
Desarrollo de API y rediseño de la base de datos
asociada para CMS

API development and database redesign for CMS

Álvaro Rodŕıguez Garćıa

Dirigido por Fernando Sáenz Pérez

Curso académico 2019-2020

TRABAJO DE FIN DE GRADO

DOBLE GRADO DE INGENIERÍA INFORMÁTICA - MATEMÁTICAS

FACULTAD DE INFORMÁTICA

UNIVERSIDAD COMPLUTENSE DE MADRID

Resumen:

CMS (Compact Muon Solenoid) es un detector de part́ıculas situado en el LHC (Large Hadron
Collider), el gran acelerador de part́ıculas del CERN, en Suiza. Los metadatos recogidos durante
el funcionamiento del detector se escriben a una base de datos relacional. El sistema web que
muestra estos datos está siendo completamente reescrito y rediseñado, y el nuevo sistema utiliza
como backend una API, RESTful y escrita en Java, que expone diversos datos de oŕıgenes muy
distintos. Para reunir estos datos, el antiguo sistema utilizaba diversas tablas que agregaban la
información necesaria. Sin embargo, la mayor parte de estas tablas han quedado obsoletas, y
deben ser rediseñadas, junto con toda la infraestructura necesaria para mantener la información
actualizada y consistente. Por tanto, el objetivo de este proyecto es rediseñar la parte afectada de
la base de datos y construir sobre esta una API que devuelva la información relevante.

Etiquetas: CERN, CMS, RESTful, SQL, PL/SQL, Java, API, backend.

Abstract:

CMS (Compact Muon Solenoid) is a particle detector part of the LHC (Large Hadron Collider),
the particle accelerator of CERN in Switzerland. The metadata gathered during the operation of
the detector are written to a relational database. The web system displaying these data is being
fully rewritten and redesigned, and the new system uses a RESTful API written in Java, which
exposes diverse data coming from different sources. To store these data, the old system used several
database tables aggregating the necessary information. However, most of those tables are obsolete,
and must be redesigned, along with the whole infrastructure used to update the information and
keep it consistent. The objective of this project is, then, to redesign the database and build upon
it an API that returns the relevant information.

Tags: CERN, CMS, RESTful, SQL, PL/SQL, Java, API, backend.

2

Table of contents

Table of contents 3

Acknowledgments 6

1 Introduction 7
1.1 The Online Monitoring System . 7

1.1.1 Context: CERN, LHC and CMS . 7
1.1.2 History: the Online Monitoring System . 7
1.1.3 Project structure . 8

1.2 Project organization and my contribution . 9
1.2.1 Status on arrival . 9
1.2.2 Objectives . 9
1.2.3 My contribution . 10

1.3 A word from Dr. Ulf Behrens . 11

2 Aggregation API 13
2.1 APIs and RESTful architectures . 13
2.2 How does it work? . 14

2.2.1 Server libraries . 14
2.2.2 Katharsis . 15
2.2.3 Data Source: Oracle Database . 15
2.2.4 How do they all work together? . 15

2.3 Query builder . 18
2.3.1 Why a query builder? . 18
2.3.2 History . 18
2.3.3 Interface . 18
2.3.4 Query tables . 19
2.3.5 Query attributes . 19

2.4 Repository base classes . 24
2.4.1 Endpoint structure . 24
2.4.2 Resource repositories . 24
2.4.3 Mapper (and result generators) base classes 30
2.4.4 Meta base class . 33

2.5 CSV export . 33
2.6 Scaling info . 35
2.7 New endpoints . 35

2.7.1 Luminosity summaries . 35
2.7.2 Dip logger . 36

2.8 Rewriting old endpoints . 37

3

2.8.1 Deadtimes per scaler . 37
2.8.2 Fill bunches . 38

3 Database redesign 40
3.1 Motivation . 40
3.2 Necessary domain knowledge . 40
3.3 Conceptual design . 41
3.4 Logical design . 43

3.4.1 Standalone tables (eras, scaling...) . 43
3.4.2 Fill-related tables . 44
3.4.3 Run-related tables . 45
3.4.4 Lumisection-related tables . 46

3.5 Constraints and indexes (DDL) . 46
3.5.1 Primary keys . 46
3.5.2 Foreign keys . 47
3.5.3 Other constraints . 47
3.5.4 Indexes . 47

3.6 Data migration (DML) . 48
3.6.1 Missing fills . 49
3.6.2 Runs with several fills . 49
3.6.3 Fill stable beams . 49
3.6.4 Scaling info . 50

3.7 Redesigning endpoints . 50
3.7.1 Performance concerns . 50
3.7.2 Fills . 54
3.7.3 Runs . 54
3.7.4 Lumisections . 60
3.7.5 Eras . 62

4 OMS for subsystems 63
4.1 Subsystems and OMS . 63

4.1.1 Database . 64
4.1.2 Aggregation API . 64
4.1.3 Web portal . 64

4.2 Last value pages . 65
4.2.1 Displaying the colours . 66

5 Results and conclusion 68
5.1 Results: the OMS webpage . 68
5.2 Conclusion . 72

Bibliography 75

A Aggregation API reference manual 77
A.1 Query builder . 77

A.1.1 Interface . 78
A.1.2 Table creation for complex table structure . 78
A.1.3 Query attributes . 79

A.2 Annotations for endpoint tuning . 81
A.2.1 Query specification deserialization . 81

4

A.2.2 JSON serialization . 83
A.3 Extensions to the JSON API specification . 84

A.3.1 General guidelines . 84
A.3.2 page request parameter . 85
A.3.3 filter request parameter . 85
A.3.4 sort request parameter . 85
A.3.5 fields request parameter . 85
A.3.6 group request parameter . 86
A.3.7 include request parameter . 86

A.4 Query verification . 86

B Related code 88

5

Acknowledgments

I would like to express my very great appreciation to my advisor, Professor Fernando Sáenz, for
his careful reviews of my drafts and his very valuable suggestions to improve them.

I would also like to thank the whole OMS team at CERN: Remi Mommsen, Ulf Behrens, Mantas
Stankevicius, Audrius Mecionis, Gilbert Badaro and André Govinda. Their assistance throughout
my internship was invaluable. I am particularly grateful for the assistance given by Ulf Behrens,
who was always there to answer my questions and to help me refine my ideas.

Furthermore, I would also like to commend CERN as an organization. Its Technical Student
Programme and Admin Student Programme are extraordinary opportunities for undergraduate
and master students. The chance to contribute to a project so big is truly astonishing, and an
incredible learning experience for a student.

Lastly, I would like to thank my parents and sister, for their unwavering support.

6

1. Introduction

1.1 The Online Monitoring System

1.1.1 Context: CERN, LHC and CMS

The European Council of Nuclear Research, better known for its acronym CERN, is a European
research organization which manages the largest physics laboratory worldwide. Founded in 1954
[26], CERN has played a key role in the advancement of the field of particle physics during its more
than 60 years of history.1

CERN is widely known for hosting the largest particle accelerator on the planet: the Large
Hadron Collider (LHC) [25]. The accelerator consists of a 27-kilometer ring made of superconduct-
ing magnets, which direct the particles along a tunnel. Two beams go in opposite directions in two
separate pipes, kept at ultrahigh vacuum. After being accelerated, both beams collide in one of the
four points of the ring circumference where the detectors are placed. ATLAS, CMS, ALICE and
LHCb detect the results of these collisions and register data which are analyzed and used to test
different theories of particle physics. LHC has been in operation since 2008, when the first tests
were run [18], and it has been the source of several breakthroughs in particle physics. The most
important of these is the experimental confirmation of the existence of the Higgs boson in 2012 [4].

I was hired by CERN as a Technical Student, with a 12-month contract (that was later extended
to 14 months). I had the opportunity to collaborate with the CMS DAQ and Trigger group, which
is part of the CMS experiment. Compact Muon Solenoid (CMS) is one of the four big detectors
situated in the LHC tunnel. It is one of two general purpose detectors, together with ATLAS,
studying a broad range of physics that includes the Standard Model but also other, more exotic,
topics such as the search for dark matter candidates [5]. The DAQ and Trigger group (Data
Acquisition and Trigger) is responsible of data acquisition and filtering of the collision data recorded
by CMS.

1.1.2 History: the Online Monitoring System

Not all data registered by the detector are data coming directly from the collisions taking place in
the accelerator. Non-event data, the “metadata” which describes the behaviour of the system, also
have a big importance. This importance is twofold: on the one hand, engineers and technicians
need to have information about the performance and problems‘ of the system to be able to fix
its issues. On the other hand, physicists need to know when datataking happened, and under
which conditions, to be able to correctly analyze the actual experimental data. To fulfill both
needs, metadata include all the information related to the beam, to fills and runs, to the number

1This paragraph and other parts of the introduction were initially part of Studentship at CERN, my internship
report written for the “Prácticas en empresa” course (February 2019).

7

of collisions, to the uptime and downtime of the detector, to its deadtimes, to event filtering, and
much more.

To compile and manage all these data, Web Based Monitoring (WbM) was created more than
a decade ago [20]. It consists mainly of a web interface that shows all relevant information in
the form of tables and plots of different types. However, an uncontrolled addition of new pages,
by different developers who did not follow a unified standard, led to a system which has been
increasingly complicated to maintain and expand. Not only that, but the technology that WbM
was built with quickly became outdated, and both the codebase and the external appearance of
the system needed an upgrade.

It is for all these reasons that in late 2016 it was decided to move away from WbM in favour of
a new system [20]: the Online Monitoring System (OMS). OMS is expected to replace WbM as the
system to view CMS metadata, in order to be used by all scientific and technical personnel in the
experiment. To achieve that, the system should not only be able to show new data, but it should
also have backwards compatibility with pre-existent data.

The LHC was shut down for scheduled maintenance in December 2018 [24], marking the start
of Long Shutdown 2. It will be restarted in May 2021 [1], to run for almost 4 years in what is
called Run 3. The shutdown time will be used for maintenance and upgrading, since big-scale
time-consuming changes can only be implemented during one of these shutdowns. In particular,
although work on OMS started before the shutdown, development is on track to be completed
during it, so WbM can be turned off and replaced without affecting the end users.

Summarizing, my studentship has taken place within the framework of OMS development with
the final aim of having it online and available at some time before Run 3.

1.1.3 Project structure

To organize development and separate responsibilities in the code, the project is divided in three
clearly-defined parts: database and data warehouse, Aggregation API, and web portal. The web
portal queries data from the Aggregation API, which on turn queries the database.

Database and data warehouse

The database provides all the necessary information to the other layers. The CMS database is
an Oracle database, which is used by hundreds of people and features a complex and interrelated
system of tables, views, triggers and procedures. It is the common destination for the information
obtained from countless hardware components, placed at different points of the system. The data
controlled by the OMS team is only a small portion of the total stored data, but OMS displays
certain data controlled by external groups too. This adds another layer of complexity to the system,
because we need to query data from some tables that we cannot change nor optimize.

Aggregation API

The Aggregation API is the intermediate component between the database and the graphical
interface. It consists of a Java-based server, which exposes the necessary data as an API which
returns it in JSON format. These data sometimes come straight from the database, but more often
it is necessary to aggregate them in different ways, giving the Aggregation API its name.

During development, aligning with existing API standards and keeping the API intuitive has
been of great importance. Many WbM users regularly used scripts that scraped the data from the
old pages for varied purpose. We expect all those users to migrate to our API at some point in
the future. Thus, keeping the external interface of the API as clean and intuitive as possible is of
the utmost importance. Furthermore, this has led to the API providing additional data that will

8

not be displayed by the graphical interface. In this sense, the API is not just subordinated to the
needs of the GUI but a project in itself.

Web portal

The last layer is the front-end of our application. It shows the data provided by the API, either
via tables or various kinds of plots. As opposed to WbM, it is built to simplify to the fullest the
process of creating new pages and editing old ones. In fact, adding new code is only necessary when
adding a custom component, and tasks such as creating a new table or editing the data source of a
plot can be done without modifying the code at all. This is a system where we expect fast-changing
requirements, and WbM struggled to keep up with the requested changes and new features. OMS
should simplify the process, allowing simple changes to be done without leaving the web interface,
and providing a generic framework to help with more complex changes.

1.2 Project organization and my contribution

At the beginning of my internship, the OMS project was about one year old. The whole infras-
tructure was already established, and early versions of both the API and the GUI were already
released to the end users for feedback purposes, although still considered in development.

1.2.1 Status on arrival

This early version of the system still missed many features and especially many pages. From the
point of view of the API, the core functionality was present: the server was working and the most
important endpoints were already created (eras, fills, runs, lumisections...). However, more than
a dozen endpoints were missing. Besides, the API lacked a general framework: in these early
stages, there was no custom layer between the libraries providing the server functionality and each
endpoint, that is, each endpoint had to manually query the data and process them for displaying.

Early efforts in this direction had already been made, and the best example of these is the query
builder: a class that built a query from a list of URL parameters. However, most endpoints still
had duplicated functionality, which did not only affect the code quality, but also made much more
difficult to create a new endpoint, since there were almost no helper classes providing common
functionality. Even worse, most endpoints had a very similar structure and even shared big parts
of code, with the maintenance and bug fixing difficulties that this entails.

From the GUI point of view, an early version of the OMS webpage was already running, and
displayed almost everything that the API offered. The backbone of the page was already in place,
and it was possible to create new pages, portlets, etc. with relative ease.

The weakest side of the project at this point in time was the database, since the views and tables
of WbM were still being used. The consequences could be felt throughout the system, with slow
and often difficult to write queries, that could not be improved without modifying the underlying
tables. This problem was exacerbated by the usage of the old WbM queries in several endpoints
directly, without trying to refactor the SQL code at all.

1.2.2 Objectives

The aim of the project can be easily stated: to have a fully functioning solution to replace WbM
from the start of Run 3 (2021), and that can last for another 10 years with minimal maintenance.
In this context, the main objective of my internship was to improve the API to reach a production-
ready state, and to upgrade if necessary other systems the API depends on, such as the database.

9

1.2.3 My contribution

Aggregation API

Initially, I was hired to collaborate with another colleague on the Aggregation API. However, in a
couple of months I became the main maintainer of the Aggregation API, while my colleague started
devoting most of his time to other issues. While, of course, we discussed the direction of the project
among ourselves and often with the whole team, I was the person tasked with implementing most
of the features and bugfixes that were needed.

This means that, during the year, I wrote more than a dozen new endpoints: conditions,
deadtimes, deadtimes per range, deadtimes per scaler, diplogger, HLT config data, HLT path
info, HLT path rates, HLT prescale sets, lumisummaries, run parameter, runtime analysis, stream
summaries, trigger modes... Some of these were not straightforward and required changes on the
general structure to support them. In addition, I fixed more than a hundred big and small bugs in
old and new endpoints alike.

However, I was also given much freedom to improve the API base classes and to automatize as
much code as possible. From the beginning of my internship I worked on these topics, and they
took a very big part of my time. Among these changes, the most important are listed here:

� New base superclass hierarchy to abstract away most code from the concrete endpoint files.

� New query builder to automatically build queries for a given URL request. The previous
query builder was too limited and lacked support for several different use cases, so a new one
was built from scratch.

� Support of tuple comparisons on filters (using lexicographical order).

� Support for new URL parameters to return a grouped result (every row returned is an aggre-
gation of rows) instead of the raw database output. This feature is very useful for plotting.

� Support for new URL parameters to specify the granularity of the results, which is translated
to an SQL GROUP BY clause. Filters are also translated automatically to be compatible with
the grouping. The translation is customized via annotations.

� Support for advanced timestamp and time interval URL filters.

� Annotations allowing heavy endpoint customization without extra code (for example, to throw
an error if certain filters are specified).

� Automatic verification of URL parameters for a given pattern, to catch wrong requests early
on the deserialization process.

� Automatic CSV serialization of most endpoints.

� Support for unit conversion while mapping columns from the database.

� Out-of-the-box support for complex queries where the resulting rows need to be reduced
instead of mapped.

The entries on the list will be explained with detail later in this document, in Chapter 2 or, for the
least important of them, in appendix A.

The improvement of the common framework of the Aggregation API led to very big stylistic
and behavioral differences between the endpoints created before the changes and the ones created
afterwards, which are much simpler, with most of their functionality hidden in the framework.

10

Thus, during my last working months I upgraded almost every old endpoint to use the new options
available, often deleting hundreds of lines of code whose functionality could be replaced by the
framework, and merging several endpoints that could be queried as one thanks to the new options.

Database and queries

Around the middle of my stay, we decided to move away from the database tables of WbM,
creating a new and modern schema with the data that we needed. I was tasked with designing and
implementing the new schema, although most of the triggers and procedures to insert the data into
the tables were written by one of my colleagues.

Furthermore, I rewrote a lot of the API queries to use the new tables, and improved those that
were using external tables. In some cases, I created views to hide away some of the complexity of
the queries and to simplify the Java code dealing with these tables. Both the new schema and the
new queries are described in Chapter 3.

Subsystems

Lastly, I collaborated to bring OMS to subsystems. This was a central focus of our efforts from the
API side, and also a very important source of feedback. The main aim was for subsystems to have a
workspace on the main OMS website where they could display their own custom data. This means
that subsystems had to be able to extend our project to create and deploy their own API server,
but also that the process of endpoint creation should be as straightforward and understandable as
possible.

We tried to cater to both the “basic” user, who only wants to display the information of a simple
table and does not want to write Java code for that, and the advanced user, who wants to edit
their endpoints to allow custom behaviour. To achieve this goal, we provided the aforementioned
framework with all our endpoints as examples, but also a tool that is able to convert a given
database table into a working Java endpoint. Moreover, subsystems were a big source of changes
and suggestions for the API, which had to adapt to meet their needs.

The communication with the subsystems was the main task of one of my colleagues, but I
implemented some of the technical requests by myself and met with several representatives of the
subsystems to teach them how to create new endpoints and to gather feedback. In particular,
I designed the scripts to migrate the last value pages of WbM (which will be shown later), and
collaborated on the design of the portlet to display them (which was my one and only contribution
to the GUI). Chapter 4 explains my contributions to subsystems in detail.

1.3 A word from Dr. Ulf Behrens

To summarize the impact of OMS and my contribution to the project, we can include the following
quote from Dr. Behrens, who was my supervisor at CERN:

OMS is a mission critical tool and is crucial to operate efficiently CMS, one of largest
physics experiment in the world. During the data taking periods (run 3 will start end
of next year and is going to last until 2025), OMS has to be up and running 24/7.

OMS is built from scratch and Álvaro was member of the team when essential decisions
on database structures, tools and methods to access the data had to be taken. The
whole project profited a lot from his brilliant ideas, his profound knowledge and his
systematic and future-proof approach to solve problems. As a clear sign of the high

11

level of appreciation for his work he was hired as an external consultant after his time at
CERN. For the databases and the Aggregation API, everything is carrying his signature.

12

2. Aggregation API

The Aggregation API was the main focus of my work at CERN. This chapter will describe the
API and list the most important of my contributions to its base framework. By framework we
understand all the classes that are shared between endpoints and that include common functionality.
Most of these classes either extend a class of one of the libraries used or provide some functionality
missing in those libraries. Note that all the features described here were added by me during my
studentship but are not necessarily listed in chronological order. Several of them were added early
on and then iteratively improved.

A general “user guide” of the API, which includes syntax and examples for some interesting
features, can be found on appendix A. Some of the features described there are also discussed
in depth in this chapter, and, for those, the appendix can provide interesting syntax and code
examples that were not included in here. Other features are only mentioned in passing in this
chapter, and the appendix can be useful to discover how those features work.

2.1 APIs and RESTful architectures

As an introduction to the Aggregation API, we will briefly discuss APIs and their architecture, and
in particular we will introduce RESTful architectures and their advantages.

An Application Programming Interface (API) is an interface to a software that defines how
other systems can use it. In this text, we will use the term API to designate Web APIs, which are
interfaces to a web server. The API defines both a set of specifications to generate valid requests
and the structure of the response messages.

A RESTful API is an API that implements the REST architectural constraints. Those were
defined by R. Fielding in his PhD thesis [9], where he first introduced REST, and are:

Client-server The typical requirements of a client-server architecture shall be fulfilled: a server
provides a service that can be requested by a client.

Statelessness Each request from the client must include all information necessary to understand
the request. This implies that the server cannot store any context, and all state of the session
is kept on the client.

Cache Data returned from the server should be implicitly or explicitly marked as cacheable or
non-cacheable. Cacheable data can, then, be reused by the client for an equivalent request,
instead of querying again. Caching can eliminate some client-server interactions, improving
scalability and performance.

Uniform interface This feature separates REST from other network architectures. It is based
on four constraints:

13

� Identification of resources: resources are identified in requests. Resources are decoupled
from their representations, and the same resource can be returned with different repre-
sentations (for example, the Aggregation API can return some resources both as JSON
or CSV).

� Manipulation of resources through representations: the representation of a resource
includes enough information to modify or delete that same resource.

� Self-descriptive messages: information about how to process a message is included in
the messages themselves.

� Hypermedia as the engine of the application state (HATEOAS): the server should provide
links dynamically to allow a client can discover all the available actions and resources
starting from a single initial URI.

Layered system The architecture could be composed with hierarchical layers, and the client
should not be able to determine whether the information is returned directly from the imme-
diate layer or whether it is returned from elsewhere. This enables, for example, a proxy or
load balancer to be placed between the client and the server, without changing the code of
either of them.

Code on demand Optionally, REST allows clients to download and execute code in the form of
applets or scripts, to extend its functionality.

RESTful APIs, such as our Aggregation API, are typically HTTP-based. Resources are exposed
via unique URIs, called endpoints, which are queried using the standard HTTP methods (GET,
POST, PUT...). Since the Aggregation API is defined as read-only, it exclusively uses GET requests.
Data is returned with a media type that specifies the type of content retrieved, which is JSON for
most endpoints of the Aggregation API.

2.2 How does it work?

This section describes the base which the API is built upon, with emphasis on the libraries used:
Katharsis, Dropwizard, Jersey... This will be useful afterwards to analyze how does our custom
framework extend this base.

2.2.1 Server libraries

The following libraries handle the server setup and configuration.

� Dropwizard: Dropwizard [8] eases the creation of a RESTful web service. It includes other
stable, widely-used libraries to handle each different part of the process and connects all of
them in one framework. It is easy to set up but highly configurable.

� Jetty: Jetty [15] is used to create the HTTP server. However, we are not interested in
configuring anything at this level, and the server will be managed by Dropwizard.

� Jersey: Jersey [14] is used as the JAX-RS implementation. This means that it controls the
request deserialization and serialization.

� Jackson: Jackson [11] is used as the JSON serialization library. We use Jackson all through-
out the project, both explicitly (in our classes) and implicitly (as part of Katharsis).

