Aplicación del coeficiente de acumulación de elementos traza a las bauxitas del noreste de España.

Por M. BUSTILLO (*), R. FORT (**) y S. ORDOÑEZ (*)

RESUMEN

En el presente trabajo se lleva a cabo una aplicación del coeficiente de acumulación de elementos traza (${}^{\circ}$ R $^{\circ}$) a las bauxitas kársticas del noreste de España. Se han calculado dos coeficientes, R $_1$ y R $_2$. R $_1$ se define de forma semejante a la utilizada por OZLÜ, es decir, utilizando los contenidos en V, Cr, Ni, Cu, Zn, Ga, Mn y Zr; por su parte, R $_2$ se ha calculado utilizando todos los elementos (17) analizados en este trabajo. Los valores de R $_1$ y R $_2$, así como la combinación de éstos con los contenidos en Cr y Ni, indican que la roca madre de las bauxitas era, probablemente, de carácter básico. También se deduce, teniendo en cuenta la similitud de los valores de R $_1$ y R $_2$ para las tres zonas estudiadas (Surpirenaica, Catalánides y Maestrazgo), que la roca madre para las tres zonas fue la misma, o, al menos, las características composicionales de las diferentes rocas madre eran similares.

Palabras clave: Geoquímica, Bauxitas, Cataluña.

ABSTRACT

An application of the trace-element accumulation coefficient (*R*) to the karstic bauxites from Northeeastern Spain is carried out at the present work. Two trace-element accumulation coefficients are calculated: R_1 and R_2 . R_1 is defined usink OZLU's elements (V, Cr, Ni, Cu, Zn, Ga, Mn and Zr), and R_2 according to all the elements analysed in our rocks (17 elements). R_1 and R_2 values and Cr- R_1 , Cr- R_2 , Ni- R_1 and Ni- R_2 diagrams show that the parent rocks of the karstic bauxites are probably basic rocks. Moreover, the three zones studied here (Surpirenaica, Catalánides y Maestrazgo) present similar R_1 and R_2 values, so it is possible to assert that the parent rocks for the three zones were the same or, at least, the characteristics of the different parent rocks were similar. Key words: Geochemistry, Bauxites, Catalūña.

INTRODUCCION

Si bien las bauxitas lateríticas, al tratarse de yacimientos residuales, presentan unas características que permiten conocer la roca madre a partir de la cual se formaron, no ocurre lo mismo con las bauxitas kársticas, siendo su roca madre todavía la base de fuertes controversias. Este problema es debido, sin duda, a su carácter sedimentario, pues su emplazamiento final es precedido de un transporte más o menos largo de los productos de alteración (OZLÜ, 1983).

En este sentido, el estudio de los elementos traza puede ser un método de trabajo sumamente interesante a la hora de intentar conocer las características de la roca madre de las bauxitas kársticas. Ejemplos como el de las bauxitas de la zona de Parnasso (Grecia) son esclarecedores. Estos materiales presentan contenidos medios en Ni y Cr de 2.000 a 3.000 ppm, contenidos que indican, probablemente, una influencia de rocas ultramáficas durante la alteración (MAKSIMOVIC y PAPASTAMATIOU, 1973). Otro ejemplo que se puede citar también es el de ORDOÑEZ et al. 1989-1-) para estas mismas bauxitas del noreste de España.

El objetivo del presente trabajo consiste en aplicar el coeficiente de acumulación de elementos traza, definido por SHAW (1964) a la interpretación del origen de las bauxitas kársticas del noreste de España para, más en concreto, intentar conocer el carácter de la roca madre que constituyó la fuente de los compuestos aluminosos.

^(*) Departamento de Petrología y Geoquímica. Facultad de Geología. Universidad Complutense. 28040 Madrid.

^(**) Instituto de Geología Económica. CSIC. Facultad de Geología. Universidad Complutense. 28040 Madrid.

METODOLOGIA

Un total de 15 muestras bauxíticas pertenecientes a la zona noreste de España (fig. 1) fueron analizadas por espectrometría ICP para definir sus contenidos en Ba, Be, Co, Cr, Cu, Ga, Mn, Nb, Ni, Rb, Sc, Sr, Th, V, Y, Zn y Zr.

