (k, l), we define

(i, j) � (k, l)⇔ i ≤ k, j ≤ l.

This poset is known as the Ferrers poset associated to shape λ, denoted P(λ). For

example, the Ferrers poset associated to shape (5, 4, 4, 1) can be seen in Figure 4.1 right.

Note that if we consider a Young diagram X(λ),λ = (λ1, ..., λr) such that λi = λj , ∀i, j,
i.e., when the Young diagram adopts the form of a rectangle, the corresponding Ferrers

poset has a minimum (corresponding to cell (0, 0)) and a maximum (associated to cell
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(r− 1, λr− 1)). We call normalized Ferrers poset, P∗(λ) to the poset resulting from

removing maximum and minimum from P(λ) for a Young diagram in these conditions.

Remark 4.6.

• Note that the same Ferrers poset arises if we swap rows and columns and build

the corresponding Young diagram, i.e., the Ferrers poset is the same for shapes

λ = (λ1, ..., λk) and η = (η1, ..., ηl) where ηi := ]{λj : λj ≥ i}.

• Remark also that (i, j) covers (i − 1, j) and (i, j − 1). In terms of the Young

diagram, this means that a cell covers just the cell to the left and the cell to the

top. Following the terminology of graphs, we will say that two cells are adjacent

if one of them covers the other in the corresponding Ferrers poset, i.e., when they

are consecutive cells in a column or a row.

We define a path in a Young diagram as a sequence of adjacent cells. Finally, we

will say that a subset F of cells in the Young diagram is connected if there is a

path inside F connecting any pair of cells in F . This will play an important role

in the following section.

Now, for a fixed shape, observe that any standard Young tableau can be related to

a possible linear extension of the corresponding Ferrers poset, where the labels give

the position of each element in the linear extension (label one corresponds to the first

element, label two to the second one and so on); reciprocally, given a linear extension

of the Ferrers poset, we can build a standard Young tableau just assigning to each cell

the position of the cell in the linear extension. Therefore, we have as many standard

Young tableaux as linear extensions of the Ferrers poset and applying Theorem 4.5, the

following holds for the number of linear extensions.

Corollary 4.7. Let λ be a partition of n, then:

e(P(λ)) =
n!∏

z∈P(λ) hλ(z)
.

4.2 FM(A1, A2) as an order polytope

We start with a fundamental property relating FM(A1, A2) to the normalized Ferrers

poset P∗(λ) with λ the (|A2| + 1)-vector whose coordinates are all of them |A1| + 1.

From now on, we will write this vector as λ = (|A1|+ 1, |A1|+ 1, |A2|+1. . . , |A1|+ 1).

Lemma 4.8. Let {A1, A2} be a partition of the referential set X and let us denote |A1| =
a1 and |A2| = a2. The set FM(A1, A2) can be seen as an order polytope associated to

the normalized Ferrers poset P∗(λ) with λ = (a1 + 1, a1 + 1, a2+1. . . , a1 + 1).
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Proof. As explained in Section 2.6.3, the set FM(A1, A2) is an order polytope whose

subjacent poset is P (A1, A2). Let us consider P+(A1, A2), where we have added ∅ and

X, given by (0, 0) and (a1, a2), resp. to P (A1, A2); then, P+(A1, A2) can be identified

to a (a1 + 1)× (a2 + 1) table, where entry (i, j), i = 0, ..., a1, j = 0, ..., a2, corresponds to

element (i, j). But this table is the Young diagram of shape λ = (a1 + 1, a1 + 1,
a2+1· · · ,

a1 + 1). Thus, P+(A1, A2) can be associated to P(λ) and consequently, P (A1, A2) can

be associated to P∗(λ).

Swapping positions of A1 and A2, we conclude that FM(A1, A2) can be associated to

the normalized Ferrers poset P∗(η) with η = (a2 + 1, a2 + 1,
a1+1· · · , a2 + 1). Compare this

with Remark 4.6.

An interesting consequence which follows from the last theorem gives us the exact volume

of the polytope FM(A1, A2).

Theorem 4.9. Let {A1, A2} be a partition of X in two subsets of indifference and let

|A1| = a1 and |A2| = a2. Then,

V ol (FM(A1, A2)) = [(a1 + 1)(a2 + 1)] [(a1 + 1)(a2 + 1)− 1]

a1∏
k=0

k!

(a2 + 1 + k)!

Proof. By Theorem 1.70, we know that for an order polytope,

V ol(O(P,�)) =
1

|P |!
e(P ),

where e(P ) denotes the number of linear extensions of poset (P,�). Thus, it suffices to

find the number of linear extensions of the subjacent poset. For FM(A1, A2), we have

to sort out the number of linear extensions of P (A1, A2). Note that the number of linear

extensions of this poset is the same as the polytope P+(A1, A2) defined in Lemma 4.8

or equivalently, to poset P(λ) with λ = (a1 + 1, a1 + 1, a2+1. . . , a1 + 1). Now, by Corollary

4.7, for shape λ,

e(P(λ)) =
[(a1 + 1)(a2 + 1)]!∏

(i,j)∈P(λ) hλ(i, j)
.

Let us then find the values of hλ(i, j) in this case. Note that for row i fixed, the values

of hλ(i, j), where j = 0, ..., a2 are a1 + a2 + 1− i, ..., a1 + 1− i resp. (see Figure 4.4).

Thus,
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7 6 5 4 3

6 5 4 3 2

5 4 3 2 1

Figure 4.4: Hook lengths for a rectangular Young tableau.

∏
(i,j)∈P(λ)

hλ(i, j) =

a1∏
i=0

(a1 + a2 + 1− i)!
(a1 − i)!

=

a1∏
k=0

(a2 + 1 + k)!

k!
.

Consequently,

V ol (FM(A1, A2)) =
1

[(a1 + 1)× (a2 + 1)− 2]!
e(P (A1, A2))

=
1

[(a1 + 1)× (a2 + 1)− 2]!
e(P+(A1, A2))

=
1

[(a1 + 1)× (a2 + 1)− 2]!
[(a1 + 1)(a2 + 1)]!

a1∏
k=0

k!

(a2 + 1 + k)!

= [(a1 + 1)(a2 + 1)] [(a1 + 1)(a2 + 1)− 1]

a1∏
k=0

k!

(a2 + 1 + k)!
.

Therefore, the result holds.

Some values of this volume for different values of a1 and a2 can be seen in the next table.

a1\a2 1 2 3 4 5

1 1 6·5
3!4!

8·7
4!5!

10·9
5!6!

12·11
6!7!

2 9·8·2!
3!4!5!

12·11·2!
4!5!6!

15·14·2!
5!6!7!

18·17·2!
6!7!8!

3 16·15·2!3!
4!5!6!7!

20·19·2!3!
5!6!7!8!

24·23·2!3!
6!7!8!9!

4 25·24·2!3!4!
5!6!7!8!9!

30·29·2!3!4!
6!7!8!9!10!

5 36·35·2!3!4!5!
6!7!8!9!10!11!

It must be remarked at this point that obtaining the volume of an order polytope is

a complex problem depending on the number of linear extensions (and counting linear

extensions is another complex problem), so that usually bounds are considered. In this

case, some bounds for the volume of FM(A1, A2) were given in [23].
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Young tableaux also gives an interesting combinatorial approach to the adjacency in

FM(A1, A2). Consider a n ×m grid on quadrant I, i.e., the left-bottom corner corre-

sponds to (0, 0) and right-top corner corresponds to (n,m).

Definition 4.10. Given a n×m grid, a staircase walk is a path from (0, 0) to (n,m)

which uses just up and right steps.

An example of a staircase walk in a 4× 4 grid can be seen in Figure 4.5. Staircase walks

play an important role in Combinatorics, since they are intimately linked to Catalan

numbers [8].

Figure 4.5: Staircase walk in a 4× 4 grid.

Let us now show the relationship between vertices and staircase walks, and apply it to

characterize adjacency in FM(A1, A2).

Proposition 4.11. Let {A1, A2} be a partition of X in two subsets of indifference and

let |A1| = a1 and |A2| = a2. Then,

i) There is a bijection between the set of vertices of FM(A1, A2) and the staircase

walks on a (a1 + 1)× (a2 + 1) grid which do not cross (0, a2 + 1) nor (a1 + 1, 0).

ii) FM(A1, A2) has
(
a1+a2+2
a1+1

)
− 2 vertices.

iii) Let F1 and F2 be two vertices of FM(A1, A2). F1 and F2 are adjacent if and only

if the set of cells between the two associated staircase paths is connected, as defined

in Remark 4.6.

Proof.

i) By Lemma 4.8, we know that FM(A1, A2) is an order polytope associated to

the normalized Ferrers poset P∗(λ) with λ = (a1 + 1, a1 + 1, a2+1. . . , a1 + 1). Since

FM(A1, A2) is an order polytope, its vertices are the characteristic functions of

the filters of P∗(λ). Let us then characterize filters in this poset. For this, note

that (i, j) ≤ (k, l) in P∗(λ) means i ≤ k, j ≤ l. Consequently, a filter of P(λ)



Chapter 4. Combinatorial structure of the polytope of 2-symmetric fuzzy measures 141

translates in the Young diagram as a set of cells satisfying that if (i, j) ∈ F then

Hλ(i, j) ⊆ F. Therefore, a filter defines a set of cells whose border is given by a

staircase path from the cell (a1, 0) to the cell (0, a2), or equivalently, a path in

a (a1 + 1) × (a2 + 1) grid from (0, 0) to (a1 + 1, a2 + 1). For example, the cells

appearing to the right of the staircase in Figure 4.5 define a filter of P∗(λ). Finally,

we have to take into account that the underlying poset is P∗(λ) instead of P(λ),

whence we have to remove two possible paths, namely the path crossing (0, a2 +1)

and the path crossing (a1 + 1, 0).

ii) It suffices to remark that the number of staircase walks in a (a1 + 1) × (a2 + 1)

grid is given by (
(a1 + 1) + (a2 + 1)

a1 + 1

)
=

(
a1 + a2 + 2

a1 + 1

)
.

By i), we just should remove 2 staircase walks, whence the result.

iii) To prove this, we will use the fact that in an order polytope two vertices are

adjacent to each other if and only if their associated filters satisfy either F1 ⊂ F2

or F2 ⊂ F1 and the difference F1 \ F2 or F2 \ F1 is connected [23]. Consider

two vertices in these conditions and let us assume F2 ⊂ F1. Suppose F1 \ F2 is

connected as poset. Note that by i) the elements in F1 \F2 correspond to the cells

between the two staircase paths associated to both filters. Now, given two cells

(i1, j1), (i2, j2) in F1 \ F2, there exists a path

(i1, j1) = a1 − a2 − ...− ar = (i2, j2)

in F1 \ F2 such that either ai covers ai+1 or the other way round. Indeed, (i, j)

covers (k, l) if and only if either i = k + 1 or j = l + 1. But this means that cells

(i, j) and (k, l) are adjacent in P(λ). Thus, connection of F1 \ F2 is equivalent to

connection of the corresponding set of cells F1 \ F2 in the Young diagram, in the

sense of Remark 4.6.

This finishes the proof.

4.3 A procedure for random generation in FM(A1, A2)

In this section, we tackle the problem of generating measures in FM(A1, A2) in a random

way. As explained in Section 4.2, this is equivalent to generate a linear extension in a

random way for the underlying poset P (A1, A2). Now, as explained in Section 4.2,

generating a linear extension of P (A1, A2) is equivalent to generate a linear extension of

P∗(λ) with λ = (|A1|+ 1, |A1|+ 1, |A2|+1. . . , |A1|+ 1); and finally, as stated in Section 4.1,
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this is equivalent to generate a standard Young tableau for a rectangular Young diagram

of shape λ. The main difficulty here is the following: once an element i is selected as

the last one in the linear extension of poset P∗, this element is removed and we have

to select another one from the poset P∗\{i} to be the element before i in the linear

extension; and this has to be done in a way such that all linear extensions have the same

probability.

Definition 4.12. Given a Young diagram of shape λ, we say that a position (i, j) is

maximal if there is no (k, l) 6= (i, j) in the diagram satisfying i ≤ k, j ≤ l.

Example 4.4. For the Young diagram in Figure 4.1, it can be seen that we have three

maximal cells, namely (0,4), (2,3) and (3,0).

Note that at each step, we aim to select a maximal element of the diagram. For a

(|A1|+1)×(|A2|+1) rectangular Young diagram, the only maximal element in the linear

extension is the one in position (|A1|, |A2|). Next step is to select the previous element

in the linear extension and two candidates (maximal elements) arise: (|A1| − 1, |A2|)
and (|A1|, |A2| − 1); the question now is: which probability should be assigned to select

(|A1| − 1, |A2|)? This translates to step i: once several elements have been selected, we

have some other positions that are candidates to be chosen as the previous element in

the linear extension; which are the corresponding probabilities for each of them?

At this point, it should be noted that when an element is selected to be the last one, we

obtain a new Young diagram (not necessarily a rectangular one), as next lemma shows:

Lemma 4.13. Let λ = (λ1, λ2, · · · , λk) be a partition of n. If a maximal cell is removed

from the i − th row in X(λ), then we obtain another Young diagram X(λ′) with λ′i =

λi − 1, λ′j = λj , j 6= i.

Proof. Since X(λ) is a Young diagram and the removed element is a maximal element, it

follows that below and on the right side of the the cell associated to this maximal element

there is no cell. Then, λi > λi+1, whence λ′i = λi − 1 ≥ λi+1 = λ′i+1. We conclude that

λ′ is a partition of n− 1 and X(λ′) is its corresponding Young diagram.

Consequently, the problem reduces to obtain a procedure to select a maximal element

in a general Young diagram so that we obtain a random standard Young tableau. The

main result of the section solves this question.

Theorem 4.14. Let P(λ) be a Ferrers poset with n elements and x ∈ P(λ) be a maximal

element. Then, the probability of x being the last element in a linear extension of P(λ)

is given by:



Chapter 4. Combinatorial structure of the polytope of 2-symmetric fuzzy measures 143

P (x | P(λ)) =
1

n

∏
z∈H−1

λ (x)

hλ(z)

hλ(z)− 1
,

where H−1
λ (x) = {z ∈ P(λ) | x ∈ Hλ(z) and z 6= x}.

Proof. We start noting that

e (P(λ)) =
∑

x maximal of P(λ)

e (P(λ) \ {x})

and

P (x | P(λ)) =
e (P(λ) \ {x})
e (P(λ))

.

From Lemma 4.13, P(λ)\{x} is a Ferrers poset with partition λ′, with λ′i = λi−1, λ′k =

λk, k 6= i if x = (i−1, j). Then, both e (P(λ) \ {x}) and e (P(λ)) can be computed from

Corollary 4.7, whence

P (x | P(λ)) =

(n− 1)!∏
z∈P(λ′) hλ′(z)

n!∏
z∈P(λ) hλ(z)

=
1

n

∏
z∈P(λ) hλ(z)∏
z∈P(λ′) hλ′(z)

.

Observe that if we remove a maximal element from a Young diagram, then the only

elements with different hook lengths are the elements in the same row or in the same

column as the removed maximal element (see Figure 4.6). Therefore,

9 7 5 3 1

7 5 3 1

5 3 1

3 1

1

9 7 4 3 1

7 5 2 1

4 2

3 1

1

Figure 4.6: Hook lengths before (left) and after (right) removing a maximal element.

P (x | P(λ)) =
1

n

∏
z∈P(λ) hλ(z)∏
z∈P(λ′) hλ′(z)

=
1

n

∏
z∈H−1

λ (x) hλ(z)∏
z∈H−1

λ (x) hλ′(z)
=

1

n

∏
z∈H−1

λ (x)

hλ(z)

hλ′(z)
,

where in the last step we have used that hλ(x) = 1 because it is a maximal element.

Finally, since we have removed x we obtain hλ′(z) = hλ(z) − 1 for every element z in

the same row or column as x. Therefore, we get the desired formula.
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Theorem 4.14 provides the probability of selecting a maximal element as the previous

element in a linear extension at each step. Therefore, we can state the following pro-

cedure for deriving a random standard Young tableau and thus, a random 2-symmetric

measure (see Algorithm 5).

Algorithm 5 SAMPLING ALGORITHM FOR 2-SYMMETRIC MEASURES

1. Consider a Young diagram of shape λ = (|A1|+ 1, |A1|+ 1,
|A2|+1
· · · , |A1|+ 1).

2. Sampling algorithm for standard Young tableaux.

Step 2.1: Select a maximal cell (i, j) of the Young diagram with probability

P ((i, j) | P(λ)) =
1

n

∏
(k,l)∈H−1

λ (i,j)

hλ(k, l)

hλ(k, l)− 1
.

Step 2.2: Remove this cell and repeat the previous step for the new Young
diagram.

3. Given the standard Young tableau obtained in the previous step, build the corre-
sponding linear extension of the Ferrers poset, thus obtaining a linear extension ε of
the poset (P,�).

4. Remove the first (0, 0) and last element (|A1|, |A2|) of the linear extension. Thus,
we obtain a linear extension ε∗ of the poset P∗(λ).

5. Sampling the values of the 2-symmetric measure.

Step 5.1: Generate a [(a1 + 1)(a2 + 1)− 2] vector ~u of random variables U(0, 1).

Step 5.2: Sort ~u, to get a [(a1 + 1)(a2 + 1)− 2] vector ~v with the values gener-
ated in the previous step in increasing order.

Step 5.3: Assign the value v[k] to µ(i, j) if the element associated to the cell
(i, j) is placed at position k in ε∗. We denote this by ε∗[(i, j)] = k.

return µ.

Example 4.5. Let X = {1, 2, 3}, A1 = {1, 2} and A2 = {3}. Therefore n = 6, a1 = 2

and a2 = 1. Then by Lemma 4.8, this polytope is associated to the Young diagram of

shape λ = (3, 3). The initial Young diagram and its Ferrers poset are given in Figure

4.7.

• At the beginning we have just one maximal cell, namely (1, 2), so we remove it and

ε[(1, 2)] = 6. That is, the element associated to subset (1, 2) is at position 6 in the

linear extension ε. Update λ′ = (3, 2).
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Figure 4.7: Standard Young tableau associated to λ = (3, 3) (left) and its Ferrers
poset (right).

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(1, 2)

(1, 1)(0, 2)

(1, 0)(0, 1)

(0, 0)

• Now (1, 1) and (0, 2) are maximal cells. We compute their probabilities through

Theorem 4.14.

P
(
(1, 1) | P(λ′)

)
=

1

5
· 3

2
· 2

1
=

3

5
, P

(
(0, 2) | P(λ′)

)
=

1

5
· 3

2
· 4

3
=

2

5
.

Suppose (1, 1) is selected, ε[(1, 1)] = 5. Update λ′ to λ′′ = (3, 1).

• Now (1, 0) and (0, 2) are maximal cells. We compute their probabilities through

Theorem 4.14.

P
(
(1, 0) | P(λ′′)

)
=

1

4
· 4

3
=

1

3
, P

(
(0, 2) | P(λ′′)

)
=

1

4
· 2

1
· 4

3
=

2

3
.

Suppose (1, 0) is selected, ε[(1, 0)] = 4. Update λ′′ to λ′′′ = (3, 0) ≡ 3.

• The remaining poset is a chain, so we have just one maximal in each step and

ε[(0, 2)] = 3, ε[(0, 1)] = 2 and ε[(0, 0)] = 1. Therefore, ε = {(0, 0), (0, 1), (0, 2), (1, 0),

(1, 1), (1, 2)}.

Now we obtain ε∗ from ε by removing the maximum and minimum, ε∗ = {(0, 1), (0, 2), (1, 0),

(1, 1)}.

Finally, we have to generate 4 variables U(0, 1) in order to sample inside the simplex

ε∗. Using any mathematical software (for example R), we obtain say

(0.77, 0.65, 0.73, 0.09).

Now, v = (0.09, 0.65, 0.73, 0.77), and µ is given by:

µ(0, 0) = 0.00, µ(0, 1) = 0.09 µ(0, 2) = 0.65, µ(1, 0) = 0.73, µ(1, 1) = 0.77 µ(1, 2) = 1.00.
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Next, let us study the computational complexity.

Proposition 4.15. The computational complexity of the previous algorithm is O(n2),

where n = (a1 + 1)(a2 + 1).

Proof. We will count the number of operations that the algorithm performs to obtain a

random 2-symmetric measure.

• Initializing: Build the initial hook matrix. The complexity is n, since we just

have to save n = (a1 + 1) · (a2 + 1) numbers in memory, corresponding to the hook

length of the n cells.

• Updating position vector: When an element is removed, we should identify the

new maximal cells. The number of maximal elements is at mostmin {a1 + 1, a2 + 1}
and we repeat this search n times, one for each iteration, we need say

min {a1 + 1, a2 + 1} · n ≤ n2 computations at most.

• Updating hook matrix: When removing an element, we have to subtract 1 to

the elements above and to the left of it. The number of such cells is limited by

(a1 + 1) + (a2 + 1) ≤ n. And taking it for the n iterations, we obtain the upper

bound n2.

• Computing probability vectors for maximals: For each combination of max-

imals we should compute the probability of each maximal.

First, let us assume w.l.g. that a1 ≤ a2, and that this holds for the Young diagram

arising at each iteration. Note that the number of maximals is bounded by 1 in

the first iteration, by 2 for iterations 2, 3, by 3 for iterations 4, 5, 6 and so on.

Next, after iteration 1 + 2 + 3 + 4 + ... + a1 the number of maximals is bounded

by a1 + 1 (the number of lines of the initial Young diagram) and this remains for

(a1+1)(a2−a1+1) iterations, i.e., until the last 1+2+3+4+...+a1 iterations, where

the number of maximals is again bounded by a1, a1−1, .... Now, for maximal (i, j),

the number of products to compute the probability of this maximum is 2 · (i+ j).