14

2.2.2 Katharsis

Katharsis [17] is a library that manages a RESTful API conforming to the JSON API specifi-
cation [16]. It tries to implement all the RESTful architectural constraints, with big emphasis
in HATEOAS. It does not create the server itself, the user does it, usually with another library
(Dropwizard in our case). However, it provides optional libraries that allow Katharsis to be easily
hooked up with the most common server creation frameworks.

We are using two of the sub-libraries provided by Katharsis: katharsis-core, the core im-
plementation that includes the functionality described above; and katharsis-rs, that enables
compatibility with JAX-RS implementations, Jersey in our case.

When Katharsis was chosen for this project, it was a framework under active development.
However, there has been no work done on it since mid-2017. The latest release is very stable and
we have created our own fork to add some very small features that are missing and that cannot be
achieved by extension.

2.2.3 Data Source: Oracle Database

All the data for the core API come from the CMS online database, an Oracle 11g database hosted
by CERN. To handle our database connections, we use Jdbi [13], a JDBC wrapper that refines its
rough interface. JDBC is the standard Java API to access SQL databases [12], and it is supported
by Oracle databases.

2.2.4 How do they all work together?

Initialization process

The application is initialized on the AggregationAPIService class. This is a subclass of a Drop-
wizard Application. It has the main method of our application, which creates an instance of this
class and calls the run(String...) method in the superclass. This method initializes Dropwiz-
ard and calls our overridden run(AggregationAPIConfiguration, Environment) method, which
handles our customization. As part of this method, we set the values of several Jersey environment
variables, we instantiate several classes used for serialization and deserialization (the Jackson map-
per, the query spec deserializer, the custom type parsers. . .), and we add to Jersey the extensions
provided by Katharsis.

Request lifecycle

We are only interested in GET requests, since the Aggregation API is read-only. When a request
is received by the server, it goes through the phases listed in Figure 2.1.

First, the request is received by the Jetty server and sent to Jersey. However, Katharsis adds
to Jersey a pre-matching filter with maximum priority, which means that this is executed before
all usual Jersey processing. This filter deserializes the request path, and it is the one that decides
how to get the data. There are several path types:

� Resource path: this is the normal access path to a resource, when the user queries an endpoint
with /endpoint or /endpoint/id. It will also distinguish between the first case (resource
list access) or the second case (single resource access).

� Action path: when a repository has methods annotated with the @Path annotation, Katharsis
will try to create an action path. Action paths indicate that one of the @Path annotations
has been matched. Katharsis has strong restrictions for these action paths: they must have

15

Figure 2.1: Request lifecycle flowchart. (Source: own elaboration)

16

a single path component and can only have two if the first one is an {id} variable. Besides,
regex for variable matching is not supported, despite it being supported by Jersey. Our
version of Katharsis, however, enables regex in a path annotation. Paths must still have one
single path component formally (i.e., the path “template” shall not have a path separator /),
but in practice paths like {path: .*} that match the full remaining path are accepted (and
matched greedily).

� Other paths, in particular relationship paths. Katharsis supports relationships as another
way of implementing HATEOAS, by allowing to query resources related to another resource
from the URL of the latter. We rarely use relationships because they are not supported by
the GUI. However, they are very similar to resource paths in how the data are obtained, the
only different being that a relationship repository generates the data, instead of a resource
repository.

After the path is deserialized, a decision is made. For resource paths (and relationship paths),
Katharsis will handle the rest of the processing. This means that the internals of the framework
will decide what repository and what method on it are the ones to be queried, and Katharsis will
generate a Document object with the resources that were returned by the repository and, if present,
the metadata and the links too. The document is built to be serialized straight away to a JSON
response that conforms to the format specified in the JSON API specification [16]. The generated
response is then delegated to the normal Jersey post-request handling, skipping possible processing
by Jersey.

However, action paths are not handled directly by Katharsis, and processing is delegated to
Jersey instead. It takes care of finding the adequate @Path-annotated method. The result of this
method, which can be of any type, goes through the normal Jersey response handler. This is the
point where the two streams join again, i.e., the Document generated by Katharsis also goes through
here.

The Jersey response handler can decide if serialization is needed. If the response object is
serializable (in particular, if it is a Katharsis Document object), it will be serialized (using Jackson).
However, if it is, for example, just a String, it will be returned without processing as if it were
JSON (with no validation). After this step, the HTTP response will then be generated, containing
the serialized object.

Processing errors

When an error is thrown during a part of the process controlled by Katharsis, the error is handled
automatically and a response is built, conforming to the JSON API specification [16]. We provide
our custom exception handler, AggregationExceptionMapper, to process our own exceptions.

On the other hand, when an error is thrown in Jersey-controlled methods (for example, in a
@Path-annotated method), no automatic handling is provided, and if left unhandled, the error will
be an HTTP 500 error. In this case, we need to register another exception mapper to handle
them. In our case, it is again AggregationExceptionMapper: we use the same class to handle
Katharsis-side exceptions (by implementing the JSONApiExceptionMapper bundled with Katharsis)
and to handle the same exceptions when they happen on Jersey side (by implementing the JAX-
RS ExceptionMapper). Note that, for Jersey, we had to register our mapper manually when we
initialized the API, but Katharsis discovers it automatically as part of its initialization process.

The result is that all subclasses of AggregationException should be handled correctly and
throw an HTTP 40x error, no matter where the exception is thrown. Other exceptions that
represent an internal error and are not caused by the user are uncaught and show an HTTP 500
error.

17

2.3 Query builder

2.3.1 Why a query builder?

When Katharsis receives an URL request, it parses its parameters to generate an object of type
QuerySpec. This object contains all the information necessary to query and return the data: fields
requested, filters, ordering... For almost every endpoint, we need to translate this information to
an equivalent SQL query. For performance reasons, we do not want to bring all columns for a table
from the database if only a handful of them will be needed. Similarly, is prohibitively inefficient to
retrieve all rows from a database and then filter on the Java side. Lastly, database-side sorting can
take advantage of indexes, not available on the Java side.

Our solution for this problem is the query builder class. This is a class that is able to generate
a complete database query given a QuerySpec. It is in fact an abstract class, which is subclassed
by each endpoint to customize it. The endpoints must specify in which column is the information
for each attribute stored, how are tables joined, etc.

Arguably, libraries already exist to avoid building SQL queries manually. However, the main
objective of the query builder is not to write the query easily, but to manage the process of
translating the URL parameters to adequate database restrictions (WHERE clauses, sorting...).

2.3.2 History

Before my arrival, the project already had a query builder. However, it was not used in every
endpoint, and had a very cumbersome syntax to initialize the tables and attributes. Besides, it was
designed to cover simple queries, but more complex endpoints were requested often at the time.

The solution was a new query builder, completely redesigned, that kept only the interface from
the old one. However, the table and attribute initialization syntax changed, which had a very
obvious negative consequence: all classes that used the old query builder, now deprecated, had to
be migrated to the new one. In fact, both query builders coexisted for almost a year, and only at
the end of my internship we were finally close to completely phasing out the old version.

The decision to write a new query builder was not taken lightly. We had several discussions
where we considered the risks of moving away from code that was already working. Our main
worry was, of course, that writing a class that complex from scratch could result in code with
too many bugs or that was simply not working, wasting development time. Besides, the expected
development time for a new solution was much higher than the time needed to amend the old
code. In fact, the decision was delayed several months for this reason. Ad-hoc additions to the old
query builder were written during those months to support functionality that was needed at the
time. It slowly became clear that the old query builder was not designed for the kind of extensions
that we had in mind, and that trying to adapt it would severely impact code quality. The longer
development time needed to create a new query builder was justified in this way, even if, at this
point, changing the query builder meant upgrading a large number of old endpoints.

2.3.3 Interface

The query builder has two public methods: createQueries() and createPaginatedQueries().
The first one generates the usual query, and the second one generates a query that limits the number
of results requested taking into account the page[limit] and page[offset] query parameters. The
query generated by the second method is usually faster, but it has a problem: we do not know the
total number of rows that match the filters, which is necessary to implement pagination both on
the API side (via links to the previous and next pages) and on the GUI. That is why both this
methods also return a “counter query”. This is a special query that calculates the number of total

18

items matching the request. It is also possible to customize the query builder to return an extra
column storing the total count of objects, to avoid querying the database twice.

2.3.4 Query tables

All tables in our model are subclasses of QueryTable. The actual subclass of the query table is not
relevant in most situations, and for a normal use case we will only need to differentiate between
the abstract QueryTable superclass and the QueryTableMaster subclass. The three main types of
tables are:

� Master tables: conceptually, a master table is the principal table from which data are
coming from. The master table of an endpoint has to be added to the query builder by
modifying the protected masterTable attribute.

� Detail tables: a detail table is a table which only adds information to the master table,
i.e., it has at most one row per row of the master table. It will be joined with a LEFT JOIN,
which means that its presence does not influence the number of rows returned by the query.
As such, if the attributes using the detail table are not requested, then the table will just not
be present in the query.

� Joined tables: this table, internally, is a QueryTableDetail, just like the previous one.
However, the difference is that the join is an INNER JOIN and the table is always present,
even if no attributes are requested. This means that the number of returned rows might be
different after adding a joined table.

Grouping, connection and subquery behavior must also be specified in the table structure. A
master table can be wrapped into another table, which will then act as the master table. This
wrapping table can just add a GROUP BY or CONNECT BY clause to the original query, or it can be
a subquery table, that is, it will generate a query where the original query for the master table is
nested as a subquery in the FROM clause.

2.3.5 Query attributes

Query attributes are the core of the query builder. Each query attribute roughly represents an
attribute in the response object. All query attributes are subclasses of QueryAttribute. They are
implemented using the decorator design pattern: the subclasses of QueryAttributeBase store the
core information about the attribute, and can be decorated with subclasses of QueryAttribute

Decorator. These subclasses modify or extend the attribute behavior with respect to its definition
in the SELECT clause, filtering, sorting... This means that attributes can be as complex as necessary,
while keeping the code relatively understandable.

After creating an attribute, it has to be added to the query builder via addAttribute() or
addIdentifyingAttribute(). These two methods have a very similar effect, but the latter ad-
ditionally tells the query builder that this attribute should always appear in the SELECT clause,
independently of whether the user requested them or not. It should be used with attributes which
are part of the identifier, because we need to generate this identifier on the Java code even if its
parts were not requested. For the rest of the attributes, they will only appear on the SELECT list if
they are requested either via the fields query parameter or if they are used for filtering.

Decorator attributes, on the other hand, are available in a wide variety of flavours. Normally
most decorators only focus on modifying one aspect of the attribute: its SELECT expression, its
WHERE translation... Custom query attribute decorators can also be used for endpoint-specific be-
haviours. For example, in some endpoints a decorator is created that translates the URL parameter

19

filter[attribute]=latest to a subquery in the WHERE clause retrieving only the latest row for
the table.

Detailed QueryAttribute interface

The query attribute superclass is one of the most complex classes of the Aggregation API. The
decorator pattern allows very complex attributes to be created without needing a subclass for every
variation. Still, since the creation of the query builder we have had a lot of different requests and
requirements, and both the number of attribute subclasses and the number of functions available
on the base class have steadily increased.

Attributes generate directly the SQL code that is relevant for the field represented. We will
review the main methods used for SQL code generation, along with the convenience methods that
are typically overridden by subclasses. Afterwards, we will see some examples of concrete subclasses.

1 public String getAliasedSQLSelectValue(List<SortSpec> parentSort,

2 GroupingInfo groupingInfo, QueryInfo query) {

3 String select = getSQLSelectValue(parentSort, groupingInfo, query);

4 if (select == null) {

5 return null;

6 } else {

7 return select + " AS " + getAlias();

8 }

9 }

10

11 public abstract String getSQLSelectValue(List<SortSpec> parentSort,

12 GroupingInfo groupingInfo, QueryInfo query);

13

14 public abstract String getName();

15

16 public String getAlias() {

17 return getName();

18 }

When the query builder generates a SELECT clause, the aliased SQL select value is obtained
for each attribute to be included, using the methods above. Base classes always override getSQL

SelectValue(), while decorators can add extra requirements (for example, a decorator can wrap
it on a NVL() function if the decorator provides a default value).

1 public final String getSQLColumnExpression(QueryTable inTable, QueryInfo queryInfo) {

2 QueryTableMaster attrTable = getTable().getJoinedTo().getInternalTable();

3 QueryTableMaster inTableMaster = inTable.getJoinedTo().getInternalTable();

4

5 if (attrTable.equals(inTableMaster)) {

6 // Both attributes are on the same level. This means we can just forward the

7 // call to the attributes themselves.

8 return this.getSQLColumnExpression(queryInfo, getAlias());

9 } else if (attrTable.equals(inTableMaster.getSubqueryTable())) {

10 // The attribute is on the next nesting level. We can just take its alias and

11 // the table abbreviation and generate the column expression with that.

12 queryInfo.getSubquery().addSelectAttribute(this);

13 return inTableMaster.qualify(getAlias());

14 } else {

15 throw new QueryBuilderInvalidStructureException("The provided attribute is

not on the same level as the containing attribute nor on the immediately

nested level.");

↪→

↪→

20

16 }

17 }

18

19 public abstract String getSQLColumnExpression(QueryInfo queryInfo,

20 String topLevelAlias);

When a query attribute is referenced from a query on which it is nested, we need to obtain the
“column” value, that is, an expression of type table.attribute or subquery.attribute. The
previous methods obtain that expression. The same kind of reference is also used, for example,
when using a renamed attribute on an ORDER BY clause.

The QueryInfo object already appeared in the previous code snippet, and it is important to
understand the query builder. It stores the data from the query that is currently being built, and
most importantly from its nested queries (which we will often call subqueries). Thus, attributes
of the subqueries are added dynamically, depending on whether they are needed: every time that
an attribute is used on the top level query that requires an attribute from the nested query, this
information is saved on the QueryInfo to build the subquery properly. This is why the previous
snippet saves the attribute in the subquery as soon as its column expression is built.

1 public final String getSQLAnalyticClauseExpression(QueryTable inTable,

2 QueryInfo queryInfo) {

3 QueryTableMaster attrTable = getTable().getJoinedTo().getInternalTable();

4 QueryTableMaster inTableMaster = inTable.getJoinedTo().getInternalTable();

5

6 if (attrTable.equals(inTableMaster)) {

7 if (isSelectableInAnalyticClause()) {

8 return getSQLSelectValue(

9 Collections.emptyList(), new GroupingInfo(), queryInfo);

10 } else {

11 throw new QueryBuilderInvalidStructureException("Trying to use the

attribute " + getName() + " in an analytic clause, but this is not

allowed.");

↪→

↪→

12 }

13 } else if (attrTable.equals(inTableMaster.getSubqueryTable())) {

14 // The attribute is on the next nesting level. We can just take its alias and

the table abbreviation and generate the ordering expression with that.↪→

15 queryInfo.getSubquery().addSelectAttribute(this);

16 return inTableMaster.qualify(getAlias());

17 } else {

18 throw new QueryBuilderInvalidStructureException("The provided attribute is

not on the same level as the containing attribute nor on the immediately

nested level.");

↪→

↪→

19 }

20 }

21

22 public abstract boolean isSelectableInAnalyticClause();

Analytic functions, also known as window functions for other SQL flavours, are heavily used
in our queries, and thus supported by the query builder. The method getSQLAnalyticClause

Expression() is used to retrieve the expressions to be used as part of the PARTITION BY list or
the ORDER BY list. The method returns the SELECT value, if it is queried from an attribute on the
same level, or else the column expression of the attribute. It also checks that the attribute can be
used on the analytic clause, to detect possible syntax errors (i.e., nested analytic functions) before
executing the query.

21

1 public abstract String getSQLWhereValue(FilterOperator operator, Object value,

Set<String> flags, QueryInfo query,↪→

2 BindingMap bindings, boolean isPartOfCompositeFilter);

3

4 public final String getSQLOrderByValue(Direction direction, QueryInfo query) {

5 return getSQLOrderByValue(direction, query, getAlias());

6 }

7

8 public abstract String getSQLOrderByValue(Direction direction, QueryInfo query,

String topLevelAlias);↪→

The methods to generate the WHERE and ORDER BY clauses are much simpler. Both are left to
the subclasses, just like we did for the SELECT clause. However, ordering is implemented by default
by all base query attributes, since it is normally the alias of the column plus the sort direction;
while filtering is usually handled by a decorator (since some rows are not filterable).

Base attributes

As discussed in Subsection A.1.3, there are five base attributes that can be decorated. However, the
best example is by far the most used attribute: QueryAttributeForColumn. This class represents
a query attribute that is read directly from a database column. We will show the superclass for all
base attributes, and then the attribute itself, although only the most interesting methods will be
shown.

1 public abstract class QueryAttributeBase extends QueryAttribute {

2 private String name;

3 protected QueryTable table;

4

5 // Constructor and other methods

6

7 @Override

8 public Collection<QueryTable> getAllNecessaryTables() {

9 return Collections.singletonList(getTable());

10 }

11

12 @Override

13 public List<String> getRequiredAttributeNames() {

14 return Collections.singletonList(this.getName());

15 }

16

17 @Override

18 public String getSQLOrderByValue(Direction direction, QueryInfo query,

19 String topLevelAlias) {

20 String condition = topLevelAlias;

21 if (direction == Direction.DESC) {

22 condition += " DESC";

23 }

24 return condition + " NULLS LAST";

25 }

26 }

27

28 public class QueryAttributeForColumn extends QueryAttributeBase {

29 private String column;

30

22

31 // Constructor and other methods

32

33 @Override

34 public String getSQLSelectValue(List<SortSpec> parentSort, GroupingInfo groupingInfo,

35 QueryInfo query) {

36 return qualifiedColumn();

37 }

38

39 @Override

40 public String getSQLColumnExpression(QueryInfo queryInfo, String topLevelAlias) {

41 return qualifiedColumn();

42 }

43

44 @Override

45 public boolean isSelectableInAnalyticClause() {

46 return true;

47 }

48

49 @Override

50 public String getSQLWhereValue(FilterOperator operator, Object value,

51 Set<String> flags, QueryInfo query, BindingMap bindings,

52 boolean isPartOfCompositeFilter) {

53 return null;

54 }

55 }

There are some overridden methods that we have not discussed for QueryAttribute, but their
only purpose is to provide a way for the query builder to know what tables and attributes should
be included for the outermost query.

The most interesting method on the attribute base is getSQLOrderByValue(). It is the imple-
mentation of what we have discussed before: for most attributes, sorting is as easy as taking the
projection alias and adding the sort direction. In our case we also specify that we want nulls to
always be last.

For the subclass, QueryAttributeForColumn, it is important to realize that the implementation
for the SELECT value and the column expression just returns the qualified column name. Of course,
more complicated attributes can have more complicated expressions.

Decorator attributes

All decorators inherit from the QueryAttributeDecorator class, which is in turn a QueryAttribute.
The decorator class simply redirects all the calls to the wrapped attribute. This provides a default
implementation that allows decorators to override only the methods that they need to change, as
our simplest attribute decorator shows:

1 public class QueryAttributeChangeAlias extends QueryAttributeDecorator {

2 private String rename;

3

4 public QueryAttributeChangeAlias(QueryAttribute wrappee, String rename) {

5 super(wrappee);

6 this.rename = rename;

7 }

8

9 @Override

10 public String getAlias() {

23

11 return rename;

12 }

13 }

All the other methods are just handled by the wrapped attribute.
We have more than a dozen decorator attributes, and even more if we count endpoint-specific

ones. Their functionalities can range from modifying the SELECT clause (for example, wrapping it
with a SQL function) to changing the filter translation (for example, to have special behaviour for
a certain filter operator). More examples can be found in Subsection A.1.3.

2.4 Repository base classes

Together with the query builder, the base classes were one of my most important contributions to
the project. The base classes are extremely useful to reduce the amount of code that has to be
used for a new endpoint. Over time they have significantly evolved to allow a lot of customization
with very little code written on the endpoint.

Adding the base classes was considerably less risky than creating the new query builder. The
most obvious risk was the possibility that the hierarchy of base classes was not general enough to
fit the needs of most endpoints, rendering the base classes pointless. However, the structure of
the already existing endpoint classes led us to believe that most, if not all, of them could benefit
from this change. Another possible risk was that old endpoints were changed to use the new base
classes, and then an important problem was found on the classes themselves. To minimize this
risk, we decided to first introduce the new classes as a non-breaking change, without modifying old
classes. We also added two new endpoints using the new base classes and rewrote a single one of
the old endpoints. The general migration of old endpoints was only approved after the three new
endpoints were carefully checked and tested.

2.4.1 Endpoint structure

To understand the impact of the base classes, some context on the endpoint structure is necessary.
A basic endpoint has five core classes:

� Resource class: the class that specifies the JSON structure that will be returned by the
API. It is normally a class devoid of logic, containing only class variables, getters and setters.

� Mapper (or other result generator): the class that maps (or somehow transforms) the
result of the query execution into a list of resources.

� Meta class: a class that generates the metadata for this endpoint.

� Repository: the class that encodes the behaviour of the endpoint. The framework parses
the URL and then calls one of the methods in the repository, which then does all the work
to get the requested resource(s) and returns them to the framework. For this reason, all
repositories are subclasses of one of the base repository classes provided by Katharsis.

� Query builder: already described in Section 2.3.

2.4.2 Resource repositories

Given this structure, subclassing seems like the obvious choice to abstract some shared code away
from the base classes. Most endpoints initially shared big portions of code, especially in the

24

repository and the mapper. This led to the creation of common abstract superclasses to unify this
code.

For the repositories, three abstract classes were created as possible superclasses:

� BasicRepository: subclasses the base Katharsis repository, providing a default implemen-
tation for several methods, but it is agnostic with regard to the method used to get the
data (in particular, it does not assume that the data come from a database). The very few
endpoints that take their data from a non-database source typically inherit from this class.

� DatabaseRepository: a subclass of the previous one, it is database-aware. It overrides the
data retrieval methods to implement calls to the database, although the specific query would
need to be provided by each endpoint. Endpoints that access the database but do not use
the query builder typically inherit from this class.

� QueryBuilderRepository: a subclass of the previous one, it requires a query builder to
generate the database queries. Its main advantage is that, for the average endpoint, it can be
subclassed and it works almost out-of-the-box, only by overriding two simple methods and
providing a specialized query builder.

The full code of the three superclasses is long and complex, and we believe that the best way
to explain it is through a diagram, such as the sequence diagram shown in Figure 2.2. The rest of
the section will list and explain the most relevant code snippets.

Basic resource repository

In Katharsis repository interfaces, there are only two methods that are relevant for a read-only
repository such as ours: findOne() and findAll(). The sequence diagram only shows the latter,
because the implementation of the former is much simpler:

1 @Override

2 public ResourceT findOne(IdT id, QuerySpec querySpec) {

3 QuerySpec idQuerySpec = querySpec.duplicate();

4 fillQueryWithId(id, idQuerySpec);

5

6 ResourceList<ResourceT> list = findAll(idQuerySpec);

7 Iterator<ResourceT> iterator = list.iterator();

8

9 if (iterator.hasNext()) {

10 ResourceT resource = iterator.next();

11

12 // Check uniqueness and throw if several resources are found.

