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ABSTRACT  
The fabrication of artificial materials by stacking of individual two-dimensional (2D) materials is 

amongst one of the most promising research avenues in the field of 2D materials. Moreover, this strategy 

to fabricate new man-made materials can be further extended by fabricating hybrid stacks between 2D 

materials and other functional materials with different dimensionality making the potential number of 

combinations almost infinite. Among all these possible combinations, mixing 2D materials with 

transition metal oxides can result especially useful because of the large amount of interesting physical 

phenomena displayed separately by these two material families. We present a hybrid device based on 

the stacking of a single layer MoS2 onto a lanthanum strontium manganite (La0.7Sr0.3MnO3) thin film, 

creating an atomically thin device. It shows a rectifying electrical transport with a ratio of 103, and a 

photovoltaic effect with Voc up to 0.4 V. The photodiode behaviour arises as a consequence of the 

different doping character of these two materials. This result paves the way towards combining the 

efforts of these two large materials science communities. 
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Since the first experimental isolation of graphene in 2014 1, the interest on other layered 2D materials has kept 

growing 2–4. Moreover, the community working on 2D materials is rapidly moving from the fundamental study of these 

atomically thin materials towards integrating them with other advanced materials to create hybrid devices. The case where 

an artificial layered material is created by stacking two different individual 2D layers results highly appealing 5–10, but also 

a great deal of experimental efforts have been paid to fabricate hybrid devices by combining 2D materials with other 

functional materials 11. Lopez-Sanchez et al. and Gehring et al., for instance, fabricated artificial heterostructures by stacking 

2D semiconductors on top of conventional 3D semiconductors 12–14, Velez et al. combined MoS2 with organic semiconductors 

15 and Jariwala et al. fabricated hybrid devices by combining mechanically exfoliated MoS2 flakes with a carbon nanotube 

film 16.  

Transition Metal Oxides (TMO), sometimes called simply complex oxides, constitute a very interesting family of 

materials because they display very different physical phenomena like superconductivity, ferroelectricity, ferro and 

antiferromagnetism, etc. The strong correlation between the several degrees of freedom of TMO (charge, spin, strain, doping) 

produces a rich variety of phases which result in complex phase diagrams 17,18. Manganites are one of the paradigmatic 

examples of TMO showing a characteristic magnetoresistance behavior. Therefore, the combination of 2D materials with 

TMO is very prospective because of the rich physical phenomena that both families present separately, but the amounts of 

works on 2D materials/TMO heterostructures are still very scarce. 

In this work we fabricate a vertical heterostructure by transferring a single-layer MoS2 flake on top of a 

La0.7Sr0.3MnO3 (LSMO) thin film, epitaxially grown on a SrTiO3 (STO) substrate. We study the electrical transport properties 

of the heterostructure that behaves as a diode because of the junction between the LSMO film and MoS2. This junction 

presents an electrical rectifying behavior (with a rectification ratio, R.R., of ~103) and upon illumination it shows 

photovoltaic effect. These results constitute the first steps towards combining these two large families of functional materials, 

opening the door for many possible 2D materials/complex oxide hybrid devices. 

The LSMO film was grown by high pressure pure oxygen (3.2 mbar) RF sputtering at 900 °C on (001) oriented 

optically polished SrTiO3 substrates. The LSMO layer was fully epitaxial and uniformly strained and had a ferromagnetic 

ground state. Details about sample properties and growth can be found elsewhere 19. For the device fabrication, the LSMO 

film was patterned by electron beam lithography to form mesas. Firstly, MaN-2403 negative resist was spin coated on the 

sample, and the pattern was exposed to the electron beam. After the development of the resist, the material was etched 
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resulting in the bottom LSMO nanostructured layer. The bottom (LSMO) electrical contact was defined evaporating Ag 

through a mechanical mask. Silver electrodes were checked to provide ohmic contacts to the LSMO film in agreement with 

previous results 20.   