Therefore, we have to compute

n∑
t=1

∑
{(i,j) maximal in iteration t}

[2 · (i+ j)] .

We are going to split this sum into the two parts mentioned above.

For the first 1 + 2 + 3 + 4 + ...+ a1 iterations, we know that there are a1 kinds of

iterations depending on the bound for the number of maximals. Moreover, for the
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kind of iteration p there are p of these iterations (as many as cells in the diagonal),

and in each of these iterations there are at most p maximals; for each maximal we

should do 2 · (i+ j) ≤ 2(a1 + a2) computations at most. This also applies for the

last 1 + 2 + 3 + 4 + ...+ a1 iterations, so we have to double the bound.

2

a1∑
p=1

2(a1 + a2)p2 = 4(a1 + a2)
a1(a1 + 1)(2a1 + 1)

6

≤ 16

6
· (a1 + 1)3(a2 + 1) ≤ 3 · (a1 + 1)2(a2 + 1)2 = 3n2.

For the second part, we work with the (a1 +1)(a2−a1 +1) iterations related to the

cells in the middle of the Young tableau. In each of these iterations, there are at

most (a1 + 1) maximals and for each maximal we should do 2 · (i+ j) ≤ 2(a1 + a2)

computations at most. Therefore we have:

2(a1 + a2) · (a1 + 1)2 · (a2 − a1 + 1) ≤ 4 · (a1 + 1)2(a2 + 1)2 = 4n2,

whence the quadratic complexity is obtained.

• Sampling: We sample n uniform random variables. Obviously, it takes a com-

plexity of n.

By adding these steps we observe that the important part is the computation of the

probability vector which reaches a quadratic complexity.

4.4 Application: the problem of identification

In this section, let us present an application of the previous results. Consider a problem

in the framework of Multicriteria Decision Making; then, we have a set of |X| = n

criteria and we have to choose between a set of objects. Each object has to be given

an overall value y from the partial evaluations on each criterion, denoted x1, ..., xn; we

assume that the problem can be modeled via Choquet integral, i.e., we assume that y is

the Choquet integral of a function f defined by f(i) = xi, i = 1, ..., n, with respect to an

unknown fuzzy measure µ (possibly restricted to a subfamily of fuzzy measures). The

goal is to identify the fuzzy measure µ modeling this situation and for this, we have a

sample of m objects for which we know both the partial scores (xi1, ..., x
i
n), i = 1, ...m,

and the overall score yi, i = 1, ...,m (possibly affected by some random noise); it could be

the case that y, (x1, ..., xn) or both of them are ordinal values, not necessarily numerical.

We look for a fuzzy measure (not necessarily unique) that best fits these data. If the

quadratic error is considered, this amounts to looking for a fuzzy measure µ0 minimizing
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F (µ) :=

m∑
i=1

(
Cµ(xi1, ..., x

i
n)− yi

)2
.

Several techniques have been proposed to solve this problem [61, 84, 85]. One of them is

based on genetic algorithms [86]. Genetic algorithms are general optimization methods

based on the theory of natural evolution; starting from an initial population, at each

iteration some individuals are selected with probability proportional to their fitness

(measured according to the function that we want to optimize) and new individuals

are generated from them using a cross-over operator. These new individuals replace

the old ones (their parents) and the process continues until an optimum is found or the

maximum number of generations is reached; besides, some other individuals may mutate

via a mutation operator. Finally, the best individual in the last population is returned

as a possible solution to the problem.

In [87], a procedure based on genetic algorithms has been proposed. In this procedure,

the cross-over operator is given by the convex combination between parents and the

mutation operator is given by a convex combination between the selected measure and

another one. The algorithm seems to be fast and work properly because it is not needed

to check at each iteration if the offsprings are in the search region. However, it has the

drawback that this reduces the search region at each iteration; and this forbids to go

back if the solution of the problem is left outside this region in an iteration. To cope with

this problem, there are several options; the most natural is to consider the set of vertices

as the initial population of the algorithm and use as mutation operator the convex

combination of the measure with one of the vertices; unfortunately, for the general case

of fuzzy measures and also for many subfamilies, the number of vertices increases too

fast [88]. Thus, this solution is most of times unfeasible from a computational point of

view. Then, the most practical way of proceeding is to consider as initial population a

set of fuzzy measures selected randomly with respect to the uniform distribution on the

set of all fuzzy measures in FM(X). In this section, we are going to develop a procedure

based on the previous results on 2-symmetric measures.

To apply the previous results on 2-symmetric measures to this problem, the following

result is the cornerstone. It tells that the whole set of fuzzy measures FM(X) can be

recovered from 2-symmetric measures, just allowing different partitions. First, let us

define

FMS2 :=
⋃
A⊆X

FM(A,Ac),

the set of all fuzzy measures being at most 2-symmetric for a partition.
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Proposition 4.16. Let X be a referential set of n elements and consider µ ∈ FM(X).

Then, there exist k, k′ ∈ N such that µ can be written as

µ = µ1 ∨ µ2 ∨ · · · ∨ µk,

and also

µ = µ∗1 ∧ µ∗2 ∧ · · · ∧ µ∗k′ ,

where µi ∈ FMS2, ∀i ∈ 1, · · · , k and µ∗i ∈ FMS2, ∀i ∈ 1, · · · , k′.

Proof. Observe that

µ =
∨

∅⊂A⊂X

µA,

where µA is defined by

µA(C) :=

{
µ(A) if C ⊇ A,

0 otherwise

As µA ∈ FM(A,Ac), the result holds.

For the second statement, note that

µ =
∧

∅⊂A⊂X

µ∗A,

where µ∗A is given by

µ∗A(C) :=

{
µ(A) if C ⊆ A,

1 otherwise

As µ∗A ∈ FM(A,Ac), the result holds.

Based on the previous proposition, we could modify the procedure in [87], and consider

as cross-over operator

µ1 ⊕λ µ2 := λ (µ1 ∨ µ2) + (1− λ) (µ1 ∧ µ2) , λ ∈ [0, 1], (4.1)

instead of the convex combination. This cross-over operator shares similar properties to

the convex combination, in the sense that it is not necessary to check at each iteration

whether the children are inside the set FM(X). In other words, we can achieve any

element of FM(X) from a proper random initial population of elements in FMS2.
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To study the behavior of this algorithm, we have conducted a simulation study. We have

studied two different situations.

• Case 1: Identification of 2-symmetric measures for a fixed partition. We

try to identify a measure µ ∈ FM(A,Ac) chosen at random. The data to identify

the measure are the 3n points consisting in all possible n-vectors (x1, ..., xn), where

xi ∈ {0, 0.5, 1} (this is the same data as considered in [87]). For any possible vector,

the overall value y is the corresponding Choquet integral with respect to µ. The

initial population consists in 30 measures in FM(A,Ac) selected at random via

the algorithm presented in the previous section. At each step, the population

splits into three groups. The first group consists in the measures with the highest

scores (lowest mean Choquet errors F (µ)) computed with the first quartile. The

second group includes the elements with the lowest scores, using the third quartile.

Finally, the third group are the rest of the elements. The cross-over operator is

the convex combination. In each step, we apply the cross-over operator to groups

2 and 3. The mutation operator is as follows: the elements of group 2 are replaced

by new ones generated at random from FM(A,Ac). In addition, groups 1 and 3

are mutated by adding gaussian noise on some coordinates chosen at random. As

the algorithm progresses, the three types of population change and better scored

elements arrive to group 1. This method stops when the mean Choquet error is

below a threshold (ε = 10−8) or a maximum number of iterations is achieved.

• Case 2: Identification of general fuzzy measures. In this case, we try to

identify a measure µ ∈ FM(X) chosen at random. For this generation we can

use some high complexity algorithm such as an acceptance-rejection method. As

in the previous case, the data are the 3n points consisting in all possible n-vectors

(x1, ..., xn), where xi ∈ {0, 0.5, 1} and the overall value y is the corresponding

Choquet integral with respect to µ. The initial population is a set of n = 30 2-

symmetric fuzzy measures in FMS2 selected at random; for this, we have first to

choose a partition {A,Ac} at random, and this can be done using the volume of

each FM(A,Ac) (that has been obtained in Corollary 4.7) to know the probability

of each partition; next, once A is fixed, we generate a measure in FM(A,Ac) via

the algorithm proposed in the previous section. The population again splits into

three groups as defined above. The rest of the algorithm is also similar as above

but selecting the cross-over operator given by (4.1). At each step, we apply the

cross-over operator for a value of λ selected at random in [0,1] to groups 2 and

3. The mutation operator is also similar as above: The elements of group 2 are

replaced by the new ones generated at random from FMS2. In addition, groups 1

and 3 are mutated by adding gaussian noise on some coordinates chosen at random.
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This method stops when the mean Choquet error is below 10−8 or a maximum

number of iterations is achieved.

We have repeated both models 50 times for each size n. The mean identification errors

for the different referential sizes are given in Table 4.1. From these values, it can be seen

that the algorithm seems to perform very well in both cases.

Identification Algorithm Performance

Referencial Size 2-Symmetric Fuzzy measures

n = 3 1.388e-05 2.653e-05

n = 4 3.918e-05 4.128e-05

n = 5 6.365e-05 2.413e-04

n = 6 7.831e-05 4.480e-04

n = 7 8.134e-05 7.279e-04

n = 8 1.915e-04 9.011e-04

n = 9 2.353e-04 9.545e-04

n = 10 2.561e-04 1.025e-03

Table 4.1: Identification errors.

Obviously, when we identify a general fuzzy measure by using an initial random popu-

lation of 2-symmetric measures we get a higher identification error. However, this error

is acceptable even for big values of n. Moreover, this algorithm gets lower errors than

other methods in the literature (see [87]). Thus, we have managed to achieve a way of

avoiding the computational problems related to the huge number of vertices in FM(X)

and identifying fuzzy measures by using the combinatorial properties of FMS2.





Chapter 5

Combinatorial structure of the

polytope of 2-additive fuzzy

measures

In this chapter we study the polytope of 2-additive measures, an important subpoly-

tope of the polytope of fuzzy measures. For this polytope, we obtain its combinatorial

structure, namely the adjacency structure and the structure of 2-dimensional faces, 3-

dimensional faces, and so on. Basing on this information, we build a triangulation of

this polytope satisfying that all simplices in the triangulation have the same volume.

As a consequence, this allows a very simple and appealing way to generate points in a

random way in this polytope, an interesting problem arising in the practical identifica-

tion of 2-additive measures. Finally, we also derive the volume, the centroid, and some

properties concerning the adjacency graph of this polytope (see [89]).

5.1 Combinatorial structure of FM2(X)

In this section we tackle the problem of obtaining the combinatorial structure of FM2(X),

that is, its k-dimensional faces. For the different concepts relating polytopes appearing

in this section, see Chapter 1. It can be easily seen that FM2(X) is a convex polyhe-

dron in R2n−2, i.e., a polytope, as it is the intersection of the polytope FM(X) and the

hyperplanes m(A) = 0, |A| > 2. Then, it can be characterized in terms of its vertices.

The vertices of FM2(X) have been obtained in [90] and are given in next proposition.

153
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Proposition 5.1. The set of vertices of FM2(X) are given by the {0, 1}-valued fuzzy

measures in FM2(X), i.e., ui, uij , µij , that are defined by

uA(B) : =

{
1 if A ⊆ B

0 otherwise
,

µij(B) : =

{
1 if i ∈ B or j ∈ B

0 otherwise

Then, FM2(X) has n2 vertices.

This result shows an important difference between 2-additive measures and general

k-additive measures, k > 2, as it has been proved in [90] that there are vertices in

FMk(X), k > 2 that are not {0, 1}-valued.

For FMk(X), it is convenient in many situations to use the equivalent Möbius transform.

For this reason, let us define a map that will be of aid in the following:

m : FM(X) → M(X)

µ ↪→ mµ

We will denote M2(X) := m(FM2(X)). As m is a nonsingular linear application,

we conclude that M2(X) is a convex polytope that is combinatorially equivalent to

FM2(X) (see [10]). Thus, this function maps k-dimensional faces into k-dimensional

faces and keeps adjacency and any other result concerning the combinatorial structure.

Note however that it does not keep the volume nor distances.

This way, we can study k-dimensional faces of M2(X) (a simpler problem, as it will be

seen below) and apply m−1 to get the same conclusions about the k-dimensional faces

of FM2(X). In particular, m maps vertices into vertices; hence, the vertices ofM2(X)

are:

For ui : we get mi defined as mi(i) = 1 and mi(A) = 0, ∀A 6= i.

For uij : we get mij defined as mij(ij) = 1 and mij(A) = 0, ∀A 6= ij.

For µij : we get mij defined as mij(ij) = −1,mij(i) = 1,mij(j) = 1 and mij(A) =

0, ∀A /∈ {i, j, ij}.

We start studying the dimension of FM2(X).

Lemma 5.2. dim(FM2(X)) =
(
n
2

)
+ n− 1.
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Proof. It is clear that dim(FM(X)) = 2n − 2. Hence, dim(M(X)) = 2n − 2. Now,

remark that

M2(X) =M(X)
⋂
|A|≥3

{m : m(A) = 0}.

Therefore,

dim(M2(X)) = 2n − 2−
n∑
i=3

(
n

i

)
=

(
n

2

)
+ n− 1.

Hence, the result holds.

In what follows, we will study the properties of FM2(X) as a polytope in R(n2)+n−1.

We start showing that, although the vertices of FM2(X) are {0, 1}-valued, it is not an

order polytope.

Proposition 5.3. If |X| > 2, the polytope FM2(X) is not an order polytope.

Proof. Assume there is a poset P such that O(P ) = FM2(X). Then, P is a filter for P

and thus there is a maximum vertex with all coordinates equal to 1, i.e. there is a vertex

µ ∈ FM2(X) such that µ(A) ≥ µ′(A), ∀A ⊆ X,∀µ′ ∈ FM2(X). However, if |X| > 2,

there is not µ ∈ FM2(X) dominating say µ12, and this measure does not dominate all

2-additive measures. Therefore, we get a contradiction and the result holds. If |X| = 2,

then FM2(X) = FM(X) which is an order polytope.

As FM2(X) is not an order polytope, we cannot apply the results of [22, 23] to sort

out the combinatorial structure of this polytope and we have to look for another way to

solve the problem.

The problem of determining all the faces of a polytope consists in characterizing the

conditions for a subset of vertices C to determine a face. Next lemma shows the basic

result for characterizing the faces of FM2(X).

Lemma 5.4. Let F be a face of FM2(X). Then, uij , µij ∈ F if and only if ui, uj ∈ F .

Proof. It is enough to point out that ui + uj = uij + µij , ∀i 6= j in X, and use Lemma

1.47.

We are now in a position to present the main result of this section, in which we give a

complete characterization of the faces of FM2(X), see Definition 1.43. In it, we show

that the necessary condition of Lemma 5.4 is also sufficient.

Theorem 5.5. Combinatorial structure of FM2(X). Let C be a collection of ver-

tices of FM2(X). Then the following are equivalent:
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i) Conv(C) is a face of FM2(X).

ii) ui, uj ∈ C ⇔ uij , µij ∈ C.

Proof. i)⇒ ii) This is Lemma 5.4.

ii)⇒ i) Consider a set of vertices C satisfying ii) and consider the corresponding vertices

in M2(X). Let us define

H := {i ∈ X : ui ∈ C}, I := {ij ∈
(
X

2

)
: uij , µij ∈ C},

A := {ij ∈
(
X

2

)
: uij ∈ C, µij 6∈ C}, B := {ij ∈

(
X

2

)
: µij ∈ C, uij 6∈ C}.

Now, we define the following halfspace

2
∑
i∈H

m(i) + 2
∑

ij∈A∪I
m(ij) +

∑
ij 6∈A∪B∪I, i∈H,j 6∈H

m(ij)− 2
∑

ij∈B,i 6∈H,j 6∈H
m(ij) ≤ 2.

Let us show that this halfspace defines a face in M2(X) such that the corresponding

face in FM2(X) has C as vertices. First, let us see that M2(X) is in the halfspace. To

show this, it suffices to check that all vertices inM2(X) are in the halfspace. By ii), we

have ij ∈ I ⇔ i, j ∈ H. Thus, we avoid the cases ij ∈ B, i, j ∈ H and ij ∈ A, i, j ∈ H.

For mi, i ∈ H : we get 2 ≤ 2.

For mi, i 6∈ H : we get 0 ≤ 2 .

For mij , ij ∈ I : we get 2 ≤ 2.

For mij , ij ∈ A : we get 2 ≤ 2.

For mij , ij ∈ B : we get 0 ≤ 2 if i ∈ H, j 6∈ H and −2 ≤ 2 if i 6∈ H, j 6∈ H.

For mij , ij 6∈ A ∪B ∪ I : we get 1 ≤ 2 if i ∈ H, j 6∈ H and 0 ≤ 2 if i 6∈ H, j 6∈ H.

For mij , ij ∈ I : we get 2 ≤ 2.

For mij , ij ∈ A : we get 0 ≤ 2 if i ∈ H, j 6∈ H and −2 ≤ 2 if i 6∈ H, j 6∈ H.

For mij , ij ∈ B : we get 2 ≤ 2 if i ∈ H, j 6∈ H and 2 ≤ 2 if i 6∈ H, j 6∈ H.

For mij , ij 6∈ A ∪B ∪ I : we get 1 ≤ 2 if i ∈ H, j 6∈ H and 0 ≤ 2 if i 6∈ H, j 6∈ H.

Note further that equality holds exactly for the vertices inM2(X) whose image by m−1

is in C. Therefore, C defines a face in FM2(X) and the result holds.
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From this theorem, we can derive in an easy and fast way the adjacency structure of

FM2(X).

Corollary 5.6. Let µ1 and µ2 be two different vertices of FM2(X). Then, µ1 and µ2

are adjacent vertices in FM2(X) except if µ1 = ui, µ2 = uj or µ1 = uij , µ2 = µij .

Proof. It suffices to remark that two vertices are adjacent if and only if they form a

1-dimensional face, i.e. an edge. Let C be a collection of two vertices of FM2(X).

Applying Theorem 5.5, it follows that C defines an edge if and only if C 6= {ui, uj} or

C 6= {uij , µij}.

Next, we study the structure of k-dimensional faces. From Corollary 5.6 and Theorem

5.5 it is also possible to determine whether a face is a simplex. Next theorem describe

the geometry of each face.

Theorem 5.7. Let FC be a face of FM2(X) and let us consider the following sets

U := {i ∈ X : ui ∈ C} , V :=

{
ij ∈

(
X

2

)
: |{uij , µij} ∩ C| = 1

}
.

Then, the following holds:

i) If |U| ≤ 1, then FC is a simplicial face of dimension |C| − 1, (see Def. 1.41).

ii) If |U| > 1, then FC is a non-simplicial face of dimension
(|U|

2

)
+ |U| + |V| − 1.

Moreover, if V = ∅, then FC = FM2(U). Otherwise, FC = cpyr(FM2(U),V),

where cpyr denotes the consecutive pyramid (see Def. 1.42).

Proof. i) Since |U| ≤ 1 and FC is a face, we conclude from Theorem 5.5 that

{uij , µij} 6⊆ C, ∀ij ∈
(
X
2

)
. We are going to show that vertices in C are affinely

independent and therefore they form a simplex. To show this, we are going to

work in M2(X) with Möbius coordinates. Let us write m(C) = {v0, . . . , vs}, with

s ≥ 1, as otherwise the result trivially holds. We will show that no vi − v0 can be

written as a linear combination of vj − v0, j 6= i. We consider two cases:

• Consider mij ∈ m(C) and suppose we can write mij − v0 as a linear combi-

nation of the other vj − v0 (the case for mij follows exactly the same rea-

soning). Without loss of generality, let us denote v1 = mij . Remark that

mij(ij) 6= 0 = vk(ij), ∀k 6= 1 (as mij 6∈ m(C)). Thus,

(v1 − v0)(ij) 6= 0 = (vk − v0)(ij), ∀k > 1,
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and hence we conclude that v1−v0 cannot be written as a linear combination

of vk − v0, k > 1.

• Let us now suppose that we can write the (possibly) only mi ∈ m(C) in the

way that mi − v0 is a linear combination of the other vj − v0. Let us assume

without loss of generality v1 = mi. Then

v1 − v0 =
s∑
i=2

αi(vi − v0),

for some αi not all of them null, say α2 6= 0. Then, we can rewrite the previous

expression, thus obtaining

v2 − v0 =
s∑

k=3

−αk
α2

(vk − v0) +
1

α2
(v1 − v0).

As v2 is either mkr or mkr, this is a contradiction with the previous case.

Then, the vertices of C are affinely independent and FC is a simplicial face of

dimension |C| − 1.

ii) Since |U| > 1, there are two vertices ui and uj that are not adjacent to each other

by Corollary 5.6. Therefore, FC is not a simplex.

If V = ∅, we conclude from Lemma 5.4 that

C = {ui : i ∈ U} ∪
{
uij , µij : ij ∈

(
U
2

)}
.

Hence, FC = FM2(U) and the dimension is
(|U|

2

)
+ |U| − 1.

Let us suppose now that V 6= ∅. By Lemma 5.4, we know that

{ui : i ∈ U} ∪
{
uij , µij : ij ∈

(
U
2

)}
⊂ C.

Therefore, FM2(U) ⊂ Conv(C). Take uij such that ij ∈ V (the case for µij is

completely similar) or, in Möbius coordinates, mij with ij ∈ V. Note that for all

vertices µ ∈ FM2(U), it is mµ(ij) = 0 and thus, they are non-collinear with mij .