13 // Generate and add the meta.

14 // ...

15

16 return resource;

17 } else {

18 throw new ResourceNotFoundException("resource not found");

19 }

20 }

21

22 protected abstract void fillQueryWithId(IdT id, QuerySpec querySpec);

Apart from the helper methods to generate the meta, the only called method is fillQueryWithId().
It is abstract, since its implementation is endpoint-specific. Normally, the identifiers are generated

25

BasicResourceRepository DatabaseResourceRepository QueryBuilderResourceRepository YourResourceRepository
Database

findAll()

mapSpecialFilters()

Do nothing - To be overriden

verifyQuery()

Check searchable & sortable

setUpQuerySpecVerifier()

Verify with verifier

obtainResourceList()

generateQueries()

isQueryPaginationEnabled()

boolean

getQueryBuilder()

QueryBuilderInterface

MultipleQueries

getResultGenerator()

Default mapper via reflection

ResultGeneratorT

queryDatabase()

getBindings()

None - To be overridden

Map<String, Object>

SQL QUERY

Data

Apply result generator

SQL exception handling

List<ResourceT>

filterResourceList()

super

Apply query spec

DefaultResourceList<ResourceT>

SQL COUNTER QUERY

Data count

Save count in meta

DefaultResourceList<ResourceT>

DefaultResourceList<ResourceT>

processResourceList()

getEmptyResourceList()

Search via reflection

DefaultResourceList<ResourceT>

getPagedLinks()

Create default link info

PagedLinksInformation

getPagedMeta()

Default meta via reflection

PagedMetaInformation

ResourceList<ResourceT>

ResourceList<ResourceT>

opt [pagination on]

Figure 2.2: Repository implementation sequence diagram (page 1). (Source: own elaboration)

26

BasicResourceRepository DatabaseResourceRepository QueryBuilderResourceRepository YourResourceRepository
Database

findAll()

mapSpecialFilters()

Do nothing - To be overriden

verifyQuery()

Check searchable & sortable

setUpQuerySpecVerifier()

Verify with verifier

obtainResourceList()

generateQueries()

isQueryPaginationEnabled()

boolean

getQueryBuilder()

QueryBuilderInterface

MultipleQueries

getResultGenerator()

Default mapper via reflection

ResultGeneratorT

queryDatabase()

getBindings()

None - To be overridden

Map<String, Object>

SQL QUERY

Data

Apply result generator

SQL exception handling

List<ResourceT>

filterResourceList()

super

Apply query spec

DefaultResourceList<ResourceT>

SQL COUNTER QUERY

Data count

Save count in meta

DefaultResourceList<ResourceT>

DefaultResourceList<ResourceT>

processResourceList()

getEmptyResourceList()

Search via reflection

DefaultResourceList<ResourceT>

getPagedLinks()

Create default link info

PagedLinksInformation

getPagedMeta()

Default meta via reflection

PagedMetaInformation

ResourceList<ResourceT>

ResourceList<ResourceT>

opt [pagination on]

Figure 2.2: Repository implementation sequence diagram (page 2). (Source: own elaboration)

27

from the primary key fields of the table, joined with underscores. The typical implementation,
then, just breaks down the identifier into its pieces and translates every part into a new filter.

The findAll() method is much more interesting. Its implementation has four steps on the
BasicResourceRepository, clearly divided into functions, which means that subclasses should
not override this method, and instead go for one of its parts. The code, in fact, is very simple: all
the complexity is hidden away in one of the other methods.

1 @Override

2 public ResourceList<ResourceT> findAll(QuerySpec querySpec) {

3 mapSpecialFilters(querySpec);

4

5 // We should never modify the original query spec after mapping the special

filters, because we want the original to create the links information↪→

6 QuerySpec duplicateQuerySpec = getDuplicateQuerySpec(querySpec);

7

8 verifyQuery(duplicateQuerySpec);

9 return processResourceList(obtainResourceList(duplicateQuerySpec),

10 duplicateQuerySpec, querySpec);

11 }

The four steps are performed by the following functions:

1. mapSpecialFilters(): this method does nothing on its default implementation. It should
be overridden by endpoints that offer “fake” filters, that is, filters that do not correspond to
a database column or to an endpoint field, and are just added for convenience. Those filters
should be translated to filters on real fields on this method.

2. verifyQuery(): this method performs query verification, to catch problematic requests very
early on the process. This includes automatic verification, which checks that fields set as
non-filterable or non-sortable in the meta are not included on the filters or sorts. However,
the method also performs endpoint-defined query verification, for endpoints overriding the
setUpQuerySpecVerifier() method. Verifiers are discussed in Section A.4.

3. obtainResourceList(): this is the function which returns the original resource list. Since
the BasicResourceRepository is agnostic as to data retrieval, this method is abstract. How-
ever, we will discuss later how the repository subclasses implement it. This method is also
responsible to return data that are already filtered and paginated.

4. processResourceList(): this method uses the generated list of resources and the original
and duplicated query specifications to generate the appropriate metadata and link informa-
tion.

Database resource repository

The implementation of the DatabaseResourceRepository provides all the methods needed to
access the database, and the QueryBuilderResourceRepository only refines it insofar as it uses
the query builder to generate the queries, adding a handful of convenience methods to toggle
query builder settings. The implementation of obtainResourceList() on DatabaseResource

Repository and a selection of the methods that it uses follows:

1 @Override

2 public DefaultResourceList<ResourceT> obtainResourceList(QuerySpec querySpec) {

3 // Generate the SQL query

28

4 MultipleQueries queries = generateQueries(querySpec);

5

6 // Query the database

7 ResourceAndCounter<List<ResourceT>> resources = queryDatabase(querySpec, queries,

8 getResultGenerator(querySpec), isRowCountingAttributeEnabled());

9

10 // Save the retrieved row counter if it is not null

11 DefaultResourceList<ResourceT> filteredResources =

12 filterResourceList(querySpec, resources.getResource(), queries);

13 if (resources.getCounter() != null) {

14 DefaultPagedMetaInformation dpmi =

15 (DefaultPagedMetaInformation) filteredResources.getMeta();

16 dpmi.setTotalResourceCount(resources.getCounter());

17 }

18 return filteredResources;

19 }

20

21 public abstract MultipleQueries generateQueries(QuerySpec querySpec);

22

23

24 public ResourceAndCounter<List<ResourceT>> queryDatabase(QuerySpec querySpec,

25 MultipleQueries queries, ResultGeneratorT generator,

26 boolean isRowCountingEnabled) {

27 BindingMap bindings = queries.getBindings();

28 updateBindings(querySpec, bindings);

29 Map<String, Object> bindingMap = bindings.getBindings();

30 String queryString = queries.getStandardQuery();

31

32 if (!isRowCountingEnabled) {

33 return new ResourceAndCounter<>(executeDatabaseHandleCallback(h ->

34 generator.extractResources(h.createQuery(queryString)

35 .bindMap(bindingMap))), null);

36 } else {

37 List<ResourceAndCounter<ResourceT>> list = executeDatabaseHandleCallback(h ->

38 generator.extractResourcesWithCounter(h.createQuery(queryString)

39 .bindMap(bindingMap)));

40 Long counter = list.stream().findFirst()

41 .map(ResourceAndCounter::getCounter).orElse(0L);

42 return new ResourceAndCounter<>(list.stream()

43 .map(ResourceAndCounter::getResource)

44 .collect(Collectors.toList()), counter);

45 }

46 }

47

48 public DefaultResourceList<ResourceT> filterResourceList(QuerySpec querySpec,

49 List<ResourceT> resources, MultipleQueries queries) {

50 // Default implementation for repositories with no extra setting

51 if (shouldFilterDatabaseResult()) {

52 return querySpec.apply(resources);

53 } else {

54 return ((AggregationQuerySpec) querySpec).applyOnlyPaging(resources);

55 }

56 }

Note that DatabaseResourceRepository has three type parameters: two that are already present

29

on the base repository provided by Katharsis, the identifier IdT and the resource ResourceT; and
the result generator ResultGeneratorT.

The implementation of obtainResources() is not overly complex and just agglutinates calls
to other methods. The only real logic here is the last if-clause, that checks whether the rows have
been counted as part of the previous steps, and if so sets the value on the metadata class.

The access to the database happens inside queryDatabase(). First, the default bindings for the
repository and the extra ones generated with the query are merged. After that, the query can be
executed in two different ways, depending on whether row counting is enabled (recall that we need
to count resources on the database side because the database may already paginate the results, as
we explained in Subsection 2.3.3). If it is not, the query is just executed traditionally; but, if it is,
the total resource count is extracted from the rows immediately. Note that all this setup avoids
a second call to the database, saving precious milliseconds of network delay. The manipulation is
needed because every row has a row counting attribute, but they are all the same, and thus the
first one is kept and the rest are discarded. Note that executeDatabaseHandleCallback() just
adds custom exception checking to the Jdbi.withHandle() method, used to access the database.
The Jdbi object, that handles a database connection, is already in all repositories as part of the
initialization process.

The other interesting method shown above is filterResourceList(). The case distinction is
important, again, for performance reasons. Endpoints that guarantee that the results coming from
the database are already filtered and sorted (in particular, all endpoints using the query builder)
can opt out of Java-side filtering, while the rest are filtered at this step.

Query builder resource repository

The usage of a query builder to generate the database queries is straightforward from the repository
side, since the complex functionality is hidden on the query builder itself. However, the repository
overrides filterResourceList() to provide two-step database counting. This feature consists on
running two database queries, one for getting the actual resource rows, and a second one to get the
total resource count. This option has been mostly phased out by the possibility of running both
the resource query and the counting query simultaneously, but it is still used in some cases.

2.4.3 Mapper (and result generators) base classes

Typical endpoints map rows in the database to a row in the returned JSON file. These endpoints
typically feature a mapper, which simply transforms the current row of a JDBC ResultSet to an
instance of the resource class. Besides, all these mappers do share a similar logic: for all of them,
we only want to map the fields that are actually requested. This has a tiny performance advantage,
since it avoids writing to fields that will not be used. However, the real advantage is that with
this we do not need to get these fields from the database (which in certain cases can be a very
significant performance improvement), and not retrieving them from the result set means that no
SQL exception will be thrown.

Originally, the solution was to create a SimpleMapper class with methods to generate the fields
needed for a given query specification. This worked nicely, but some of the newest endpoints were
more complicated, since they were not mapping a single row to a single model object, but several
rows to the same resource. This kind of situation is typically solved with an accumulator, that is
used to implement a reduce-like operation. However, our model consisted exclusively of mappers,
which were not easy to extend.

The solution is a more general abstract class, ResultGenerator. Up until then, the mappers
were responsible of generating the list of fields that were requested on the URL, to be able to map

30

only the necessary columns. However, the new class decoupled this logic from the actual mapping,
so that the old SimpleMapper could extend it, but also other classes such as accumulators. What
is more, a ResultGenerator is able to apply itself, that is, result generators must implement a
method transforming a Jdbi ResultBearing (the raw query results) to a list of resources. This is
the implementation of the result generator:

1 public abstract class ResultGenerator<ResourceT> {

2 protected QuerySpec querySpec;

3 private Set<String> requestedFields = null;

4 protected boolean presentationTimestampRequested;

5

6 public ResultGenerator(QuerySpec querySpec) {

7 this.querySpec = querySpec;

8 presentationTimestampRequested = querySpec.getIncludedRelations().stream()

9 .anyMatch((relation) -> relation.toString()

10 .equals(RequestParameters.PRESENTATION_TIMESTAMP.toString()));

11 }

12

13 public abstract Collection<String> getAllResourceFields();

14

15 public Collection<String> generateMissingFields(Collection<String> currentFields) {

16 return Collections.emptyList();

17 }

18

19 public Set<String> getRequestedFields() {

20 if (requestedFields == null) {

21 requestedFields = generateFields();

22 }

23

24 return requestedFields;

25 }

26

27 private Set<String> generateFields() {

28 Set<String> fields = new HashSet<>();

29

30 if (querySpec.getIncludedFields().isEmpty()) {

31 fields = new HashSet<>(getAllResourceFields());

32 } else {

33 for (IncludeFieldSpec field : querySpec.getIncludedFields()) {

34 fields.add(field.toString());

35 }

36

37 FilterSpecBaseIterator it =

38 new FilterSpecBaseIterator(querySpec.getFilters());

39 it.stream().map(QuerySpecUtils::lastPathComponent).forEach(fields::add);

40

41 fields.addAll(generateMissingFields(fields));

42 }

43

44 return Collections.unmodifiableSet(fields);

45 }

46

47 public abstract List<ResourceT> extractResources(ResultBearing jdbiResultBearing);

48

31

49 public List<ResourceAndCounter<ResourceT>> extractResourcesWithCounter(ResultBearing

jdbiResultBearing) {↪→

50 throw new UnsupportedOperationException(getClass().getSimpleName() + " does not

support counter generation with the resources.");↪→

51 }

52 }

The code is quite straightforward and shows the capabilities of a result generator. The abstract
method getAllResourceFields() returns all the fields for the given resource. To generate the
subset needed, getRequestedFields() is called, which uses the query specification to generate
a list of necessary fields — not only the ones specifically requested, but also the ones necessary
to filter. Besides, generateMissingFields() allows subclasses to specify additional mandatory
fields. This is necessary, for example, if a field needs another to be calculated, but only the first
one is requested by the user.

The last abstract method left, extractResources(), acts upon the query results to generate
a list of resources. Its twin extractResourcesWithCounter() is very similar, but acts on a query
that has a column with the total row count. A mapper just calls the map method in the result-
bearing object, using itself as an argument, and then gets a list from the result, as the following
example taken from the SimpleMapper class shows:

1 @Override

2 public List<ResourceT> extractResources(ResultBearing jdbiResultBearing) {

3 return jdbiResultBearing.map(this).list();

4 }

5

6 @Override

7 public List<ResourceAndCounter<ResourceT>> extractResourcesWithCounter(ResultBearing

jdbiResultBearing) {↪→

8 return jdbiResultBearing.map(new RowMapperWithCounter<>(this)).list();

9 }

Note that a RowMapperWithCounter is a wrapper for a RowMapper that forwards to the wrapped
mapper the reading of every column but for the row counting column.

For result generators that are not mappers, code can be more convoluted. The typical case is
an accumulator, such as the one used by the run keys endpoint:

1 public class RunKeysAccumulator extends ResultGenerator<RunKeys>

2 implements ResultSetAccumulator<Map<Integer, RunKeys>> {

3 public RunKeysAccumulator(QuerySpec querySpec) {

4 super(querySpec);

5 }

6

7 @Override

8 public Collection<String> getAllResourceFields() {

9 return RunKeysMeta.ATTRIBUTES;

10 }

11

12 @Override

13 public Collection<String> generateMissingFields(Collection<String> currentAttributes)

{↪→

14 return RunKeysMeta.MANDATORY_ATTRIBUTES;

15 }

16

17

32

18 @Override

19 public Map<Integer, RunKeys> apply(Map<Integer, RunKeys> accumulated, ResultSet rs,

StatementContext ctx)↪→

20 throws SQLException {

21 Integer runNumber = Converters.getInteger(rs, RunKeysMeta.ATTRIBUTE_RUN_NUMBER);

22 if (!accumulated.containsKey(runNumber)) {

23 accumulated.put(runNumber, new RunKeys());

24 }

25 RunKeys runKeys = accumulated.get(runNumber);

26

27 // Add contents of result set to runKeys.

28 // Avoid overwriting previous content.

29 // ...

30

31 return accumulated;

32 }

33

34 @Override

35 public List<RunKeys> extractResources(ResultBearing jdbiResultBearing) {

36 return new ArrayList<>(

37 jdbiResultBearing.reduceResultSet(new HashMap<>(), this).values());

38 }

39 }

Accumulators are a great example to show how a result generator subclass is more or less self-
contained and is able to deal from all aspects of the mapping or reducing from a raw query result
to a structured resource list.

The abstraction that the result generator class enables is not only useful to reuse the field-
generation code, but it also allows the DatabaseResourceRepository class to be even more generic.
While in the first iterations it was implemented exclusively for mappers, it takes now a result
generator as a type parameter, as we have mentioned above. The repository implementation does
not need to know anymore how to transform the results of the database, because the result generator
takes care of this whole process.

The QueryBuilderResourceRepository, on the other hand, has not been adapted to use a
generic result generator, that is, it only works with one-to-one mappers (extending SimpleMapper).
We needed to provide a class that was, above all, easy to extend. Typically, endpoints needing
custom row reduction do not use a query builder either, because the queries are too specific and
ill-fitted for it, and we preferred to keep the most concrete resource repository to be used as the
default.

2.4.4 Meta base class

The meta classes also shared a fair amount of code, which was also moved up in the class hierarchy.
The common meta class, however, is less interesting than the result generators, because it is a
single class that just creates some collections to reduce boilerplate on its subclasses.

2.5 CSV export

CSV is a well-liked format among physicists because of its simplicity and readability, and particu-
larly because it can be imported into an Excel sheet. WbM had a lot of visitors that made heavy
use of the “export to CSV” functionality, and OMS received dozens of requests to implement it.
However, we wanted to provide a export feature that worked for old endpoints right out of the box.

33

The solution passed through a deeper understanding of the Katharsis request lifecycle, which
is explained in detail in Section 2.2, from which we will reference Figure 2.1 often. Indeed, we add
a method annotated with a JAX-RS @Path annotation. Katharsis, then, delegates this method to
our JAX-RS implementation, Jersey.

The @Path-annotated method is added to a new interface, CsvSerializableResourceRepository,
which extends the resource repository bundled by Katharsis and provides only this method, with
a default implementation. The whole interface is shown here:

1 public interface CsvSerializableResourceRepository<ResourceT, I extends Serializable>

2 extends ResourceRepositoryV2<ResourceT, I> {

3

4 @GET

5 @Path("csv")

6 @Produces("text/csv; charset=utf-8")

7 public default String getCSV(@Context UriInfo info) {

8 AggregationAPIService api = AggregationAPIService.getInstance();

9 ResourceInformation resourceInformation = api.getResourceRegistry()

10 .findEntry(getResourceClass()).getResourceInformation();

11 QuerySpec querySpec = UriInfoDeserializer.querySpec(info, resourceInformation);

12

13 ServiceUrlProvider serviceUrlProvider =

14 api.getResourceRegistry().getServiceUrlProvider();

15 if (serviceUrlProvider instanceof UriInfoServiceUrlProvider) {

16 ((UriInfoServiceUrlProvider) serviceUrlProvider).onRequestStarted(info);

17 }

18

19 List<ResourceT> resources = findAll(querySpec);

20

21 if (serviceUrlProvider instanceof UriInfoServiceUrlProvider) {

22 ((UriInfoServiceUrlProvider) serviceUrlProvider).onRequestFinished();

23 }

24

25 CsvResourceSerializer serializer =

26 new CsvResourceSerializer(resourceInformation);

27 return serializer.serialize(resources, querySpec.getIncludedFields());

28 }

29 }

Using an interface has a very big advantage here: simply implementing this interface from one of
the already existing endpoint repositories will add a /csv subendpoint, which should produce a
CSV file.

Besides, the code is relatively simple. First, we retrieve the ResourceRegistry of Katharsis,
which is a class that stores information of the structure of every resource and repository. We pass it
to the UriInfoDeserializer, which is a custom class that internally uses the methods of Katharsis
to deserialize the URL parameters into a fully-fledged query specification.

Then, we have to manually notify Katharsis that we have started processing a request. Once
it is aware, we can safely call the findAll() method that every repository provides to obtain a
resource list.

The only thing that is left is serializing the resources as a CSV, which is managed by the custom
CsvResourceSerializer. The serializer not only generates the CSV, but it also ensures that it is
similar to the JSON output for the same query (for example, it only includes the fields requested
by the user).

34

2.6 Scaling info

WbM had a tendency to ignore data units when displaying data. Units were usually hardcoded
and just displayed alongside the values. However, this means that a big portion of the older data
(which did not have standardized units) is not displayed correctly.

For OMS, we tried to address this problem with correctness as the principal priority. For that,
we added a scaling table with units information for the most common magnitudes. Any value
representing one of these magnitudes will need to reference the scaling object, and any other value
with dynamic scaling will need to store the scale alongside the value. This system also allows for
optional display scaling to be stored alongside the value: sometimes, we know when storing the
data that the values are very small, and as such we would like to display numbers with smaller
units to improve readability.

These changes in the database require, of course, changes in the API. Several query builder
attributes were added, so each query builder can control the source of the scale for a given value.
A new decorator applied to the attribute correctly scales the value on the database, and further-
more the applied scaling is returned as an additional column. This allows the mapper to build a
ScaledBigDecimal object, which bundles a BigDecimal together with a scale value.

A general abstract class UnitConverter was also created, together with instances for each
usual magnitude type. These converters are able to scale a ScaledBigDecimal taking into ac-
count specific magnitude considerations, and to generate the appropriate unit string for the given
ScaledBigDecimal and magnitude. Each specific converter is customized, since we have to adapt
to certain conventions in the field: for example, the preferred way of displaying certain units is
using the closest SI prefix, but for other units using 10scale with the base unit is more common.
Another case where the converter deviates from standard behaviour is time units, since time is
the only magnitude not using base 10. The TimeUnitConverter can adequately convert between
seconds (scale 0), minutes (scale 1) and hours (scale 2), and use milliseconds, microseconds... for
scales smaller than 0.

2.7 New endpoints

A good number of new endpoints were created as part of my internship. They greatly vary in
complexity and difficulty. Some of them were easy to create, because they just read information
from a single database table and could almost be created automatically from the table structure.
However, others posed a bigger challenge, and even in some cases forced the development of one of
the new features above.

We will analyze some of the most interesting endpoints that I have created.

2.7.1 Luminosity summaries

This was the first endpoint that was designed specifically to plot data. Support for the group[size]
and group[count] query parameters (described in Subsection A.3.6) was added originally just
because of this endpoint, although it has been then used in several other endpoints. The changes
necessary to support these parameters mostly affected the deserialization process, and the query
builder. To support the new parameters, we created a new attribute that added, for each row, a
rank depending on the group parameter. This counter, then, can be used in the GROUP BY of an
external SELECT to aggregate the rows.

The rank column is generated using window functions:

-- All this examples assume that the default sorting order is by columns a, b

35

-- For group[size]=n

TRUNC((ROW_NUMBER() OVER (ORDER BY a, b) - 1) / n) + 1

-- For group[count]=n

NTILE(n) OVER (ORDER BY a, b)

The end result is an endpoint that can aggregate its information dynamically. Of course, the
most convenient for plotting is group[count] = <reasonable number of data points>. While
at first sight this might seem useless (the API is still going through all rows on the database),
it is useful to reduce the data load for both the API and the GUI, resulting on quicker JSON
serialization in the API and deserialization in the GUI, and less time necessary to plot the points
in the GUI.