The structural quality of the sample was analyzed by X-ray diffraction (XRD) obtaining the pattern shown in the 

top inset to Figure 1. A zoom to the 001 reflection of the STO substrate is presented, showing the 001 peak of the film, and 

many lateral fringes at both sides, indicating the high crystalline quality of the LSMO film. In the main panel of Figure 1, 

the X-ray reflectivity (XRR) of the LSMO layer is plotted, presenting again many oscillations up to over 5 degrees in 2θ, as 

a consequence of the flatness of the film. The spacing of the maxima is a function of the thickness of the film, yielding a 

value of 28 ± 1 nm. The lower inset in Figure 1 presents the 3D AFM image of the etched LSMO mesa on which the MoS2 

will be deposited, showing the sharp edges of the LSMO nanostructure and confirming the thickness of the layer (28 ± 1 

nm). 

The single layer MoS2 flake was deposited onto a polydimethylsiloxane (PDMS) stamp (Gelfilm by Gelpak) by 

mechanical exfoliation of a bulk molybdenite natural crystal (Holly Mill mine, Canada) with a SPV 224 Nitto tape. The 

single layer region is identified at glance by its optical contrast in transmission mode microscopy and the number of layers 

is double checked by quantitative analysis of the transmission mode images and by determining the energy of the A, B and 

C excitons from micro-reflectance spectroscopy 21,22. Figure 2(a) shows a transmission mode optical image of the MoS2 

flake onto the PDMS stamp prior to transfer (the inset shows the transmission mode image of the same flake transferred onto 

the LSMO film). Figure 2(b) shows the micro-reflectance spectra acquired on the MoS2 flake before being transferred to the 

LSMO surface, used to determine the number of MoS2 layers. Then the flake was transferred onto the LSMO surface by an 

all-dry deterministic transfer technique, described in detail in Ref. 23.  

The electrical transport properties of the MoS2/LSMO stack are characterized with a homebuilt probe station 

equipped with carbon fiber microprobes that can be accurately placed onto mechanically exfoliated flakes (the diameter of 

the fiber microprobes is of only 7 µm) without damaging them. Their Young modulus is ~ 280 GPa and the spring constant 

of a typical carbon fiber probe (~1 mm long) is ~0.02N/m,24,25 allowing for very gentle mechanical contact without damaging 

the flakes. The electrical contact between a carbon fiber probe and MoS2 flakes has been reported to be Ohmic 26. More 

details on this experimental setup and measurements can be found in Ref. 26.  Figure 2(c) is a sketch of the experimental 

configuration employed to probe the electrical properties of the stack. A source measure unit (Keithley 2450) is used to 

perform the current-voltage measurements. The light source is provided by a high-power LED source (455 nm of 
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illumination wavelength with a power density up to 0.64 W/cm2). 

Figure 3 shows the current vs. bias voltage trace (IV hereafter) measured in the dark state, showing a marked 

rectifying behavior. The inset in Figure 3 displays the same IV in logarithmic scale (with the current in absolute value) to 

facilitate the estimation of the rectification ratio of the diode. The device, despite of being atomically thin, presents a very 

large rectification ratio of ~103. Note that Ag and LSMO have very similar work functions (4.7 eV and 4.8 eV respectively), 

and thus Ag acts as a good ohmic contact to LSMO 19. On the contrary, the electron affinity of MoS2 is lower (4.2 eV). 

Moreover, the Fermi level in LSMO is close to valence band and in MoS2 the Fermi level is quite close to the conduction 

band. Therefore, the LSMO behavior can be described as a hole metal (P++), and the MoS2 a N+ semiconductor. It is 

therefore expected that electrons are transferred in the junction from the MoS2 into the LSMO, eventually leading to a 

decrease in the concentration of electrons in MoS2. Similar charge transfer has been observed in other metal oxide  - transition 

metal dichalcogenide interfaces 27,28. Nevertheless, our results indicate that in the MoS2/ LSMO junctions the MoS2 behaves 

as the N side and LSMO as the P side of a diode. In general, in atomically thin PN-junctions there is no built-in field and 

thus the carrier transport occurs by tunneling processes 5. However, in this case the thickness of the LSMO film allows 

carrier diffusion and drift processes. Therefore, a built-in field may be generated in the LSMO side to level the chemical 

potentials. Notice the reversibility of IV curves measured sequentially in the dark (Supporting Information, Figure S6 and 

S7) excludes oxygen vacancy generation in the range of applied electric fields of the experiment, which would show up in 

the IV curves as resistive switching effects 29. Assuming that the voltage corresponding to the difference between the work 

functions of both materials drops in a space charge region in the LSMO of a width of the Thomas Fermi screening length 

(typically between 1 and 2 nm), an electric field can be estimated in the range 2-5×106 V·cm-1. This field is screened by a 

sheet carrier density of the order 1012 cm-2 quite close to the typical values of the sheet carrier density of MoS2 30. 