Then, when we add uij we get pyr(FM2(U), uij). The dimension is the dimension

of the base plus 1. If we repeat this procedure with the other elements of V and we

get the consecutive pyramid cpyr(FM2(U),V) with dimension
(|U|

2

)
+ |U|+ |V|−1.

Therefore, the result holds.

Finally, we study the number of k-dimensional faces of FM2(X). In next result, we

compute the f -vector of FM2(X), (see Def. 1.48).
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Theorem 5.8. Let fsk and fnsk be the number of simplicial and non-simplicial k-

dimensional faces of FM2(X), respectively. Then:

i) The number of simplicial k-dimensional faces is given by:

fsk =


2k+1

((n2)
k+1

)
+ n2k

((n2)
k

)
if k ≤

(
n
2

)
− 1

n2(n2) if k =
(

n
2

)
0 otherwise

ii) If we denote p(j) :=
(
j
2

)
+ j, and by s(k) the maximum value of j such that

k + 1 − p(j) ≥ 0, then the number of non-simplicial k-dimensional faces is given

by:
s(k)∑
j=2

2k+1−p(j)
(
n

j

)( (
n
2

)
−
(
j
2

)
k + 1− p(j)

)
.

Finally, fk = fsk + fnsk.

Proof. i) Applying Theorem 5.7 and following the same notation, we have two kinds

of simplicial faces, namely the ones with |U| = 0 and the ones where |U| = 1.

For the first case, as the dimension is the number of vertices minus 1, we need to

select k+ 1 vertices derived from V. Note that for a chosen pair ij ∈ V, either uij

or either µij are in the face. Therefore, the number of possible faces is given by

2k+1

( (n
2

)
k + 1

)
.

If |U| = 1 we need to select k vertices derived from V. As we have n possible

choices for the vertex in U , we conclude that the number of such faces is given by

n2k
((n

2

)
k

)
.

Thus,

fsk =


2k+1

((n2)
k+1

)
+ n2k

((n2)
k

)
if k ≤

(
n
2

)
− 1

n2(n2) if k =
(

n
2

)
0 otherwise

ii) In order to get a non-simplicial k-dimensional face, by Th. 5.7, we need |U| ≥ 2;

now, we look for the number of possibilities of
(|U|

2

)
+ |U| + |V| = k + 1. Remark

that the number of pairs suitable for V is at most(
n

2

)
−
(
|U|
2

)
.
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Then, the number of possible faces is the number of combinations of U and V in

these conditions. In addition, consider that we must choose between uij and µij

for each pair in V. If we denote j := |U|, p(j) =
(
j
2

)
+ j, and by s(k) the maximum

value of j such that k + 1− p(j) ≥ 0, then the number of non-simplicial faces is

s(k)∑
j=2

(
n

j

)
2k+1−p(j)

( (
n
2

)
−
(
j
2

)
k + 1− p(j)

)
,

where we are assuming that
(
a
b

)
= 0 if a < b.

Hence, the result holds.

5.2 A random procedure for generating points in FM2(X)

Inspired by the adjacency structure of FM2(X) obtained previously, in this section we

are going to develop a procedure for generating random points uniformly distributed

in FM2(X). As explained in Chapter 1, generating points in a polytope is a complex

problem and several methods, not completely satisfactory, have been presented to cope

with this problem [17, 18]. Among them, we have the triangulation method [17]. The

triangulation method takes advantage of the fact that random generation in simplices is

very simple and fast [20].

The triangulation method is based on the decomposition of the polytope into simplices

such that any pair of simplices intersects in a (possibly empty) common face. Once the

decomposition is obtained, we assign to each simplex a probability proportional to its

volume; next, these probabilities are used for selecting one of the simplices; finally, a

random m-uple in the simplex is generated.

The main drawback of this method is that in general it is not easy to split a polytope

into simplices. Moreover, even if we are able to decompose the polytope in a suitable

way, we have to deal with the problem of determining the volume of each simplex in

order to randomly select one of them. Computing the volume of a polytope is a complex

problem and only partial results are known. However, in the case of simplices, the

volume is given in Lemma 1.54.

The triangulation method is specially appealing for order polytopes, as it is easy to

decompose the polytope in simplices having the same volume (see Theorem 1.70). How-

ever, as we have seen in Proposition 5.3, FM2(X) is not an order polytope and thus,

we have to look for another way to split the polytope into simplices. This is the task we

achieve in this section.
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To develop an algorithm to generate random points in FM2(X), we will profit its

combinatorial structure, and more concretely the adjacency structure developed in the

previous section. We will use the fact that

ui + uj = uij + µij .

Lemma 5.9. Given µ ∈ FM2(X), it is possible to write µ as a unique convex com-

bination of vertices of FM2(X) in a way such that either uij or either µij has null

coefficient, for all pairs ij ∈
(
X
2

)
.

Proof. Given a measure µ ∈ FM2(X), let us write µ as

µ =
n∑
i=1

αiui +
∑
ij

αijuij +
∑
ij

βijµij

such that
n∑
i=1

αi +
∑
ij

αij +
∑
ij

βij = 1.

Notice that this convex combination might not be unique to represent µ. Now, if say

αij > βij , we apply

αijuij + βijµij = βijui + βijuj + (αij − βij)uij .

Similarly, if αij < βij , we apply

αijuij + βijµij = αijui + αijuj + (βij − αij)µij .

Hence, we have proved the first part. Assume now that two such representations are

possible; then,

µ =
n∑
i=1

αiui +
∑
ij

αijuij +
∑
ij

βijµij

=

n∑
i=1

α′iui +
∑
ij

α′ijuij +
∑
ij

β′ijµij .

Now, for a pair ij, its Möbius transform is given by

m(ij) = αij − βij = α′ij − β′ij .
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But as one αij , βij (resp. α′ij , β
′
ij) vanishes by hypothesis and they are all non-negative,

this implies αij = α′ij , βij = β′ij , whence the result.

The previous lemma leads to the key idea for triangulating FM2(X). Let us consider(
X
2

)
and for each pair ij ∈

(
X
2

)
, either uij or µij is assigned. We defineA− as the subset of

pairs of
(
X
2

)
where uij is selected and A+ the set of pairs for which µij is selected. There

are 2(n2) different A−, so that there are 2(n2) different A−,A+. For fixed A−,A+, we

define FM2
A−,A+(X) as the convex hull of {ui : i ∈ X}∪{uij : ij ∈ A−}∪{µij : ij ∈ A+}.

In other words, FM2
A−,A+(X) consists of all fuzzy measures µ in FM2(X) such that

the unique representation of µ in terms of Lemma 5.9 is such that ij ∈ A− if uij appears

in the representation and ij ∈ A+ if it is µij who appears in the representation. Remark

that FM2
A−,A+(X) is a polytope whose vertices are

{ui : i ∈ X} ∪ {uij : ij ∈ A−} ∪ {µij : ij ∈ A+}. (5.1)

We have 2(n2) different subsets FM2
A−,A+(X), one for each possible A−,A+.

In next results we will show that it is possible to derive an appealing algorithm for

random generation in FM2(X) from these subsets applying triangulation methods. For

this, we will prove in Theorem 5.10 that FM2
A−,A+(X) for different choices of A−,A+

provide a triangulation of FM2(X). Next, we will show in Proposition 5.11 that all of

them share the same volume. Thus, in order to generate a fuzzy measure in FM2(X)

in a random fashion, it just suffices to select randomly one of the possible A−,A+ and

then generate a point in the corresponding simplex FM2
A−,A+(X).

Theorem 5.10. Let ∆ be the collection of all the polytopes FM2
A−,A+(X) where {A−,A+}

is any possible decomposition of
(
X
2

)
. Then, ∆ are the top elements of a triangulation

of FM2(X) (see Def. 1.51).

Proof. By Lemmma 5.9,

FM2(X) =
⋃
A−,A+

FM2
A−,A+(X).

Let us show that each FM2
A−,A+(X) is a simplex. For this, we have to prove that the

vertices of every FM2
A−,A+(X) are affinely independent and this is equivalent to prove

that the Möbius transform of these vertices form an affinely independent set.
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As the vertices of FM2
A−,A+(X) are given in Eq. (5.1), it follows that the vertices of

m(FM2
A−,A+(X)) are

{mi : i = 1, ..., n} ∪ {mij : ij ∈ A−} ∪ {mij : ij ∈ A+}.

Let us rename these vertices as {v0, ..., vs} and let us assume that v0 = m1. We will

show that no vi − v0 can be written as a linear combination of the other vj − v0, j 6= i.

We consider two cases:

• Consider a pair ij ∈ A− and suppose we can write mij−v0 as a linear combination

of the other vj − v0 (the case ij ∈ A+ is completely symmetric). Without loss of

generality, let us denote v1 = mij . Remark that by construction mij(ij) 6= 0 =

vk(ij), ∀k 6= 1 as mij is not a vertex of m(FM2
A−,A+(X)). Thus, (v1 − v0)(ij) 6=

0 = (vk − v0)(ij), ∀k > 1, and hence we conclude that v1 − v0 cannot be written

as a linear combination of the vectors vk − v0, k > 1.

• Let us now consider mi, i 6= 1, and let us assume without loss of generality v1 = mi.

Suppose

v1 − v0 =
s∑
i=2

αi(vi − v0),

for some αi not all of them null. Besides, as mj(i) = 0, ∀j 6= i, it follows that

there exists, say v2, corresponding to mij and such that α2 6= 0. Then, we can

rewrite the previous expression, thus obtaining

v2 − v0 =

s∑
k=3

−αk
α2

(vk − v0) +
1

α2
(v1 − v0).

But this a contradiction with the previous case.

Thus, we have shown that the vertices of FM2
A−,A+(X) are affinely independent and

then they form a simplex.

Besides, as the number of vertices in FM2
A−,A+(X) is

(
n
2

)
+n, it follows that its dimension

is
(
n
2

)
+ n− 1. As this is the dimension of FM2(X), we conclude that FM2

A−,A+(X) is

a full-dimensional simplex in FM2(X).

It just rests to show that the intersection of two of these simplices is a (possibly empty)

common face. Consider FM2
A−1 ,A

+
1

(X) and FM2
A−2 ,A

+
2

(X) and suppose that they have

non-empty intersection. Let us denote by CV the common vertices of these two simplices,

i.e.,

{ui : i ∈ X} ∪ {uij : ij ∈ A−1 ∩ A
−
2 } ∪ {µij : ij ∈ A+

1 ∩ A
+
2 }.
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By Lemma 5.9, any fuzzy measure in FM2(X) can be written as a unique convex

combination such that either the coefficient of uij or the coefficient of µij vanishes.

Then,

FM2
A−1 ,A

+
1

(X) ∩ FM2
A−2 ,A

+
2

(X) = Conv(CV).

It follows that FM2
A−1 ,A

+
1

(X)∩FM2
A−2 ,A

+
2

(X) is a simplicial face of FM2
A−1 ,A

+
1

(X) and

FM2
A−2 ,A

+
2

(X).

Next step is to prove that all the simplices obtained with the triangulation developed

above share the same volume.

Proposition 5.11. All simplices FM2
A−,A+(X) have the same

((
n
2

)
+ n− 1

)
-dimensional

volume.

Proof. By Lemma 1.54, the volume of a simplex only depends on the distances between

each pair of vertices. Now consider two decompositions {A−1 ,A
+
1 }, {A

−
2 ,A

+
2 } that dif-

fer just in one vertex. Without loss of generality, we can suppose that this vertex is

uij ∈ FM2
A−1 ,A

+
1

(X), and µij ∈ FM2
A−2 ,A

+
2

(X). We are going to show that the sim-

plices associated to these decompositions share the same volume. Observe that since

ui + uj = uij + µij this implies that

d2(ui, v) + d2(uj , v) = d2(uij , v) + d2(µij , v)

for any vertex v because we are dealing with 0, 1-valued vectors.

With this result, we can derive the Cayley-Menger matrix (see Lemma 1.54) associated

to FM2
A−2 ,A

+
2

(X) from the one associated to FM2
A−1 ,A

+
1

(X). These matrices differ in

row with distances d2(uij , v) and row d2(µij , v) = d2(ui, v) + d2(uj , v) − d2(uij , v) and

also in columns d2(v, uij) and d2(v, µij) = d2(v, ui) + d2(v, uj) − d2(v, uij). Since the

determinant is invariant under this operation, both matrices have the same determinant

and hence, the simplices share the same volume.

Finally, we can repeat this argument changing the desired vertices to prove that all

simplices have the same volume.

As a consequence, we can apply the triangulation method as follows: As all subsets

FM2
A−,A+(X) have the same volume, we need to select one of these subsets at random.

For this, it suffices to choose at random for each pair ij if it is included in A− or A+.
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Next step is to generate a point in the selected FM2
A−,A+(X). Generation in simplices

is easy as we saw in Subsection 1.2.1. For the sake of completeness, we explain the

procedure in the following.

Let us reuse the notation p(n) =
(
n
2

)
+n. Since the dimension of each simplex is p(n)−1

we are going to use just the first p(n)− 1 coordinates. In other words, we work with the

projection of FM2
A−,A+(X) into the subspace consisting in intersecting the hyperplanes

XA = 0 for |A| > 2 and X(n−1)n = 0. We call this projection π : R2n → Rp(n)−1. Let us

see each step in more detail.

1) Sample a uniformly distributed random point in

Hn = {U ∈ [0, 1]p(n)−1 : U1 ≥ U2 ≥ · · · ≥ Up(n)−1}.

For this, generate an independent and identically distributed sample Û1 . . . , Ûp(n)−1

with distribution U(0, 1). Then sort the Ûi to give the order statistics with the re-

verse order U1 ≥ U2 ≥ . . . ≥ Up(n)−1. This generates a uniformly distributed vector

U inHn. Note that the vertices ofHn are (0, 0, . . . , 0, 0), (1, 0, . . . , 0, 0), (1, 1, . . . , 0, 0),

. . . , (1, 1, . . . , 1, 0) and (1, 1, . . . , 1, 1).

2) Apply the affine transformation X = A ·U + V0 which maps Hn into the desired

simplex π
(
FM2

A−,A+(X)
)

associated to the partition A−,A+. Note that if h(u)

is the density function of U , then the density g(x) of X would be

g(x) = h(u)|det(A)|−1.

Consequently, if h(u) is uniform inHn, then g(x) is uniform in π
(
FM2

A−,A+(X)
)

,

because |det(A)| is a constant value.

3) Finally, observe that our simplex FM2
A−,A+(X) is a (p(n)−1)-dimensional simplex

in R2n . We should recover the rest of coordinates to get the final vector X∗ ∈ R2n .

Obviously X∗(A) = X(A) for the first p(n) − 1 coordinates. Applying the Zeta

transform (see Section 2.5) and replacing the values m(i),m(ij) by the correspond-

ing expressions in terms of µ(i), µ(ij) according to Definition 2.29 we recover the

rest of coordinates, it follows

µ(A) =
∑
ij∈A

µ(ij)− (|A| − 2)
∑
i∈A

µ(i), ∀|A| > 2, (5.2)

Finally, as the sum of Möbius coefficients is 1 (see Proposition 2.30),
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µ(n− 1, n) = 1−
∑

ij∈(X2 )
ij 6=(n−1,n)

µ(ij) + (n− 2)
n∑
i=1

µ(i). (5.3)

By using Eqs. (5.2) and (5.3), we recover the rest of coordinates. The last map is

again an affine transformation respecting the uniformity.

It just remains to give a full description of the affine transformationX = A·U+V0. This

affine transformation maps the vertices ofHn into the vertices of π
(
FM2

A−,A+(X)
)
. Re-

call that the vertices of π
(
FM2

A−,A+(X)
)

are the first p(n)−1 coordinates of ui and vij

where vij = uij if ij ∈ A− and vij = µij if ij ∈ A+. We denote the restriction of a vector

v to the first p(n)−1 coordinates with an overline, v. Indeed, we are going to denote the

vertices by v1, v2, . . . , vp(n) in the natural order, that is u1, u2, . . . , v12, v13, . . . , v(n−1)n.

We also identify V0 = u1. Now consider the matrix having as i-th column the vector

vi+1 − vi, that is, we define matrix A by

[
u2 − u1, u3 − u2, · · · , v12 − un, · · · , v(n−1)n − v(n−2)n

]
.

It is easy to see that with these choices X = A ·U + V0. Therefore,

Xk = u1k +

p(n)∑
j=2

(vjk − v(j−1)k)Uj−1

where vjk is the k-th position of the vertex vj . Thus, we are in conditions to present our

algorithm for generating random points in FM2(X), see Algorithm 6.

Algorithm 6 SAMPLING IN FM2(X)

Step 1: Choose randomly between uij and µij for any pair of elements ij ∈
(
X
2

)
to

get the partition A−,A+.
Step 2: Generate an iid sample Û1 . . . , Ûp(n)−1 with distribution U(0, 1). Then sort

the Ûi with the reverse order to get U , s.t. U1 ≥ U2 ≥ . . . ≥ Up(n)−1.
Step 3: Apply the linear map

Xk = u1k +

p(n)∑
j=2

(vjk − v(j−1)k)Uj−1, ∀k ∈ {1, . . . , p(n)− 1}.

Step 4: Find the other coordinates using Eqs. (5.2) and (5.3).

If we work just with the first p(n) − 1 coordinates the last algorithm has quartic com-

plexity as we show in the next result.
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Proposition 5.12. The computational complexity of the sampling algorithm for 2-

additive measures is O(n4).

Proof. We compute the complexity of each part:

1. We should choose if each pair ij is associated to uij or µij . Then, we compute a

vector of
(
n
2

)
values 0 and 1. The complexity is O(

(
n
2

)
) = O(n2).

2. We generate an iid sample Û1 . . . , Ûp(n)−1 with distribution U(0, 1). Then sort the

Ui with the reverse order U1 ≥ U2 ≥ . . . ≥ Up(n)−1. Since the complexity is linear

for sampling and for sorting this step needs O(
(
n
2

)
+ n) = O(n2) computations.

3. Apply the transformation

Xk = u1k +

p(n)∑
j=2

(vjk − v(j−1)k)Uj−1.

In this step, we multiply a (p(n)− 1)× (p(n)− 1) matrix by a vector. Then, the

complexity is O
(((

n
2

)
+ n

)2)
= O(n4).

4. The last step is not be necessary because we are working just with the first p(n)−1

coordinates.

Therefore, the complexity is O(n4).

Obviously, if we work with all the 2n−2 coordinates, the complexity increases to O(2n),

because we need to recover the value for each subset of X.

We finish this section with two results that can be derived from the proposed triangu-

lation. The first one refers to the volume of FM2(X). For this, we can apply Lemma

1.54 to obtain the volume of one of the simplices, and multiply this value by 2(n2) to

obtain V ol(FM2(X)).

Corollary 5.13.

V ol(FM2(X)) = 2
(n−1)(n−2)

4

√
| det(CM∆)|[(
n
2

)
+ n− 1

]
!
,

where ∆ is any simplex of the triangulation.

The volumes for the first values of n are given in next table.

|X| 2 3 4 5

V ol(FM2(X)) 1 0.1632 0.0298 0.0001
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Another consequence of the triangulation proposed in this section is that it allows a

simple way of computing the center of gravity or centroid of FM2(X), i.e. the

mean position of all the points in all of the coordinate directions. From a mathematical

point of view, the centroid of P is given by

C =

∫
xIP(x)dx∫
IP(x)dx

,

where IP(x) is the characteristic function of P. At this point, note that computing the

center of gravity of a polytope is a difficult problem and usually, complicated methods

and formulas are given. Only for special cases, the center of gravity has been obtained.

One of this cases is the case of simplices, for which the following can be shown.

Lemma 5.14. [91] Consider an n-dimensional simplex whose vertices are v0, . . . , vn;

then, considering the vertices as vectors, the centroid of the simplex is

C =
1

n+ 1

n∑
i=0

vi.

Now, for a given polytope and a decomposition, the following can be shown.

Lemma 5.15. Let P be a polytope and {P1, ...,Pr} a partition of P. Suppose that the

centroid of Pi is Ci, i = 1, .., r and let us denote V ol(Pi) = Vi. Then, the centroid of P
is given by

C =

∑r
i=1CiVi∑r
i=1 Vi

.

Proof. We have

C =

∫
xIP(x)dx∫
IP(x)dx

=

∑r
i=1

∫
xIPi(x)dx∑r

i=1

∫
IPi(x)dx

=

∑r
i=1 Vi

∫
xIPi(x)dx

Vi∑r
i=1 Vi

=

∑r
i=1CiVi∑r
i=1 Vi

.

Thus, the result holds.

Applying the triangulation proposed in this section, the following can be shown.

Proposition 5.16. The centroid of FM2(X) is given by µ

µ(B) =
|B|
n
.

Proof. Consider one of the simplices of the triangulation proposed in this section; this

simplex is defined via the sets A−,A+; besides, we have shown that all these simplices
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have the same volume. As we have 2(n2) subsets FM2
A−,A+(X), by Lemma 5.15,

µ =
1

2(n2)

∑
A−,A+

µA−,A+ ,

where µA−,A+ is the centroid of FM2
A−,A+(X). On the other hand, for a given simplex

FM2
A−,A+(X), we know by Lemma 5.14 that

µA−,A+ =
1(

n
2

)
+ n

 n∑
i=1

ui +
∑
ij∈A−

uij +
∑
ij∈A+

µij

 .