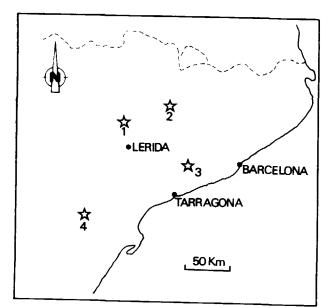


Figura 1.—Situación geográfica de las zonas estudiadas. 1 y 2: Surpirenaica. 3: Catalánides. 4: Maestrazgo.

SHAW (1964) define el coeficiente de acumulación de elementos traza como:

$$R = 1/n \sum_{i=1}^{n} ki/Ki$$

donde:

R: coeficiente de acumulación de elementos traza

n: número de elementos traza estudiados

i: elemento traza considerado

ki: contenido medio del elemento traza en la roca

Ki: contenido medio del elemento traza en la litosfera

Este autor muestra que el valor de este coeficiente de acumulación de elementos traza puede variar sustancialmente según el carácter de las rocas (magmáticas, sedimentarias, etc.).

En este trabajo se han calculado dos coeficientes de acumulación R₁ y R₂. R₁ viene definido de forma similar a la utilizada por OZLÜ (1983), es decir, considerando únicamente los contenidos en V, Cr, Ni, Cu, Zn, Ga, Mn y Zr. Por otra parte, y dado que los análisis realizados incluyen un número de elementos sustancialmente mayor, también se ha calculado el coeficiente de acumulación de elementos traza para todos ellos, coeficiente que hemos denominado como R₂.

Por último, estos coeficientes han sido utilizados, de acuerdo con la afirmación de SHAW (1964), comentada anteriormente, para intentar conocer las características de la roca madre origen de las bauxitas estudiadas.

SITUACION GEOLOGICA

Las muestras estudiadas pertenecen a tres zonas claramente diferenciadas: Surpirenaica, Catalánides y Maestrazgo. Las bauxitas Surpirenaicas se encuentran ubicadas en un nivel estratigráfico situado en un muro dolomítico del Jurásico Medio, siendo fosilizado por las series detríticas del Santoniense Medio (ORDOÑEZ et al., 1989-2-). Sobre el muro dolomítico se desarrolla un paleokarst bien definido. Esta paleosuperficie kárstica presenta morfologías de dolinas con formas de disolución y reconstrucción bien desarrolladas. Dentro del relleno kárstico aparecen, en algunos yacimientos, depósitos métricos de brechas intrakársticas perfectamente reconocibles.

Las bauxitas de las Catalánides se encuentran ubicadas sobre la Cordillera Prelitoral, en el denominado Macizo del Gayá. Clásicamente, su posición estratigráfica está definida a muro por las Carniolas del Keuper (CLOSAS MIRALLES, 1952, y SAN MIGUEL, 1950). A veces no existe techo reconocible, pero cuando está presente está formado por el Eoceno Inferior continental o las calizas de Alveolinas (Ilerdiense). Recientemente, ORDOÑEZ et al. (1989-2-) han señalado la posibilidad de la existencia de un segundo nivel bauxítico desarrollado sobre dolomías del Cretácico Superior (Mina de El Rubio), que presentaría morfologías fundamentalmente de «sink hole». En esta zona existen importantes yacimientos de bauxitas retrabajadas.

Por último, las bauxitas del Maestrazgo presentan un marcado carácter heterocrónico, pudiendo ser calificadas como auténticas arcillas bauxíticas situadas sobre muros dolomíticos y calcáreos que se extienden desde el Jurásico Superior al Barremiense. Los únicos materiales que podrían considerarse como bauxitas se ubican en la zona de Fuentespalda, siendo de naturaleza gibbsítica y pudiendo haberse formado por reactivación kárstica postectónica de rellenos de material arcilloso bauxítico (LA IGLESIA y ORDOÑEZ, 1990).

RESULTADOS GEOQUIMICOS Y DISCUSION

En la tabla 1 se muestran los resultados obteni-

dos en el análisis de los elementos traza en las 15 muestras seleccionadas. Los contenidos en V, Cr, Ni, Cu, Zn, Ga, Mn y Zr han sido utilizados para calcular los valores de R1, tal como se comentó en el apartado de metodología, mientras que el conjunto total ha servido de base para el cálculo de R2.