After characterizing diode-like electrical transport properties of the stacked device we study the performance of the 

device upon illumination. We project a high-power LED source, forming a spot of 400 µm in diameter, onto the stacked 

MoS2/LSMO. Figure 4(a) shows the IV characteristics of the device in dark and upon illumination with increasingly high 

power density. The forward current increases monotonically with the illumination power density because of the 

photogeneration of electron-hole pairs that are separated by the applied drain-source bias voltage (photoconductive 

generation mechanism). At zero applied bias, the built-in electric field in the interface (due to the different doping character 

of the two materials) separates the photogenerated electron-hole pairs producing a finite current (so called Isc short circuit 

current), which is a fingerprint of the photovoltaic effect. We ruled out the photogeneration of current at the Ag/LSMO and 
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carbon fibre/MoS2 interfaces as they present Ohmic contact behavior.19,26 Although scanning photocurrent mapping could 

be an independent way to proof the negligible effect of the Ag/LSMO and carbon fibre/MoS2 interfaces in the photocurrent 

generation but its implementation in combination with the carbon fiber top electrode results technically challenging and it 

lays beyond the scope of this manuscript. The voltage (at zero current) generated in the junction upon illumination (open 

circuit voltage, Voc) and it is another characteristic of the photovoltaic effect. Figure 4(b) shows a zoom in the IV 

characteristics of Figure 4(a) to facilitate the identification of the short circuit current and open circuit voltage generated 

upon illumination. Figure 4(c) shows the optical power dependence of these values displaying a linear dependence for Isc 

and logarithmic dependence for Voc, characteristics of photodiodes. The Voc saturates at values close to 0.4 V even without 

optimizing the carrier extraction electrodes. The comparison with other heterojunctions in the literature shows that the Voc 

value of our complex oxide/2D semiconductor is comparable to that of other devices based on vertical stacking of 2D 

semiconductors (see Table 1) and also the filling factor (FF) of our device is the largest reported so far for these kind of 

vertical heterostructure devices. Table 1 also compares the short circuit current density of different devices. Note that in our 

device the contact area is not well-defined but considering an area of 50 µm2 (a conservative value taking into account the 

diameter of 7 µm of the fiber) the Jsc value of our device is ~1 mA/cm2, which is a moderate value compared with other 

vertical heterostructure. Nonetheless, our device also presents a unique feature: the whole stack is almost transparent (see 

inset in Figure 2(a)) while the rest of listed stacks are fabricated on top of opaque substrates. 

In summary, we presented a hybrid device based on the artificial stacking of single-layer MoS2 onto a LSMO thin 

film. The different doping character of these materials is exploited to build up an atomically thin photodiode device that 

shows a remarkably high rectification ratio (~103) and upon illumination displays photovoltaic effect with Voc up to 0.4 V. 

The results presented here constitute the first step towards combining the efforts of two large materials science communities, 

the two-dimensional materials and the TMO to fabricate optimized artificial materials combining suitable members of each 

family. 
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Figures
 

 

 

 
Figure 1 X-ray diffraction pattern (top inset), and reflectivity (main) of a 28 nm LSMO film grown on STO (001) substrate. The bottom 

inset is an AFM 3D image of the mesa that will contain the MoS2 flake. 

 

 

 
Figure 2 (a) Transmission mode optical image of a MoS2 flake on a PDMS stamp before its transfer and after being transferred onto 

the LSMO thin film (inset). (b) Differential reflectance spectra measured on the MoS2 flake before its transfer to determine its number 

of layers. The spectra in red and orange have been acquired at the positions highlighted with squares of the same color in (a). The panel 

also includes the spectra acquired for reference MoS2 samples with different number of layers (gray). The inset in (b) shows the 

comparison between the energy of the A exciton measured at the locations shown in (a) and on the reference samples to determine the 

number of layers. (c) Sketch of the experimental configuration to measure the electrical transport across the MoS2/LSMO stack. 
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Figure 3 Current vs. bias voltage characteristics of the single-layer MoS2/LSMO device. The inset shows the same dataset in semi-

logarithmic scale and displaying the absolute value of the current. 