Next, for a given FM2
A−,A+(X), let us consider FM2

A+,A−(X), i.e. the simplex such

that uij ∈ FM2
A−,A+(X) ⇔ µij ∈ FM2

A+,A−(X) and µij ∈ FM2
A−,A+(X) ⇔ uij ∈

FM2
A+,A−(X). Then, the sum of the center of gravity of these two simplices is

µaux =
1(

n
2

)
+ n

2

n∑
i=1

ui +
∑
ij

uij +
∑
ij

µij

 =
1(

n
2

)
+ n

[
(n+ 1)

n∑
i=1

ui

]
= 2

∑n
i=1 ui
n

.

Then,

µ =
1

2(n2)

∑
A−,A+

µA−,A+ =
2(n2)−1

2(n2)
µaux =

∑n
i=1 ui
n

,

and thus, µ(B) = |B|
n .

5.3 The adjacency graph of FM(X)

We finish this chapter presenting some properties of the adjacency graph of this polytope.

Given a polytope P, we define its associated graph G(P) (also called adjacency graph

or 1-skeleton) as the graph whose vertices are the vertices of P and two nodes are

adjacent if the corresponding vertices are adjacent in P.

For example, any n-dimensional simplex has the complete graph as associated graph,

because all vertices are adjacent to each other. In Figure 5.1 we can compare the graph

of FM2(X) with the graph of a (n2 − 1)-dimensional simplex. We observe that when

the size of X grows, G(FM2(X)) tends to be very similar to the complete graph.



Chapter 5. Combinatorial structure of the polytope of 2-additive fuzzy measures 170

Figure 5.1: Adjacency graphs of FM2(X), with |X| = 3, 4, 5 (left) and simplices
(right). In these figures, the yellow vertices are ui, the orange ones uij , and the red

ones µij .
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The distance between two vertices of a polytope P is defined as the shortest path

connecting the corresponding nodes in G(P). The diameter of a polytope, diam(P), is

defined as the longest distance between any pair of vertices.

A straight consequence of Theorem 5.5 is the following.

Corollary 5.17. The diameter of FM2(X) is 2.

Proof. By Corollary 5.6, the distance between two vertices is 1 except for ui, uj and

uij , µij . But in these cases, we have the paths ui − µij − uj and uij − ui − µij .

One important feature of a graph is the chromatic number [92]. The chromatic num-

ber, χ(G), of a graph G is the smallest number of colors needed to color the vertices of

G so that no adjacent vertices share the same color. Figure 5.2 shows a graph coloring

for |X| = 4.

Theorem 5.18. Let |X| = n. Then χ
(
G(FM2(X))

)
=
(
n
2

)
+ 1.

Proof. Start observing that all the vertices uij are adjacent to each other, so that we

need
(
n
2

)
colors. Since µij is not adjacent to uij we can use for µij the same color as uij .

This way we can color all the vertices µij using the same
(
n
2

)
colors. Finally, as the ui

vertices are not related to each other but are related with the rest of vertices we need

one last color.

Figure 5.2: FM2(X), |X| = 4 graph coloring.
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Let us analyze the Hamiltonicity of these graphs. Recall that a Hamiltonian path is

a path that visits each vertex exactly once. Also, a graph is Hamilton connected if

there exists a Hamiltonian path between each pair of vertices.

To see that G(FM2(X)) is Hamilton connected we need some previous results.

Lemma 5.19. FM2(X) is a combinatorial polytope.

Proof. By Proposition 5.1 all the vertices are {0, 1}-valued. Moreover, by Corollary

5.6, the only pairs that are not adjacent are (ui, uj) and (uij , µij), and they satisfy

ui + uj = uij + µij .

For combinatorial polytopes we can use the following result.

Proposition 5.20. [14] Let P be a combinatorial polytope. Then, G(P) is either Hamil-

ton connected or the graph of a hypercube.

Theorem 5.21. Let |X| > 2. Then G(FM2(X)) is Hamilton connected.

Proof. It suffices to note that a hypercube has no complete subgraphs, i.e. it has no

simplicial faces of dimension greater than 1. As G(FM2(X)) has such faces if |X| > 2

by Theorem 5.7, the result follows.

Finally, let us study the planarity of this graph. A planar graph is a graph that can

be drawn on the plane in such a way that its edges do not cross each other. By the four

color theorem, every planar graph should have a chromatic number lower or equal than

4, i.e. χ(G) ≤ 4.

The complete bipartite graph Kn,m has n+m vertices and edges joining every vertex

of the first n vertices to every vertex of the last m vertices.

A minor of a graph is a subgraph which can be obtained by deleting edges and vertices

and by contracting edges. Edge contraction removes an edge from the graph while

simultaneously merging the endpoints.

Theorem 5.22. [92] Wagner’s theorem. Let G be a finite graph. Then G is planar

if and only if its minors include neither the complete graph of five elements K5 nor the

complete bipartite graph K3,3.

Theorem 5.23. Let |X| > 2. Then G(FM2(X)) is not planar.

Proof. If |X| > 2, we consider the minor formed by deleting every vertex but u1, u2, u3, u12,

u13, u23 and deleting the edges between uij and uik. Hence, we obtain the complete bi-

partite graph K3,3 and therefore G(FM2(X)) is not planar.





Chapter 6

Order Cones

In this chapter we introduce the concept of order cone. This concept is inspired by the

concept of order polytopes. Similarly to order polytopes, order cones are a special type

of polyhedral cones whose geometrical structure depends on the properties of a poset.

This allows to study these properties in terms of the subjacent poset, a problem that is

usually simpler to solve. From the point of view of applicability, it can be seen that many

cones appearing in the literature of monotone TU-games are order cones. Especially,

it can be seen that the cones of monotone games with restricted cooperation are order

cones, no matter the structure of the set of feasible coalitions.

As we saw in Section 2.6.1, it could be the case that some coalitions fail to form. Thus,

v cannot be defined on some of the elements of P(X) and we have a subset Ω of P(X)

containing all feasible coalitions. By a similar argument, coalitions with a fixed value

may be left outside Ω. In this chapter, we will not include ∅ in Ω. Usually, Ω has a

concrete structure.

As it will become clear below, order cones are a class of cones including the cones of

monotone games with restricted cooperation, no matter which the set Ω is. Thus, order

cones allow to study this set of cones in a general way. For example, we will characterize

the set of extremal rays of the cone MG(X), a problem that to our knowledge has not

been solved yet [29].

Interestingly enough, order cones can be applied to other situations different to monotone

games with restricted cooperation. As an example dealing with such a case, we study the

cone of monotone k-symmetric games. This also adds more insight about the relationship

between order cones and order polytopes.

174
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The rest of the chapter goes as follows: In next section we define order cones and study

some of its geometrical properties. We then apply these results for some special cases

of monotone games with restricted cooperation.

6.1 Order Cones

Let us now turn to the concept of order cones. The idea is to remove the condition

f(a) ≤ 1 from Definition 1.59. Thus, the resulting set is no longer bounded. This is

what we will call an order cone. Formally,

Definition 6.1. Let P be a finite poset with n elements. The order cone C(P ) is

formed by the n-tuples f of real numbers indexed by the elements of P satisfying

i) 0 ≤ f(x) for every x ∈ P,

ii) f(x) ≤ f(y) whenever x � y in P.

For example, we will see in Section 6.2.1 that the set of monotone games MG(X) as

a subset of R2n−1 is an order cone with respect to the poset P = P(X)\{∅} with the

partial order given by A ≺ B ⇔ A ⊂ B. Another example is given at the end of the

section.

The name order cone is consistent, as next lemma shows.

Lemma 6.2. Given a finite poset P , then C(P ) is a pointed polyhedral cone.

Proof. It is a straightforward consequence of the definition that C(P ) is a polyhedron.

Let us then show that it is indeed a cone. For this, take f ∈ C(P ) and consider αf, α ≥ 0.

For x � y in P , we have f(x) ≤ f(y) and thus, αf(x) ≤ αf(y). Hence αf ∈ C(P ) and

the result holds.

Moreover, as f(x) ≥ 0, ∀x ∈ P, f ∈ C(P ), it follows that C(P ) ∩ −(C(P )) = {0}, and by

Theorem 1.57, C(P ) is a pointed cone.

Consequently, C(P ) has just one vertex, 0.

Definition 6.1 suggests a strong relationship between order polytopes and order cones.

The following results study some straightforward aspects of this relation.

Lemma 6.3. Let P be a finite poset. Then, C(P ) is the conical extension of O(P ).
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Proof. If f ∈ O(P ), it follows that for x, y ∈ P, x ≺ y, it is 0 ≤ f(x) ≤ f(y). Thus,

f ∈ C(P ).

On the other hand, consider a cone C such that O(P ) ⊂ C. For f ∈ C(P ), and α > 0

small enough, we have αf ∈ O(P ) ⊂ C. Then, 1
ααf = f ∈ C, and hence C(P ) ⊆ C.

Indeed, the following holds:

Lemma 6.4. Consider a finite poset P . Then,

C(P ) ∩ {x : x ≤ 1} = O(P ).

Proof. ⊆) Consider f ∈ C(P ) ∩ {x : x ≤ 1}. Hence, f(x) ≤ 1,∀x ∈ P, and if x � y,

then 0 ≤ f(x) ≤ f(y) ≤ 1. Thereofore, f ∈ O(P ).

⊇) For f ∈ O(P ), we have f ∈ C(P ) by Lemma 6.3 and f(x) ≤ 1,∀x ∈ P.

As C(P ) is a polyhedral cone by Lemma 6.2 and according to Corollary 1.56, this cone

can be given in terms of its corresponding extremal rays. Next theorem characterizes

the set of extremal rays of C(P ) in terms of filters of P .

Theorem 6.5. Let P be a finite poset and C(P ) its associated order cone. Then, its

extremal rays are given by

{α · vF : α ∈ R+},

where vF is the characteristic function of a non-empty connected filter F of P .

Proof. We know that extremal rays of a pointed cone are rays passing through 0. Let us

show that extremal rays of C(P ) are related to vertices of O(P ) adjacent to 0. Consider

an extremal ray, that is given by a vector v. We can assume that v is such that v ≤ 1

and there exists a coordinate i such that vi = 1. Hence, by Lemma 6.4, v ∈ O(P ).

Let us show that v is indeed a vertex of O(P ). If not, there exist two different points

w1,w2 ∈ O(P ) such that

v = αw1 + (1− α)w2, α ∈ (0, 1).

Besides, αw1, (1 − α)w2 ∈ C(P ). Remark that w1 and w2 are linearly independent

because there exists a coordinate i such that vi = 1. Consequently, v does not define an

extremal ray, a contradiction.
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Next, let us now show that v is adjacent to 0. Otherwise, the segment [0,v] is not an

edge of O(P ). Consequently, 1
2v can be written as

1

2
v = αy1 + (1− α)y2,

where y1,y2 ∈ O(P ) such that they are outside [0,v]. Thus,

v = 2αy1 + 2(1− α)y2.

Finally, 2αy1, 2(1−α)y2 ∈ C(P ), so we conclude that v does not define an extremal ray,

which is a contradiction.

Now, v is related to a filter F ⊆ P. On the other hand, 0 is related to the empty filter.

As v is adjacent to 0, we can apply Corollary 1.67 to conclude that F = F∆∅ is a

connected filter of P .

Let us now prove the reverse. Consider v an adjacent vertex to 0 in O(P ) and assume

that v does not define an extremal ray. Then, there exists w1,w2 ∈ C(P ) and not

proportional to v such that

v = w1 +w2 =
1

2
2w1 +

1

2
2w2 =

1

2
w′1 +

1

2
w′2.

Now, for ε > 0 small enough, we have

εv =
1

2
εw′1 +

1

2
εw′2,

and εw′1 ≤ 1, εw′2 ≤ 1. Hence, εw′1, εw
′
2 ∈ O(P ) by Lemma 6.4, and hence [0,v] is not

an edge of O(P ), in contradiction with v adjacent to 0.

Let us now turn to the problem of obtaining the faces of C(P ). As explained in Theorem

1.58, faces arise when inequalities turn into equalities. Let us consider the inequality

f(x) ≤ f(y) for x l y and assume this inequality is turned into an equality. This

means that x and y identified to each other; let us call z this new element. In terms of

posets, this translate into transforming P into another poset (P ′,�′) defined as P ′ :=

P\{x, y} ∪ {z} and �′ given by:


a �′ b⇔ a � b if a, b 6= z

z �′ b⇔ x � b
a �′ z ⇔ a � y
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Similar conclusions arise when 0 ≤ f(x) turns into an equality. Moreover, if F is the

face obtained by turning inequalities into equalities, the projection

π : F → C(P ′)
(f(a), ..., f(x), f(y), ..., f(b)) ↪→ (f(a), ..., f(x), f(y), ..., f(b))

is a bijective affine map. Consequently, the following holds.

Lemma 6.6. The faces of an order cone are affinely isomorphic to order cones.

Compare this result with the corresponding result for order polytopes [22].

Lemma 6.7. For an order cone C(P ), the vertex 0 is in all non-empty faces. Conse-

quently, all faces can be written as Fv,0.

Proof. It suffices to show that for a non-empty face Fv,c, it is c = 0. First, vt0 ≤ c, so

that c ≥ 0.

Suppose c > 0. As Fv,c is non-empty, there exist x ∈ C(P ) such that vtx = c. But then,

vt2x = 2c > c, a contradiction. Thus, c = 0 and 0 ∈ Fv,0.

With this in mind, Theorem 6.5 can be extended to characterize all the faces of the

order cone, not only the extremal rays.

Theorem 6.8. Let P be a finite poset and C(P ) and O(P ) the corresponding order cone

and order polytope, respectively. For a pair (v, 0), the set F ′v,0 = C(P )∩{x : vtx = 0} is

a face of C(P ) if and only if Fv,0 = O(P ) ∩ {x : vtx = 0} is a face of O(P ). Moreover,

dim(F ′v,0) = dim(Fv,0).

Proof. Let Fv,0 be a face of O(P ) containing 0 and let us show that it determines a face

on C(P ). First, let us show that vtx ≤ 0, ∀x ∈ C(P ). Otherwise, there exists x0 ∈ C(P )

such that vtx0 > 0. But then vtεx0 > 0,∀ε > 0. As ε can be taken small enough so

that εx0 ≤ 1, it follows by Lemma 6.4 that εx0 ∈ O(P ) and as vtεx0 > 0, and we get a

contradiction. Hence, the pair (v, 0) determines a face F ′v,0 of C(P ).

Consider now a face F ′v,0 of C(P ). Hence, vtx ≤ 0, ∀x ∈ C(P ). But then, vtx ≤ 0, ∀x ∈
O(P ) and as 0 ∈ F ′v,0, this determines a face of O(P ).

Let us now see that for each pair (v, 0), dim(F ′v,0) = dim(Fv,0). First, as Fv,0 ⊆ F ′v,0,
we have dim(Fv,0) ≤ dim(F ′v,0).

On the other hand, let k be the dimension of F ′v,0. This implies that there are k vectors

v1, ...,vk linearly independent in F ′v,0. But now, we can find ε > 0 small enough such that

εv1 ≤ 1, ..., εvk ≤ 1. Thus, εv1, ..., εvk ∈ Fv,0 and hence, dim(Fv,0) ≥ dim(F ′v,0).
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As a consequence, we can adapt Theorem 1.61 for order cones as follows.

Theorem 6.9. [25] Let L ⊆ F(P ). Then, L determines a face of C(P ) if and only if L

is an embedded lattice of F(P ) containing the empty filter.

Remark 6.10. From Theorem 6.8, in order to find faces of an order cone, we need to

look for faces of the corresponding order polytope containing 0. As previously explained

in Theorem 1.58, if we consider the expression of O(P ) as a polyhedron, faces arise

turning inequalities into equalities. Vertices in the face are the vertices of the polyhedron

satisfying these equalities. If we consider P̂ , vertex 0 corresponds to function

f(x) =

{
0 x 6= 1̂

1 x = 1̂

Consequently, 0 satisfies f(x) = f(y) when y 6= 1̂. Thus, we look for the faces where

the inequalities turned into equalities do not depend on 1̂.

In terms of Theorem 1.60, we have to look for partitions defining faces containing 0.

Note that each block Bi defines a subset of P such that all elements in Bi attain the

same value for all points in the face. Therefore, faces containing 0 mean that there is a

block containing only 1̂.

Example 6.1. Consider the polytope given in Figure 6.1 left.

1

12

2

0̂

1 2

12

1̂

∅

{12}

{1, 12} {2, 12}

{1, 2, 12}

Figure 6.1: Example of poset P (left), his extension P̂ (center) and his filter lattice
(right).

In this case, we have three elements and both the order polytope and the cone order cone

can be depicted in R3, with the first coordinate corresponding to 1, the second one to 2

and the third to 12, see Figure 6.2. The cone C(P ) is given by 3-dimensional vectors f

satisfying

0 ≤ f(1), 0 ≤ f(2), f(1) ≤ f(12), f(2) ≤ f(12).
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Let us then explain the previous results for this poset. First, let us start obtaining the

vectors defining extremal rays. According to Theorem 6.5, it suffices to obtain the non-

empty filters that are connected subposets of P . Non-empty filters of P are:

{{12}, {1, 12}, {2, 12}, {1, 2, 12}}.

All of them are connected subposets of P . Hence, we have 4 extremal rays, whose re-

spective vectors are

(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).

Figure 6.2: Order polytope O(P ) (left) and order cone C(P ) (right).

Let us now deal with the facets. For this, consider the poset P̂ = 0̂⊕ P ⊕ 1̂ (see Figure

6.1 center). According to Theorems 1.60 and 6.8, the facets are given by considering

one of the following equalities:

f(0̂) = f(1), f(0̂) = f(2), f(1) = f(1, 2), f(2) = f(1, 2), f(1, 2) = f(1̂).

This translates into transforming poset P̂ in a new poset where the elements in the

equality identify to each other (see Lemma 6.6). The posets for the previous equalities

are given in Figure 6.3.

Note that the facets containing 0 are those whose defining equality does not involve 1̂, as

0 satisfies any other equality. In our case, they correspond to the first four cases. Thus,

we have four facets containing 0 and all of them are simplices (indeed triangles) because

the corresponding polytope is a chain.

For the 1-dimensional faces, we have to consider two equalities. However, we have to

be careful with the selected equalities because they might imply other equalities. For

example, if we consider f(0̂) = f(1), f(1) = f(1, 2), this also implies f(0̂) = f(2), and
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0̂ ∼ 1

2

12

1̂

0̂ ∼ 2

1

12

1̂

0̂

2

1 ∼ 12

1̂

0̂

1

2 ∼ 12

1̂

0̂

1 2

12 ∼ 1̂

Figure 6.3: Subposets when turning an inequaity into an equality.

hence we obtain a point instead of an edge. In our case, the edges containing 0 are given

by the pairs of equalities defining an edge and not involving 1̂. There are four pairs in

these conditions that are

{f(0̂) = f(1), f(0̂) = f(2)}, {f(0̂) = f(1), f(2) = f(1, 2)},

{f(0̂) = f(2), f(1) = f(1, 2)}, {f(1) = f(1, 2), f(2) = f(1, 2)}.

Alternatively, we could use the characterization given in Theorem 6.9. In this case, we

have to consider the filter lattice (see Figure 6.1 right).

Hence, edges are given by pairs of filters defining a sublattice and involving the empty

filter. Thus, the possible choices are the following pairs:

{{∅}, {12}}, {{∅}, {1, 12}}, {{∅}, {2, 12}}, {{∅}, {1, 2, 12}}.

Thus, the extremal rays of C(P ) are given by vectors (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).

For 2-dimensional faces, we have to consider all possible sublattices of height 2 and

involving the ∅ filter. These sublattices are:

{{∅}, {1, 12}, {1, 2, 12}}, {{∅}, {2, 12}, {1, 2, 12}}, {{∅}, {12}, {1, 12}}, {{∅}, {12}, {2, 12}}.

Hence, the 2-dimensional faces for C(P ) are defined by vectors
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{(1, 0, 1), (1, 1, 1)}, {(0, 1, 1), (1, 1, 1)}, {(0, 0, 1), (1, 0, 1)}, {(0, 0, 1), (0, 1, 1)}.

Notice that we cannot consider

{{∅}, {1, 12}, {2, 12}, {1, 2, 12}}, {{∅}, {12}, {1, 12}, {2, 12}},

because they are not embedded sublattices.

6.2 Application to Game Theory

In this section, we show that some well-known cones appearing in the field of monotone

games can be seen as order cones. Hence, all the results developed in the previous

section can be applied to these cones. The first example deals with the general case

of monotone games when all coalitions are feasible. We next extend this to the case

where Ω ⊂ P(X)\{∅}. As an example of applicability for subfamilies of monotone games

satisfying a property on v but not on the set of feasible coalitions, we also treat the case

of k-symmetric monotone games.

6.2.1 The cone of general monotone games

Consider monotone games when all coalitions are feasible, i.e. the set MG(X). We

considerMG(X) as a subset of R2n−1 (we have removed the coordinate for ∅ because its

value is fixed). This set is given by all games satisfying v(A) ≤ v(B) whenever A ⊂ B.

Thus, a game v ∈MG(X) is characterized by the following conditions:

• 0 ≤ v(A).

• v(A) ≤ v(B) if A ⊆ B.

Then, MG(X) = C(P(X)\{∅}), where the order relation ≺ on P(X)\{∅} is given by

A ≺ B if and only if A ⊂ B. For example, for |X| = 3, this poset is given in Figure 6.4.

However, little else is known aboutMG(X); for instance, the set of extremal rays is not

known and this question appears in [29] as an open problem. We will study this set at

the light of the results of the previous section. Let us first deal with the extremal rays.