However, there is a big problem that arises, again, from the fact that we still have to iterate
over every row: the endpoint cannot be used to aggregate big data ranges. The base table for
this endpoint has, roughly, three rows inserted per minute during normal data taking. This means
that aggregating over a range of more than two weeks starts to be slow, even when the table is
well indexed and the query plan is reasonable. For this reason, it was decided to create a table
aggregating these data per hour. The aggregation is performed on the database, and the user of
the endpoint can choose to access the highly granular data (group[granularity]=lumisection)
or the per-hour data (group[granularity]=hour). The queries generated are, then, very similar,
and the group[size] and group[count] parameters can be used normally with both options. The
hourly version of the data makes accessing them much faster, with date ranges of over a year being
served almost instantly.

2.7.2 Dip logger

The DIP logger is the most complex endpoint that we have built to date. It deviates from all the
standard features and behaviour that we expect from all the other endpoints, because its purpose
is also very particular.

DIP is an information distribution service built by and for CERN to distribute experiment
data [6]. DIP uses a publisher-subscriber architecture, in which clients must subscribe to the DIP
endpoint(s) that they are interested in, and they will receive information every time that a new
entry is available. This means that the DIP publisher itself only stores the latest entry, and there
is no way for services to request old data, since it is not stored anywhere. The reasoning behind
this is that DIP exposes a lot of data sources with very frequent updates, and trying to store all
the data would quickly become unmanageable.

However, certain specific applications need to access DIP historical data for different reasons.
Typically, this is done by a DIP subscriber that writes every entry somewhere, and indeed that is
how WbM did it. WbM has been storing this information almost since the inception of CMS, and
every necessary DIP endpoint has its own table where the data are logged. The so-called “DIP
Logger” was built as a highly dynamic system, to adapt to the frequent changes in DIP endpoints
and structure of returned data and to allow to start logging quickly new endpoints that were not
considered interesting beforehand. However, the Aggregation API is envisioned as a static resource
provider with a stable interface to access data. In particular, endpoints should never change their
response structure without a very good reason, presenting always the same set of attributes, that
is, the same interface.

The challenge, then, was to create an endpoint that keeps this static facade while allowing for
all the dynamism that the DIP tables are designed for. Furthermore, we could not redesign the old
tables, since this is out of scope for OMS.

36

Our approach was to introduce subendpoints. This means that the DIP data can be accessed
via /diplogger/path/to/dip/subendpoint, and this subendpoint will work exactly like a real
endpoint. However, the attribute list, the types... cannot be hardcoded, because we have around
500 DIP endpoints and it would become completely unmaintainable. What we do, then, is to take
advantage of the metadata tables that the DIP Logger offers, which include a mapping from DIP
endpoints to database tables and information about every column on these tables and their type.
The code for our DIP endpoint does two database queries: one to discover what table to access
and what attributes are filterable, sortable... and should be returned, and a second query that
retrieves the actual data. This is even more complicated because every DIP subendpoint allows
using group[size] and group[count] as long as none of the attributes requested are arrays.

From the technical point of view, we faced two big challenges. The first one was to actually
create a dynamic endpoint, because Katharsis forces endpoints to be static. The solution was to
modify slightly the code of Katharsis, just to support some JSON-related annotations (included
on the Jackson library). In particular, support for the @JsonUnwrapped annotation was added. It
“unwraps” one of the attributes, stored as a map, so each value appears as a top-level attribute,
instead of just being a value inside a JSON dictionary.

The second problem is that Katharsis does not support dynamic endpoints, but DIP “subend-
points” are dynamic in nature. However, Katharsis does support standard subendpoints that are
handled manually, via the JAX-RS @Path annotation. Again, a very small code modification was
needed to enable support of path annotations containing a regex path specification. Since JAX-RS
supports this, it was only a matter of changing the strict rules that Katharsis puts in place deciding
what is a valid path. Once the path is correctly recognized, it can be translated into a filter and
the rest of the endpoint can behave as a normal endpoint, but for the exceptions described above.

Finally, this was a very big deviation of the standard endpoint architecture. Some of the
benefits of the base classes, the query builder... could still be used, but the dynamism forced a very
particular endpoint structure, which posed its own challenge.

2.8 Rewriting old endpoints

Almost all endpoints have been rewritten during my internship to take advantage of the new
functionality (particularly the query builder and the base classes). For a lot of them, the conversion
is straightforward and of little interest, but we will list here the ones that were more tricky or
challenging. We will avoid mentioning some of them here because the discussion is related with the
new tables that will be introduced in Chapter 3.

2.8.1 Deadtimes per scaler

The deadtimes per scaler endpoint is interesting because it is a perfect candidate to use some
database functionality that is not used often: the PIVOT and UNPIVOT features.

This enpdoint shows data from a view that has one row per run number. For every row, it
has the average, minimum, maximum and root mean square of 20 different deadtime categories
(called “scalers”). This means that the view has more than 80 columns. However, the data that we
want the endpoint to show should be keyed by run number and scaler, and then have 4 attributes:
average, minimum, maximum and root mean square (RMS).

To make it easier for the API, we decided to create a database view on top of the previously
mentioned view. This uses the UNPIVOT feature to achieve the intended effect:

CREATE VIEW cms_oms_agg.run_scaler_deadtime_v AS

SELECT *

37

FROM CMS_OMS_AGG.oms_run_deadtime_v

UNPIVOT INCLUDE NULLS

((avg_dt, max_dt, min_dt, rms_dt) FOR scaler_name IN (

(avg_dt_apve, max_dt_apve, min_dt_apve, rms_dt_apve) AS 'APVE',

(avg_dt_bx_mask, max_dt_bx_mask, min_dt_bx_mask, rms_dt_bx_mask) AS

'BX_MASK',↪→

(avg_dt_calib, max_dt_calib, min_dt_calib, rms_dt_calib) AS 'CALIB',

-- ... Other scalers ...

)

);

2.8.2 Fill bunches

The fill bunches endpoint is interesting for the implementation of the calculation of one specific
attribute, and also for the scaling of that attribute. We have a core table with the information
about each bunch crossing, as we will discuss in Subsection 3.4.2, and it contains all the data to be
displayed. However, some of it needs to be calculated from the values in the table.

The fill bunches endpoint retrieves information about bunch crossings, that is, the possible
moments where the two beams may collide for a given revolution. One of the values that are
retrieved is pileup, which measures the number of collisions per bunch [22]. Nowadays, measured
pileup normally oscillates between 30 and 50.

However, pileup cannot be measured directly without reconstructing the tracks and analyzing
the collision. The pileup that OMS displays is estimated from the instantaneous luminosity, using
an additional parameter called cross-section that depends on collision type and energy and is
estimated for every fill. For that, the following calculation is used:

P =
Linst · σ
fHz

,

where P is the pileup, Linst is the instantaneous luminosity for the given bunch crossing, σ is the
cross-section and fHz is the frequency of the crossings, which is 11, 246 Hz. This calculation would
be easy to implement in the SQL query, but the cross-section is not available anywhere on the
database.

The optimal solution would be to get the cross-section written to the database, but the respon-
sible team could not do it at the moment. The alternative solution was to reverse-engineer the
value from our lumisection table, which contains both the average pileup per lumisection and the
instantaneous luminosity. The following view, then, extracts the cross-section from the lumisection
data:

CREATE VIEW cms_oms_agg.fill_cross_section_v AS

SELECT

f.fill_number AS fill_number,

AVG(l.avg_pileup * f.n_colliding_bunches * 11246 / NULLIF(l.instantaneous_lumi,

0)) AS cross_section,↪→

-MAX(s.inst_lumi_scale_stored) AS scale_cm_2

FROM cms_oms.fills f

JOIN cms_oms.lumisections l ON f.fill_number = l.fill_number

JOIN cms_oms.scaling_info s ON l.scale_id = s.scale_id

WHERE l.physics_declared = 1 AND l.avg_pileup > 0

GROUP BY f.fill_number;

38

For a given fill, all lumisections with non-zero instantaneous luminosity are considered in order
to calculate the cross-section. The result is then averaged to clean up possible inconsistencies
caused by calculation precision, although the number should be constant for all lumisections. The
cross-section is calculated as follows:

σ =
Pavg · ncolliding bunches · fHz

Linst
,

where the only new variable is ncolliding bunches, the number of colliding bunches, which we store in
our core tables too.

Our testing revealed that the previous view was outputting reasonable cross-section values that
matched with very good precision the values published for example fills. Thus, we decided that,
until we get this information written to the database, this is our only option.

However, another problem remained unsolved: scaling. Pileup is a dimensionless quantity, but
the parameters that it is calculated from do have dimensions, and we have to ensure that they match
for the calculation to work. Specifically, the cross section has area units, while the instantaneus
luminosity has the dimensions of events per time and per area. It is easy to see that dimensions
cancel out on the pileup cancellation, but, of course, data has to be appropriately scaled for that to
happen. Luckily, we have scaling data for both the lumisection table and the bunches table. This
means that we can add the scale cm 2 column to the view above, and use that one to calculate
the correct scale for the pileup. In the end, the query for the endpoint is the following:

SELECT

b.fill_number AS fill_number,

b.peak_lumi * cs.cross_section * POWER(10, cs.scale_cm_2 +

scaling.inst_lumi_scale_stored) / 11246 AS pileup,↪→

...

FROM cms_oms.fill_bunches b

LEFT JOIN cms_oms.scaling_info scaling ON b.scale_id = scaling.scale_id

LEFT JOIN cms_oms_agg.fill_cross_section_v cs ON b.fill_number =

cs.fill_number↪→

WHERE b.fill_number = :fill_number;

The units are adjusted in the calculation to ensure that the pileup value is correct. It is important
here that the stored values are multiplied first, and then scaling is applied as once, because precision
errors would be way bigger if we scaled first and then multiplied.

39

3. Database redesign

3.1 Motivation

At the start of my studentship, the database schemas used for the aggregation API were the old
WbM schemas. However, a big portion of the data that these schemas are populated with were
provided by a hardware device called SCAL, which injected data from the CMS data acquisition
stream into the online database. However, SCAL was decommissioned at the end of Run 2, which
means that the whole process of populating the online database with data had to be redesigned.

On the other hand, the WbM schema was old and had the same problems that afflicted WbM
itself: it was designed without a general vision on mind, which led to a suboptimal table and column
structure. Thus, it was decided that replacing SCAL by other data sources was a good opportunity
to rewrite the whole database schema.

3.2 Necessary domain knowledge

The replaced tables contained information about the behavior of the LHC and the CMS detector
itself, before, during, and after data-taking. A few concepts related to the LHC and CMS are key
to understand what do these tables store. The information in this section is based on [19, 10, 3].

The accelerator tunnel hosts two beams made of particles that circulate in opposite directions
and collide at some points along the circumference. CMS sits on one of these points. This means
that all the information stored on OMS tables can be broadly classified on one of two groups: LHC-
level information or CMS-level information. Scientists analyzing the data need to access some of
this information to be able to reach conclusions about the full system.

When fully accelerated, a beam completes about 11, 246 revolutions of the LHC tunnel per
second. However, a beam is not a continuous flow of particles, nor a single packet of them: the
beams are made of small packets, called bunches. This setup is necessary because particles can only
be accelerated when the electric field has the correct orientation, and the gaps allow the orientation
to be flipped. There are at most 2808 of these bunches. Each bunch is a few centimeters long
and a millimeter wide when they are far from a collision point. However, when they approach the
collision points, they are squeezed to about 20 micrometers. At its fullest capacity, the LHC uses a
bunch spacing of 25ns (∼7.5m). The bunches are not evenly spaced, as for practical reasons there
are several bigger gaps in the pattern.

One of the most important properties of the beam is its luminosity. Luminosity is a magnitude
which is directly proportional to the number of particle collisions that we can expect if we collide
the beams. The highest the luminosity, the more collisions we will observe. Moreover, we can talk
of instantaneous luminosity, when we are concerned about the luminosity at a particular moment
of time, or integrated luminosity, when we are interested in the luminosity for a time interval. Note
that this magnitude is completely different from the beam energy, which is of course proportional

40

to the beam speed and determines the kind of particles that could be produced on the collision.
Luminosity only is relevant to measure how many collisions will be observed.

A fill names a period of time on which the LHC is filled with the same beam. That is, particles
are injected into the LHC tunnel at the beginning of a fill and are not replaced during the fill. The
tunnel is emptied at some point in the middle of the fill, but the fill is not considered to end until the
start of the next fill, that is, until particles are injected again. The process of emptying the tunnel
is called beam dump and can be triggered manually or automatically. Normally, a manual beam
dump means that the beam has been in there for long enough that its luminosity has degraded
and a new beam is necessary. If it is automatic, that means that something has gone wrong and
the beam has unexpected behavior, and it is dumped safely to make sure it does not constitute a
hazard for anything or anybody. The total energy in each beam at maximum energy is 350 MJ,
which is about as energetic as a 400 t train traveling at 150 km/h. Thus, an uncontrolled beam
loss would be a disaster, but safety systems are in place to detect a problem and safely dump the
beam within 3 revolutions (less than 0.3 ms).

A fill, then, describes a time period between the moment when the LHC is filled with a new
beam and the moment when it is dumped (although it technically does not end until later). While
most LHC fills collide protons with protons, there are also fills that collide heavy ions (generally
lead), and even fills colliding protons with heavy ions. This information is encoded on the runtime
type of the fill, and we also store information about the particle type for each beam (which is either
protons or the concrete type of ion). Swapping the particles is a costly process time-wise, and
thus the runtime type usually remains fixed for weeks or even months. Therefore, it is useful for
CMS to group similar fills into so-called eras, which are periods with the same high-level detector
configuration, including the collided particle type.

We are interested in other fill properties too. A fill is said to have reached stable beams if
the beam has had the adequate properties for data taking, i.e., the beam is adequately focused
and correctly aligned to be collided. Only when stable beams are declared do the detectors start
collecting data. Of course, this means that, most of the time, only fills with stable beams are
interesting.

A run is a period of time which designs CMS data-taking. Normally, a fill encompasses several
runs. All those runs share, of course, the same beam, but they might differ on detector-specific
low-level configuration settings. Again, the runs of real interest are the ones occurring during stable
beams. However, there are some special runs called cosmic runs. These runs happen after the beam
has been dumped, so there are no collisions happening. However, CMS is on and trying to measure
the cosmic rays that go through the detector all the time. These runs are useful for studying the
performance of CMS and its sub-detectors and for alignment and calibration tasks.

Every run is, on turn, divided into lumisections (not to be confused with luminosity). Lumisec-
tions are periods of time of a fixed length, slightly over 23 seconds. This length is not arbitrary: it
is the number of seconds that the particle beam needs to orbit the accelerator 218 = 262144 times.
Lumisections are the smallest units that OMS displays data on, and they are defined to be short
enough that the luminosity can be considered constant inside a lumisection. Every lumisection is
identified by the run number for the run it happens on, and by another number which indicates its
position inside the run (starting by 1).

3.3 Conceptual design

We can encapsulate the previous domain knowledge into an entity-relationship diagram, which
would be the base to create our new database. The resulting diagram is shown in Figure 3.1.

It is important to note that our table design was not derived from this diagram, which has been

41

F
il

l

F
il

l
n
u

m
b

er

S
ta

rt
ti

m
e

E
n

d
ti

m
e

is
si

m
u
lt

a-
n
eo

u
s

to
R

u
n

R
u

n
n
u

m
b

er

S
eq

u
en

ce
S

ta
rt

ti
m

e

E
n

d
ti

m
e

d
iv

id
ed

in
L

u
m

is
ec

ti
o
n

L
u

m
is

ec
ti

o
n

n
u

m
b

er

D
el

iv
er

ed
lu

m
in

o
si

ty
R

ec
o
rd

ed
lu

m
in

o
si

ty

S
ta

rt
ti

m
e

E
n

d
ti

m
e

1
..

1
1
..
n

1
..
1

0.
.n

re
a
ch

es

S
ta

b
le

b
ea

m
s

S
ta

b
le

b
ea

m
s

ev
en

t

T
o

re
a
d

y
ti

m
e

1.
.1

0.
.n

co
n
ta

in
s

E
ra

E
ra

id
N

a
m

e

1.
.1

0
..
n

m
ay

b
e

ac
ti

ve
in

F
il

l
b

u
n

ch
cr

os
si

n
g

B
u

n
ch

P
ea

k
lu

m
in

o
si

ty

35
64
..
35

64

1.
.1

is
fi
ll

o
f

ty
p

e
is

ru
n

o
f

ty
p

e

R
u

n
ti

m
e

ty
p

e

R
u

n
ti

m
e

ty
p

e
id

1
..
1

0
..
n

1
..
1

0.
.n

b
ea

m
h
as

ty
p

e

P
ar

ti
cl

e
ty

p
e

P
a
rt

ic
le

ty
p

e
id2
..

2

0
..
n

sc
al

es
fi
ll

lu
m

i

sc
al

es
ru

n
lu

m
i

sc
a
le

s
lu

m
is

ec
ti

o
n

lu
m

i

sc
al

es
b
u
n
ch

lu
m

i
S

ca
li

n
g

in
fo

S
ca

le
id

1
..

1

0
..
n

1
..
1

0.
.n

1
..
1

0
..
n

1
..
1

0.
.n

h
as

p
re

se
n
t

F
ed

id
s

R
u

n
co

m
p

on
en

t

C
o
m

p
o
n

en
t

n
am

e0
..
n

0.
.n

h
as

ac
ti

v
e

R
ea

d
y

D
C

S
p

ar
ti

ti
o
n

P
a
rt

it
io

n

n
am

e

0
..
n

0
..
n

F
ig

u
re

3.
1:

E
n
ti

ty
-r

el
at

io
n

sh
ip

d
ia

g
ra

m
of

th
e

re
d

es
ig

n
ed

d
at

ab
as

e.
N

ot
e

th
at

on
ly

th
e

m
os

t
re

le
va

n
t

at
tr

ib
u

te
s

ar
e

in
cl

u
d

ed
.

(S
ou

rc
e:

ow
n

el
a
b

o
ra

ti
o
n

)

42

created after the fact to summarize and clarify the decisions made.
There are some entities shown in the diagram that have not been discussed in Section 3.2.

The most important of those is probably the scaling, an entity which describes the scale of the
luminosity information. Luminosity is an attribute common to most core tables (because we need
to store different kinds of luminosity per fill, run, lumisection...), but it can come from different data
sources and have different units, even inside the same table. Furthermore, the order of magnitude
of the values can vary greatly, and therefore adjusting the value before storing it could lead to
precision errors. Lastly, we also want to store the recommended display scale, which might be
different for different runs. For all these reasons, we consider the luminosity scaling to be its own
entity, and every row with a luminosity value is also linked to an scaling object in some way. Of
course, this setup enables the automatic retrieval and manipulation done on the API side, as we
already described in Section 2.6.

There are two other entities missing in Section 3.2: run components and partitions. They
are both similar, with a slight difference in granularity. A run component stores the state of a
subdetector present in a run, while a partition stores similar information but for a partition, that
is, a part of a subdetector. The main difference between them, other than granularity, is that
subdetectors cannot be added or removed in the middle of a run, while a partition can be turned
on or off at different points in time without affecting the rest of the detector and without forcing
a change of run.

Lastly, the number of bunches in a fill shown in Figure 3.1 (3564) seems to contradict the
information from Section 3.2 (2808). However, this is not the case. The bunch entity represents
a bunch crossing, that is, a moment of time where bunches might cross at the CMS detector
depending on the configuration of the LHC. There are 3564 such moments for a single revolution of
the beams. All of those are valid entities that might have relevant information, because even points
where no bunches cross may register residual luminosity or beam intensity, which is interesting to
store. Furthermore, this information can reveal errors, if for example luminosity is measured at a
crossing when no beam is expected. For this reason, even if there are (at most) 2808 active bunches
per beam and fill, we will always store all 3564 bunch crossings.

3.4 Logical design

We have divided the process in four different parts, broadly grouping the tables by topic. The final
schema is shown in Figure 3.2. This section explains the choices made to transform the conceptual
design into a logical design.

3.4.1 Standalone tables (eras, scaling...)

This group encompasses the tables that do not have foreign keys to other tables. It includes all the
tables that do not fit on the other groups: eras, particle types, runtime types, and scaling info.

The tables in this section had a small number of attributes and little room for changes. Fur-
thermore, these tables have a “supporting” role and the attributes will probably only be queried
by their identifier, which simplifies the integrity constraints. On top of that, indexes on them are
almost useless, since all these tables will be very small, most likely less than 100 rows.

The big design choice we had to face at this point was whether we should have a separate table
for all these concepts (eras, runtime types and particle types) or we should just save each one on
its corresponding column. All three entities already have an official identifier and they do not have
very important attributes. Adding just the identifier to the other tables could improve performance
and also simplify the queries. However, we finally decided that each entity should have a table. We

43

Figure 3.2: Snapshot of the final schema. Members of the primary key are represented with P,
unique fields with U, and members of a foreign key with F. (Source: own elaboration)

wanted to enforce foreign key checking and reduce the probability of data inconsistencies. Besides,
this allowed us to add useful attributes, such as the description attribute for the particle types.

The scaling info table was the biggest deviation from the previous design. This table stores the
units on which luminosity information is stored and the units on which it should be displayed. On
the old tables, this information was saved per year and runtime type. However, this was not flexible
at all, and the WbM team had frequent requests asking from scaling changes mid-era, which were
of course impossible. At that point, it made much more sense to have an identifier for each scaling
configuration and store them on a separate table. Each table that stores luminosity values would
then have a reference to one scaling object.

Other argument supporting the decision was aggregation. The new schema was designed to
be queried by the Aggregation API, but the old structure was not prepared for running queries
grouping big data ranges. With the old structure, it was complicated to join the luminosity info
with its scaling, which is essential to aggregate data correctly. This functionality is needed all
throughout the API, for example to create the lumisummaries endpoint described in Subsection
2.7.1.

3.4.2 Fill-related tables

This section includes the fills table and the fill stable beams table, which depends on it.
These tables store all the information relative to LHC fills. It also includes the fill bunches

table, which stores one entry per bunch and per fill.

44

The fills table needs almost no explanation, as it is mostly a table for storing all the informa-
tion we need. The columns are similar to those of the old fills table, but for a handful of columns
that were not being used anymore and thus removed. This table now stores references to all the
standalone tables described previously.

The main difference with the old system is the separate fill stable beams table, which stores
the stable beams events that happen during a fill. Previously, the fill table contained a time for
the start and the end of stable beams. In general, stable beams are declared only once during the
fill, so this model was acceptable. However, on the new design we want to support the 3% of the
fills that have several stable beam events. There are also a handful of timestamps that depend on
when the stable beam was declared, that were previously attributes of a fill but are now columns
of this table.

The fill bunches table had no equivalent table in WbM, since information was taken directly
from the source. However, we knew what attributes would need to be displayed, and therefore
creating the table was straightforward. Here, the scaling that we store is different from the scaling
for the given fill. It scales the peak lumi attribute, and this is normally two or three orders of
magnitude smaller than the init lumi for the same fill, so we need different criteria.