En la tabla 2 se muestran los valores medios de los elementos considerados en la litosfera (según TAYLOR, 1964, citado posteriormente en ROSLER y LANGE, 1972), valores éstos necesarios para los cálculos de R1 y R2. Para el estudio comparativo entre las muestras analizadas y diferentes tipos de rocas magmáticas se han considerado los valores medios publicados por TUREKIAN y WEDEPOHL (1961) y VINOGRADOV (1962) para rocas ultrabásicas, básicas, interme-

TABLA 1
Resultados geoquímicos (expresados en p.p.m.) para las muestras analizadas

	SP-1	SP-2	SP-3	SP-4	SP-5	SP-6	SP-7	CA-1	CA-2	CA-3	CA-4	MA-1	MA-2	MA-3	MA-4
Ва	4	6	294	25	4	28	4	4	4	68	4	4	16	12	125
Be	7	7	2	8	4	9	11	3	2	3	3	5	5	8	2
Co	11	5	4	6	4	24	26	4	4	4	4	4	18	41	4
Cr	383	445	390	377	396	277	428	428	306	297	234	325	196	217	136
Cu	19	29	26	74	14	8	15	28	28	28	12	24	79	86	15
Ga	64	62	88	40	53	60	53	99	73	39	35	58	37	57	26
Mn	77	75	79	71	76	283	214	75	72	75	78	73	280	1.124	77
Nb	34	43	41	39	49	39	28	50	41	33	6	31	40	27	4
Ni	138	225	57	168	90	242	128	42	80	84	98	58	131	152	32
Rb	7	6	4	9	6	8	11	5	4	6	4	4	10	20	9
Sc	55	61	27	39	47	42	64	54	56	46	30	40	35	48	11
Sr	41	20	539	34	130	28	111	269	202	1.499	63	76	125	74	625
Th	38	45	43	33	31	31	22	50	43	35	33	35	24	27	12
V	441	472	154	267	377	385	750	415	342	272	347	372	290	390	151
Υ	75	129	51	86	46	59	111	64	53	52	42	61	106	132	26
Zn	· 22	40	22	129	20	12	88	14	21	37	20	21	163	175	24
Zr	659	724	703	455	618	394	334	797	650	549	356	548	473	465	258

SP: Surpirenaica. CA: Catalánides. MA: Maestrago.

TABLA 2
Valores medios en la litosfera de los elementos considerados (expresados en p.p.m.), según TAYLOR (1964)

	423	Ga	15	Rb	90	V 135
	2,8	Mn	950	Sc	22	Y 33
	25	Nb	20	Sr	375	Zn 70
,.,	100	Ni	75	Th	9,6	Zr 165
	100					

dias y ácidas (tabla 3). En el caso de las rocas intermedias, y dado que existían diferencias entre los contenidos presentados por TUREKIAN y WEDEPOHL para Sienitas, y VINOGRADOV para dioritas, se ha tomado el valor medio de ambas.

De igual forma, también se ha obtenido el valor medio para las rocas ácidas entre los granitos de alto contenido en calcio y los de bajo contenido en este elemento.

En base a estos contenidos, se calcularon los valores de R_1 y R_2 para las muestras estudiadas y los diferentes tipos de rocas magmáticas consideradas (tabla 4). Se puede observar que en estas últimas, R_1 y R_2 son notablemente diferen-

TABLA 3

Valores medios (expresados en p.p.m.) de los elementos analizados en diferentes tipos de rocas magmáticas. Todos los valores corresponden a TUREKIAN y WEDEPOHL (1961), excepto los de las dioritas, que pertenecen a VINOGRADOV (1962)

	D 1111		R. Inte	rmedias	R. Acidas	
	R. Ultra- básicas	R. Bási cas	Sienitas	Dioritas	↑ Ca	↓ Ca
Ва	0,4	330	1.600	650	420	840
Be	0,5	1	1	1,8	2	3
Co	150	48	1	10	7	1
Cr	1.600	170	2	50	4	25
Cu	10	87	5	35	30	10
Ga	1,5	17	30	20	17	17
Mn	1.620	1.500	850	1.200	540	390
Nb	16	19	35	20	20	21
Ni	2.000	130	4	55	15	4,5
Rb	0,2	30	110	100	100	170
Sc	15	30	3	2,5	14	7
Sr	1	465	200	800	440	100
Th	0,004	4	13	7	8,5	17
V	40	250	30	100	88	44
Y	0,5	21	20	_	35	40
Zn	50	105	130	72	60	39
Zr	45	140	500	260	140	175