Corollary 6.11. The vectors defining an extremal ray of MG(X) are defined by non-

empty filters of P(X)\{∅}.
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Proof. Following Theorem 6.5, we need to find the non-empty filters of P(X)\{∅} that

are connected. But in this case, all filters except the empty filter, corresponding to

vertex 0, contain X. Hence, all of them are connected.

For obtaining the number of extremal rays, note that any filter in a poset is characterized

in terms of its minimal elements and that these minimal elements are an antichain of

the poset. For the boolean poset P(X), the number of antichains (counting the empty

set) are the Dedekind numbers, M(n).

For MG(X), we have to remove the antichain {∅} because the poset defining the order

cone is P(X)\{∅}. Besides, the empty antichain corresponds to 0 and thus, it should be

removed, too. Hence, the number of extremal rays of MG(X) is M(n)− 2.

Example 6.2. Let us compute the extremal rays of the order cone MG(X) where X =

{1, 2, 3}. Note that C(P ) is a cone in R7. Then, considering P = B3 \ {∅}, it suffices to

compute the filters of P .

123

2312 13

31 2

Figure 6.4: Boolean poset P = B3 \ {∅}.

A list with these filters is:

CF(P ) = {∅, {123}, {12, 123}, {13, 123}, {23, 123}, {12, 13, 123}, {12, 23, 123}, {13, 23, 123},

{12, 13, 23, 123}, {1, 12, 13, 123}, {1, 12, 13, 23, 123}, {2, 12, 23, 123}, {2, 12, 13, 23, 123},

{3, 13, 23, 123}, {3, 12, 13, 23, 123}, {1, 2, 12, 13, 23, 123}, {1, 3, 12, 13, 23, 123},

{2, 3, 12, 13, 23, 123}, {1, 2, 3, 12, 13, 23, 123}}.

Removing ∅, we have a total of 18 extremal rays. Note that M(3) = 20.

Similarly, we can apply Theorem 6.8 to obtain all k-dimensional faces of the cone

MG(X).
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Corollary 6.12. The non-empty faces of MG(X) are given by the non-empty faces of

O(P(X)\{∅}) containing vertex 0.

However, we will see that in this case we can do better by using pyramids.

From now on, in order to simplify the notation, we will assume that the last coordinate

in vector v corresponds to the value v(X).

Proposition 6.13. Consider the poset P(X)\{∅} with the relation order A ≺ B ⇔
A ⊂ B. Then, the order polytope O(P(X)\{∅}) is a pyramid with apex 0 and base

{(x, 1) : x ∈ O(P(X)\{∅, X})}.

Proof. Note that for any non-empty filter F , it follows that N ∈ F. Then, the char-

acteristic function of any non-empty filter vF satisfies vF (X) = 1. Hence, any vertex

of O(P(X)\{∅}) except 0 is in the hyperplane v(X) = 1. Consequently, O(P\{∅}) is a

pyramid with apex 0. Finally, the points v of O(P(X)\{∅}) in the hyperplane v(X) = 1

satisfy v(A) ≤ v(B) if A ⊆ B. Thus, these points can be associated to the order polytope

O(P(X)\{∅, X}), where the order relation � is given by A � B ⇔ A ⊆ B.

This allows us to study the k-dimensional faces ofMG(X) from a different point of view

that the one of Theorems 6.9 and 6.8. In particular, as apex x is adjacent to every vertex

in the base P, edges are given by segments [x,y] with y a vertex of P, thus recovering

the result of Corollary 6.11. In general, applying Proposition 1.45, the following holds.

Corollary 6.14. The k-dimensional faces ofMG(X) are given by the (k−1)-dimensional

faces of O(P(X)\{∅, X}).

Recall that the order polytope O(P(X)\{∅, X}) is the polytope corresponding to the

set of capacities or fuzzy measures FM(X).

It is worth-noting that the geometrical structure (apart the dimension) ofO(P(X)\{∅, X})
is quite different from the geometrical structure of O(P(X)\{∅}). For example, in

O(P(X)\{∅}) all vertices are adjacent to 0, while this is not the case forO(P(X)\{∅, X})
(see [23]).

For this order polytope, many results are known, as for example wether two vertices are

adjacent or the centroid [23, 88], see Chapter 1. Applying Corollary 6.14, we conclude

that 2-dimensional faces ofMG(X) are given by an edge of FM(X) = O(P(X)\{∅, X}).
On the other hand, an edge inO(P(X)\{∅, X}) is given by two adjacent vertices vF1 ,vF2 .

Another characterization specific for O(P(X)\{∅, X}) is given in [88]. Moreover, as both

F1, F2 are adjacent to 0, the following holds.
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Corollary 6.15. Any 2-dimensional face ofMG(X) are defined in terms of 2-dimensional

simplices given by {0,vF1 ,vF2} where F2\F1 is a connected subposet of P(X)\{∅, X}.

Example 6.3. Continuing with the previous example, the previous discussion allows to

derive the 2-dimensional faces of MG(X), as by Corollary 6.14 they can be given in

terms of edges of O(P(X)\{∅, X}). The filters of P(X)\{∅, X} are:

F(P ) = {∅, {12}, {13}, {23}, {12, 13}, {12, 23}, {13, 23},

{12, 13, 23}, {1, 12, 13}, {1, 12, 13, 23}, {2, 12, 23}, {2, 12, 13, 23}, {3, 13, 23},

{3, 12, 13, 23}, {1, 2, 12, 13, 23}, {1, 3, 12, 13, 23}, {2, 3, 12, 13, 23}, {1, 2, 3, 12, 13, 23}}.

Now, we have to search for pairs of adjacent vertices in O(P(X)\{∅, N}), for example

using Corollary 1.67. It is easy but tedious to show that there are 76 pairs in these

conditions.

6.2.2 The cone of games with restricted cooperation

Let us now treat the problem when we face a situation of restricted cooperation. Then,

several coalitions are not allowed and we have a set Ω ⊂ P(X)\{∅} of feasible coalitions.

Many papers have been devoted to this subject, usually imposing an algebraic structure

on Ω (see e.g. [53, 93–95]). From the point of view of polyhedra, if a coalition is not

feasible, this implies that this subset is removed from Ω. We will denote byMGΩ(X) the

set of all monotone games whose feasible coalitions are Ω. Thus, a game v ∈ MGΩ(X)

is characterized by the following conditions:

• 0 ≤ v(A), A ∈ Ω.

• v(A) ≤ v(B) if A ⊆ B,A,B ∈ Ω.

Then,MGΩ(X) = C(Ω), where the order relation ≺ on Ω is given by A ≺ B if and only

if A ⊂ B.

Assume first that X ∈ Ω. This is the usual situation, as most of the solution concepts on

Game Theory assume that all players agree to form the grand coalition (see e.g. [96]).

In this case, the following holds.

Corollary 6.16. If X ∈ Ω, then the set of extremal rays of MGΩ(X) are given by

{vF : ∅ 6= F, Ffilter of Ω}.
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Proof. Applying Theorem 6.5, the set of extremal rays is given by the set of vertices vF

of O(Ω) such that F is a connected filter in Ω. As X ∈ Ω, it follows that all filters are

connected subposets of Ω, so that we have as many extremal rays as vertices in O(Ω)

different from 0. And this value is given by the number of filters minus one (for the

empty filter corresponding to vertex 0).

Indeed, we can translate in this case the results obtained for MG(X). Assuming the

last coordinate corresponds to subset X, the following holds.

Proposition 6.17. Assume X ∈ Ω and consider the poset Ω with the relation order

A ≺ B ⇔ A ⊂ B. Then, the order polytope O(Ω) is a pyramid with apex 0 and base

{(x, 1) : x ∈ O(Ω\{X})}.

Proof. It is a straightforward translation of the proof of Proposition 6.13.

This implies that have two possibilities for studying MGΩ(X). First, we can apply

the general results for any order cones developed in Section 6.1. Alternatively, we can

apply Proposition 1.45 and derive the results from the structure of the order polytope

O(Ω\{X}) just as it has been done for MG(X). In this last case, the following holds.

Corollary 6.18. The k-dimensional faces ofMGΩ(X) are given by the (k−1)-dimensional

faces of O(Ω\{X}).

Example 6.4. Suppose a situation with four players, and assume that the only feasible

coalitions are Ω = {12, 23, 34, 1234}. The corresponding Hasse diagram is given in Figure

6.5.

12 23 34

1234

Figure 6.5: Hasse diagram of the poset of a game with restricted cooperation.

For this example, the non-empty filters of Ω are:

F1 = {1234}, F2 = {12, 1234}, F3 = {23, 1234}, F4 = {34, 1234}, F5 = {12, 23, 1234},

F6 = {12, 34, 1234}, F7 = {23, 34, 1234}, F8 = {12, 23, 34, 1234}.

Thus, we have 8 extremal rays. For example, the extremal ray corresponding to F5 is

given by vector v = (1, 1, 0, 1), where the third coordinate corresponds to subset {34}.
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For k-dimensional faces, it just suffice to note that Ω\{1234} is an antichain. Then,

O(Ω\{X}) is a cube. For example, for finding 2-dimensional faces, we have to consider

pairs of adjacent vertices of the cube O(Ω\{X}) (there are 12 pairs). Similarly, for

3-dimensional faces we have to consider 2-dimensional faces of the cube (six cases), and

there is just one 4-dimensional face.

Now, assume X 6∈ Ω. This situation is more tricky and needs to study each case applying

Theorems 6.5 and 6.8. For example, in this situation it could happen that some vertices

are not adjacent to 0 and thus, they do not define an extremal ray. Moreover, the

2-dimensional faces are not defined necessarily via 2-dimensional simplices.

As examples for this case, we study two situations. Assume Ω∪{∅} is a poset with a top

element 1̂ and thus, we can extend all the results that we have obtained when X ∈ Ω.

Proposition 6.19. Consider the poset with top element Ω∪{∅} with the relation order

A ≺ B ⇔ A ⊂ B and top element 1̂. Then, the order polytope O(Ω\{∅}) is a pyramid

with apex 0 and base {(x, 1) : x ∈ O(Ω\{1̂})}.

Corollary 6.20. The k-dimensional faces ofMG(Ω) are given by the (k−1)-dimensional

faces of O(Ω\{1̂}).

Suppose as a second example that Ω is a union of connected posets

Ω = P1 ∪ ... ∪ Pr, Pi connected.

In this case, the only connected filters are the connected filters Fi ⊆ Pi. Then, we have:

Proposition 6.21. If Ω = P1 ∪ ... ∪ Pr, where Pi is a connected poset, i = 1, ..., r, then

the extremal rays of MGΩ(X) are given by vFi where Fi is a non-empty connected filter

of Pi.

For example, if |Pi| = 1 ∀i, then Ω is an antichain and the only connected filters are

the singletons. Thus, there are just r extremal rays forMGΩ(X). Indeed, note that the

corresponding order polytope is the r-dimensional cube and thus the vertices adjacent

to 0 are ei, i = 1, ..., r.

In general, we have to study the properties of the corresponding poset.

Example 6.5. Assume again a 4-players game and let us consider the coalitions given

in Figure 6.6 left. We have in this case a 4-dimensional cone order.

Fixing the order for coordinates 12, 13, 34, 123, the vertices of the corresponding order

polytope are given in Table 6.1.
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12 13 34

123

12 13 34

123

0̂

1̂

Figure 6.6: Hasse diagram of the poset P of a game with restricted cooperation (left)
and his extension P̂ .

Filter ∅ 123 34 34, 123 12, 123

Vertex (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1)

Filter 13, 123 12, 12, 123 12, 34, 123 13, 34, 123 12, 13, 34, 123

Vertex (0,1,0,1) (1,1,0,1) (1,0,1,1) (0,1,1,1) (1,1,1,1)

Table 6.1: Filters and vertices of poset of Figure 6.6.

Vertices defining an extremal ray are those whose corresponding filter is connected. The

five vertices in these conditions are written in boldface.

In order to obtain the facets of this order cone, we look for facets of the corresponding

order polytope containing 0 (Theorem 6.8). For this, we consider 0̂⊕ P ⊕ 1̂ (see Figure

6.6 right). As we are looking for facets, we just turn an inequality not involving 1̂ into

an equality. Then, the facets are given in Table 6.2.

Restriction f(0̂) = f(12) f(0̂) = f(13) f(0̂) = f(34) f(12) = f(123) f(13) = f(123)

Vertices (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,1) (0,0,0,1) (0,0,0,1) (1,0,0,1) (0,1,0,0)
(0,0,1,0) (0,0,1,0) (1,0,0,1) (1,0,1,1) (0,1,1,1)
(0,0,1,1) (0,0,1,1) (0,1,0,1) (1,1,0,1) (1,1,0,1)
(0,1,0,1) (0,1,0,1) (1,1,0,1) (1,1,1,1) (1,1,1,1)
(0,1,1,1) (1,0,1,1)

Table 6.2: Facets of the order cone of poset of Figure 6.6.

Another way to look for extremal rays is Theorem 1.61. For this, we need to build the

lattice of filters, that is given in Figure 6.7.

Then, the extremal rays are given by filters that together with ∅ form an embedded sub-

lattice. These filters are
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(12, 123) (13, 123) (34, 123)

(123) (34)

∅

(12, 13, 123) (12, 34, 123) (13, 34, 123)

(12, 13, 34, 123)

Figure 6.7: Lattice of filters.

{123}, {34}, {12, 123}, {13, 123}, {12, 13, 123}.

6.2.3 The cone of k-symmetric measures

As explained before, order cones can be applied to more general situations than games

with restricted cooperation. In this subsection we will apply it to k-symmetric monotone

games. We have chosen this case because the set of k-symmetric capacities with respect

to a fixed partition is an order polytope [23], see Section 2.6.3 and Chapter 4.

We denote by MGk(A1, ..., Ak) the set of monotone games v such that A1, ..., Ak are

subsets of indifference for v (but not necessarily k-symmetric; for example, any sym-

metric monotone game, in which all players are indifferent, belongs toMGk(A1, ..., Ak).

Then, v ∈MGk(A1, ..., Ak) is characterized as follows:

• v(0, ..., 0) = 0.

• v(a1, ..., ak) ≤ v(b1, ..., bk) if ai ≤ bi, i = 1, ..., k.

Consider then the poset
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P = {(c1, ..., ck) : ci = 0, ..., |Ai|, i = 1, ..., k}

with the order relation (c1, ..., ck) � (b1, ..., bk) if and only if ci ≤ bi, i = 1, ..., k.

Then, it follows that MGk(A1, ..., Ak) = C(P\{(0, ..., 0)}) and the results of Section 3

can be applied to obtain the geometrical aspects of this cone. Moreover, as (|A1|, ..., |Ak|)
is a top element in the poset, we can apply the results obtained for MG(X).

Corollary 6.22. The vectors defining an extremal ray of MGk(A1, ..., Ak) are defined

by non-empty filters of P\{(0, ..., 0)}.

Proposition 6.23. Consider the poset P = {(c1, ..., ck) : ci = 0, ..., |Ai|, i = 1, ..., k}.
Then, the order polytope O(P\{(0, ..., 0)}) is a pyramid with base

{(x, 1) : x ∈ O(P\{(0, ..., 0), (|A1|, ..., |Ak|)})}

and apex 0.

Corollary 6.24. The k-dimensional faces of MGk(A1, ..., Ak) are given by the (k− 1)-

dimensional faces of O(P\{(0, ..., 0), (|A1|, ..., |Ak|)}.

Let us study two particular cases.

Example 6.6. For MG1(X), the set of monotone symmetric games, the corresponding

order polytope is a chain of n elements. Thus, we have n non-empty filters F1, ..., Fn,

given by Fi := {i, ..., n} and vFi = (0, ..., 1, ..., 1). Therefore, we have n extremal rays.

Besides, by Corollary 1.67, we conclude that all vertices are adjacent to each other.

Hence, we have
(
n
2

)
2-dimensional faces and in general, the number of k-dimensional

faces is
(
n
k

)
, for k ≥ 2.

Example 6.7. For the 2-symmetric case MG2(A1, A2), it has been proved in Chapter

4 [80], that the order polytope FM2(A1, A2) can be associated to a Young diagram [83]

of shape λ = (|A2|, ..., |A2|).





Chapter 7

Integral techniques for counting

Linear Extensions

Counting linear extensions becomes essential to understand the geometry of order poly-

topes. From Equation 1.5 we can use the number of linear extensions e(P ) to compute

the volume of O(P ). In this chapter we follow the opposite path, that is, we are going

to deal with the volume of O(P ) to get recursive formulas for computing the number of

linear extensions of some important families of posets.

The technique described in the chapter can be used to count the number of linear

extensions of certain posets. However, a deeper research about how to extend this

technique to generate linear extensions randomly is still pending. Despite this, we find

it an interesting tool for studying subfamilies of non-additive measures.

As a theoretical application we develop a procedure for counting the number of 2-

alternating permutations. Next we show that the volume can be given in terms of

the coefficients of these polynomials, thus obtaining a linear recurrence for the volume

and the number of linear extensions. We also apply these integral techniques to solve

a specific problem related to fuzzy measures. Finally, we argue that this procedure can

also be applied to other important families of fence-type posets to derive formulas for

the number of linear extensions.

7.1 2-alternating permutations and the generalized fence

A permutation σ = (σ1, σ2, · · · , σn) ∈ Sn is called alternating if

σ1 > σ2 < σ3 > σ4 < · · · .

192
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The number of alternating permutations for a referential of n elements is denoted En

and is called the n-th Euler number (see [5]). Euler numbers have been deeply studied

and there are good linear recurrences to generate them [97].

In this section we deal with 2-alternating permutations. We say that a permutation

σ = (σ1, σ2, · · · , σn) ∈ Sn is 2-alternating if

σ1 > σ2 > σ3 < σ4 < σ5 > · · · .

Let us denote by A2
n the number of 2-alternating permutations in Sn. As it will become

clear below, this problem and other similar can be easily translated in terms of comput-

ing the number of linear extensions of suitable posets. For example, for 2-alternating

permutations, we will deal with a poset that we have named generalized fence.

As explained above, the problem of counting alternating permutations can be seen as

the problem of counting linear extensions of some fence problem. To see this clearly, let

us first define the family of generalized fences or generalized zig-zag posets. The n-th

member of the family is given by (GZn,�) where

GZn := {x1, ..., xn+1, y1, ..., yn+1, z1, ..., z2n+1}

and � is given by

x1 ≺ z1 ≺ y1 � z2 � x2 ≺ z3 ≺ y2 � ... � xn ≺ z2n−1 ≺ yn � z2n � xn+1 ≺ z2n+3 ≺ yn+1.

The Hasse diagram of GZn is given in Figure 7.1.

yn+1yny3y2y1

z2n+1z2nz2n−1z5z4z3z2z1

xn+1xn

· · ·

x3x2x1

Figure 7.1: Generalized Fence or generalized zigzag poset GZn.

Then, GZn is a poset of 4n+ 3 elements. Obviously, the number of linear extensions of

GZn corresponds to A2
4n+3. Let us fix our attention on the elements zi. Note that they

are not related to each other. Besides, given xi, i > 1, it follows that xi ≺ z2i−2 and xi ≺
z2i−1. Similarly, for yi, i < n+ 1, it follows that yi � z2i and yi � z2i−1. Finally, x1 ≺ z1
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and yn+1 � z2n+1. Thus, the corresponding order polytope is the polytope in R4n+3

given by points (f(x1), ..., f(xn+1), f(z1), ..., f(z2n+1), f(y1), ..., f(yn+1)) satisfying


f(zi) ∈ [0, 1]

f(xi) ∈ [0,min(f(z2i−2), f(z2i−1))], i > 1, f(x1) ∈ [0, f(z1)]

f(yi) ∈ [max(f(z2i), f(z2i−1)), 1], i ≤ n, f(yn+1) ∈ [f(z2n+1), 1]

.

With these facts in mind, the volume of the corresponding order polytope is given by

∫ 1

0
...

∫ 1

0

∫ min{z2n+1,z2n}

0
...

∫ z1

0

∫ 1

z2n+1

∫ 1

max{z2n,z2n−1}
...

∫ 1

max{z1,z2}
1dy1...dyn+1dx1...dxn+1dz1...dz2n+1

=

∫ 1

0
...

∫ 1

0
z1(1− z2n+1)

n∏
i=1

min(z2i+1, z2i)(1−max(z2i−1, z2i))dz1...dz2n+1.

Then, let us focus on the integral

∫ 1

0

∫ 1

0
min(y, z)(1−max(x, y))p(x)dxdy,

where p(x) is a polynomial. This integral is solved in the next lemmas.

Lemma 7.1. Let p(x) be a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, a0, ..., an ∈ R.

Then, for fixed y ∈ [0, 1] it follows

∫ 1

0
min(x, y)p(x)dx = −

n∑
k=0

ak
(k + 1)(k + 2)

yk+2 +

(
n∑
k=0

ak
k + 1

)
y.

Proof. Let us denote

P (y) :=

∫ y

0
p(x)dx =

n∑
k=0

ak
k + 1

yk+1,

P̂ (y) :=

∫ y

0
xp(x)dx =

∫ y

0

(
n∑
k=0

akx
k+1

)
dx =

[
n∑
k=0

ak
k + 2

xk+2

]y
0

=
n∑
k=0

ak
k + 2

yk+2.
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Therefore, for fixed y ∈ [0, 1] it follows

∫ 1

0
min(x, y)p(x)dx =

∫ 1

0
[yI(y ≤ x) + xI(x < y)] p(x)dx

=

∫ 1

y
yp(x)dx+

∫ y

0
xp(x)dx

= y (P (1)− P (y)) + P̂ (y)

= y

(
n∑
k=0

ak
k + 1

−
n∑
k=0

ak
k + 1

yk+1

)
+

n∑
k=0

ak
k + 2

yk+2

= y
n∑
k=0

ak
k + 1

+
n∑
k=0

[
− ak
k + 1

+
ak
k + 2

]
yk+2

=

(
n∑
k=0

ak
k + 1

)
y −

n∑
k=0

ak
(k + 1)(k + 2)

yk+2,

and the result holds.