3.4.3 Run-related tables

This category includes the runs table, as well as the run components table and the trigger keys

table.
The design rationale is very close to that of the fill tables. The main table, runs, just stores

columns with the information we need, taken almost verbatim from the old table. However, we
have decided to migrate some of the information that was previously stored on columns to new
tables.

It is worth mentioning that the runs table stores a reference to both the era and the runtime
type. However, the references were added for entirely different reasons. The era is only stored in
this table for performance reasons, especially when filtering on it, since it could be retrieved easily
from the fills table. This is why there is no corresponding relationship in the entity-relationship
diagram. However, a run has its own runtime type, which may be different from the type of the fill
the run is in. This quirk of the design of the detector is the reason that the run and the runtime
type are also related in Figure 3.1. Fills normally finish with some cosmic runs where the beam
is off, but the detector is still on for calibration purposes. In this case, the run has runtime type
“cosmic”, but the fill has still the runtime type of the particles that made up the beam in previous
runs.

There is one more table that does not appear in the original entity-relationship model in Figure
3.1: the trigger keys table. It is a key-value style table that stores trigger keys: identifiers for the
different configurations of the trigger systems on a run. Trigger keys are conceptually a part of the
run, they are not an entity on their own. However, although they are mostly static, trigger keys
are subject to change from time to time. A key-value storage provides increased flexibility, which
we value over the possible performance degradation. Without this approach, tables would have to
be changed every time that we have a new trigger key, and we would also need to keep columns
storing old trigger keys that are not used anymore.

Finally, the run components table contains information about the status of the different CMS
subsystems during each run. This is information that was previously available on an external
schema as a key-value system which was not easily queried. We plan to port all this information
to our new tables. It is important to note that this table is not an entity-derived table, but a
relationship-derived table; it stores (run number, component) tuples. The relationship represents
whether a component is included on a run.

45

Attributes are interesting in this case: we decided to store the fed identifiers, a list of data
streams that are active during a run, as nested tables, using the fed ids and masked fed ids

attributes. Feds are integer sets, and we are normally interested on looking for runs where specific
feeds are available or masked. The Oracle-specific nested table model offers decent performance for
this task with the only drawback of a slightly more complicated syntax for inserting and querying.
Again, this fed information was previously stored on external tables as a format very difficult to
query (a CLOB of a CSV-like string), so any improvement is welcome. However, we did not want
to manually maintain two extra tables for this purpose.

3.4.4 Lumisection-related tables

This category includes the lumisections and lumisections dcs tables.
The lumisections table, just as the runs and fills table, contains just the necessary columns

retrieved from the old lumisections table. The only difference with the conceptual design is that
this table has a reference to the fill number. As with the era identifier in the runs table, this
reference does not appear in the conceptual design because it is a redundant reference which is in
place just for speed when querying.

The main difference with the old table is that it contained one column per partition that
specified whether it was ready or not. This design was not easy to scale, since partitions change
from time to time. Therefore, it has been replaced by the lumisections dcs table, which stores a
row per lumisection and partition. It is named after the Detector Control System, which provides
this information.

This is a relationship table, very similar to the run components table. Here, we have an extra
attribute, ready. A row is present in the table if the partition was present, but the ready column
marks whether it was turned on. Therefore, it is easy to differentiate a partition that did not exist
at the time from a partition that was off for the lumisection. Besides, this structure facilitates easy
insertion and deletion of partitions, and allows old partition data to be stored, even if the partitions
do not exist anymore.

We also decided to store the full partition name on this table, instead of having an additional
table with partition identifiers and saving only those in the lumisections dcs table. This is a
difficult decision to make, since the approach with the additional table has a very clear advantage:
identifiers are much more condensed and, thus, much less information is stored. However, it has
two significant drawbacks. First, every time a new partition is added, the table has to be manually
edited to add the new identifier. Second, having an additional table would make both querying the
lumisections dcs table and adding more rows to it more cumbersome.

The final reason that swayed our opinion was that partition names, while they are obviously
less efficient in space than an identifier, are quite short, and therefore they should not be using
too much storage. To validate our decision, we calculated the size of the table up until now, which
contains the data of all runs since 2010. Right now, the LHC is expected to run for other 20 years,
what would triple the space required for our table. Considering its current size, that is perfectly
acceptable for us.

3.5 Constraints and indexes (DDL)

3.5.1 Primary keys

As a rule, we have opted for natural primary keys instead of surrogate primary keys. The reasoning
is simple: most of our tables have an obvious natural identifier, which is unique by definition (the fill
number, the run number...) In fact, the fill number or the run number are actually surrogate keys

46

from a certain point of view: they are just generated as an increasing sequence of identifiers. The
only difference with traditional surrogate keys is that they are generated from an external system.
Not only there is no need to add an extra column when we have such good candidate keys, but also
a lot of external tables, that are out of our control, use these values already as identifiers. Since
the Aggregation API needs to join those tables often, it is convenient to keep the same standards
as the rest of the database.

Choosing surrogate keys would have other negative consequences. The most impactful would
be maintenance of an extra index, since the candidate key would have to be indexed in any case,
for joining and because, for the core tables, filtering on the identifier is very frequent.

Besides, there are some of the typical drawbacks of natural keys that do not apply in our case,
at least for the core tables (fills, runs and lumisections). Surrogate keys are often praised by their
performance, since the key value is smaller and thus accessing the index requires less disk IO.
However, both fill and run numbers are consecutive, which means that these columns should not be
bigger than a surrogate key column. Besides, surrogate keys are often deemed more future-proof
than natural keys, because they are safe from changes on business meaning. However, the whole
detector is built using these identifiers. If they were to change, our whole software (and that of
many other teams) would need to be rewritten anyway.

The lumisections table has a multi-column primary key, and it is here where a strong argument
for a surrogate key could be made. However, the standard throughout our database is to use both
these columns (run number and lumisection) as our identifier. It would not make sense to have
a lumisection identifier including both that could only be used internally, if then we have to join
external tables on several columns.

3.5.2 Foreign keys

From the beginning, we decided to enforce foreign keys as part of our system. WbM did not use
foreign keys at all, which made its data much more difficult to understand and less efficient to
query. WbM was designed in this way because their data sources were not completely reliable,
and it was a way to avoid costly errors when inserting new data. However, we decided that the
improvement in data consistency was worth making the data insertion process more delicate. Data
dependencies must now be watched carefully during the insertion process, and the delays of the
different data streams has to be taken into account. However, we believe this to be an opportunity
to treat carefully the data from their insertion, instead of logging everything and fix the errors
afterwards, which was the philosophy of the WbM team.

3.5.3 Other constraints

Check constraints are used to maintain data integrity where there is only a limited number of
options, especially for Boolean or enumeration-like columns.

An example of this is the physics declared column on the lumisections table. There, the
values are restricted via a simple constraint:

CONSTRAINT lumisections_physics_dec_bool CHECK (physics_declared IN (0, 1));

3.5.4 Indexes

One of the usual concerns when designing indexes is space. However, space is not a problem for us
in general, although of course we will try to minimize it if possible. Insert and update performance
is, however, a bigger concern.

47

Fortunately, most of our core tables are not written to very often, and updated very rarely.
The runs and the fills table will have at most twenty or thirty new rows during a busy day, which
means that costly inserts are not very problematic. Even then, we have tried to keep the number
of indexes to a minimum, although in the end we want to support several types of query. Specific
indexes and their effect on queries will be discussed in Section 3.7, where some of the queries using
the new schema are discussed.

For example, the indexes for the run table are the following:

CREATE INDEX cms_oms.runs_fk_fill_number

ON cms_oms.runs(fill_number);

CREATE BITMAP INDEX cms_oms.runs_fk_era_id_idx

ON cms_oms.runs(era_id);

CREATE INDEX cms_oms.runs_sequence_name_idx

ON cms_oms.runs(sequence_name);

CREATE INDEX cms_oms.runs_start_time_idx

ON cms_oms.runs(start_time);

CREATE INDEX cms_oms.runs_stop_time_idx

ON cms_oms.runs(stop_time);

The whole rationale behind the choice of columns to index is detailed in Subsection 3.7.3, so we
will not discuss it in depth here.

The lumisection-related tables are the ones with the highest new-data frequency, with one
new lumisection every 23 seconds when the system is on, and bulk updates that can affect all
lumisections during the last 48 hours. However, we do not need lots of indexes here, and it is not
a problem to have only three indexes.

In any case, we have the advantage that data should always be queried from the Aggregation
API. Indexes are significantly easier to design with a reduced list of possible queries. Thus, the
index design process has been relatively easy and similar for all tables.

3.6 Data migration (DML)

Data migration also proceeded following the same divisions by topic. For the most part, this was a
straightforward process, with INSERT statements that just insert the relevant columns from the old
tables into the new tables. This section will describe the tables which differed significantly from
their WbM analogues, and thus needed some data manipulation to be populated.

It is important to note that the general rule to follow for this process was not to change old
data unless there is no other option. Even with data that are likely wrong, the policy of the OMS
group has been not modifying it unless it causes obvious problems. While, of course, right data are
preferred, we operate under two assumptions:

1. We do not have critical data. OMS and its predecessor WbM are used by CMS physicists
and engineers to discuss what happens in the detector and the LHC, but they are not used
for scientific analysis or similar purposes.

2. All our data are either correct or irrelevant. These data has been shown for years in WbM,
and it has been used for multiple purposes, shown in meetings, etc. Users do often report

48

some data that are wrong or missing and the problem is quickly fixed. Thus, it is very unlikely
for wrong data to survive for long.

The decision to keep wrong data is consequence of the usage patterns of the API. We serve
data to many people, who use it for their analyses, their meetings, their notes... Consistency is
expected from them, and any change should be approached carefully and on a case-by-case basis.
In particular, we should not change values such as timestamps even if we have access to a more
precise data source that the one already stored.

3.6.1 Missing fills

The new fill table should be populated directly from the old fill table. However, we discovered that
we have more than a hundred fills that were referenced from either the run or the lumisection table
but were not present on the fill table. This was not a problem in the past, given that no foreign
key constraints were enforced. However, the foreign key constraints of OMS prevented us from
inserting a fill that was not present on the fills table.

The problem was not just discovering these fills, but also being able to fill their basic information
(i.e., their start and stop time), given that they were not registered at all. The solution, for fills
that had lumisections, was easy: just set the minimum and maximum time for all lumisections as
the start and stop time of the fill.

However, this was slightly more difficult with runs, as the beginning and end of a run do not
align with the beginning and the end of a fill. Lumisections did not cause a similar issue because
they are small enough to be inside a tolerable margin of error.

3.6.2 Runs with several fills

Throughout this document, we have assumed that a run is somewhat “inside” of a fill: the runs
table even has a fill number column pointing to the fill for that run. However, a detailed analysis
of the data revealed that this is not completely true. The process of declaring a new run is manual
and at the CMS level, and thus unrelated to the process of declaring a new fill, which happens at
the LHC level. This means that, even if in most cases a new run is declared once the new fill is on,
this does not necessarily happen.

The saving grace was that this does never happen on fills with stable beams. When the beam
is dumped, data taking stops and consequently the run is automatically ended. For this reason, we
can assume that a run has one and only one fill number, even though we can find runs spanning
several fills if looking at the timestamps. The fill number column should be understood as the
fill number for the fill on which the run started, but this consideration is fortunately irrelevant for
fills with stable beams declared.

3.6.3 Fill stable beams

For old fills, only one of the stable beams events was saved on the table. Typically, stable beams
are declared exactly once per fill, but as we already mentioned in Subsection 3.4.2, it sometimes
happens twice. With the new design, we finally had the means to store this information, but we
needed a way to obtain it in the first place. Luckily, we had access to another table, part of the
DIP Logger system described in Subsection 2.7.2, to which a new row is logged every time the state
of the beam changes. This was, then, our way of calculating the start and end time of each stable
beams event, by analyzing the transitions of the beam state.

49

However, we did not want to change the old data. After careful consideration, we decided
to keep the old timestamps for the old fills. However, the new procedure developed to fill this
information will be adapted in the future to keep the tables up to date after the new run starts.

3.6.4 Scaling info

As this was one of the biggest paradigm changes in our design, migrating the data was not so
straightforward. First, we analyzed the scaling on WbM tables, which was stored per year and
runtime type, and a new row was created for the scaling info table. It was a bigger problem to
add the correct scale identifier to the fill, run and lumisection tables.

Populating the fill table was not a problem: we had the year and the runtime type, which means
we only needed to find the scale info for each fill from the tables described above.

For the runs and the lumisections, we used a MERGE statement to assign to each row the scale
identifier for the fill referenced. As both the runs and the lumisections table have a fill number

column, this was also easy to do.‘

3.7 Redesigning endpoints

In Chapter 2, we discussed the changes made to the API. Rewriting old endpoints took a big portion
of my time, but in the end the whole API was consistent and used the new tables. While some of
them were discussed in Section 2.8, we will describe here the ones that used the new tables and had
some influence on their design. We will emphasize the solutions to the performance problems that
we faced, both when we changed or added indexes and when we changed the queries themselves.

3.7.1 Performance concerns

Pagination

The queries generated by the new query builder are of course completely different from the queries
that the endpoints were using previously. Early in the process, it started to be obvious that the new
queries were performing poorly in respect to pagination. Several endpoints have specific fields that
aggregate into a single value hundreds or thousands of rows of data stored in a secondary table. The
optimizer of the Oracle database was not able to discover that some of those aggregations should
not be computed, because the corresponding rows will never be shown anyway due to pagination.

As an example, consider the table cms oms.fills (with column fill number) and the view
cms oms agg.fill peak specific lumi v (with columns fill number, peak luminosity). The
view has one row per fill, but this row is the result of aggregating all the 3, 564 rows on the
fill bunches table to get the peak luminosity value.

The query generated was the following:

SELECT i.*

FROM (

SELECT

f.fill_number AS fill_number,

p.peak_specific_lumi AS peak_specific_luminosity,

ROW_NUMBER() OVER (ORDER BY f.fill_number) AS row_counter__

FROM cms_oms.fills f

JOIN cms_oms_agg.fill_peak_specific_lumi_v p ON f.fill_number = p.fill_number

WHERE f.fill_number > 2000) i

WHERE i.row_counter__ BETWEEN 1 AND 100;

50

Ideally, this query would only retrieve the first 100 fills with fill number greater than 2000 from
the fills table and only join the view to those fills, thus avoiding the expensive aggregation for all
the other fills. However, our database yields the query plan shown in Table 3.1.

Id Operation (name) Rows Bytes Cost Time

0 Select statement 2290 89310 13465 00:02:42
1 View 2290 89310 13465 00:02:42
2 Window sort pushed rank 2290 68700 13465 00:02:42
3 Nested loops 2290 68700 13465 00:02:42
4 View (fill peak specific lumi v) 2290 59540 13465 00:02:42
5 Hash group by 2290 87020 13465 00:02:42
6 Hash join right outer 74791 2775K 13462 00:02:42
7 Table access full (scaling info) 22 198 3 00:00:01
8 Table access by index rowid (fill bunches) 74791 2118K 13459 00:02:42
9 Index skip scan (fill bunches conf idx) 441K 6922 00:01:24

10 Index unique scan (fills pk) 1 4 0 00:00:01

Predicate Information (identified by operation id):

1 - filter("I"."ROW_COUNTER__">=1 AND "I"."ROW_COUNTER__"<=100)

2 - filter(ROW_NUMBER() OVER (ORDER BY "F"."FILL_NUMBER")<=100)

6 - access("B"."SCALE_ID"="BS"."SCALE_ID"(+))

8 - filter("B"."INTENSITY_BEAM_1">0 AND "B"."INTENSITY_BEAM_2">0)

9 - access("B"."FILL_NUMBER">2000 AND "B"."BEAM_1_CONFIGURED"=1 AND

"B"."BEAM_2_CONFIGURED"=1)↪→

filter("B"."BEAM_1_CONFIGURED"=1 AND "B"."BEAM_2_CONFIGURED"=1)

10 - access("F"."FILL_NUMBER"="P"."FILL_NUMBER")

Table 3.1: Explain plan for an inefficiently paginated query.

As we can see, the view is queried for all the 2, 729 rows on the fills table, instead of obtaining
only the 100 rows that we have requested.

To solve this problem, we modified the query builder to optionally include certain attributes as
a subquery in the SELECT clause instead of a JOIN. The replacement would not work on the general
case, but, for our specific query, all the fills in the view are also in the table, and we know that rows
are matched one-to-one. Therefore, we could make the replacement, which yielded the following
query:

SELECT i.*

FROM (

SELECT

f.fill_number AS fill_number,

(SELECT p.peak_specific_lumi

FROM cms_oms_agg.fill_peak_specific_lumi_v p

WHERE f.fill_number = p.fill_number)

AS peak_specific_luminosity,

ROW_NUMBER() OVER (ORDER BY f.fill_number) AS row_counter__

FROM cms_oms.fills f

WHERE f.fill_number > 2000) i

51

WHERE i.row_counter__ BETWEEN 1 AND 100;

with the explain plan output shown in Table 3.2. This is a much more reasonable plan, that only
accesses the relevant rows in the view.

Id Operation (name) Rows Bytes Cost Time

0 Select statement 4811 183K 8 00:00:01
1 Sort group by nosort 1 38 10 00:00:01
2 Hash join outer 33 1254 10 00:00:01
3 Table access by index rowid (fill bunches) 33 957 6 00:00:01
4 Index range scan (fill bunches conf idx) 193 3 00:00:01
5 Table access full (scaling info) 22 198 3 00:00:01
6 View 4811 183K 8 00:00:01
7 Window sort pushed rank 4811 19244 8 00:00:01
8 Index fast full scan (fills pk) 4811 19244 7 00:00:01

Predicate Information (identified by operation id):

2 - access("B"."SCALE_ID"="BS"."SCALE_ID"(+))

3 - filter("B"."INTENSITY_BEAM_1">0 AND "B"."INTENSITY_BEAM_2">0)

4 - access("B"."FILL_NUMBER"=:B1 AND "B"."BEAM_1_CONFIGURED"=1 AND

"B"."BEAM_2_CONFIGURED"=1)

6 - filter("I"."ROW_COUNTER__">=1 AND "I"."ROW_COUNTER__"<=100)

7 - filter(ROW_NUMBER() OVER (ORDER BY "F"."FILL_NUMBER")<=100)

8 - filter("F"."FILL_NUMBER">2000)

Table 3.2: Execution plan for the improved query.

The advantage of the new approach is clear: performance. However, there are also drawbacks.
First, the generated query is significantly less clear for detail tables used by several attributes. It
is also less clear if we filter on one of these attributes. Second, the new query generation adds a
new layer of complexity of the query builder. Now for each detail attribute we need to choose if we
want it as a LEFT JOIN or as a subquery. The performance boost is significant enough to ignore
the drawbacks, but it is important to consider them.

Counting

When we paginate, we only return a fixed number of objects from the database, but we need to
know the total amount of objects that we would return without pagination. This is important, for
example, to generate links information to navigate to the previous, next, first or last page.

The approach that was encoded originally in the query builder was to generate two queries,
one that returns the full list of objects with every attribute, and a different one which only queried
the main table or tables and only returned the count. These queries were supposed to be executed
one after the other. However, to improve performance, we decided to do it on a single query.
This means that the query is more complicated, but we connect once to the database instead of
connecting twice, avoiding the extra delay from the second connection.

To enable this feature, it was important to also change the base classes accordingly. Specifically,
we needed to interrupt the mapping process to obtain the number of rows from one of the SQL
rows, and then continue parsing that row normally. For this, as we mentioned in Subsection 2.4.3,

52

we created a specific mapper that is composed with the endpoint-specific mapper. This means that
the outer mapper only retrieves counter information (if present), and the endpoint-specific mapper
does its job normally to retrieve the full details for each row. Then, those two results (the object
and the number of rows) are composed in a pair-like object, which is then returned. The number
of rows is then retrieved from one of these objects (all of them should have the same value), and
the list stripped of the numbers is also retrieved.

When this option is enabled, a query such as the one discussed above would look like this:

SELECT i.*, cnt.total_row_count__

FROM (

SELECT

f.fill_number AS fill_number,

(SELECT p.peak_specific_lumi

FROM cms_oms_agg.fill_peak_specific_lumi_v p

WHERE f.fill_number = p.fill_number)

AS peak_specific_luminosity,

ROW_NUMBER() OVER (ORDER BY f.fill_number) AS row_counter__

FROM cms_oms.fills f

WHERE f.fill_number > 2000) i

CROSS JOIN

(SELECT COUNT(*) AS total_row_count__

FROM

(SELECT f.fill_number AS fill_number

FROM cms_oms.fills f

WHERE f.fill_number > 2000)) cnt

WHERE i.row_counter__ BETWEEN 1 AND 100;

Of course, all the filtering is set up automatically in both queries, so none of this work has to
be done manually.

A different option, using Oracle window functions, was also tried, but was discarded because
the performance was significantly worse. The query was the following:

SELECT i.*, i.total_row_count__

FROM (

SELECT

f.fill_number AS fill_number,

(SELECT p.peak_specific_lumi

FROM cms_oms_agg.fill_peak_specific_lumi_v p

WHERE f.fill_number = p.fill_number)

AS peak_specific_luminosity,

ROW_NUMBER() OVER (ORDER BY f.fill_number) AS row_counter__,

COUNT(*) OVER (ORDER BY f.fill_number

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

AS total_row_count__

FROM cms_oms.fills f

WHERE f.fill_number > 2000) i

WHERE i.row_counter__ BETWEEN 1 AND 100;

This option is definitely simpler and, naively, it should generate a similar execution plan. How-
ever, the plan generated is very alike to the plan in Table 3.1, calculating every peak luminosity

53

even if most of them will never be shown. This is disappointing, because this is the perfect use
case for window functions to simplify the query, but performance is key for our purposes.

3.7.2 Fills

The fills endpoint is quite complex, as one of our core endpoints. It does not only aggregate
information from our tables, but also from several external tables not under our control, which
means that we cannot decide which columns are indexed.

Endpoint-wide changes were necessary to adapt it to the modern endpoint structure. The fills
endpoint was one of the oldest and it was completely phased out. The endpoint code was greatly
simplified by using the new base classes and the new features.

The new endpoint was affected by the performance problems described above, but after the
changes the new endpoint is as performant as the old one. Careful analysis of the execution plans
reveals that the query execution is quite close to being optimal.

About the similarities with the old endpoint, we can find that the queries share a common
structure, as all these detail tables have been unaffected by the migration. Furthermore, the fills
table itself is not so different from the old one. The main difference is that additional tables (such
as the particle type tables) have been joined to provide data that were hardcoded before.