TABLA 4

Valores de R₁ y R₂ para las bauxitas analizadas y los diferentes tipos de rocas magmáticas consideradas

	R_1	R_2		R_1	R_2
SP-1	2,24	1,95		1,41	1,20
SP-2	2,58	2,30	MA-1	1,85	1,61
SP-3	2,10	1,81	MA-2	1,91	1,33
SP-4	2,09	1,72	MA-3	2,40	2,10
SP-5	1,98	1,68	MA-4	0,86	0,77
SP-6	1,99	1,81	R. Ult	3,94	3,25
SP-7	2,55	2,11	R. Bas	1,49	1,15
CA-1	2,52	2,14	R. Int	1,02	0,95
CA-2	2,04	1,64	R. Aci	0,55	0,78
CA-3	1.64	1.72			

SP: Surpirenaica. C: Catalánides, MA: Maestrazgo. R. Ult.: Rocas Ultrabásicas. R. Bas.: Rocas Básicas. R. Int.: Rocas Intermedias. R. Aci.: Rocas Acidas.

tes según el tipo de roca magmática, especialmente en el caso de las rocas ultrabásicas (R1= =3,94 y R₂=3,25). Por su parte, los materiales correspondientes a las bauxitas analizadas poseen valores de R1 y R2 que varían entre 2,58 y 1,41 para R₁ y 2,30 y 1,20 para R₂, por lo que abarcarían un rango que va desde las rocas básicas hasta un valor ciertamente superior a éste, y con una cierta proximidad al de las rocas ultrabásicas, tanto en el caso de R1 como en el de R2. Hay que hacer constar que en estos rangos de variación la muestra denominada MA-4 se aleja notablemente del contexto general, hecho este debido a su bajo contenido en Al₂O₃ que, incluso, no permitiría a esta muestra ser denominada como una auténtica bauxita. También hay que resaltar que si separamos las muestras por zonas geográficas (fig. 2), se observa una superposición de las diferentes zonas estudiadas, por lo que no es posible separar claramente la composición de las rocas madres para las tres localidades.

Si los valores de R₁ y R₂ son interesantes a la hora de intentar establecer la roca madre de las bauxitas estudiadas, resulta también esclarecedor la combinación de estos parámetros con determinados elementos traza (especialmente Cr y Ni), cuyos contenidos medios son muy diferen-

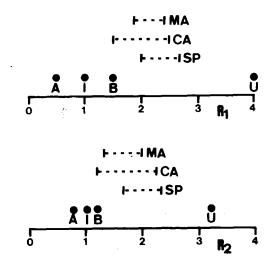
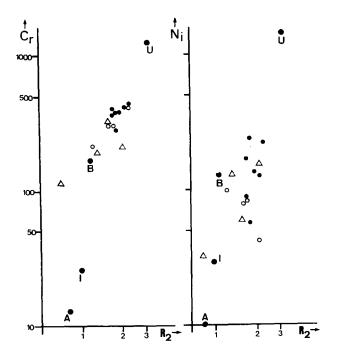



Figura 2.—Valores de R₁ y R₂ para los diferentes grupos de rocas magmáticas, así como los rangos de variación de estos mismos índices en las zonas estudiadas.

SP: Surpirenaica. CA: Catalánides. MA: Maestrazgo.

tes en los diversos tipos de rocas magmáticas. Así, en la figura 3 se representan los materia-

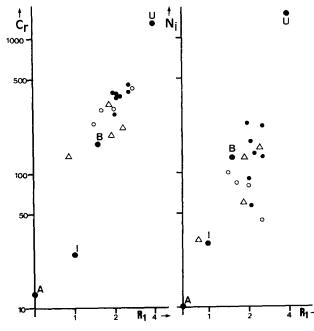


Figura 3.—Representación gráfica de los índices R₁ y R₂ en función de los contenidos en Cr y Ni (ppm). U: Rocas ultrabásicas. B: Rocas básicas. I: Rocas intermedias. Y A: Rocas ácidas. Círculos negros: Surpirenaica. Círculos blancos: Catalánides. Y triángulos blancos: Maestrazgo.