Lemma 7.2. Let p(x) be a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, a0, ..., an ∈ R.

Then, for fixed y ∈ [0, 1], it follows

∫ 1

0
[1−max(x, y)] p(x)dx = −

n∑
k=0

ak
(k + 1)(k + 2)

yk+2 +

(
n∑
k=0

ak
(k + 1)(k + 2)

)
.

Proof. Consider P (y) and P̂ (y) as defined in the proof of the previous lemma. Then,

∫ 1

0
[1−max(x, y)] p(x)dx =

∫ 1

0
p(x)dx−

∫ 1

0
max(x, y)p(x)dx

=

∫ 1

0
p(x)dx−

∫ 1

0
y (I(x ≤ y)) p(x)dx−

∫ 1

0
x (I(y ≤ x)) p(x)dx

=

∫ 1

0
p(x)dx−

∫ y

0
yp(x)dx−

∫ 1

y
xp(x)dx

= P (1)− yP (y)− P̂ (1) + P̂ (y).

Now,
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P (1)− P̂ (1) =

n∑
k=0

ak
k + 1

−
n∑
k=0

ak
k + 2

=

n∑
k=0

ak
(k + 1)(k + 2)

,

and

P̂ (y)− yP (y) =

n∑
k=0

ak
k + 2

yk+2 −
n∑
k=0

ak
k + 1

yk+2 = −
n∑
k=0

ak
(k + 1)(k + 2)

yk+2.

Therefore,

∫ 1

0
[1−max(x, y)] p(x)dx = −

n∑
k=0

ak
(k + 1)(k + 2)

yk+2 +

(
n∑
k=0

ak
(k + 1)(k + 2)

)
and the result holds.

Lemma 7.3. Let p(x) be a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, a0, ..., an ∈ R.

Then,

∫ 1

0

∫ 1

0
min(y, z) [1−max(x, y)] p(x)dxdy =

=

n∑
k=0

ak
(k + 1)(k + 2)(k + 3)(k + 4)

zk+4−1

2

(
n∑
k=0

ak
(k + 1)(k + 2)

)
z2+

(
n∑
k=0

(k + 2)ak
(k + 1)(k + 2)(k + 3)

)
z.

Proof. Note that

∫ 1

0

∫ 1

0
min(y, z) [1−max(x, y)] p(x)dxdy =

∫ 1

0
min(y, z)

(∫ 1

0
[1−max(x, y)] p(x)dx

)
dy.

Now, we apply Lemma 7.2 and we get

∫ 1

0
[1−max(x, y)] p(x)dx = −

n∑
k=0

ak
(k + 1)(k + 2)

yk+2 +

(
n∑
k=0

ak
(k + 1)(k + 2)

)
.
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Next, if we apply Lemma 7.1 for p(y) = −
n∑
k=0

ak
(k + 1)(k + 2)

yk+2+

(
n∑
k=0

ak
(k + 1)(k + 2)

)
,

we obtain a polynomial in z. The term for z is given by

n∑
k=0

ak
(k + 1)(k + 2)

−
n∑
k=0

ak
(k + 1)(k + 2)(k + 3)

=

n∑
k=0

(k + 2)ak
(k + 1)(k + 2)(k + 3)

.

The term for z2 is given by

−1

2

(
n∑
k=0

ak
(k + 1)(k + 2)

)
,

and the term for zk+4, k ≥ 0 (note that there is no term for z3 as there is no term for y

in p(y)) is given by

ak
(k + 1)(k + 2)(k + 3)(k + 4)

.

Therefore, the result holds.

Briefly speaking, note that the result of this integral is a polynomial in z. Thus, con-

sidering again the expression for the volume and integrating with respect to z1, z2 we

obtain that Vol(O(GZn)) is given by

∫ 1

0
· · ·
∫ 1

0
(1−z2n+1) min(z2n, z2n+1) (1−max(z2n−1, z2n)) · · · [min(z2, z3) (1−max(z1, z2)) z1] d−→z

=

∫ 1

0
· · ·
∫ 1

0
(1−z2n+1) min(z2n, z2n+1) (1−max(z2n−1, z2n)) · · ·min(z4, z5) (1−max(z3, z4)) p(z3)d

−−−−−−→
z\{z1, z2},

where p(z3) is the polynomial

p(z3) =

∫ 1

0

∫ 1

0
min(z2, z3) (1−max(z1, z2)) z1dz2dz1.

Next step is to solve again the integral with respect to z3, z4, and so on. This defines a

sequence a(0), a(1), ... of polynomials with a(0)(z) = z that can be obtained recursively.

The first members of the sequence are:
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a(1)(z) =
z

8
− z2

12
+

z5

120
.

a(2)(z) =
59

5 760
z − 71

10 080
z2 +

1

960
z5 − 1

4 320
z6 +

1

362 880
z9.

Next Lemma shows several facts about the polynomials in this sequence.

Lemma 7.4. Let a(0)(z) := z and a(k+1)(z) be defined recursively by

a(k+1)(z) :=

∫ 1

0

∫ 1

0
[1−max(x, y)] min(y, z)a(k)(x)dxdy.

Then, we have:

i) a(n)(z) is a polynomial of degree 4n+ 1.

ii) If n ≥ 1, then a
(n)
3 = 0, and if n ≥ 0, then a

(n)
0 = 0.

iii) a
(n)
k =

1

k(k − 1)(k − 2)(k − 3)
a

(n−1)
k−4 , ∀n ≥ 1 and k ∈ {4, 5, · · · , 4n+ 1}.

iv) a
(n)
4n+1 =

1

(4n+ 1)!
, a

(n)
4k = a

(n)
4k+3 = 0, for 0 ≤ k ≤ n.

v) Let us define Γk := a
(k)
1 and βk := a

(k)
2 , then, a

(n)
4k+1 =

1

(4k + 1)!
Γn−k, and a

(n)
4k+2 =

2

(4k + 2)!
βn−k, where 0 ≤ k ≤ n− 1.

Proof. i) We will show the result by induction on n. For n = 1, the result holds.

Now, assuming the result holds for 1, ..., n−1, we can apply Lemma 7.3 to conclude

that a(n)(x) has degree four units greater than a(n−1). Hence, the result holds.

ii) Trivial by Lemma 7.3.

iii) Trivial by Lemma 7.3.

iv) For a
(n)
4n+1, applying iii) n times, we have

a
(n)
4n+1 =

1

(4n+ 1)(4n)(4n− 1)(4n− 2)
a

(n−1)
4n−3

=
1

(4n+ 1)(4n)(4n− 1)(4n− 2)
· 1

(4n− 3)(4n− 4)(4n− 5)(4n− 6)
a

(n−2)
4n−7

= ...

=
1

(4n+ 1)(4n)(4n− 1)(4n− 2)
· 1

(4n− 3)(4n− 4)(4n− 5)(4n− 6)
· · · 1

5 · 4 · 3 · 2
a

(0)
1

=
1

(4n+ 1)!
.
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Similarly, applying ii), for a
(n)
4k we obtain

a
(n)
4k =

1

(4k)(4k − 1)(4k − 2)(4n− 3)
a

(n−1)
4k−4

=
1

(4k)(4k − 1)(4k − 2)(4k − 3)
· 1

(4k − 4)(4k − 5)(4k − 6)(4k − 7)
a

(n−2)
4k−8

= ...

=
1

(4k)(4k − 1)(4k − 2)(4k − 3)
· 1

(4k − 4)(4k − 5)(4k − 6)(4k − 7)
· · · a(n−k)

(0)

= 0.

For a
(n)
4k+3 we obtain

a
(n)
4k+3 =

1

(4k + 3)(4k + 2)(4k + 1)(4k)
a

(n−1)
4k−1

=
1

(4k + 3)(4k + 2)(4k + 1)(4k)
· 1

(4k − 1)(4k − 2)(4k − 3)(4k − 4)
a

(n−2)
4k−5

= ...

=
1

(4k + 3)(4k + 2)(4k + 1)(4k)
· 1

(4k − 1)(4k − 2)(4k − 3)(4k − 4)
· · · a(n−k)

(3)

= 0.

v) For a
(n)
4k+1, applying iii), we have

a
(n)
4k+1 =

1

(4k + 1)(4k)(4k − 1)(4k − 2)
a

(n−1)
4k−3

=
1

(4k + 1)(4k)(4k − 1)(4k − 2)
· 1

(4k − 3)(4k − 4)(4k − 5)(4k − 6)
a

(n−2)
4k−7

= ...

=
1

(4k + 1)(4k)(4k − 1)(4k − 2)
· 1

(4k − 3)(4k − 4)(4k − 5)(4k − 6)
· · · 1

5 · 4 · 3 · 2
a

(n−k)
1

=
1

(4k + 1)!
Γn−k.

Similarly,
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a
(n)
4k+2 =

1

(4k + 2)(4k + 1)(4k)(4k − 1)
a

(n−1)
4k−2

=
1

(4k + 2)(4k + 1)(4k)(4k − 1)
· 1

(4k − 2)(4k − 3)(4k − 4)(4k − 5)
a

(n−2)
4k−6

= ...

=
1

(4k + 2)(4k + 1)(4k)(4k − 1)
· 1

(4k − 2)(4k − 3)(4k − 4)(4k − 5)
· · · 1

6 · 5 · 4 · 3
a

(n−k)
2

=
2

(4k + 2)!
βn−k.

The values of Γn and βn can be computed recursively as follows:

Lemma 7.5. The sequences of Γn and βn are given by:



Γ1 =
1

8
, β1 = − 1

12
,

Γn+1 =
4n+ 3

(4n+ 4)!
+
n−1∑
k=0

4k + 3

(4k + 4)!
Γn−k + 2

n−1∑
k=0

4k + 4

(4k + 5)!
βn−k,

βn+1 = − 1

2(4n+ 3)!
−
n−1∑
k=0

1

2(4k + 3)!
Γn−k −

n−1∑
k=0

1

(4k + 4)!
βn−k.

Proof. The first values Γ1 and β1 arise from Lemma 7.3.

Now, by definition of Γn and βn and applying again Lemma 7.3, we obtain

Γn+1 = a
(n+1)
1 =

4n+1∑
k=0

(k + 2)a
(n)
k

(k + 1)(k + 2)(k + 3)
.

Now, applying Lemma 7.4, we obtain that all values congruent with 0 and 3 vanish, and

by definition of Γn and βn, we obtain that

Γn+1 =
4n+ 3

(4n+ 4)!
+

n−1∑
k=0

4k + 3

(4k + 4)!
Γn−k + 2

n−1∑
k=0

4k + 4

(4k + 5)!
βn−k.

Similarly,

βn+1 = a
(n+1)
2 = −1

2

4n+1∑
k=0

a
(n)
k

(k + 1)(k + 2)
.
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Then,

βn+1 = − 1

2(4n+ 3)!
−
n−1∑
k=0

1

2(4k + 3)!
Γn−k −

n−1∑
k=0

1

(4k + 4)!
βn−k.

Thus, the result holds.

Theorem 7.6. Consider GZn. Then:

e(GZn) = −2(4n+ 3)!βn+1.

Proof. Let us obtain the volume of the corresponding order polytope. For this, if we

apply Lemma 7.3 several times, we get that Vol(O(GZn)) is given by:

∫ 1

0
· · ·
∫ 1

0
(1−z2n+1) min(z2n, z2n+1) (1−max(z2n−1, z2n)) · · ·min(z2, z3) (1−max(z1, z2)) z1d

−→z =

=

∫ 1

0
· · ·
∫ 1

0
(1−z2n+1) min(z2n, z2n+1) (1−max(z2n−1, z2n)) · · ·min(z2, z3) (1−max(z1, z2)) a(0)(z1)d−→z =

=

∫ 1

0
· · ·
∫ 1

0
(1−z2n+1) min(z2n, z2n+1) (1−max(z2n−1, z2n)) · · ·min(z4, z5) (1−max(z3, z4)) a(1)(z3)d

−−−−−−→
z\{z1, z2} =

= · · · =
∫ 1

0
(1−z2n+1)a(n)(z2n+1)dz2n+1 =

4n+1∑
k=0

a
(n)
k

k + 1
−

4n+1∑
k=0

a
(n)
k

k + 2
=

4n+1∑
k=0

a
(n)
k

(k + 1)(k + 2)
= −2βn+1,

where the last equality arises from Lemma 7.3. Since e(GZn) = (4n+ 3)!Vol(O(GZn)),

the result holds.

The first values of e(GZn) are given in Table 7.1.

n 1 2 3 4 5

Γn
1

8

59

5 760

12 031

14 515 200

1 402 815 833

20 922 789 888 000

8 573 648 137

1 580 833 013 760 000

βn − 1

12
− 71

10 080
− 45 541

79 833 600
− 120 686 411

2 615 348 736 000
− 908 138 776 681

243 290 200 817 664 000

e(GZn) 71 45 541 120 686 411 908 138 776 681 · · ·

Table 7.1: First values of Γn, βn and e(GZn).
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It just remains to compute the rest of values for A2
n as last formula only gives us A2

4n+3.

Now if we remove 1, 2 or 3 elements of the corresponding generalized zigzag poset, we

get the equivalent version with 4n+ 2, 4n+ 1 and 4n elements.

Theorem 7.7. Let A2
n be the number of 2-alternating permutations. Then:

i) A2
1 = A2

2 = A2
3 = 1 and A2

5 = 6.

ii) A2
4n+3 = −2(4n+ 3)!βn+1, n ≥ 1.

iii) A2
4n+2 = 1 +

n−1∑
k=0

(4n+ 2)!

(4k + 2)!
Γn−k + 2

n−1∑
k=0

(4n+ 2)!

(4k + 3)!
βn−k, n ≥ 1.

iv) A2
4n+1 =

(4n− 1)(4n)

2
+
n−2∑
k=0

(4n+ 1)!

2(4k + 2)!(4k + 5)
Γn−k−1+

n−2∑
k=0

(4n+ 1)!

(4k + 3)!(4k + 6)
βn−k−1,

n ≥ 2.

v) A2
4n = (4n)!Γn, n ≥ 1.

Proof. i) Trivial.

ii) This is Theorem 7.6.

iii) In this case we remove yn+1 from GZn and the factor 1− z2n+1 dissapears. Then,

the volume of the corresponding order polytope is∫ 1

0
· · ·
∫ 1

0
min(z2n, z2n+1) (1−max(z2n−1, z2n)) · · ·min(z2, z3) (1−max(z1, z2)) z1d

−→z =

= · · · =
∫ 1

0
a(n)(z2n+1)dz2n+1 =

4n+1∑
k=0

a
(n)
k

k + 1
.

Now by Lemma 7.4 iv) and v) we get

4n+1∑
k=0

a
(n)
k

k + 1
=

1

(4n+ 2)!
+
n−1∑
k=0

1

(4k + 2)!
Γn−k + 2

n−1∑
k=0

1

(4k + 3)!
βn−k.

iv) In this case we remove yn+1, z2n+1 from GZn and the factors 1 − z2n+1 and

min(z2n, z2n+1) dissapear. But it appears z2n. Consequently, the volume is

∫ 1

0
· · ·
∫ 1

0
z2n (1−max(z2n−1, z2n)) · · ·min(z2, z3) (1−max(z1, z2)) z1d

−→z =

= · · · =
∫ 1

0

∫ 1

0
z2n (1−max(z2n−1, z2n)) a(n−1)(z2n−1)dz2n−1dz2n =
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=

∫ 1

0
z2n

− 4(n−1)+1∑
k=0

a
(n−1)
k

(k + 1)(k + 2)
zk+2

2n +

4(n−1)+1∑
k=0

a
(n−1)
k

(k + 1)(k + 2)

 dz2n =

= −
4(n−1)+1∑

k=0

a
(n−1)
k

(k + 1)(k + 2)(k + 4)
+

1

2

4(n−1)+1∑
k=0

a
(n−1)
k

(k + 1)(k + 2)

 =

=

4(n−1)+1∑
k=0

(k + 2)(k + 3)a
(n−1)
k

2(k + 1)(k + 2)(k + 3)(k + 4)
.

Now by Lemma 7.4 iv) and v) we get that the last expression is

(4n− 1)(4n)

2(4n+ 1)!
+
n−2∑
k=0

(4k + 3)(4k + 4)

2(4k + 5)!
Γn−k−1 +

n−2∑
k=0

(4k + 4)(4k + 5)

(4k + 6)!
βn−k−1.

v) In this case we remove yn+1, z2n+1, xn+1 from GZn and the factors 1− z2n+1 and

min(z2n, z2n+1) dissapear. Consequently, the volume is

∫ 1

0
· · ·
∫ 1

0
(1−max(z2n−1, z2n)) · · ·min(z2, z3) (1−max(z1, z2)) z1d

−→z =

= · · · =
∫ 1

0

∫ 1

0
(1−max(z2n−1, z2n)) a(n−1)(z2n−1)dz2n−1dz2n =

=

∫ 1

0

− 4(n−1)+1∑
k=0

a
(n−1)
k

(k + 1)(k + 2)
zk+2

2n +

4(n−1)+1∑
k=0

a
(n−1)
k

(k + 1)(k + 2)

 dz2n =

= −
4(n−1)+1∑

k=0

a
(n−1)
k

(k + 1)(k + 2)(k + 3)
+

4(n−1)+1∑
k=0

a
(n−1)
k

(k + 1)(k + 2)
=

4(n−1)+1∑
k=0

(k + 2)a
(n−1)
k

(k + 1)(k + 2)(k + 3)
.

But by Lemma 7.3, this is Γn, and hence the result holds.

This way we get a recursive formula for A2
n.

Finally, Table 7.2 shows the first number of 2-alternating permutations, A2
n.

n 1 2 3 4 5 6 7 8 9 10 11 12

A2
n 1 1 1 3 6 26 71 413 1 456 10 576 45 541 397 023

Table 7.2: First A2
n numbers.
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7.2 Applying the procedure for other families of posets

The procedure applied for the generalized fence can be successfully applied to other

families of posets. We give in this section some other examples.

7.2.1 The fence or zig-zag poset. Alternating permutations

Let us introduce the family of fences or “zigzag posets”. We will consider two cas-

es. Let Z2n denote the 2n−element “zigzag poset” or (even) fence, with elements

y1, y2, · · · , yn, x1, ..., xn and cover relations yi � xi, yi � xi+1, i < n and yn > xn.

Similarly, let Z2n+1 denote the (2n + 1)−element “zigzag poset” or (odd) fence, with

elements y1, y2, · · · , yn, x1, ..., xn, xn+1 and cover relations yi � xi, yi � xi+1, i = 1, ..., n.

The corresponding Hasse diagrams are displayed in Figure 7.2. Note that the number

of linear extensions of these posets gives us the number of alternating permutations.

ynyn−1y3y2y1

xnxn−1

· · ·
x3x2x1

ynyn−1y3y2y1

xn+1xnxn−1

· · ·
x3x2x1

Figure 7.2: Fence or zigzag posets Z2n (left) and Z2n+1 (right).

The number of linear extensions e(Zn) is known (see [5]) and is given by e(Zn) = En,

where En is the n−th Euler number. The first Euler numbers are given in Table 7.3.

n 1 2 3 4 5 6 7 8 9 10

En 1 1 2 5 16 61 272 1 385 7 936 50 521

Table 7.3: First Euler numbers.

Besides, E2n+1 are the Taylor coefficients of the tangent function. For this reason, they

are also called tangent numbers [5]. Numbers E2n are the Taylor coefficients of the

secant function. For this reason, they are also called secant numbers [5]. Indeed,

∞∑
n=0

En
xn

n!
= sec(x) + tan(x).

Let us apply the previous procedure to this family of posets. We start with the odd

fence. For this, let us focus our attention on elements xi. Note that they are not related

to each other. Now, the volume of O(Z2n+1) is given by
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V ol(O(Z2n+1)) =

∫ 1

0
...

∫ 1

0

∫ min(x1,x2)

0
...

∫ min(xn,xn+1)

0
1dy1...dyndxn+1...dx1

=

∫ 1

0
...

∫ 1

0

n∏
i=1

min(xi, xi+1)dx1...dxn+1.

Thus, we focus on

∫ 1

0
min(x, y)p(x)dx,

where p(x) is a polynomial. This integral has been already solved in Lemma 7.1. Then,

if we integrate with respect to xn+1, we obtain

Vol(O(Z2n+1)) =

∫ 1

0
· · ·
∫ 1

0

n∏
i=1

min(xi, xi+1)dxn+1...dx1

=

∫ 1

0
· · ·
∫ 1

0

n−1∏
i=1

min(xi, xi+1)p(xn)dxn...dx1,

where p(xn) is the polynomial

p(xn) =

∫ 1

0
min(xn, xn+1)dxn+1.

Next step is to solve again the integral with respect to xn, then xn−1, and so on. We

are going to study this sequence of polynomials when a(0)(x) = 1. Then, simple calculi

show that the first polynomials of the sequence are:

a(1)(x) = x− 1

2
x2,

a(2)(x) =
1

3
x− 1

3 · 2
x3 +

1

4 · 3 · 2
x4.

This defines a sequence a(0), a(1), ... of polynomials that can be obtained recursively.

Next lemma shows several facts about the polynomials in this sequence.

Lemma 7.8. Let a(0)(x) = 1 and a(k+1)(x) be defined recursively as

a(k+1)(x) :=

∫ 1

0
min(x, y)a(k)(y)dy.