3.7.3 Runs

The runs endpoint is the biggest endpoint (judging by the number of attributes) available in OMS
and it was the biggest challenge in terms of optimization. It aggregates data from more than 10
tables, and about half of them are not under our control. In addition, we do not have permissions
to explain the execution plan for several of the views used, as we do not have permission to access
the underlying tables. This means that, for the parts of the query containing those views, it was
very difficult to debug the performance problems without relying on intuition almost exclusively.

Indexing and ranges

The original indexes for the run table included indexes on the following columns:

� run number (primary key).

� fill number (foreign key).

� era id (foreign key, bitmap index).

� start time.

� stop time.

� sequence name.

� trigger mode.

All of those are columns that are likely to be filtered, but the indexes are not well optimized
for filtering on several columns. It was then decided to rethink the whole indexing in this table to
try and optimize it. The goal was to have decent speed on all the queries used by the GUI, that
is, all the queries generated from the controller shown in Figure 3.3.

As the image shows, runs can be filtered by fill number, run number range or date range. In
addition to that, they can be filtered by run component and sequence. We will not consider the

54

Figure 3.3: Run summary controller

run components, because they are stored on a different table. Moreover, it is important to note
that the date range is translated as start time >= ... and end time <= In addition to
these possible filters, typical queries may filter by fill range, by single run number, by range of start
times...

The new indexes act on the following columns:

� run number (primary key).

� sequence name, run number: optimizes filtering by run range and sequence.

� fill number, sequence name: optimizes filtering by fill number, and maybe filter by sequence
afterwards.

� era id (foreign key, bitmap index).

� start time: optimizes filtering by start time range.

� sequence name, start time: optimizes filtering by start time range and sequence.

� stop time: optimizes filtering by stop time range.

� trigger mode.

A careful look at the list of indexes above reveals that the only use case that is not covered is
filtering by date range. However, it is clear that no index will solve this problem: our filters have
inequalities in both start time and end time, and an index on both of them would be the same
than sorting just on start time. In fact, indexes are linear in nature, while it is clear that storing
the order of end times for each start time would be quadratic, and thus prohibitively expensive
even if it were possible.

Filtering by date

To exemplify the problem, we can present the query generated originally:

SELECT i.*, cnt.total_row_count__

FROM (

SELECT

r.fill_number AS fill_number,

scaling.integrated_lumi_scale_display AS integrated_lumi_scale_display,

r.stop_time AS end_time,

55

scaling.integrated_lumi_scale_factor AS integrated_lumi_scale_factor,

r.stop_time - r.start_time AS duration,

r.start_time AS start_time,

r.sequence_name AS sequence,

r.run_number AS run_number,

r.delivered_lumi * scaling.integrated_lumi_scale_factor AS delivered_lumi,

r.recorded_lumi * scaling.integrated_lumi_scale_factor AS recorded_lumi,

ROW_NUMBER() OVER (ORDER BY r.run_number DESC) AS row_counter__

FROM cms_oms.runs r

LEFT JOIN cms_oms.scaling_info scaling ON r.scale_id = scaling.scale_id

WHERE r.sequence_name = 'GLOBAL-RUN'

AND r.start_time >= TIMESTAMP '2018-11-01 00:00:00.0'

AND r.stop_time <= TIMESTAMP '2018-11-30 00:00:00.0'

ORDER BY run_number DESC) i

CROSS JOIN

(SELECT COUNT(*) AS total_row_count__ FROM (

SELECT

r.run_number AS run_number,

r.stop_time AS end_time,

r.sequence_name AS sequence,

r.start_time AS start_time

FROM cms_oms.runs r

WHERE r.sequence_name = 'GLOBAL-RUN'

AND r.start_time >= TIMESTAMP '2018-11-01 00:00:00.0'

AND r.stop_time <= TIMESTAMP '2018-11-30 00:00:00.0'

ORDER BY run_number DESC)) cnt

WHERE i.row_counter__ BETWEEN 41 AND 60;

We can use this opportunity to also compare the execution plans with the old and the new indexing,
to see that the difference is very small. The old execution plan is shown in Table 3.3, and the new
one in Table 3.4.

We can see that the new index helps partially, but we still have a slow query in our hands.
The reason is clear. With the old indexes, only the stop time index was being checked, and this
returns all runs that finish before the specified date. Then, we need to check them one by one to see
that the start time and sequence name conform to what we want. Even though Oracle decides
to optimize this process using the start time and sequence name indexes to generate a bitmap,
we still have a slow process.

For the new indexes, the query is a little bit more efficient because it now has the sequence name,

start time index that can be used fully to apply the filters. Still, it is necessary to apply manually
the filter for the stop time in all remaining rows.

To solve this problem efficiently, we need to leverage the extra information that we are aware
of but the optimizer does not have. In this case, the domain knowledge is clear: we know that
start time is smaller than stop time. And the solution presents itself: we can add a fourth
condition to the where clause, that is redundant given our domain knowledge, but that can guide
the optimizer into making different choices.

Thus, we customize the query builder to add this extra filter when necessary. After the changes,
it generates the following query:

SELECT i.*, cnt.total_row_count__

FROM (

56

Id Operation (name) Rows Bytes Cost Time

0 Select statement 894 273K 1532 00:00:19
1 Table access by index rowid (trigger keys) 1 46 3 00:00:01
2 Index unique scan (trigger keys pk) 1 2 00:00:01
3 Nested loops 894 273K 1532 00:00:19
4 View 1 13 890 00:00:11
5 Sort aggregate 1 26
6 Table access full (runs) 894 23244 890 00:00:11
7 View 894 261K 642 00:00:08
8 Window sort pushed rank 894 46488 642 00:00:08
9 Hash join right outer 894 46488 642 00:00:08

10 Table access full (scaling info) 22 198 3 00:00:01
11 Table access by index rowid (runs) 894 38442 639 00:00:08
12 Bitmap conversion to rowids
13 Bitmap and
14 Bitmap conversion from rowids
15 Sort order by
16 Index range scan (runs start time idx) 23 00:00:01
17 Bitmap conversion from rowids
18 Index range scan (runs sequence name idx) 309 00:00:04

Predicate Information (identified by operation id):

2 - access("HLT"."RUN_NUMBER"=:B1 AND "HLT"."NAME"='HLT_KEY')

6 - filter("R"."START_TIME">=TIMESTAMP' 2018-11-01 00:00:00.000000000' AND

"R"."SEQUENCE_NAME"='GLOBAL-RUN' AND "R"."STOP_TIME"<=TIMESTAMP' 2018-11-30

00:00:00.000000000')↪→

7 - filter("I"."ROW_COUNTER__">=41 AND "I"."ROW_COUNTER__"<=60)

8 - filter(ROW_NUMBER() OVER (ORDER BY INTERNAL_FUNCTION("R"."RUN_NUMBER") DESC

)<=60)↪→

9 - access("R"."SCALE_ID"="SCALING"."SCALE_ID"(+))

11 - filter("R"."STOP_TIME"<=TIMESTAMP' 2018-11-30 00:00:00.000000000')

16 - access("R"."START_TIME">=TIMESTAMP' 2018-11-01 00:00:00.000000000')

filter("R"."START_TIME">=TIMESTAMP' 2018-11-01 00:00:00.000000000')

18 - access("R"."SEQUENCE_NAME"='GLOBAL-RUN')

Table 3.3: Old execution plan for runs with date filtering.

SELECT

r.fill_number AS fill_number,

scaling.integrated_lumi_scale_display AS integrated_lumi_scale_display,

r.stop_time AS end_time,

scaling.integrated_lumi_scale_factor AS integrated_lumi_scale_factor,

r.stop_time - r.start_time AS duration,

r.start_time AS start_time,

r.sequence_name AS sequence,

r.run_number AS run_number,

r.delivered_lumi * scaling.integrated_lumi_scale_factor AS delivered_lumi,

r.recorded_lumi * scaling.integrated_lumi_scale_factor AS recorded_lumi,

57

Id Operation (name) Rows Bytes Cost Time

0 Select statement 894 273K 1044 00:00:13
1 Table access by index rowid (trigger keys) 1 46 3 00:00:01
2 Index unique scan (trigger keys pk) 1 2 00:00:01
3 Nested loops 894 273K 1044 00:00:13
4 View 1 13 414 00:00:05
5 Sort aggregate 1 26
6 View (index$ join$ 008) 894 23244 414 00:00:05
7 Hash join
8 Index range scan (runs sequence start time idx) 894 23244 10 00:00:01
9 Index range scan (runs stop time idx) 894 23244 1310 00:00:16

10 View 894 261K 631 00:00:08
11 Window sort pushed rank 894 46488 631 00:00:08
12 Hash join right outer 894 46488 631 00:00:08
13 Table access full (scaling info) 22 198 3 00:00:01
14 Table access by index rowid (runs) 894 38442 627 00:00:08
15 Index range scan (runs sequence start time idx) 1524 9 00:00:01

Predicate Information (identified by operation id):

2 - access("HLT"."RUN_NUMBER"=:B1 AND "HLT"."NAME"='HLT_KEY')

6 - filter("R"."START_TIME">=TIMESTAMP' 2018-11-01 00:00:00' AND

"R"."SEQUENCE_NAME"='GLOBAL-RUN' AND "R"."STOP_TIME"<=TIMESTAMP' 2018-11-30

00:00:00')

↪→

↪→

7 - access(ROWID=ROWID)

8 - access("R"."SEQUENCE_NAME"='GLOBAL-RUN' AND "R"."START_TIME">=TIMESTAMP'

2018-11-01 00:00:00' AND "R"."START_TIME" IS NOT NULL)↪→

9 - access("R"."STOP_TIME"<=TIMESTAMP' 2018-11-30 00:00:00')

10 - filter("I"."ROW_COUNTER__">=41 AND "I"."ROW_COUNTER__"<=60)

11 - filter(ROW_NUMBER() OVER (ORDER BY INTERNAL_FUNCTION("R"."RUN_NUMBER") DESC

)<=60)↪→

12 - access("R"."SCALE_ID"="SCALING"."SCALE_ID"(+))

14 - filter("R"."STOP_TIME"<=TIMESTAMP' 2018-11-30 00:00:00')

15 - access("R"."SEQUENCE_NAME"='GLOBAL-RUN' AND "R"."START_TIME">=TIMESTAMP'

2018-11-01 00:00:00' AND "R"."START_TIME" IS NOT NULL)↪→

Table 3.4: New execution plan for runs with date filtering.

ROW_NUMBER() OVER (ORDER BY r.run_number DESC) AS row_counter__

FROM cms_oms.runs r

LEFT JOIN cms_oms.scaling_info scaling ON r.scale_id = scaling.scale_id

WHERE r.sequence_name = 'GLOBAL-RUN'

AND r.start_time >= TIMESTAMP '2018-11-01 00:00:00.0'

AND r.stop_time <= TIMESTAMP '2018-11-30 00:00:00.0'

AND r.start_time <= TIMESTAMP '2018-11-30 00:00:00.0'

ORDER BY run_number DESC) i

CROSS JOIN

(SELECT COUNT(*) AS total_row_count__ FROM (

SELECT

r.run_number AS run_number,

58

r.stop_time AS end_time,

r.sequence_name AS sequence,

r.start_time AS start_time

FROM cms_oms.runs r

WHERE r.sequence_name = 'GLOBAL-RUN'

AND r.start_time >= TIMESTAMP '2018-11-01 00:00:00.0'

AND r.stop_time <= TIMESTAMP '2018-11-30 00:00:00.0'

AND r.start_time <= TIMESTAMP '2018-11-30 00:00:00.0'

ORDER BY run_number DESC)) cnt

WHERE i.row_counter__ BETWEEN 41 AND 60;

that has the execution plan shown in Table 3.5.

Id Operation (name) Rows Bytes Cost Time

0 Select statement 143 44759 212 00:00:03
1 Table access by index rowid (trigger keys) 1 46 3 00:00:01
2 Index unique scan (trigger keys pk) 1 2 00:00:01
3 Nested loops 143 44759 212 00:00:03
4 View 1 13 104 00:00:02
5 Sort aggregate 1 26
6 Table access by index rowid (runs) 143 3718 104 00:00:02
7 Index range scan (runs sequence start time idx) 247 3 00:00:01
8 View 143 42900 108 00:00:02
9 Window sort pushed rank 143 7436 108 00:00:02

10 Hash join outer 143 7436 108 00:00:02
11 Table access by index rowid (runs) 143 6149 104 00:00:02
12 Index range scan (runs sequence start time idx) 247 3 00:00:01
13 Table access full (scaling info) 22 198 3 00:00:01

Predicate Information (identified by operation id):

2 - access("HLT"."RUN_NUMBER"=:B1 AND "HLT"."NAME"='HLT_KEY')

6 - filter("R"."STOP_TIME"<=TIMESTAMP' 2018-09-30 00:00:00.000000000')

7 - access("R"."SEQUENCE_NAME"='GLOBAL-RUN' AND "R"."START_TIME">=TIMESTAMP'

2018-09-01↪→

00:00:00.000000000' AND "R"."START_TIME"<=TIMESTAMP' 2018-09-30

00:00:00.000000000')↪→

8 - filter("I"."ROW_COUNTER__">=41 AND "I"."ROW_COUNTER__"<=60)

9 - filter(ROW_NUMBER() OVER (ORDER BY INTERNAL_FUNCTION("R"."RUN_NUMBER") DESC

)<=60)↪→

10 - access("R"."SCALE_ID"="SCALING"."SCALE_ID"(+))

11 - filter("R"."STOP_TIME"<=TIMESTAMP' 2018-09-30 00:00:00.000000000')

Table 3.5: Final execution plan for runs with date filtering.

The difference is immediately clear. The index on sequence name, start time can be used
to retrieve a much smaller range of runs. These runs will be tested for the stop time condition,
and then returned. But, given what we know about the relationship between start time and
stop time, at most one run will be filtered out. That is, we could use the index to retrieve the
exact list of runs that we wanted, except for maybe one extra run.

59

This is a very ad-hoc solution but it is extremely useful. Runs are very often filtered this way,
which means that we needed to optimize it.

3.7.4 Lumisections

The lumisections endpoint was probably the easiest to migrate, because the old endpoint only used
data from one external table. However, we still faced some problems concerning some data that
were missing from the new database design, but we still needed to return. Besides, it was also
necessary to tune the table and indexes.

Beam properties

Some Boolean columns representing beam properties (for example, information concerning if beam 1
and 2 are present or stable) were not deemed important enough to be stored in our new lumisections
table (as opposed to the old table). However, for backwards compatibility we wanted to still return
these columns in the endpoint. We decided to create a view showing these data with a row per
lumisection.

After studying the trigger filling these columns in the old table, it was clear that the data was
stored as a bitmap in the table cms lhcgmt cond.lhc gmt events. A new row is logged to this
table only when a value on the bitmap changes. Furthermore, not all rows in this table store values
relevant to what we want. And, instead of storing a timestamp, it stores two columns: seconds (the
seconds since 1970, Unix epoch) and nseconds (the nanoseconds to add to the previous number of
seconds).

Summarizing, we had to find a fast and efficient way to assign to each lumisection the latest
flag in the above table, that is, the latest row stored before the start time of the lumisection. This
presents both query design and query performance problems.

The cms lhcgmt cond.lhc gmt events table has four relevant columns:

Column Description

seconds Seconds since 01/01/1970.
nseconds To add to the seconds for a precise timestamp.
value The value that we are interested in. Bitmap.
groupindex Only rows with groupindex = 8 contain beam information.

Only two indexes could be relevant for our purposes: an index on seconds and an index on
(groupindex, seconds). The final version of the query was:

SELECT run_number,

lumisection_number,

LEAST(BITAND(beam_smp, 1), 1) AS beam1_present,

LEAST(BITAND(beam_smp, 2), 1) AS beam1_safe,

LEAST(BITAND(beam_smp, 4), 1) AS beam1_stable,

LEAST(BITAND(beam_smp, 8), 1) AS beam1_moveable,

LEAST(BITAND(beam_smp, 1), 1) AS beam2_present,

LEAST(BITAND(beam_smp, 2), 1) AS beam2_safe,

LEAST(BITAND(beam_smp, 4), 1) AS beam2_stable,

LEAST(BITAND(beam_smp, 8), 1) AS beam2_moveable

FROM (

SELECT run_number,

lumisection_number,

60

(SELECT MAX(gmt.value) KEEP (DENSE_RANK LAST ORDER BY nseconds)

FROM cms_lhcgmt_cond.lhc_gmt_events gmt

WHERE seconds =

(SELECT MAX(seconds)

FROM cms_lhcgmt_cond.lhc_gmt_events gmt

WHERE seconds <= (cast(start_time as date) - date '1970-01-01')

* 24 * 60 * 60↪→

AND groupindex = 8)

AND groupindex = 8)

AS beam_smp

FROM cms_oms.lumisections l);

Here, we use LEAST() to avoid complicated CASE expressions. BITAND() will return either 0 or its
second argument, since this one is a power of two. Thus, LEAST() will return 1 if BITAND() returns
a non-zero argument, and 0 otherwise. This is exactly what we are looking for.

The resulting execution plan is shown in Table 3.6, where a filter on the run number is added
to avoid querying the full lumisections table. The idea is to leverage the indexes: first, the index
in (groupindex, seconds) is used for a special range scan to retrieve the maximum, that is, the
second value of the timestamp we need. The outer query then uses the same index to identify a
set of values for that second, which will typically be very small; and thus sort on the unindexed
nseconds over a very small set of values, taking the value for the last row. Note that the query
might return a row after the lumisection start time, but it would be only by a fraction of a second
and this is not a problem for us. Of course, we could filter on the nseconds too, if we wanted to
prevent this.

Id Operation (name) Rows Bytes Cost Time

0 Select statement 159 3180 6 00:00:01
1 Sort aggregate 1 22
2 Table access by index rowid (lhc gmt events) 1 22 5 00:00:01
3 Index range scan (lhc gmt events secgrp i) 1 4 00:00:01
4 Sort aggregate 1 10
5 First row 1 10 4 00:00:01
6 Index range scan (min/max) (lhc gmt events secgrp i) 1 10 4 00:00:01
7 Table access by index rowid (lumisections) 159 3180 6 00:00:01
8 Index range scan (lumisections pk) 159 3 00:00:01

Predicate Information (identified by operation id):

3 - access("GROUPINDEX"=8 AND "SECONDS"= (SELECT MAX("SECONDS") FROM

"CMS_LHCGMT_COND"."LHC_GMT_EVENTS" "GMT" WHERE "SECONDS"<=(CAST(:B1 AS

date)-TO_DATE(' 1970-01-01↪→

00:00:00', 'syyyy-mm-dd hh24:mi:ss'))*24*60*60 AND "GROUPINDEX"=8))

6 - access("GROUPINDEX"=8 AND "SECONDS"<=(CAST(:B1 AS date)-TO_DATE(' 1970-01-01

00:00:00',↪→

'syyyy-mm-dd hh24:mi:ss'))*24*60*60)

8 - access("RUN_NUMBER"=TO_NUMBER(:RUN_NUMBER))

Table 3.6: Final execution plan for the beam properties per lumisection.

61

Indexing

As described above, not a lot of indexes are necessary for the lumisections table. In the end, we
have four indexes:

� run number, lumisection: index for the primary key.

� start time: to allow querying by time.

� fill number, run number, lumisection: useful when we join with the fills table.

� last update: to be used for the insertion procedures.

In this case, the indexes are what could be expected for the kind of queries that we have
described, and there is not much to discuss about them.

3.7.5 Eras

The eras endpoint, as simple as it is (it only returns around 40 rows of data), presented some
problems when migrating. Those were caused from the change in structure, since the old era table
contained all data about the fill, run and time range that an era spans. However, the information
is not stored in the new eras table, since it is implicit in the fill and run tables.

The problem is that dynamically rebuilding the range information was not so easy, at least
with the original index structure. Our runs and fills tables were indexed on era id, but this did
not prevent what was, in essence, a full table sort, to be able to determine the minimum and the
maximum for each given era.

The solution, for the fills table, was changing the index on era id to one on the pair (era id,

fill number). Exactly the same thing was done on the runs table, where now (era id,run

number) are indexed. This only left a small problem: the start and end time of the era, which are
the start time of the first run and the end time of the last run. This, however, could be solved with
a smarter query: instead of taking the MIN(start time) and MAX(stop time), we queried those
columns in the following way:

MIN(start_time) KEEP (DENSE_RANK FIRST ORDER BY run_number) AS start_time,

MAX(stop_time) KEEP (DENSE_RANK FIRST ORDER BY run_number) AS end_time

which results in the index being used, just as we wanted.
In general, we have used the window functions above at several places in the API. They are

useful in combination with a GROUP BY clause, to retrieve the first and last item in the group sorted
by the given criteria. A lot of the work needed to optimize database queries is based on informing
the optimizer about data dependencies that it is not aware of. Functions like FIRST and LAST are
extremely useful for this: for example, in the query fragment above, we are aware that sorting
on start time of a run is the same than sorting on run number. By introducing this kind of
information in our query, we can make the optimizer use the indexes that are already in the tables.

62

4. OMS for subsystems

4.1 Subsystems and OMS

CMS is a multipurpose detector built from more than a dozen subdetectors, also called subsystems.
The ultimate purpose of the detector is to reconstruct the trajectory of the particles generated in
each collision and infer their properties from that analysis. To achieve this, each subdetector
measures different magnitudes with different precision, and often also only for certain kinds of
particle. For example, the tracker, closest to the beam, measures the track of each particle very
accurately, while the muon detector exclusively registers muons, and others are only able to detect
charged particles. Some measurements overlap, but in general each subdetector is highly specialized.

The highly modular approach used by CMS has a lot of advantages, but also requires teams to be
highly synchronized among themselves and with the teams managing detector-wide infrastructure
(for example, the data acquisition group, which includes OMS). OMS itself is a very good tool to
ensure that all teams are on the same page and have accurate and real-time information of the
status of the detector.

However, OMS strives to be a multipurpose tool, useful for every subsystem, and most subsys-
tem experts need access to very specific data that the other teams are not interested in. It is for
this reason that the OMS for subsystems project started. The aim of the project is simple: offer
tools for subsystems to build their own OMS pages and workspaces, that they can structure freely
to display the data that they need. The idea is to offer a very accessible system where simple data
pages can be created with minimal development effort, and to help subsystems that are interested
in more complex pages.

Historically, with WbM, everything, including the pages of each subsystem, was under control
of the core WbM group. While this approach allowed the core developers to review and rewrite
the code coming from the subsystems before deploying it, it had serious drawbacks. For example,
every time that a subsystem wanted to change something in their private pages, the central team
had to take care of it. What is more, the development of any new subsystem specific page was also
the responsibility of the core WbM team, which demanded very high personpower.

For OMS, the approach has been radically different. We have built the whole system to be
easy to extend, and each subsystem will be responsible to develop and maintain their own pages.
This is, of course, more work for the subsystems, but it also allows them much more freedom to
define their own requirements and change them when needed, without waiting for the response
of the core team. For the core team, this enables the whole system to be supported with much
less personpower. The biggest challenge of this approach is to ensure that the subsystems cannot
interfere with the core system, while ensuring that their pages can be accessed from it.