les analizados en función de los valores de R₁ y R₂ frente al Cr y al Ni, incluyendo los valores correspondientes a las rocas ultrabásicas, básicas, intermedias y ácidas. En esta figura se observa que la situación de las muestras es ligeramente diferente según consideremos R (tanto R₁ como R₂) frente al Cr o frente al Ni. En el primer caso (R-Cr) las muestras quedan agrupadas alrededor del punto correspondiente a las rocas básicas, aunque presentando un cierto sesgo hacia la zona de las ultrabásicas. Por su parte, en los diagramas R-Ni las muestras quedan algo más dispersas entre sí, pero todas ellas alrededor del valor correspondiente a las rocas básicas. Al igual que sucedía en la figura 2, en este caso también hay que hacer notar que las tres zonas geográficas quedan entremezcladas, no pudiéndose separar unas de otras y, por tanto, afirmando de nuevo el hecho de una única roca madre como fuente del aluminio.

En base a los valores de R₁ y R₂, así como a la combinación de éstos con los contenidos en Cr y Ni, se puede afirmar que la roca madre de las bauxitas kársticas del noreste de España era probablemente de carácter básico, tal vez en algunos casos con cierta tendencia a ultrabásico, y que la roca madre para las tres zonas estudiadas (Surpirineos, Catalánides y Maestrazgo) fue la misma, o, por lo menos, en el caso de que existiesen diferentes rocas madres, parece ser que su composición química era bastante semejante.

CONCLUSIONES

Del presente trabajo se pueden establecer las siguientes conclusiones:

- La utilización del coeficiente de acumulación de elementos traza resulta muy interesante para intentar conocer cuáles pueden ser las características composicionales de las rocas madre en bauxitas kársticas.
- 2) Para las zonas estudiadas, los valores de R₁ y R₂, así como la combinación de éstos con los contenidos en Cr y Ni, indican que el carácter de la roca madre, en general, era básico.

- 3) Al no existir importantes diferencias entre unas zonas y otras, se puede afirmar que, probablemente, la roca madre para todas las bauxitas estudiadas era la misma o, en caso de tratarse de rocas madre diferentes, al menos sus características composicionales eran semejantes.
- Estos resultados concuerdan, a grandes rasgos, con los obtenidos por ORDOÑEZ et al. (1989-1-) en su estudio geoquímico de las bauxitas del noreste de España.

REFERENCIAS

CLOSAS MIRALLES, J. (1982): Las bauxitas del noreste de España. 19 Intern. Geolog. Congress, Argel. Sect., 12: 199-223.

LA IGLESIA, A., y ORDOÑEZ, S. (1990): Cristalinidad de caolinitas en yacimientos de bauxitas kársticas del NE de España. Bol. Soc. Esp. de Mineralogía (en prensa).

MAKSIMOVIC, Z., y PAPASTAMATIOU, J. (1973): Distribution d'oligoélements dans les gisements de bauxite de la Grèce centrale. Symp. ICSOBA, Nice: 33-46.

ORDOÑEZ, S.; BUSTILLO, M.; FORT, R., y MENDUIÑA, J. (1989-1-): Estudio geoquímico de las bauxitas del noreste de España. III Congreso de Geoquímica de España, vol. 1: 61-71.

ORDOÑEZ, S.; MEJIAS, A. G., y MENDUIÑA, J. (1989): Stratigraphic position of karstic bauxites deposits in Northeastern Spain. 28 Intern. Geol. Congress, Washington, vol. 3: 494.

OZLÜ, N. (1983): Trace-element Content of «Karst Bauxites» and their Parent rocks in the Mediterranean Belt. Mineral. Deposita, 18: 469-476.

ROSLER, H. J., y LANGE, H. (1972): Geochemical Tables. Elsevier, Amsterdam, 468 pp.

SAN MIGUEL DE LA CAMARA, M. (1950): Estudio geológico de los criaderos de bauxita del NE de España. A. Rovira. Artes Gráficas, 35 pp.

SHAW, D. M. (1964): Interprétation géochimique des éléments en traces dans les roches cristallines. Masson et Cie. Paris, 234 pp.

TUREKIAN, K. K., y WEDEPOHL, K. H. (1961): Distribution of the Elements in Some Major Units of the Earth's Crust. Bull. Geol. Soc. America, 72: 175.

VINOGRADOV, A. P. (1962): The average contents of the chemical elements in the main types of eruptive rocks. Geokhimiya, vol. 7.

Original recibido: Mayo de 1990. Original aceptado: Octubre de 1990.