Then, the following facts hold:
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i) a(n)(x) is a polynomial of degree 2n.

ii) If n ≥ 1, then a
(n)
0 = 0.

iii) a
(n)
k+1 = − 1

k(k + 1)
a

(n−1)
k−1 , ∀n ≥ 1 and k ∈ {1, 2, · · · , 2n− 1}.

iv) a
(n)
2n = (−1)n

1

(2n)!
and a

(n)
2k = 0, for 0 ≤ k ≤ n− 1.

v) a
(n)
2k+1 = (−1)k

1

(2k + 1)!
Tn−k, where 0 ≤ k ≤ n− 1 and Tk := a

(k)
1 .

Proof. i) By Lemma 7.1 we conclude that a(n)(x) has degree two units greater than

a(n−1). Hence, the result holds.

ii) Trivial by Lemma 7.1.

iii) It follows again from Lemma 7.1.

iv) By iii) a
(n)
2k = − 1

2k(2k − 1)
a

(n−1)
2(k−1). Hence,

a
(n)
2n = (−1)

1

2n(2n− 1)
a

(n−1)
2(n−1) = (−1)2 1

2n(2n− 1)
· 1

(2n− 2)(2n− 3)
a

(n−2)
2(n−2) = ...

= (−1)n
1

2n(2n− 1)
· 1

(2n− 2)(2n− 3)
· 1

(2)(1)
· · · a(0)

0 = (−1)n
1

(2n)!
.

Now, we use ii) for the case 0 ≤ k ≤ n− 1:

a
(n)
2k = (−1)

1

2k(2k − 1)
· (−1)

1

(2k − 2)(2k − 3)
· · · a(n−k)

0 = 0.

v) Applying iii) and induction, we obtain

a
(n)
2k+1 = (−1)

1

(2k + 1)(2k)
a

(n−1)
2k−1 = (−1)2 1

(2k + 1)(2k)
· 1

(2k − 1)(2k − 2)
a

(n−2)
2k−3 = ...

= (−1)k
1

(2k + 1)(2k)
· 1

(2k − 1)(2k − 2)
· · · 1

(2)(1)
a

(n−k)
1 = (−1)k

1

(2k + 1)!
a

(n−k)
1 .

Hence, the lemma holds.

Theorem 7.9. Given the odd fence Z2n+1, it follows

e(Z2n+1) = (2n+ 1)!Tn+1.
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Proof. Note that e(Z2n+1) = (2n+ 1)!Vol(O(Z2n+1)). Now,

Vol(O(Z2n+1)) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0

∫ min(x1,x2)

0

∫ min(x2,x3)

0
· · ·
∫ min(xn,xn+1)

0
1dxn+1dxn · · · dx1

=

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
min(x1, x2) min(x2, x3) · · ·min(xn, xn+1)a(0)(xn+1)dxn+1dxn · · · dx1.

Now, we use

∫ 1

0
min(xi, xi+1)a(n−i)(xi+1)dxi+1 = a(n−i+1)(xi), so we obtain,

Vol(O(Z2n+1)) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
min(x1, x2) min(x2, x3) · · ·min(xn−1, xn)a(1)(xn)dxn · · · dx1

=

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
min(x1, x2) min(x2, x3) · · ·min(xn−2, xn−1)a(2)(xn−1)dxn−1 · · · dx1

= ...

=

∫ 1

0
a(n)(x1)dx1

Finally,

Vol(O(Z2n+1)) =

∫ 1

0
a(n)(x1)dx1 =

[
2n∑
k=0

a
(n)
k

k + 1
xk+1

1

]1

0

=
2n∑
k=0

a
(n)
k

k + 1
= Tn+1,

where the last equality arises from Lemma 7.1. Hence, the result holds.

Now, let us obtain the sequence of coefficients T0, T1, ... For this sequence, the following

can be shown.

Lemma 7.10. The coefficients Tn can be obtained recursively by:


T0 = 0, T1 = 1

Tn+1 =
(−1)n

(2n+ 1)!
+

n−1∑
k=0

(−1)k

(2k + 2)!
Tn−k

Proof. By Lemma 7.1 we know that Tn+1 =
2n∑
k=0

a
(n)
k

k + 1
. Now, applying Lemma 7.8 iv),

we get
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Tn+1 = 0 +
a

(n)
1

2
+ 0 +

a
(n)
3

4
+ · · ·+

a
(n)
2n−1

2n
+

a
(n)
2n

2n+ 1

= 0 +
a

(n)
1

2
+ 0 +

a
(n)
3

4
+ · · ·+

a
(n)
2n−1

2n
+ (−1)n

1

(2n+ 1)(2n)!

Finally, by Lemma 7.8 v),

Tn+1 = 0 +
Tn
2

+ 0− Tn−1

4!
+ · · ·+ (−1)n−1 T1

(2n)!
+ (−1)n

1

(2n+ 1)!
.

This finishes the proof.

Table 7.4 shows the first values of Tn.

n 1 2 3 4 5 6 7 8

Tn 1
1

3

2

15

17

315

62

2 835

1 382

155 925

21 844

6 081 075

929 569

638 512 875

Table 7.4: First Tn values.

From the last linear recurrence, it is possible to show that E2n+1 = (2n+ 1)!Tn+1.

Let us work now with the even part. In this case,

V ol(O(Z2n)) =

∫ 1

0
...

∫ 1

0

∫ y1

0

∫ min(y1,y2)

0
...

∫ min(yn−1,yn)

0
1dxn...dx1dy1...dyn

=

∫ 1

0
...

∫ 1

0
y1

n−1∏
i=1

min(yi, yi+1)dy1...dyn.

Then, if we integrate with respect to y1, we obtain

Vol(O(Z2n)) =

∫ 1

0
· · ·
∫ 1

0
y1

n−1∏
i=1

min(yi, yi+1)dyn...dy1

=

∫ 1

0
· · ·
∫ 1

0

n−1∏
i=1

min(yi, yi+1)p(y2)dyn−1...dy1,

where p(y2) is the polynomial

p(y2) =

∫ 1

0
y1 min(y1, y2)dy1.
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We are going to work with the same polynomial recurrence as above, but in this case

we start from b(0)(x) = x. Then, the first terms in the sequence are:

b(1)(x) =
x

2
− x3

6
,

b(2)(x) =
5x

6 · 4
− x3

4 · 3
+

x5

6 · 5 · 4
.

Next lemma provides some basic properties of this particular sequence. The proof is

very similar to that of Lemma 7.8 and we omit it.

Lemma 7.11. Let b(0)(x) = x and b(k+1)(x) be defined recursively as

b(k+1)(x) :=

∫ 1

0
min(x, y)b(k)(y)dy.

Then, the following holds:

i) b(n)(x) is a polynomial of degree 2n+ 1.

ii) If n ≥ 0, then b
(n)
0 = 0.

iii) b
(n)
k+1 = − 1

k(k + 1)
b
(n−1)
k−1 , ∀n ≥ 1 and k ∈ {1, 2, · · · , 2n+ 1}.

iv) b
(n)
2k = 0, for 0 ≤ k ≤ n.

v) b
(n)
2k+1 = (−1)k

1

(2k + 1)!
Sn−k, where 0 ≤ k ≤ n and Sk := b

(k)
1 .

Theorem 7.12. Consider Z2n. Then,

e(Z2n) = (2n)!Sn.

Proof. Proceeding as in Theorem 7.9, we have:

Vol(O(Z2n)) =

∫ 1

0
· · ·
∫ 1

0

∫ min(y1,y2)

0
· · ·
∫ min(yn−1,yn)

0

∫ y1

0
1dyn · · · dy1dxn · · · dx1

=

∫ 1

0
· · ·
∫ 1

0
min(y1, y2) min(y2, y3) · · ·min(yn−1, yn)y1dy1 · · · dyn

Now, we use

∫ 1

0
min(xi, xi+1)b(n−i)(xi+1)dxi+1 = b(n−i+1)(xi), so we obtain,
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Vol(O(Z2n)) =

∫ 1

0
· · ·
∫ 1

0
min(y2, y3) · · ·min(yn−1, yn)b(1)(y2)dy2 · · · dyn

=

∫ 1

0
· · ·
∫ 1

0
min(y3, y4) min(x4, x5) · · ·min(yn−1, yn)b(2)(y3)dy3 · · · dyn

= ...

=

∫ 1

0
b(n−1)(yn)dyn.

Finally,

Vol(O(Z2n)) =

[
2n−1∑
k=0

b
(n−1)
k

k + 1
yk+1
n

]1

0

=

2n−1∑
k=0

b
(n−1)
k

k + 1
= Sn.

Hence, the result holds.

Let us consider the sequence S0,S1, ... For this sequence, the following holds.

Lemma 7.13. The sequence S0,S1, ... can be defined via the following recurrence:


S0 = 1

Sn+1 =

n∑
k=0

(−1)k

(2k + 2)!
Sn−k

Proof. By Lemma 7.1 we know

Sn+1 =

2n+1∑
k=0

b
(n)
k

k + 1
=
b
(n)
0

1
+
b
(n)
1

2
+
b
(n)
2

3
+ ...

Now, applying Lemma 7.11 ii), we conclude that b
(n)
k = 0 if k is even. Thus,

Sn+1 =
b
(n)
1

2
+
b
(n)
3

4
+ · · ·+

b
(n)
2n+1

2n+ 2
.

Finally, applying Lemma 7.11 v),

Sn+1 =
Sn
2
− Sn−1

4!
+ · · ·+ (−1)n

S0

(2n+ 2)!
.

Hence, the result holds.
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n 1 2 3 4 5 6 7 8

Sn
1

2

5

24

61

720

277

8 064

50 521

3 628 800

540 553

95 800 320

199 360 981

87 178 291 200

3 878 302 429

4 184 557 977 600

Table 7.5: First Sn values.

Table 7.5 shows the first values of Sn.

From the last linear recurrence, it is possible to show that E2n = (2n)!Sn.

7.2.2 The butterfly poset

Let us consider the butterfly poset, a poset of four elements x1, x2, y1, y2 such that

xi ≺ yj ,∀i, j. We will denote this poset by BF1, and we will consider a sequence of n

butterflies posets such that for butterfly j, 1 < j < n one of the elements y is common

with butterfly j − 1 and the other element y is common with butterfly j + 1.

Thus defined, poset BFn has n + 1 elements type y and 2n elements type x and the

relation ≺ is given by

yi � x2i−3, yi � x2i−2, yi � x2i−1, yi � x2i, i 6= 1, n+1, y1 � x1, y1 � x2, yn+1 � x2n−1, yn+1 � x2n.

Figure 7.3 shows the Hasse diagram of BF1 and BFn.

yn+1yny3y2y1

x2nx2n−1

· · ·

x4x3x2x1

y2y1

x2x1

Figure 7.3: Butterfly BF1 (left) and Butterfly BFn (right).

We will apply our procedure to compute the number of linear extensions of this family

of posets. In this case,

Vol(O(BFn)) =

∫ 1

0
...

∫ 1

0

∫ min(y1,y2)

0

∫ min(y1,y2)

0
...

∫ min(yn−1,yn)

0

∫ min(yn−1,yn)

0
1dx2n...dx1dy1...dyn+1

=

∫ 1

0
...

∫ 1

0

n∏
i=1

min2(yi, yi+1)dy1...dyn+1.

Then, if we integrate with respect to y1, we obtain
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Vol(O(BFn)) =

∫ 1

0
· · ·
∫ 1

0

n∏
i=1

min2(yi, yi+1)dy1...dyn+1

=

∫ 1

0
· · ·
∫ 1

0

n−1∏
i=1

min2(yi, yi+1)p(y2)dy2...dyn+1,

where p(y2) is the polynomial

p(y2) =

∫ 1

0
min2(y1, y2)dy1.

Lemma 7.14. Let p(x) be a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, a0, ..., an ∈ R.

Then,

∫ 1

0
min2(x, y)p(x)dx = −

n∑
k=0

2ak
(k + 1)(k + 3)

yk+3 +

(
n∑
k=0

ak
k + 1

)
y2.

Proof. It is very similar to the proof of Lemma 7.1, so we omit it.

Now suppose that we consider an initial polynomial c(0)(x) and we define recursively

the polynomial c(k+1)(x) as

c(k+1)(x) :=

∫ 1

0
min2(x, y)c(k)(y)dy.

We are going to study this sequence of polynomials when c(0)(x) = 1. Then, simple

calculi show that the first terms of this sequence are:

c(1)(x) = x2 − 2

3
x3,

c(2)(x) =
1

6
x2 − 2

15
x5 +

1

18
x6.

Let us denote

a!!! := a(a− 3)(a− 6)...
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By convention, 1!!! = 1, 2!!! = 2 and 3!!! = 3. The basic properties of sequence c0(x), c1(x), ...

are given in next lemma, whose proof is completely similar to the proofs seen previously.

Lemma 7.15. Let c(0)(x) = 1 and c(k+1)(x) be defined recursively as

c(k+1)(x) :=

∫ 1

0
min2(x, y)c(k)(y)dy.

Then, the following facts follow:

i) c(n)(x) is a polynomial of degree 3n.

ii) If n ≥ 1, then c
(n)
0 = c

(n)
1 = 0.

iii) c
(n)
k = − 2

k(k − 2)
c

(n−1)
k−3 , ∀n ≥ 1 and k ∈ {3, 4, · · · , 3n− 1}.

iv) c
(n)
3n = (−1)n

2n(3n− 1)!!!

(3n)!
.

v) c
(n)
3k = c

(n)
3k+1 = 0 and c

(n)
3k+2 = (−1)k

2k+1(3k + 1)!!!

(3k + 2)!
Rn−k, where 1 ≤ k ≤ n− 1 and

Rk := c
(k)
2

Theorem 7.16. The number of linear extensions of BFn is given by

e(BFn) = (3n+ 1)!Rn+1.

Proof. We have

Vol(O(BFn)) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
min2(y1, y2)min2(y2, y3) · · ·min2(yn−1, yn)c(0)(yn+1)dy1...dyn+1

=

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
min2(y1, y2)min2(y2, y3) · · ·min2(yn−2, yn−1)c(1)(yn)dy1...dyn

=

∫ 1

0
c(n)(y1)dy1 =

3n∑
k=0

c
(n)
k

k + 1
= Rn+1,

where the last equality arises from Lemma 7.14.

The solution is given by a linear recurrence in Rn. Thus defined, we have a sequence

R0,R1, ... Next lemma gives some insight about this sequence.

Lemma 7.17. The sequence Rn is given by:


R0 = 0, R1 = 1

Rn+1 = (−2)n
(3n− 1)!!!

(3n+ 1)!
+
Rn
3

+
∑n−1

k=1(−1)k
2k+1(3k + 1)!!!

(3(k + 1))!
Rn−k
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Proof. By Lemma 7.14 we know that

Rn+1 =
3n∑
k=0

c
(n)
k

k + 1
=
c

(n)
2

3
+
c

(n)
3

4
+
c

(n)
4

5
+
c

(n)
5

6
+ · · ·+

c
(n)
3n−1

3n
+

c
(n)
3n

3n+ 1
.

Applying now Lemma 7.15 v), we see that terms c
(n)
3k = 0, 0 ≤ k ≤ n − 1, and c

(n)
3k−1 =

0, 0 ≤ k ≤ n. Moreover, by Lemma 7.15 iv), c
(n)
3n = (−1)n

2n(3n− 1)!!!

(3n)!
, so that

Rn+1 =
3n∑
k=0

c
(n)
k

k + 1
=
c

(n)
2

3
+
c

(n)
5

6
+ · · ·+

c
(n)
3n−1

3n
+ (−1)n

2n(3n− 1)!!!

(3n+ 1)!
.

Finally, by Lemma 7.15 v), we obtain that c
(n)
3k+2 = (−1)k

2k+1(3k + 1)!!!

(3k + 2)!
Rn−k and hence

the result holds.

Table 7.6 provides the first values of Rn and e(BFn).

n 1 2 3 4 5

Rn 1
1

6

13

315

17

1 620

9 301

3 474 900

e(BFn) 4 208 38 080 16 667 392 · · ·

Table 7.6: First values of Rn and e(BFn).

7.2.3 The Yn fence

Let us now consider the next family of Y fences. The poset Yn has 3n + 1 elements,

x1, ..., xn, z1, ..., zn, y1, ..., yn+1 and the order relation is given by xi ≺ zi, zi ≺ yi, zi ≺
yi+1, i = 1, ..., n. Figure 7.4 shows the Hasse diagram of this poset.

yn+1yny4y3y2y1

znz3z2z1

xn

· · ·

x3x2x1

Figure 7.4: Fence Yn.

We proceed as usual. First, let us note the shape of this integral,
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Vol(O(Yn)) =

∫ 1

0
· · ·
∫ 1

0

∫ z1

0
· · ·
∫ zn

0

∫ 1

z1

∫ 1

max(z1,z2)

∫ 1

max(z1,z2)
· · ·
∫ 1

zn

1d−→y d−→x d−→z =

∫ 1

0
· · ·
∫ 1

0
(1−z1)z1 (1−max(z1, z2)) z2 (1−max(z2, z3)) · · · zn−1 (1−max(zn−1, zn)) zn(1−zn)d−→z .

Thus, we focus on

∫ 1

0
x [1−max(x, y)] p(x)dx,

where p(x) is a polynomial.

Lemma 7.18. Let p(x) be a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, a0, ..., an ∈ R.

Then,

∫ 1

0
x [1−max(x, y)] p(x)dx = −

n∑
k=0

ak
(k + 2)(k + 3)

yk+3 +
n∑
k=0

ak
(k + 2)(k + 3)

.

Proof. Similar to Lemma 7.3.

Now suppose that we consider an initial polynomial d(0)(x) and we define recursively

the polynomial d(k+1)(x) as

d(k+1)(x) :=

∫ 1

0
y [1−max(x, y)] d(k)(y)dy.

We obtain then a sequence of polynomials d(0)(x), d(1)(x), d(2)(x), .... We are going to

study this sequence of polynomials when d(0)(x) = 1−x. Then, simple calculi show that

the first terms of this sequence are:

d(1)(x) =
1

12
− 1

6
x3 +

1

12
x4,

d(2)(x) =
13

1 260
− 1

72
x3 +

1

180
x6 − 1

504
x7.
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Next lemma gives more insight about this sequence. The proof of this lemma and the

next ones are omitted.

Lemma 7.19. Let d(0)(x) = 1− x and d(k+1)(x) be defined recursively by

d(k+1)(x) :=

∫ 1

0
y [1−max(x, y)] d(k)(y)dy.

Then we have:

i) d(n)(x) is a polynomial of degree 3n+ 1.

ii) If n ≥ 1, then d
(n)
1 = d

(n)
2 = 0.

iii) d
(n)
k = − 1

k(k − 1)
d

(n−1)
k−3 , ∀n ≥ 1 and k ∈ {3, · · · , 3n+ 1}.

iv) d
(n)
3n+1 = (−1)n+1 (3n− 1)!!!

(3n+ 1)!
, d

(n)
3n = (−1)n

(3n− 2)!!!

(3n)!
and d

(n)
3k+2 = d

(n)
3k+1 = 0, for

0 ≤ k ≤ n− 1.

v) d
(n)
3k = (−1)k

(3k − 2)!!!

(3k)!
Υn−k, where 0 ≤ k ≤ n− 1 and Υk := d

(k)
0 .

Lemma 7.20. The sequence Υ0,Υ1, ...,Υn, ... is given by:


Υ0 = 1, Υ1 = 1/12

Υn+1 = (−1)n+1 (3n+ 2)!!!

(3n+ 4)!
+ (−1)n

(3n+ 1)!!!

(3n+ 3)!
+
n−1∑
k=0

(−1)k
(3k + 1)!!!

(3k + 3)!
Υn−k

Theorem 7.21.

e(Yn) = (3n+ 1)!Υn.

Proof. Since Vol(O(P )) =
e(P )

|P |!
, then e(Yn) = (3n+ 1)!Vol(O(Yn)). Now, the volume is

given by∫ 1

0
· · ·
∫ 1

0
(1−z1)z1 (1−max(z1, z2)) z2 (1−max(z2, z3)) · · · zn−1 (1−max(zn−1, zn)) zn(1−zn)d−→z =

=

∫ 1

0
(1−z1)z1d

n−1(z1)dz1 =

3(n−1)+1∑
k=0

d
(n−1)
k

k + 2
−

3(n−1)+1∑
k=0

d
(n−1)
k

k + 3
=

3(n−1)+1∑
k=0

d
(n−1)
k

(k + 2)(k + 3)
= Υn,

where the last equality arises from Lemma 7.18.

The first values of e(Yn) are given in Table 7.7.
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n 1 2 3 4 5

Υn
1

12

13

1 260

17

12 960

9 301

55 598 400

398 641

18 681 062 400

e(Yn) 2 52 4 760 1 041 712 446 477 920

Table 7.7: First values of Υn and e(Yn).

7.3 An application to Fuzzy Measures: the rhombus poset

Suppose the following situation. There are to be elections, and n political parties par-

ticipate. We will denote them by 1, . . . , n. Suppose that they are ordered according to

their ideology, such that the most left-wing party is the party 1 and the most right-wing

party is the party n. In order to form a goverment we suppose that different coalitions

must adhere to the following rules:

• A party can govern alone. This means, we allow the coalitions:

{1}, {2}, . . . , {n}.

• A party can form a coalition with the party immediately to the left or right. This

means, we allow as possible coalitions:

{1, 2}, {2, 3}, . . . , {n− 1, n}.

• A coalition of three parties can be formed, if these parties are consecutive according

to their order. This means, we allow coalitions

{1, 2, 3}, {2, 3, 4}, . . . , {n− 2, n− 1, n}.