63

4.1.1 Database

The data storage that the subsystems decide to use does not concern OMS, although subsystems
that use an Oracle database can take advantage of the solutions that we have already developed.
Luckily, most of them do, and they already manage all their tables themselves.

The OMS core team recommends subsystems to aggregate their data into database views.
This makes it easier to query it from an API (as will be discussed in the next subsection), and
furthermore simplifies data changes. Most subsystems have highly dynamic data sources that share
a common interface. With WbM, changing the data source meant editing the webpage code, even
if the whole display logic remained unchanged. By using views, the subsystems can change the
underlying data source without having to write and deploy a new version of the code. Furthermore,
avoiding deployment is useful because these are usually time-sensitive issues, where the subsystem
wants to update their pages as soon as possible.

4.1.2 Aggregation API

Every subsystem needs some kind of API to display their data. Furthermore, most of the GUI
components are built to support an API that complies with the JSON API specification. Thus, the
Aggregation API was built to be easy to extend, and the recommendation of the core OMS team
to the subsystems was to run their own instance of the Aggregation API, customizing their own
endpoints. However, some subsystems have successfully set up other APIs with a similar interface
and are using them without an issue.

The decision of having each subsystem running their own API instance has to do with the OMS
core being safe from interference. The core OMS data should be available even if subsystems deploy
faulty code that crashes their API instance. This was a complicated decision to make, because it
implied quite a lot of work for the core team in the short term: adapting the API server to be used
by external teams, writing documentation, meeting with subsystems to help them set up their own
machines... However, we considered that it was the best option in the long term. It is less work for
the core team, because at that point subsystems should have their own API instances and be mostly
self-sufficient. But, what is more important, the core team should not assume those responsibilities.
Subsystem experts know how their subsystem works and what data they want to display, and they
have enough technical knowledge to make the middleman (the core team) redundant.

Part of my responsibilities included making the API accessible to subsystems and collaborate in
the meetings to guide them in the migration process, although the main contact with the subsystems
was one of my colleagues. Most of the subsystem representatives that visited us were not interested
in building a complex API, and just wanted to display their database table in the OMS webpage.
To this end, we tried to simplify the structure of a basic endpoint in the API. The base classes were
key to achieve this, but we also created an script that is able to generate all the endpoint files from
a JSON file containing information about a given database table and its columns. This means that
subsystems can design a database view for every endpoint that they want to expose via their API,
run the script for each view and have a complete API running, with little to no Java development.

4.1.3 Web portal

From the beginning, the web portal was built with a modular approach on mind, anticipating
this kind of use case. To achieve this, all pages and portlets are completely dynamic, and there
is a graphical interface in place to add, modify, and delete them. There are a good number of
default portlets (data tables, different kinds of plots...) that can be heavily customized. Adding,
for example, a new data table is a drag and drop process if an endpoint is already available, without
writing a single line of code.

64

The collection of default portlets is quite extensive and it covers most use cases. If a subsystem
still wanted to have their custom portlet, it would have to be added to the core system, and in this
case it would be carefully vetted. While this is similar to the approach of WbM, the difference is
the frequency of such requests, that should be much lower.

4.2 Last value pages

Some of the most complex pages in WbM are the last value pages, an example of which is shown
in Figure 4.1.

Figure 4.1: A WbM Last Value page for the CSC subsystem.

The last value pages offer a schematic of each subsystem, highlighting parts with certain colours
depending on their status. Shapes vary wildly between subsystems, and while several of them would
still like to access these pages, rewriting the 10, 000 line C++ that draws them would require too
much manpower.

One of my tasks related to subsystems was to find out how to migrate these pages with minimal
effort. In the end, I deemed unreasonable to try to rewrite or translate the C++ file. However, the
webpage still uses HTML <map> tags to register clicks in each quadrilateral. This means that it is
possible to run a script to retrieve the coordinates of each piece.

The script was built with extension in mind. Every subsystem has their own identifier system
for their parts, but the last value pages in WbM showed a standard identifier, calculated from the
position of each part. The scripts allow each subsystem to translate this positional identifier into
a custom identifier. This one is, in turn, the one used to match the database data with each part.

In the end, the script is able to generate a geoJSON file with all the coordinate information
and the WbM identifier for each section. This geoJSON is then read by highcharts, our plotting
library, to generate the schematic in real time, generating a result that can be seen in Figure 4.2.

65

Figure 4.2: An OMS Last Value page for the CSC subsystem.

4.2.1 Displaying the colours

Correctly displaying the colours is more complicated, since it involves matching database entries
with the plot. The colours are retrieved from a specific endpoint, which returns a list of sections for
each colour. Besides, colours are not stored directly in the database, but are calculated dynamically
from the parameters that are there.

The previous Figures 4.1 and 4.2 show the webpage for CSC, and this is also a good subsystem
to show the complexity on the database level. Each chamber shown in the detector has a number of
positions, which are sensors that can measure voltage. There are voltage ranges defined to decide
the status of each position, and then extra rules to decide about the whole chamber. For example,
the chamber is considered to be “hot” if there is a single position that is “hot”, but it is only “on”
if every position is “on”.

Initially, the representative of CSC proposed a solution involving procedures calculating the
colour data dynamically. However, each query took several seconds to return. I collaborated with
the CSC expert to translate their logic into views, that we will discuss below. Using pure SQL to
retrieve the data improved the efficiency more than tenfold, with the new views taking less than
100 ms to retrieve the colour for all chambers.

In the end, this is a prototype of the view that we created. The idea is simple: the innermost
query checks the voltage ranges, manually defined. They are mutually exclusive by definition, so
all values per row will be 0, but a single one with value 1. Those values are then grouped and
summed to check the total number of values with the given status. The rest of the logic is on the
outermost query, which compares the numbers with the total positions for the given chamber.

SELECT

chamber,

CASE

WHEN total_hot > 0 THEN 1

WHEN total_green = channel_count THEN 2

WHEN total_green > 0 THEN 3

66

WHEN total_ramp > 0 THEN 4

WHEN total_standby = channel_count THEN 5

WHEN total_standby > 0 THEN 6

ELSE 7 -- total_low = channel_count

END AS color

FROM

(SELECT

chamber,

MAX(position) AS channel_count,

SUM(hot) AS total_hot,

SUM(green) AS total_green,

SUM(ramp) AS total_ramp,

SUM(standby) AS total_standby,

SUM(low) AS total_low

FROM

(SELECT chamber,

position,

CASE WHEN hv > (nominal + 40) THEN 1 ELSE 0 END AS hot,

CASE WHEN ABS(nominal - hv) <= 40 THEN 1 ELSE 0 END AS green,

CASE WHEN hv < (nominal - 40) AND hv >= 3100 THEN 1 ELSE 0 END AS ramp,

CASE WHEN hv < (nominal - 40) AND hv > 2900 AND hv < 3100 THEN 1 ELSE 0

END AS standby,↪→

CASE WHEN hv < (nominal - 40) AND hv <= 2900 THEN 1 ELSE 0 END AS low

FROM cms_csc_pvss_map.csc_hv_v_lv)

GROUP BY chamber)

ORDER BY chamber;

The original procedures were not much more complicated or inefficient than the query in theory,
but in practice they needed a lot of context switches between SQL and PL/SQL, which made them
much slower.

Coming back to the discussion in Subsection 4.1.1, CSC is a prime example of why each sub-
system should manage their own views. The criteria to decide the status of each chamber changes
often, particularly the ranges for voltages. Having the expert of the subsystem managing his own
views allows him to update this data as soon and as often as needed.

Once the database view is ready, the endpoints are not a problem. We created two endpoint
templates: one for the colours, which takes its data from a view just like the one above; and one for
a datatable, for subsystems that want to display data per chamber (for example, CSC wanted to
display the voltage of each position in the chamber). The templates are available for the subsystems
and are ready to run, just by changing the name of the endpoint and of the database tables.

67

5. Results and conclusion

5.1 Results: the OMS webpage

The previous chapters have discussed all the parts of the OMS system. The best way to showcase
the results of all this work, and to present how all those parts interact, is to show the actual OMS
webpage. Although I have not written any GUI code at all, all the data shown is provided by the
Aggregation API, and ultimately by the database.

The OMS home page is shown in Figure 5.1. This is the style that is used throughout the
page, with independent portlets querying one endpoint each with parameters controlled by the top
bar. For the index page, the controller is automatically set to filter data for the last week, but the
screenshot shows that it can be modified to return data for an arbitrary time period.

Figure 5.1: Screenshot of the OMS home page.

The plots shown in the home page are not chosen randomly. The plots on the left and middle
show luminosity, which is the single most important value that OMS provides. It summarizes the

68

performance of the accelerator and the detector: the higher the luminosity, the more collisions
are observed. The efficiency plot shown on the right is actually used for the same purpose, since
efficiency measures the percentage of time that the detector is collecting data.

All three plots on this page, plus the data table on the top left, take their data from the
lumisection summaries endpoint discussed in Subsection 2.7.1. The homepage of OMS shows how
important this endpoint is, and from a technical standpoint it also showcases the need of endpoints
that are able to return aggregated data for a period of time. To maximize GUI performance, the
endpoint just returns 1000 entries, instead of the tens of thousands that could be available for a
given date range. While all entries have to be checked and averaged on the database side, we keep
the data processing in the front-end to a minimum.

This is also a good opportunity to mention that all plots in OMS support zooming. When the
user zooms, data is actually queried again from the original endpoint. This is a testament to the
speed and reliability of the Aggregation API, because the zoom feature works immediately and
the user does not realize that data is queried again. Zooming in this way also allows the API to
return data in the current granularity. The API will return 1000 data points for the original date
range, and the same number of points for the zoomed date range, aggregating less rows per point
returned.

Finally, the main page shows how data units are important in our system, and justifies the
need of carefully storing and retrieving them, as we discussed in Section 2.6 and Subsection 3.4.1.
All values and plots in OMS are displayed with their units, if they have them. For example, the
integrated luminosities in the summary table are displayed in µb−1 (where b stands for barns, a
unit equivalent to 10−28m2), and the instantaneous luminosity is displayed in cm−2s−1. In both
cases, the value is easier to read if the adequate units are displayed, such that the magnitude
can be scaled to a reasonable value (typically between 1 and 1000). However, the way to do this
differs because there are different conventions for different types of magnitude. For example, for
instantaneous luminosity, it is customary to always use cm−2s−1, with an appropriate power of ten
before it; while integrated luminosity is typically displayed by adjusting the units to their SI prefix.
It is even worse than this: depending on the particles collided, luminosity can be several orders of
magnitude different, and there are conventions for the appropriate scaling to use with each kind
of fill. We already described in the referenced sections how to solve these problems, but this is a
great opportunity to show how they arise with real data.

In addition to the index page, the most important OMS pages are the ones displaying runs
and fills. Those display the information in our core tables (fills, runs and lumisections) and also
information coming from a handful of additional tables.

The Fill Report shown in figure 5.2 is the go-to page for information about a fill. Apart from the
fill details and the additional data tables, the page shows the integrated luminosity per fill. Again,
luminosity is key for scientists to understand what happened during a fill, and the customized plot
shows even more details. First, the start of each run inside the fill and the start of stable beams
is shown. It is interesting to note that no luminosity is delivered until stable beams are declared:
as we previously explained, stable beams are declared when the beam is ready for collisions; thus,
luminosity is meaningless before that, since the beam is not yet prepared.

Downtimes are also shown in the plot, with orange shading. A downtime is a period of time
when the detector isn’t working during stable beams, i.e., they mark moments when the beam is
correctly configured and collisions are happening but no data are being taken. This is the perfect
opportunity to show the difference between delivered and recorded luminosity: if we focus on
the bigger downtime period shown in the plot, it is easy to see that recorded luminosity remains
constant, while delivered luminosity keeps growing. This is precisely the definition of downtime:
LHC keeps providing luminosity, but CMS cannot make use of it.

The last thing that is worth mentioning about the Fill Report is the static plots on the bottom

69

Figure 5.2: Screenshot of the OMS Fill Report.

of the page. These differ significantly from the other plots shown, and that is because they are
coming from a different source. These plots are the last piece of the old system to be migrated.
They are generated by an old and quite complex C++ program, and creating endpoints to replace
them is not easy, mainly because a lot of the data sources are deprecated and new ones would have
to be located. The fill report will show the old plots until we are able to recreate them using the
technology of OMS.

70

Figure 5.3: Screenshot of the OMS Run Report (page 1).

The Run Report is shown in figure 5.3. It aggregates all the information from an specific run,
and queries a handful of different endpoints to obtain the information it needs: the runs endpoint
itself, but also the deadtimes, the downtimes, the lumisections, the DAQ readouts, and the stream
summaries. This page is a good example of how performance is key for the Aggregation API. The

71

Figure 5.3: Screenshot of the OMS Run Report (page 2).

page has to load with no perceptible delay, to provide a very good user experience. Users expect
to change between different runs, compare their data, navigate around... and they should be able
to do so without noticeable waiting times.

The previous pages are only a very small summary of what OMS has to offer, but they show the
purpose and usefulness of a handful of features that we have described throughout the text. The
detailed description of the OMS presentation layer can be found in [2]. Of course, all this interesting
features that we just showed for the core OMS page are also available to subsystems, which we
discussed in Chapter 4. The current section also shows the kind of components that we use to
display our own data, that are generic enough to be adapted to display the data of subsystems.
As we detailed in Subsection 4.1.3, subsystem can often incorporate all this functionality without
writing a single line of front-end code on their side.

5.2 Conclusion

During my internship, I have worked to improve the whole backend of the OMS webpage. Thanks
to my contributions, we have been able to move away from the old WbM database tables, which
were a very big source of problems, and we are using a newer schema. Furthermore, the new
schema is more adequate to our needs because the requirements are now much more precise and
much better defined than when the old schema was designed. Lastly, the new schema only has to
cater to a single user, the Aggregation API, which allows for more specific customization, such as
indexes for particular queries.

All these changes have been propagated to the API, and have improved it greatly, enabling

72

queries that are faster and easier to write. However, I have also worked on improving the API
code itself. Apart from the new endpoints, which of course are necessary to display all the data
needed, I have contributed with a handful of new features, useful for users and developers alike.
Internally, writing new endpoints is now considerably easier, and most of the endpoint code is now
on the abstract shared classes. Externally, the API interface has been improved, with support for
new parameters for grouping, improved filtering for certain fields, and a more uniform behaviour
all throughout the API (concerning responses, errors, filtering...)

Besides, I have worked on other features that have been requested by other groups or by the
core team. Examples of these include CSV serialization for certain pages, or extended support for
units and scaling. Finally, I have collaborated to bridge the gap with subsystems and to help them
extend the Aggregation API taking advantage of all those new features.

However, even though the system can be considered to be finished in some sense, there are a big
number of additions that could be made, both improvements to the existing code and new features
that might be helpful.

For the Aggregation API, there is one big change that was discussed throughout my internship
but never came to fruition: moving away from Katharsis. We already discussed in Subsection 2.2.2
that Katharsis has been unmaintained for some time and that we are relying on its latest stable
version. The Aggregation API would be definitely easier to maintain if we were to move to another
library that fulfills Katharsis role, and that is actively maintained. Other possibility is to keep
using all the network libraries that Katharsis is based on (Dropwizard, Jersey, Jetty...) to build our
RESTful service, and manually implement the serialization and deserialization process that we use
Katharsis for. While this second option would definitely be more work, it would prevent a similar
situation to happen in the future, since the potential alternatives to Katharsis, such as Crnk [7],
are not as established as the network libraries and could also face the same problem at some point.

To stand the test of time, the Aggregation API also needs to be upgraded from Java 8 to the
next Long Term Support update, Java 11. This is intertwined with the upgrade from Katharsis,
because some of its dependencies do only support Java 8 and the whole Katharsis project would
need to be upgraded by us. Public updates are not released anymore for Java 8 [21], so it would
be convenient to migrate to Java 11 soon.

The Aggregation API will also need to adapt to the needs of the subsystems, even more than it
already has. We expect the subsystems to try to show other kinds of data that the core system did
not use. While the Aggregation API has been designed to be easy to extend, so each subsystem
can make their own improvements, one of the objectives of the core team is to incorporate all the
features that can be useful. For example, a lot of subsystems store files in the database as a BLOB,
and the Aggregation API should be able to handle this kind of queries. Others might want to be
able to extract data from a secondary database, while the Aggregation API supports one single
database by default. There are a lot of quality of life improvements that would be extremely useful
for subsystems and that are likely to guide the API development during the months to come, until
all the subsystems are satisfied with their instances of the API.

From the point of view of the database, the core tables have already been tested and should
not face big changes for the following years. Since they are describing core aspects of the system,
it is unlikely that the requirements change during Run 3 (2021 - 2024). However, there are other
database improvements that could be of interest.

First, there are still some core tables to be created: the downtime tables. These are the only
tables that have not been migrated from WbM, since a redesign of the downtime system is being
worked on. These tables will have to be designed and tested carefully, and the corresponding
Aggregation API endpoint will need to be adapted to them.

Apart from the core tables, we have mentioned all through this text that the Aggregation API
reads data from several different tables that are owned by external groups. In some cases, very

73

detailed data is provided and dynamic aggregation is slower than we would like, slowing the API
and, in turn, the OMS webpage. Since we lack direct access to the tables and their indexes, the
best option to circumvent this problem would be to build intermediate aggregation tables. These
would be filled dynamically with already-aggregated data, either from a trigger or by polling. The
obvious maintenance cost would be compensated by the speed-up on the API, very noticeable in
some cases. While some experiments in this direction have already been made for specific tables,
there is still a lot of work that could be done here.

In conclusion, the Online Monitoring System has been built to replace WbM, but it provides
additional functionality on top of what WbM already included. Access to the prototype was
provided to the CMS community on early 2018, and right now the latest version is being actively
used. Since mid 2019, we have considered OMS to be finished, in the sense that it already has
all needed functionality. However, internal improvements are still being made to perfect it, with
hopes that it is used for at least another 10 years. Integration with subsystems is also happening
simultaneously, aiming for a tool which integrates all subsystems when Run 3 starts in May 2021.

74

Bibliography

[1] A new schedule for the LHC and its successor. url: https://home.cern/news/news/

accelerators/new-schedule-lhc-and-its-successor (visited on 28/03/2020).

[2] Jean-Marc André et al. Presentation layer of CMS Online Monitoring System. Tech. rep.
CMS-CR-2018-390. Geneva: CERN, Nov. 2018. doi: 10.1051/epjconf/201921401044. url:
http://cds.cern.ch/record/2649402.

[3] Ulf Behrens. Personal communication. 2019.

[4] CERN experiments observe particle consistent with long-sought Higgs boson. url: https:
/ / home . cern / news / press - release / cern / cern - experiments - observe - particle -

consistent-long-sought-higgs-boson (visited on 28/03/2020).

[5] CMS. url: https://home.cern/science/experiments/cms (visited on 28/03/2020).

[6] Brice Copy. DIP Tutorial. url: https://readthedocs.web.cern.ch/display/ICKB/DIP+
Tutorial (visited on 11/04/2020).

[7] Crnk. url: https://www.crnk.io (visited on 02/04/2020).

[8] Dropwizard (GitHub page). url: https://github.com/dropwizard/dropwizard (visited on
23/09/2019).

[9] Roy Thomas Fielding. ‘Architectural Styles and the Design of Network-based Software Ar-
chitectures’. PhD thesis. University of California, Irvine, 2000. url: https://www.ics.

uci . edu / ~fielding / pubs / dissertation / fielding _ dissertation . pdf (visited on
12/04/2020).

[10] How does CMS measure luminosity? url: https://cms.cern/news/how- does- cms-

measure-luminosity (visited on 29/03/2020).

[11] Jackson (GitHub page). url: https://github.com/FasterXML/jackson (visited on 23/09/2019).

[12] Java SE Technologies - Database. url: https://www.oracle.com/technetwork/java/
javase/tech/index-jsp-136101.html (visited on 23/03/2020).

[13] Jdbi 3 Developer Guide. url: jdbi.org (visited on 23/09/2019).

[14] Jersey. url: https://eclipse-ee4j.github.io/jersey/ (visited on 23/09/2019).

[15] Jetty (GitHub page). url: https://github.com/eclipse/jetty.project (visited on
23/09/2019).

[16] JSON API specification version 1.0. url: https://jsonapi.org/format/1.0/ (visited on
28/03/2020).

[17] Katharsis (GitHub page). url: https://github.com/katharsis-project/katharsis-
framework (visited on 23/09/2019).

[18] LHC progress report, week 1. url: https://lhc-first-beam.web.cern.ch/News/lhc_
080918.html (visited on 03/05/2020).

75

https://home.cern/news/news/accelerators/new-schedule-lhc-and-its-successor
https://home.cern/news/news/accelerators/new-schedule-lhc-and-its-successor
https://doi.org/10.1051/epjconf/201921401044
http://cds.cern.ch/record/2649402
https://home.cern/news/press-release/cern/cern-experiments-observe-particle-consistent-long-sought-higgs-boson
https://home.cern/news/press-release/cern/cern-experiments-observe-particle-consistent-long-sought-higgs-boson
https://home.cern/news/press-release/cern/cern-experiments-observe-particle-consistent-long-sought-higgs-boson
https://home.cern/science/experiments/cms
https://readthedocs.web.cern.ch/display/ICKB/DIP+Tutorial
https://readthedocs.web.cern.ch/display/ICKB/DIP+Tutorial
https://www.crnk.io
https://github.com/dropwizard/dropwizard
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://cms.cern/news/how-does-cms-measure-luminosity
https://cms.cern/news/how-does-cms-measure-luminosity
https://github.com/FasterXML/jackson
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
jdbi.org
https://eclipse-ee4j.github.io/jersey/
https://github.com/eclipse/jetty.project
https://jsonapi.org/format/1.0/
https://github.com/katharsis-project/katharsis-framework
https://github.com/katharsis-project/katharsis-framework
https://lhc-first-beam.web.cern.ch/News/lhc_080918.html
https://lhc-first-beam.web.cern.ch/News/lhc_080918.html

[19] LHC: the guide. url: https://cds.cern.ch/record/2255762/files/CERN-Brochure-
2017-002-Eng.pdf (visited on 29/03/2020).

[20] Audrius Mecionis. Upgrade by example: WbM to OMS. url: https://indico.cern.ch/
event/667725/contributions/2743453/attachments/1542448/2419504/WBM_to_OMS_

Audrius_Mecionis.pdf (visited on 15/05/2020).

[21] Oracle Java SE Support Roadmap. url: https://www.oracle.com/java/technologies/
java-se-support-roadmap.html (visited on 19/04/2020).

[22] Reconstructing a multitude of particle tracks within CMS. url: https://cms.cern/news/
reconstructing-multitude-particle-tracks-within-cms (visited on 11/04/2020).

[23] Avi Silberschatz, Henry F. Korth and S. Sudarshan. Database System Concepts. McGraw-Hill,
2019.