 
Figure 4 (a) Current vs. bias voltage characteristics of the device in dark and upon illumination with increasingly high illumination 

power density. The inset shows the photogenerated current vs. the power density. (b) A zoomed in plot around zero bias to show the 

photovoltaic effect upon illumination. (c) Power dependence of the open circuit voltage and the short circuit current. Illumination 

wavelength 455 nm. 

 

Vertical stack Voc (Volts) Jsc (mA/cm2) F.F(%) Reference 

2D/3D semiconductor 

 

1L-MoS2/p-Si 0.41 22.4 0.57 31 

1L-MoS2/p-Si 0.55 100 0.1 13 

FL-BP/GaAs 0.55 10000 0.30 14 

FL-Bi2Te3/p-Si 0.24 0.96  0.38 32 

2D/complex oxide 1L-MoS2/28 nm LSMO 0.40 1.0  0.69 This work 

2D/organic semiconductor 2L-MoS2/Cu-phthalocyanine 0.60 0.25 0.26 15 

2D/2D 

1L-MoS2/1L WSe2 0.45 0.85 0.29 5 

1L-MoS2/1L WSe2 0.55 0.52 0.49 33 

FL-MoS2/FL-WSe2 0.27 1000 0.44 34 

1L-MoS2/FL-BP 0.30 9.5 0.32 8 

Table 1. Comparison between the open circuit voltages reported for vertical PN junction devices based on the stacking of semiconducting 

2D materials. 
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Figure S1 Thickness dependence of the B (left panel) and C (right panel) exciton peaks extracted from the spectra in 

Figure 2 of the main text. 
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Figure S2 Thickness determination from the quantitative analysis of the transmission mode optical image of the flake on 

PDMS (Figure 2a of the main text). The red, green and blue lines and symbols correspond to the red, green and blue 

channels of the digital camera. The symbols are the experimental absorption data measured at the two locations 

highlighted in Figure 2a. The solid lines show the thickness expected absorption of MoS2. 
 

 

 
Figure S3 Current vs. bias voltage characteristics of the carbon fiber probe in contact with a gold surface to determine 

the resistance of the fiber probe, R = 750 Ω. 
 

 

 
Figure S4 Photovoltaic generated power, calculated from the current vs. bias voltage characteristics shown in Figure 4b 

of the main text. 
 

 

https://doi.org/10.1088/2053-1583/aa797b
http://iopscience.iop.org/article/10.1088/2053-1583/aa797b


This is an author post-reviewing version of the manuscript: 

Y Niu, R Frisenda, SA Svatek, G Orfila, F Gallego, P Gant, N Agrait, C Leon, A Rivera-Calzada, D Perez de Lara, J Santamaria and A Castellanos-
Gomez. Photodiodes based in La0.7Sr0.3MnO3/single layer MoS2 hybrid vertical heterostructures. 2D Materials (2017) 

https://doi.org/10.1088/2053-1583/aa797b  

That has been published in its last form at: 

http://iopscience.iop.org/article/10.1088/2053-1583/aa797b  

 

 13 

 
Figure S5 Epi-illumination optical image of another single-layer MoS2 flake transferred onto a LSMO thin film. 

 

 
Figure S6 Current vs. bias voltage characteristics of the device shown in Figure S5. The inset shows the same dataset in 

semi-logarithmic scale. 
 

 
 

Figure S7 Current vs. bias voltage characteristics of the device shown in Figure S5 in dark and upon illumination. The 

characteristics upon illumination shows photovoltaic effect with Voc = 0.12 V and Isc = 0.2 nA. Illumination: 455 nm of 

wavelength and power density of 235 mW/cm2. 
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Figure S8 Current vs. bias voltage characteristics of a bilayer (left) and a multilayer (right) from device 1. 
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Figure S9. Current vs. bias voltage characteristics measured in a LSMO nanowire contacted with silver electrodes showing 

a very high current density with linear IV, indicative of Ohmic contact.  
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