• A coalition of more than three parties is considered to be too unstable to be formed.

Besides, we consider that the importance of a coalition is greater the more parties are

in it, i.e. we consider that monotoncity holds, so we can use fuzzy measures. In the

rest of this section we are goint to study the poset associted to this collection of feasible

coalitions, that we will call the rhombus posets. In what follows, we are going to see

that integral techniques can be applied for the rhombus posets.

Let us now consider the next family of rhombic fences RFn. These posets have 3n+ 1

elements {x1, ..., xn, z1, ..., zn+1, y1, ..., yn} and the order relation is given by xi ≺ zi, xi ≺
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zi+1, yi � zi, yi � zi+1, i = 1, ..., n. Figure 7.5 shows the Hasse diagram of RFn. Note

that this poset fits the requirements done in the situation described above about political

parties. Here, we have changed the notation a little, being xi the elements associated to

one party coalitions, zi for the coalitions of two parties and yi for the ones with three

parties.

yny3y2y1

zn+1znz4z3z2z1

xn

· · ·

x3x2x1

Figure 7.5: Rhombic Fence RFn

We proceed as usual. First, the volume is given by

Vol(O(Rn)) =

∫ 1

0
· · ·
∫ 1

0
(1−max(z1, z2)) min(z1, z2) · · · (1−max(zn, zn+1)) min(zn, zn+1)d−→z .

Thus, we focus on

∫ 1

0
min(x, y) [1−max(x, y)] p(x)dx,

where p(x) is a polynomial.

Lemma 7.22. Let p(x) be a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, a0, ..., an ∈ R.

Then,

∫ 1

0
min(x, y) [1−max(x, y)] p(x)dx = −

n∑
k=0

ak
(k + 1)(k + 2)

yk+2+

(
n∑
k=0

ak
(k + 1)(k + 2)

)
y.

Proof. Similar to Lemma 7.3.

Now suppose that we consider an initial polynomial e(0)(x) and we define recursively

the polynomial e(k+1)(x) as
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e(k+1)(x) :=

∫ 1

0
min(x, y) [1−max(x, y)] e(k)(y)dy.

We obtain then a sequence of polynomials e(0)(x), e(1)(x), e(2)(x), ... In our case, we are

interested in this sequence when e(0)(x) = 1. Then, simple calculi show that the first

terms of this sequence are:

e(1)(x) =
1

2
x− 1

2
x2,

e(2)(x) =
1

24
x− 1

12
x3 +

1

24
x4.

Next lemma gives more insight about this sequence. Again, for the sake of dynamicity,

the proof is omitted.

Lemma 7.23. Let e(0)(x) = 1 and e(k+1)(x) be defined recursively by

e(k+1)(x) :=

∫ 1

0
min(x, y) [1−max(x, y)] e(k)(y)dy.

Then, we have:

i) e(n)(x) is a polynomial of degree 2n.

ii) If n ≥ 1, then e
(n)
0 = 0.

iii) e
(n)
k+1 = − 1

k(k + 1)
e

(n−1)
k−1 , ∀n ≥ 1 and k ∈ {1, 2, · · · , 2n− 1}.

iv) e
(n)
2n = (−1)n

1

(2n)!
and e

(n)
2k = 0, for 0 ≤ k ≤ n− 1.

v) e
(n)
2k+1 = (−1)k

1

(2k + 1)!
Θn−k, where 0 ≤ k ≤ n− 1 and Θk := e

(k)
1 .

Lemma 7.24. The value Θn can be derived recursively by:


Θ0 = 0, Θ1 = 1/2

Θn+1 = (−1)n
1

(2n+ 2)!
+
∑n−1

k=0

(−1)k

(2k + 3)!
Θn−k

Proof. The values Θ0 and Θ1 are trivial. By Lemmas 7.22 and 7.23 we know that
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Θn+1 =
2n∑
k=0

e
(n)
k

(k + 1)(k + 2)

= 0 +
e

(n)
1

2 · 3
+ 0 +

e
(n)
3

4 · 5
+ · · ·+

e
(n)
2n−1

(2n) · (2n+ 1)
+

e
(n)
2n

(2n+ 1)(2n+ 2)

= 0 +
Θn

3!
+ 0− Θn−1

5!
+ · · ·+ (−1)n−1 Θ1

(2n+ 1)!
+ (−1)n

1

(2n+ 2)!
.

Hence, the result holds.

As it will be explained below, for this poset, we will need another sequence Π0,Π1, ...

defined by

Πn+1 :=
2n∑
k=0

e
(n)
k

k + 1
.

This sequence can be obtained from the sequence Θ0,Θ1, ... as shown in next lemma.

Lemma 7.25. The sequence Π0,Π1, ... can be obtained recursively by:


Π0 = 1, Π1 = 1

Πn+1 = (−1)n
1

(2n+ 1)!
+
n−1∑
k=0

(−1)k

(2k + 2)!
Θn−k

Proof. The values Π0 and Π1 are trivial. By Lemma 7.23 we know that

Πn+1 =

2n∑
k=0

e
(n)
k

k + 1
= 0 +

e
(n)
1

2
+ 0 +

e
(n)
3

4
+ · · ·+

e
(n)
2n−1

2n
+

e
(n)
2n

2n+ 1
=

= 0 +
Θn

2!
+ 0− Θn−1

4!
+ · · ·+ (−1)n−1 Θ1

(2n)!
+ (−1)n

1

(2n+ 1)!
.

Thus, the result holds.

Theorem 7.26. The number of linear extensions of RFn is given by

e(RFn) = (3n+ 1)!Πn+1.

Proof. Since Vol(O(P )) =
e(P )

|P |!
, then e(RFn) = (3n+ 1)!Vol(O(RFn)).

Vol(O(RFn)) =

∫ 1

0
· · ·
∫ 1

0
(1−max(z1, z2)) min(z1, z2) · · · (1−max(zn, zn+1)) min(zn, zn+1)d−→z =
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=

∫ 1

0
· · ·
∫ 1

0
(1−max(z1, z2)) min(z1, z2) · · · (1−max(zn−1, zn)) min(zn−1, zn)e(1)(zn)d−→z =

=

∫ 1

0
e(n)(z1)dz1 =

[
2n∑
k=0

e
(n)
k

k + 1
xk+1

1

]1

0

=

2n∑
k=0

e
(n)
k

k + 1
= Πn+1.

This finishes the proof.

The first values of e(RFn) are given in Table 7.8.

n 1 2 3 4 5

Θn
1

2

1

24

1

240

17

40 320

31

725 760

Πn 1
1

12

1

120

17

20 160

31

362 880

e(RFn) 2 42 3 060 531 960 · · ·

Table 7.8: First values of Θn,Πn and e(RFn).

7.4 Towards a general framework

In the previous sections we have obtained expressions for the number of linear extensions

of several families of posets. As explained, the basic idea is to find a formula computing

the volume of the corresponding order polytope, and then use the relationship between

the volume of an order polytope and number of linear extensions of the subjacent poset.

This way of acting is possible for any poset. However, we have to face the problem of

obtaining the volume. For this, it is necessary to compute an integral, and this could be

tedious (see unfeasible) depending on the polytope. Besides, when dealing with families

of posets, it is necessary to derive a recursive formula allowing to descend to the previous

member of the family. This translated in the results developed before in a sequence of

polynomials. Finally, in the previous results, the volume is given in terms of a recursive

sequence of values. Needless to say, any of these steps may fail for a given family of

polytopes. The question we address in this section is: Is it possible to find a framework

where this procedure can be successfully applied?

To get a clue about how this framework could be, we focus on the properties of the

families solved in this paper. Hence, some of the rules that could be suitable for this

procedure could be summarized as follows:
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First, the families considered in the paper arise from gluing several times a “small” poset

P in some way. This poset is always connected. It also has at least two interchangeable

elements. Let us call poset P the initial tile. Then, for the families considered in the

paper, the initial tile corresponds to the first member of the family.

From the point of view of the integral, it seems advisable to have a poset P with low

height, because the integrals become harder when the poset height increases. Note that

for the posets considered in this paper, the height is 2 or 3.

The target family Fn is usually built by doing F1 = P and Fn arises by gluing one

interchangeable element of the last P tile and one of a new tile. So Fn has |P | − 1

elements more than Fn−1. For example, for generalized fences, we are gluing y2 with

the corresponding y1 of the next tile and the same happens for the other families in the

paper.

The repetition of the same pattern tends to make easier to get solvable polynomial

recurrences. Note that one initial poset P could lead to different families Fn if P has

more than one pair of interchangeable elements. In other words, sometimes there are

several ways of gluing posets this way.

Note also that the posets studied in this work fit the last properties. In Figure 7.6, we

can see the poset tiles of the families studied along this papers in order of appearance.

••

••

•

••

•

••

• •

•

••

•

• •

•

•

Figure 7.6: P tiles of studied Fn families.

We do not know if this method works for any structure of this type. To deal with this

problem we should define properly the type of solution that we consider valid. Should

any kind of recurrence be considered a good solution? How do we know a priori if the

integrals involved lead to good recurrences?

Finally, in Figure 7.7 we provide a complete list of the non-isomorphic connected posets

with at most 5 elements and having at least two interchangeable elements. These posets

tiles should be the most reasonable scope of this methodology. Of course, it could be

the case that gluing two elements instead of one could lead to a family of posets where

this procedure works properly. Or it could be the case that an initial tile with large

height leads to a simple integral. The rules established before are just clues that in our

opinion seem to be the most reasonable for the applicability of the procedure.
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••
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•

••

•
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•

•••
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••
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•

•

•

•••
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• • • • •

•

Figure 7.7: Non-isomorphic connected posets with at most 5 elements and having at
least two interchangeable elements.





Chapter 8

Conclusions and open problems

Throughout this thesis we have studied different aspects of polytopes associated to fuzzy

measures. In Chapter 1, we start introducing the basic results on Poset theory. Then

we define the concept of linear extension of a poset and analyse its properties. Here

we highlight that computing linear extension is not an easy task in general, indeed

the problem of counting linear extensions of a general poset is a ]P -complete problem.

Therefore, obtaining procedures with low complexity valid for counting linear extensions

in a family of posets is a relevant and interesting problem. In Chapter 1, we also

introduce the basic theory regarding convex polytopes and cones. Order polytopes

link posets with convex polytopes and most importantly they model many important

subfamilies of fuzzy measures. Most of the geometrical properties of these polytopes can

be expressed in terms of algebra associated to its associated posets. Following this line

we can characterize its faces, see Theorem 1.62 and also the smallest face containing

a collection of vertices, see Theorem 1.64. Finally, we study how to triangulate order

polytopes. Theorem 1.70 shows that one of the possible regular triangulations of order

polytopes connects simplices to linear extensions of posets. Triangulations provide a lot

of information about the geometry of a polytope and help us to solve applied problems

as sampling points inside a specific polytope.

In Chapter 2, we give an introduction to the theory of fuzzy measures. We study the most

important features of some of their subfamilies. Most of these subfamilies can be seen

as convex polytopes that we can study using the theory of Chapter 1. We also examine

some tools in order to work with fuzzy measures in Decision Theory. One of these

tools is the Choquet Integral, see Section 2.3. The Choquet integral is a generalization

of Lebesque integral which acts as an aggregation operator for fuzzy measures. The

Choquet integral has many applications in Decision Theory. These applications can

be divided into applications in Decision under Uncertainty and Risk and Multicriteria

225
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Decision Making. It is worth noting that the Choquet integral solves the Ellberg’s and

Allais’ paradoxes. Other important tool is the Möbius transform which gives a measure

of the importance of a coalition by itself, without taking account of its different parts.

The Möbius transform is necessary to define the k-additive measures. In Section 2.6, we

explain the most important families of fuzzy measures and study some of their geometric

aspects. Some of these subfamilies are studied more closely in other Chapters. In this

Chapter, we also provide some basics on Cooperative Game Theory. We conclude by

explaining how Choquet integral can be used to solve the Identification problem of

finding the fuzzy measure that best fits some specific data.

In Chapter 3, we deal with the problem of generating linear extensions of a finite poset.

This problem is again a ]P -complete problem. In this chapter, we derive an algorithm

for generating linear extensions, that we have called Bottom-Up method. This procedure

looks for a vector of weights on the elements of the poset so that any linear extension

has the same probability of being obtained. We prove that this can be done by solving

a linear system of equations. Moreover, this system does not depend on the number

of linear extensions, but on the number of what we have called positioned antichains,

whose number is usually very small compared with the number of linear extensions.

In Section 3.3 we prove that pa(P ) ≤ e(P ). This algorithm allows to compute the

number of linear extensions of the a poset very easily. However, this algorithm cannot

be applied to every poset but only to BU-feasible posets. In Theorem 3.21 we give an

algebraic characterization of BU-feasible posets. Then, we examine some examples of

families of posets where it can be applied, illustrating the procedure. Since most of

subfamilies of fuzzy measures are order polytopes we study some application of Bottom-

Up method to fuzzy measures (see Section 3.6). This is the case of the 2-truncated

measures T FMn(1, n−1). Finally, we explain how this methodology can be extended to

general posets, not necessarily BU-feasible. Section 3.7 develops the Ideal-based method

generalizing the Bottom-Up. This procedure can be applied to any poset, however, the

complexity of the associated algorithm increases significantly. We give some applications

where the ideals and the conditional probabilities can be computed directly.

In Chapter 4 we study more closely the polytope of k-symmetric measures, in particular

the polytope of 2-symmetric measures. The novelty in this chapter is the use of com-

binatorial tools, in this case Young diagrams, to sort out the problem. We use Young

diagrams to study some combinatorial properties of the polytope of 2-symmetric mea-

sures. For that purpose, we use the Hook length formula, see Theorem 4.5, to compute

the number of linear extensions associated to Ferrers posets. Following this line, in

Theorem 4.9 we compute the exact volume of these family of polytopes. We also give

a combinatorial characterization of the adjacency on FM(A1, A2). In Section 4.3 we
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derive an algorithm to sample random points inside the polytope of 2-symmetric mea-

sures FM(A1, A2) for each fixed partition {A1, A2}. This procedure is appealing from a

visual point of view, easy to implement and has a reduced computational cost. Finally,

in Section 4.4, we deal with a problem of identification of fuzzy measures. Two types of

algorithms have been proposed. In the first case we identify 2-symmetric random mea-

sures by using genetic algorithms with the convex combination as cross-over operator.

In the second case, we use Proposition 4.16 to construct a new cross-over operator which

let us identify general fuzzy measures with a low mean Choquet error. Although these

results do not provide us with a random sampler in FM(X) because a fuzzy measure

can be put as a maximum or minimum of 2-symmetric measures in different ways, this

could be a startpoint for a fast pseudo-random procedure.

In Chapter 5 we study the combinatorial structure of the polytope of 2-additive measures,

FM2(X), an important subpolytope of FM(X). This polytope has the disadvantage of

not being an order polytope, so we cannot use results from Chapter 1. For this polytope,

we obtain its combinatorial structure in Theorem 5.5. We also describe the geometric

structure of its faces in Theorem 5.7. Using these results, we build a triangulation of

this polytope satisfying that all simplices in the triangulation have the same volume, see

Theorem 5.10. This result allows us to compute the volume of this polytope. Moreover,

this allows a very simple and appealing way to generate random points in this polytope.

We finsig this chapter studying the adjacency graph of FM2(X).

In Chapter 6, we introduce the concept of order cone. This concept is inspired by the

concept of order polytopes. Similarly to order polytopes, order cones are a special type

of polyhedral cones whose geometrical structure depends on the properties of a poset.

In Theorem 6.5 we characterize all the extremal rays defining an order cone. Moreover,

we provide in Theorem 6.8 a characterization of the faces of an order cone using the

geometry of the associated order polytope. In Section 6.2, we use the last results to

study some important order cones appearing in Game Theory. We start by studying

the cone of monotone games, whose extremal rays were unknown so far. Corollary

6.11 give us all the extremal rays of MG(X). We also study the link between MG(X)

and O(P(X)\{∅, X}) which is FM(X). If we restrict the set of feasible coalitions to

Ω ⊂ P(X) \ {∅} we get an order cone whose structure depends on the combinatorics of

the poset associated to this order cone. In Corollary 6.16 we compute the extremal rays

of MGΩ(X). Finally, we study the cone of k-symmetric measures using the results of

this chapter and from Chapter 4.

Counting linear extensions become essential to understand the geometry of order poly-

topes. In Chapter 7.1, we develop some techniques to exploit Equation 1.5. This way

we deal with the volume of O(P ) to get recursive formulas for computing the number of



Chapter 8. Conclusions and open problems 228

linear extensions of some important families of posets. Following this line, we transform

a combinatorial problem into the problem of computing some integrals defining the vol-

ume of an order polytope. In many cases, solving these integrals exactly is not easy at

all. However, it is interesting to investigate the posets leading to integrable problems.

As application we develop a procedure for counting the number of 2-alternating permu-

tations. Finally, we show that the volume can be given in terms of the coefficients of

some polynomials, thus obtaining a linear recurrence for the volume and the number of

linear extensions. We show that this procedure can also be applied to other important

families of fence-type posets to derive formulas for the number of linear extensions.

Let us review some open problems arising on each chapter. Regarding Chapter 1, we

know a regular triangulation for an order polytope from Theorem 1.70. However, there

is an open problem to determine all the regular triangulations of an order polytope.

Conmutative algebra techniques are required for such a purpose.

Regarding Chapter 2, there are a lot of subfamilies of fuzzy measures not being or-

der polytopes. Developing techniques to study its combinatorics structure arises as an

important open problem.

In Chapter 3, there are some open problems that we aim to treat in the future. First,

we have the problem of obtaining necessary and sufficient conditions on the poset to

apply the procedure; following this line, we have already obtained Th. 3.21, but it could

be interesting to derive other results based on the structure of P . Another interesting

problem would be to compare this procedure with other procedures appearing in the

literature, in the sense of their computational costs; in this sense, it should be noted

that BU-algorithm is very fast once w∗ is obtained; then, it seems to be an appealing

solution if many random linear extensions are needed. Finally, we have seen that an

equivalent system can be stated if we consider positioned antichains instead of adjacent

linear extensions, leading in general to a reduction in the number of equations; on the

other hand, we have already seen that the number of equations needed can be less

than the number of the positioned antichains; a deeper study on how the number of

equations can be reduced seems interesting. BU-algorithm is based on minimal elements.

Similar procedures could be developed if attention is fixed on maximal elements or

other positions in the linear extension. This could increase the range of applicability of

this philosophy; for example, starting from last element would be a suitable choice for

rooted trees when the root is the maximal element. Another open problem is studying

extensions of Bottom-Up methods different from the Ideal-based method.

Regarding Chapter 4, next step should be extending this procedure for general k-

symmetric measures. However, many technical problems arise, showing the difficulties
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that random generation prompts. The first one is to extend Hook theorem for three-

dimensional Young diagrams; this is a very complex problem that has not been solved

yet; indeed, generalizations of Hook theorem for (2-dimensional) Young diagrams where

some cells inside the diagram are not considered has not been solved in general (see

shifted tableaux [83]). Another interesting problem arises from Proposition 4.16 and

consists in determining the minimum number k(n) of 2-symmetric measures needed to

write a fuzzy measure µ ∈ FM(X) as maximum or minimum of 2-symmetric measures.

In this sense, it can be shown that k(n) = k′(n), ∀n ∈ N and the first three values

of k(n) are k(1) = k(2) = 1 and k(3) = 2. However, the problem of computing the

exact value of k(n) for a general natural number seems to be a deep and complex com-

binatorial problem. Finally, we have characterized when two vertices in FM(A1, A2)

are adjacent. Thus, given a vertex µ ∈ FM(A1, A2), how can we count the number of

adjacent vertices to µ?

In Chapter 5, one open problem will be to translate these results for general FMk(X),

k ≥ 2. For this, we have to face a different situation that leads to new problems. The

most apparent one comes from the fact that for k ≥ 3 there are vertices that are not

{0, 1}-valued [90]. Moreover, these vertices have not been fully described in a suitable

way. Thus, this seems a complicated problem for which more research is needed. The

method for random generation of 2-additive measures could be applied to the problem of

identifying 2-additive measures. In a similar way to the one we saw in Chapter 4, we can

use the random generation of 2-additives measures to solve the problem of identifying

2-additive measures using genetic algorithms. If the quadratic error is considered, this

amounts to looking for a 2-additive fuzzy measure µ0 minimizing

F (µ) :=
m∑
i=1

(
Cµ(xi1, ..., x

i
n)− yi

)2
,

for some partial scores (xi1, ..., x
i
n), and the overall scores yi. It would also be interesting

to investigate whether it is possible to identify general fuzzy measures using 2-additive

measures, just as we did in Chapter 4 with 2-symmetric measures. For this, we would

have to find cross-over operators in the genetic algorithms with good properties. As far

as we know this problem has not been studied. Related to FMk(X), another application

appears if we restrict to the convex hull of {0, 1}-vertices in FMk(X); this leads to a

subpolytope of FMk(X) and it seems interesting to study if the results obtained in this

chapter still hold in this case.

Refering to Chapter 6, we feel that the concept of order cone could be an interesting tool

for studying several families of monotone games just focusing on the subjacent poset.

Note on the other hand that the order relation is essential for order cones. This means
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that the definition fails if we remove monotonicity. Studying a generalization dealing

with this situation seems to be a complex problem that we intend to study in the future.

For Chapter 7 we will try to generalize these integral techniques to more general families

of posets. However, dealing with this problem requires more sofisticated combinatorial

tools. Moreover, a deeper research about how to extend this technique to generate linear

extensions randomly is still pending.
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