[24] Rende Steerenberg. LHC Report: Another run is over and LS2 has just begun... url: https:
//home.cern/news/news/accelerators/lhc-report-another-run-over-and-ls2-has-

just-begun (visited on 28/03/2020).

[25] The Large Hadron Collider. url: https://home.cern/science/accelerators/large-
hadron-collider (visited on 28/03/2020).

[26] Where did it all begin? url: https://home.cern/about/who-we-are/our-history (visited
on 15/05/2020).

76

https://cds.cern.ch/record/2255762/files/CERN-Brochure-2017-002-Eng.pdf
https://cds.cern.ch/record/2255762/files/CERN-Brochure-2017-002-Eng.pdf
https://indico.cern.ch/event/667725/contributions/2743453/attachments/1542448/2419504/WBM_to_OMS_Audrius_Mecionis.pdf
https://indico.cern.ch/event/667725/contributions/2743453/attachments/1542448/2419504/WBM_to_OMS_Audrius_Mecionis.pdf
https://indico.cern.ch/event/667725/contributions/2743453/attachments/1542448/2419504/WBM_to_OMS_Audrius_Mecionis.pdf
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://cms.cern/news/reconstructing-multitude-particle-tracks-within-cms
https://cms.cern/news/reconstructing-multitude-particle-tracks-within-cms
https://home.cern/news/news/accelerators/lhc-report-another-run-over-and-ls2-has-just-begun
https://home.cern/news/news/accelerators/lhc-report-another-run-over-and-ls2-has-just-begun
https://home.cern/news/news/accelerators/lhc-report-another-run-over-and-ls2-has-just-begun
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/about/who-we-are/our-history

Appendix A

Aggregation API reference manual

A.1 Query builder

A query builder is a Java class, subclass of QueryBuilderV2, that receives a QuerySpec (an object
with the information of the user’s request) and generates an SQL query to retrieve the adequate
objects. The query builder is initialized once per endpoint with all the information about tables
and attributes, which is known at compilation time, and then is queried with each request.

What can a query builder do?

Available options:

� Query simple tables.

� Query joined tables (INNER JOIN and LEFT JOIN).

– Normal and custom joins.

� Use GROUP BY clause and aggregated functions.

– Special grouping: groups of certain size.

– Special grouping: specific number of groups.

� Use analytic functions.

� Nest subqueries in the FROM clause, as deep as necessary.

� Completely customize attributes.

� Convert request filters to the adequate SQL type.

� Include only the attributes and tables requested.

� SELECT DISTINCT.

� Use of CONNECT BY, START WITH, PRIOR.

� Use of MODEL clause.

Examples of possible extensions, without modifying the core query builder:

77

� Support for all kind of aggregated functions (e.g., LISTAGG, which has special syntax).

� Support for all kind of filtering modifications (e.g., conversions before filtering).

� Filtering by subquery (e.g., a special filter value latest that uses a subquery to return only
the latest value).

� Custom sorting (e.g., if sort in a certain attribute is requested, sort by a function or a different
attribute).

� Filter operator translation.

A.1.1 Interface

There is only one method that has to be implemented in subclasses: a constructor building up the
table and attribute structure (see next sections). However, query builders inherit other methods
that can be of interest and that can, sometimes, be overridden:

� createQueries(): generates non-paginated queries.

� createPaginatedQueries(): generates paginated queries.

� generateCounterQuery(): generates a query that counts the number of matches for the
original query. It can be overridden if, for this particular endpoint, there is a faster way to
count than SELECT COUNT(*) FROM (<original query>).

� addsCustomPaginationCounter(): returns a Boolean indicating whether a pagination counter
is added manually (false by default). A pagination counter is an attribute whose name is
stored in the constant ATTRIBUTE COUNTER which counts incrementally for each row, starting
from 1. This method should be overridden and return true if a custom counter is added.

Lifecycle

When a query builder is used (typically by the repository implementation), two different methods
can be called: createQueries() and createPaginatedQueries(). The first one generates the
usual query, and the second one generates a query that only returns the results requested taking
into account the page[limit] and page[offset] query parameters. This second method is usually
faster, but it has a problem: as filtering is done in the database side, we don’t know the total resource
count. That is why these methods also returns a “counter query”. This is a special query that
calculates the number of total items matching the request.

A.1.2 Table creation for complex table structure

Grouping and subquery behavior must also be specified in the table structure. The following steps
show the table creation process, with examples.

1. Create the master table. If your query has a subquery, then this master table should be the
table nested at the innermost level.

QueryTableMaster master = new QueryTableMaster("schema.name",

"abbreviation");↪→

2. If necessary, create the joined or detail tables at this level:

78

QueryTable tableJoined = master.innerJoin("schema.name", "abbreviation")

.onColumns("COL_DETAIL", "COL_MASTER");

QueryTable tableDetail = master.joinDetail("schema.name", "abbreviation")

.onColumns("COL_DETAIL", "COL_MASTER")

.onColumns("COL_DETAIL_2", "COL_MASTER_2");

QueryTable tableDetailCustomJoin = master.joinDetail("schema.name", "abbr")

.customOn("A = B");

Note that the examples before show different usages of the onColumns() and customOn()

methods. These methods can be used alone or together in any joined or detail table, to
specify the joining details.

3. If relevant, specify that the previous tables are nested into a subquery. For this, we retrieve
our master table and call to the asSubquery() method:

QueryTableMaster higherLevelTable =

master.asSubquery("SUBQUERY_ABBREVIATION");

4. If relevant, specify that the previous tables are grouped. For this, we have two different
options in our master table (which should be the highest level table declared, that is, if we
did not skip step 3, then we should use the table created there):

QueryTableMaster groupedTable = higherLevelTable

.groupBy(attribute1, attribute2);

QueryTableMaster groupedByGranularity = higherLevelTable

.groupByGranularity(attribute1, attribute2)

.addGranularity("gran1", attribute1)

.addGranularity("gran2", attribute1, attribute2)

.defaultGranularity("gran1");

Note that attribute1 and attribute2 are QueryAttributes (see below) that must be de-
clared as attributes in the nested tables, if a subquery is present, or in our master table if it
is not.

The groupBy() function is used for default grouping. However, special methods for specific
grouping are provided, such as groupByGranularity(), which is used when we wish to allow
queries with the group[granularity] parameter. The value of this parameter specifies which
one of the groupings defined above will apply, while the defaultGranularity() method is
useful for specifying which one of the granularities should be applied by default.

If we want to add more depth (i.e., nest the subquery in another level), just go back to step
2 and use the current top-level table as the master table.

5. We save the top-level table in the attribute masterTable.

A.1.3 Query attributes

Query attributes are the core of the query builder. Each query attribute roughly represents a
attribute in the response object. All query attributes are subclasses of QueryAttribute. They are
implemented using the decorator design pattern: the subclasses of QueryAttributeBase store the
core information about the attribute, and can be decorated with subclasses of QueryAttribute

79

Decorator. These subclasses modify or extend the attribute behavior with respect to its definition
in the SELECT clause, filtering, sorting...

After creating an attribute, it has to be added to the query builder via either the addIdentifying
Attribute() or addAttribute() functions. These two methods do the same thing, but add

IdentifyingAttribute() tells the query builder that this attribute should always appear in the
SELECT clause, independently of whether the user requested them. For this reason, it should be
used with attributes which are part of the identifier.

Attributes are created by decorating a base class with zero or more decorators, which alter the
default behaviour on different ways (for example, they can change the filter translation, wrap the
attribute into a function...). The following is a list of the base attributes:

� Column attributes: for data coming from a table column.

� Literal attributes: for literal data, they are initialized with a string that has to be valid
SQL, since it is written directly into the query and not validated.

� Dynamic attributes: sometimes, an attribute needs to be calculated from other attributes,
but this is more easily done on the Java code. In that case, a dynamic attribute is created.
It is a dummy attribute that is created with information about the attributes that it depends
on. When this attribute is requested, the query builder adds all the underlying attributes
to the query, even if those are not requested, since they will be needed later to compute the
dynamic attribute.

� Multi-argument function: used for attributes that are completely based on two or more
other attributes, combined with a function or an operator. It is useful to use different at-
tributes as building blocks, reducing significantly the complexity of the final attribute and
enabling reuse of the parts. This is used, for example, when an attribute is calculated as the
sum of two other attributes.

Furthermore, we provide a fifth type of base attribute. This is one special attribute used to
rank the rows in groups of a specified size, or in a given number of equally-sized groups. All the
members of a group will receive the same rank, and this value can be used later in a GROUP BY

clause.
For the decorators, here are some examples:

� Function: one of the simplest decorators, it wraps the attribute SELECT expression into a
given function. Other (literal) arguments can be added to the function.

� Analytic function: similar to the previous one, but adds the possibility of specifying an
analytic clause, and the desired ORDER BY and PARTITION BY.

� Filter conversions: maybe the most used of all the decorators, different conversions can
be provided. A conversion defines the generation of the where condition when the attribute
appears on a filter. Numbers, strings, dates, booleans, etc. are provided by default, while a
generic class is provided to be subclassed, thus enabling custom filter conversion.

� Sort literals: a literal passed as an argument replaces the default expression for this attribute
in the ORDER BY clause.

� Subquery attributes: used to generate an attribute from another attribute that was se-
lected in a nested subquery. The query builder uses these attributes to determine what should
and should not be shown in the subquery.

80

� Subselect attributes: specifies that an attribute on a detail table should be selected with
a subquery in the SELECT clause, instead of joining the table in the FROM clause. Useful for
performance in some cases.

A.2 Annotations for endpoint tuning

As part of all this modernization process, we found several endpoint features that were better
expressed as annotations. Most of them have to do with the deserialization and serialization
process: we want to modify how certain fields are deserialized or serialized but we want to keep
control on which ones and be able to customize this. Annotations are made for this kind of use case,
and we created several custom annotations that apply to one single field or to a whole endpoint
resource class. Then, we customized the serializer and deserializer in Katharsis to include support
for these annotations.

We support several annotations that can be used by a developer to tune the input (query
specification deserialization) or the output (JSON serialization) of a given endpoint.

A.2.1 Query specification deserialization

We also allow 5 annotations that modify the default deserialization configuration. As opposed to
the annotations in the previous section, these already existed: they are provided by the Jackson
library. However, they were not supported by Katharsis. This was one of the two changes that had
to be made in Katharsis’s source code and couldn’t be done in our API, since Katharsis directly
ignored all annotations for serialization.

@Aggregating

This annotation is used on endpoints that use grouping (typically endpoints that use the group

[count], group[size] or group[granularity] query parameters). It marks an attribute that
is obtained by aggregating another attribute. The annotation enables filtering by the aggregated
parameter, even if this is not a field in the response.

The typical use case is an endpoint that returns objects for each range of run numbers. This
means that the response objects only has first run number and last run number attributes in-
dicating the endpoints of the range, but we would like to filter the results by run number. The
attributes, then, would look like this:

@JSONApiResource(type = "Resource")

class Resource {

// ...

@Aggregating(field = "run_number", function = AggregationFunction.MIN)

private Integer first_run_number;

@Aggregating(field = "run_number", function = AggregationFunction.MAX)

private Integer last_run_number;

// ...

}

Adding the annotations will enable filtering by run number with certain operators. In the
previous example, filtering by run number with operator GT or GE will be translated to a filter by

81

first run number with the same operator. Similarly, filtering by run number with operator LT or
LE will be translated to a filter by last run number with the same operator. Trying to filter by
run number with a different operator will fail.

Note that if aggregation functions other than MIN or MAX are chosen, any filter on run number

will fail.

@AllowFilter

Normally, the deserialization process throws an error if the user tries to filter by a field that is not
present in the return object. However, sometimes there is a reason to enable this kind of filters.
That is what the @AllowFilter annotation is for.

A resource using this annotation will look like this:

@JSONApiResource(type = "Resource")

@AllowFilter(fields = "strange_filter")

class Resource {

// ...

}

If an endpoint annotated in this way is filtered by strange filter, this filter will be deserialized
with no checks at all. In this case, the value for the filter will be stored as a String.

This annotation is meant to be used jointly with the mapSpecialFilter(FilterSpec,Query

Spec) method present on BasicResourceRepository and its children. All filters that are only
allowed due to the annotation will be removed from the query specification and used as an argument
to this method. The method, then, should modify the query specification with one or several normal
filters.

@AllowUnknownAttributes

This annotation is a wildcard version of the previous one. It just allows every filter. Example code
using this annotation would look like this:

@JSONApiResource(type = "Resource")

@AllowUnknownAttributes

class Resource {

// ...

}

This is very rarely used, and its usage should be considered carefully. It is rarely necessary to
skip filter checking entirely, and typically stricter and type-safer solutions can be found.

@BypassTypeChecking

Normally, the deserialization process tries to convert the value of every filter to the type of the
corresponding field. However, sometimes we want to accept different values. For example, we could
accept the character ‘%’ as part of a number for autocompleting features. Or we want to accept
the string “latest” instead of a number to just get the latest value for the given field.

The resource class would look like this:

82

@JSONApiResource(type = "Resource")

class Resource {

// ...

@BypassTypeChecking(allowedValues = {"last", "latest"})

private Integer lumisection;

// ...

}

If we try to filter by lumisection with value “last” or “latest”, the filter will be propagated with
string values. If we try to do it with a normal integer value, it will be converted to integer normally.
If we try any other value, it will throw an exception.

@SupportsGranularities

Since most endpoints do not support grouping by granularity, the default implementation throws
an error if the group[granularity] is specified. The @SupportsGranularities annotation allows
to specify the granularities that will be allowed through the deserialization process, as well as to
select a default granularity to be used when no granularity is specified.

The resource class would look like this:

@SupportsGranularities(

granularities = { ResourceMeta.GRANULARITY_A,

ResourceMeta.GRANULARITY_B },

defaultGranularity = ResourceMeta.DEFAULT_GRANULARITY)

@JSONApiResource(type = "Resource")

class Resource {

// ...

}

A.2.2 JSON serialization

Several Jackson annotations are supported to control the JSON serialization process.

@JsonInclude

@JsonInclude is supported partially, with values Include.ALWAYS, Include.NON NULL, Include.
NON ABSENT and Include.NON EMPTY. A field would be annotated as follows:

@JsonApiResource(type = "Resource")

class Resource {

// ...

@JsonInclude(value = JsonInclude.Include.NON_NULL)

private Integer lumisection;

// ...

}

83

and it would only appear in the return object if its value was not null. For Include.ALWAYS, the
field will be always included (default); Include.NON ABSENT will work like Include.NON NULL; and
Include.NON EMPTY will not include null nor empty collections.

@JsonUnwrapped

A map can be annotated with @JsonUnwrapped to unwrap its contents into the level above. This
is used for creating highly dynamic endpoints, where the attributes change for each call. Filtering,
of course, is not working out of the box with this kind of attributes, so typically this annotation
is used jointly with @AllowUnknownAttributes. Using this annotation is not recommended in
general, because typical endpoints should have a static structure.

@JsonIgnore

A field annotated with @JsonIgnore is never present in the JSON serialization.

@JsonProperty

@JsonProperty is partially supported to rename fields in the JSON file. Only the value variable
will be considered, all other elements in the annotation will be ignored. A resource field annotated
with @JsonProperty(value = "abc") will appear on the JSON file with name abc.

A.3 Extensions to the JSON API specification

This page describes the additions made to the JSON:API specification, and the deviations from
it. The Aggregation API conforms to the 1.0 version of the JSON API specification [16], which
explains our generic URL format. This section only describes the deviations from the standard.

A.3.1 General guidelines

The following rules are followed project-wide but for very specific exceptions.

� Field names always use lower snake case.

� The response object for a given endpoint is static, that is, the response format stays the same
for different request parameters in the same endpoint.

� Only fields appearing in the response object can be filtered on or sorted by.

– Exception: a few endpoints allow filtering on certain attributes even if it is not a part
of the return object.

– Exception: endpoints which aggregate ranges and present them with attributes of type
first attr, last attr can typically be filtered and sorted by attr too.

� If a field that does not exist appears on the request in whatever manner (filter, sort,
fields...) the API will return an HTTP 400 (bad request) error.

� All dates must be specified in ISO 8601 format, although yyyy-MM-dd HH:mm:ss is also
accepted. The dates will always be output as a string with the same ISO 8601 format,
unless include=presentation timestamp is specified as part of the request, in which case
the second format will be used.

84

A.3.2 page request parameter

Aggregation API uses page[offset] and page[limit] to paginate. Note that the specified offset
must be a multiple of the limit or else an error will be thrown.

A.3.3 filter request parameter

Aggregation API enables filtering with the format filter[field][operator]=value. field is
the name of the field to filter by. operator is one of the following:

� EQ: equals.

� NEQ: not equals.

� GT: greater than.

� GE: greater or equal than.

� LT: less than.

� LE: less or equal than.

� LIKE: filter on similarity. Similar to SQL LIKE operator.

� CT: contains. This is rarely allowed, and only for array values.

If the operator is omitted, EQ is assumed.
However, we have a special use case which is not covered by the normal filtering: lumisections

are uniquely identified with a run number and lumisection number. However, the filtering structure
described above doesn’t allow to get the range between two lumisections, with filters like:

?filter[run_number][GE]=320000&filter[lumisection][GE]=20

&filter[run_number][LE]=320005&filter[lumisection][GE]=30

which will return lumisections that have both lumisection number between 20 and 30 and run
number between 320000 and 320005 (and it will not return, for example, lumisection with number
5 in run 320002).

Tuple filtering solves this problem. We can write the following filter:

?filter[run_number,lumisection][GE]=320000,20

&filter[run_number,lumisection][LE]=320005,30

and this will return the values with (320000,20) <= (run number,lumisection) <= (320005,30)

(sorted lexicographically). That is, it will return the lumisections for run 320000 that have num-
ber greater than 20, all the lumisections for runs strictly between 320000 and 320005, and the
lumisections for run 320005 that have number less than 30.

This filtering mode is not supported for all endpoints or for all pairs of attributes.

A.3.4 sort request parameter

Sorting is fully supported as suggested in the JSON API specification.

A.3.5 fields request parameter

Sparse fieldsets are fully supported as suggested in the JSON API specification.

85

A.3.6 group request parameter

Certain endpoints support grouping specification in the query. This has two different modes:

� group[count] and group[size]: these two parameters should never be used at the same
time (and using them will throw an HTTP 400 error). group[count] specifies the number
of groups returned, and these groups will be of the same size (or off by 1). group[size]

specifies the size of each group, and the last group may be of a different size.

� group[granularity] specifies which attribute will the API group on. The valid attributes
depend on the endpoint, and may not be attributes in the returned object.

A.3.7 include request parameter

In addition to the default behavior suggested in the JSON API specification, we use the include

parameter to specify application flags:

� meta: adds the metadata to the default response.

� presentation timestamp: specifies that returned resources should present the timestamps
in yyyy-MM-dd hh:mm:ss format, instead of the default ISO 8601 date format.

A.4 Query verification

Query verifying is another problem that needs to be solved in almost every endpoint, but at the
same time needs to be defined in a case-by-case basis. It is a consequence of the limitations of our
data source: often, we do not wish to allow a user to retrieve all the entries in the database for a
given endpoint, or maybe we want to force them to use specific columns for the filtering, usually
because they are indexed.

However, the rules for allowing or disallowing specific filters depend completely on the endpoint
and, ultimately, on the database structure. This means that the developer must be able to decide
which filters to allow and which to block, but it is useful to have a common framework such that
the filter list doesn’t have to be inspected manually every time.

The query specification verifier does exactly this. It can be set up with a set of rules, and it
will automatically check every query specification to verify that the endpoints conform to those
rules. There are two kind of rules: accept and reject. If any accept rule is specified, the query
specification has to conform to one of them to be accepted. For every reject rule specified, the
query cannot contain this specific combination of filters.

An example query specification verifier would be built via:

verifier.accept().filterFor(ATTRIBUTE_A).withEquality()

.and().filterFor(ATTRIBUTE_B).withEquality();

verifier.accept().filterFor(ATTRIBUTE_C).withRange();

verifier.reject().granularity(GRANULARITY_1)

.and().filterFor(ATTRIBUTE_D);

verifier.reject().filterFor(ATTRIBUTE_E);

This query specification verifier would enforce the following rules:

86

� A query specification should either filter by both ATTRIBUTE A and ATTRIBUTE B with operator
EQ, or filter by ATTRIBUTE C with a range (specified with LT or LE and GT or GE). If it doesn’t,
an error will be thrown.

� A query specification cannot specify granularity GRANULARITY 1 and filter by ATTRIBUTE D

at the same time, or it will be rejected (even if it complies with the previous rule).

� A query specification cannot filter by ATTRIBUTE E, or it will be rejected (even if it complies
with the previous rules).

87

Appendix B

Related code

The complete code of the Aggregation API and the related SQL code will be provided to the
members of the tribunal through the shared folder enabled for such purpose. All rights to that
code, and to any fragments of it published in the present text, are reserved by CERN, for the
benefit of the CMS collaboration.

88

	Table of contents
	Acknowledgments
	Introduction
	The Online Monitoring System
	Context: CERN, LHC and CMS
	History: the Online Monitoring System
	Project structure

	Project organization and my contribution
	Status on arrival
	Objectives
	My contribution

	A word from Dr. Ulf Behrens

	Aggregation API
	APIs and RESTful architectures
	How does it work?
	Server libraries
	Katharsis
	Data Source: Oracle Database
	How do they all work together?

	Query builder
	Why a query builder?
	History
	Interface
	Query tables
	Query attributes

	Repository base classes
	Endpoint structure
	Resource repositories
	Mapper (and result generators) base classes
	Meta base class

	CSV export
	Scaling info
	New endpoints
	Luminosity summaries
	Dip logger

	Rewriting old endpoints
	Deadtimes per scaler
	Fill bunches

	Database redesign
	Motivation
	Necessary domain knowledge
	Conceptual design
	Logical design
	Standalone tables (eras, scaling...)
	Fill-related tables
	Run-related tables
	Lumisection-related tables

	Constraints and indexes (DDL)
	Primary keys
	Foreign keys
	Other constraints
	Indexes

	Data migration (DML)
	Missing fills
	Runs with several fills
	Fill stable beams
	Scaling info

	Redesigning endpoints
	Performance concerns
	Fills
	Runs
	Lumisections
	Eras

	OMS for subsystems
	Subsystems and OMS
	Database
	Aggregation API
	Web portal

	Last value pages
	Displaying the colours

	Results and conclusion
	Results: the OMS webpage
	Conclusion

	Bibliography
	Aggregation API reference manual
	Query builder
	Interface
	Table creation for complex table structure
	Query attributes

	Annotations for endpoint tuning
	Query specification deserialization
	JSON serialization

	Extensions to the JSON API specification
	General guidelines
	page request parameter
	filter request parameter
	sort request parameter
	fields request parameter
	group request parameter
	include request parameter

	Query verification

	Related code

