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We consider reaction—diffusion equations under nonlinear boundary conditions where
the nonlinearities are asymptotically linear at infinity and depend on a parameter.
We prove that, as the parameter crosses some critical values, a resonance-type
phenomenon provides solutions that bifurcate from infinity. We characterize the
bifurcated branches when they are sub- or supercritical. We obtain both
Landesman—Lazer-type conditions that guarantee the existence of solutions in the
resonant case and an anti-maximum principle.
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1. Introduction

Consider the following nonlinear elliptic problem with nonlinear boundary condi-
tions:
—Au+u=Im(z)u+ f(\z,u) in 2,

u = Mp(z)u+ g\, z,u) on 92, 1)

v
where 2 is a bounded domain in RY (N > 2) with smooth boundary, 8/v := v-V
is the (unit) outer normal derivative, the parameter A € R, the weight functions
m,p =0, (m,p) # (0,0) and the functions f and g are sublinear at infinity.

Problems with nonlinear boundary conditions have recently attracted consider-

able attention. In this paper we analyse the bifurcation induced by nonlinearities
in both the differential equation and the boundary condition. The existence of
solutions of nonlinear problems when the nonlinearity is in the differential equa-
tion and the boundary condition is Dirichlet has been widely studied using (among
other techniques) bifurcation theory (see, for example, [4]). However, problems with
nonlinear boundary conditions have been less widely studied. For the Laplace oper-
ator with nonlinear boundary conditions see, for example, [5-7,9,17,19] and the
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references therein. Mavinga [17] studied a problem with a nonlinear boundary con-
dition from a variational point of view. Observe that in (1.1) we are dealing with
two nonlinear terms that may also depend on the parameter A. Our interest is in
analysing the interplay between both nonlinearities. One of the main differences
from problems with only one nonlinearity, either in the interior or at the boundary,
is the regularity results (see theorem 2.4).

We study some possible bifurcations of branches of solutions as the parameter A
varies. More specifically, we are interested in characterizing a bifurcation from infin-
1ty phenomenon, which localizes points in the parameter space where the branch
of solutions becomes unbounded. We obtain sufficient conditions for having sub-
critical (on the left) or supercritical (on the right) bifurcations. Consequently, we
also obtain the bifurcation nature of some classical results, such as the Landesman—
Lazer-type condition for the existence of solutions in the resonant case [15], and
the anti-maximum principle [4,10]. We see that the bifurcation point of view also
allows us to obtain a local maximum principle for some classes of strongly resonant
problems.

Throughout this paper we shall assume that the nonlinearities f and g are sub-
linear at infinity with respect to the variable u, i.e.

[f(\z,s) = ofls]),  lg(A,2,8)] = ols]) as [s] = oco.

Hence, the nonlinearities in the interior and on the boundary are both asymptoti-
cally linear at infinity, since the dominant term for large values of |u| is the linear
term. Observe that problem (1.1) can be cast as a perturbation of the eigenvalue
problem

—Au+u=pm(z)u in §2,

ou (1.2)
W up(x)u  on Of2.

We say that u is a generalized eigenvalue if the linear problem (1.2) has a non-
trivial solution. Note that the eigenvalue problem (1.2) includes as special cases
the weighted Steklov eigenproblem (when m = 0 and p # 0) and the weighted
Neumann eigenproblem (when p = 0 and m # 0).

In [17, theorem 2.1] the existence of a sequence of real eigenvalues p,, := pn,(m, p)
of (1.2) such that u, — oo as n — oo is proved, and each eigenvalue has a finite-
dimensional eigenspace. The eigenfunctions ¢, corresponding to these eigenvalues
form a complete orthonormal family in the (proper) subspace of H*(£2). Moreover,
the first eigenvalue, p1, is simple, its associated eigenfunction, ¢1, is strictly positive
(or strictly negative) in {2 and the following inequality holds:

m(/nm(x)u2+/mp(x)u2> </9|Vu|2+/nu2 for all w € H'(2), (1.3)

where g1 > 0 is the least eigenvalue for (1.2).

Observe that when f = g = 0 the problem (1.1) becomes the linear problem
(1.2). If the parameter X is not a generalized eigenvalue, then the only solution is
the trivial one. On the other hand, if the parameter A is a generalized eigenvalue
tn = pn(m,p) of (1.2), then (1.1) (with f = g = 0) has infinitely many solu-
tions. Indeed, any multiple of the eigenfunction ¢, is a solution. This phenomenon
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can be seen as the existence of an unbounded branch of solutions for A = p,.
Bifurcation theory from infinity analyses how this unbounded branch of solutions
is perturbed in the sublinear case, when the parameter A approaches a generalized
eigenvalue.

The aim of this paper is to analyse some possible bifurcations of (weak) solutions
as the parameter X\ varies. By a (weak) solution, we mean a solution u € H'({2)
such that

/QVqu—i-/qu = /\{/Qm(x)uv—f—/arz p(m)uu} +/Qf()\7x,u)v+/(m g\, z,u)v
(1.4)

for all v € H(2).

The paper is organized as follows. In §2, we formulate the nonlinear problem
(1.1) as a fixed-point problem in certain spaces, and use the tools of nonlinear
functional analysis to prove the existence of solutions for all values of A € R except
for the generalized eigenvalues. In § 3, we show the existence of unbounded branches
of solutions bifurcating from the generalized eigenvalues of odd multiplicity. The
proof is based on the global bifurcation results of Rabinowitz [20, 21] (see also
[5—7]). Section 4 is devoted to the sub- and supercritical bifurcations from infinity.
Moreover, in §5, we prove the existence of solutions for the problem at resonance
under Landesman—Lazer-type conditions. Finally, § 6, we analyse an anti-maximum
principle.

2. Non-resonance and fixed-point problems

In this section, we prove the existence of a weak solution of (1.1) for all A € R\
{ui}i. We transform (1.1) into an equivalent fixed-point problem in C°({2), and
use compactness results, the Schaefer fixed-point theorem and regularity results to
show that a weak solution of (1.1) also belongs to C%(£2). One advantage of this
technique is that it allows us to obtain more information on the resolvent operator
of the linear problem associated with problem (1.1); that is, for any compact set
of )\ far from the generalized eigenvalues, the norm of the resolvent operator is
uniformly bounded in some appropriate spaces.

We assume that (m, p) € L>®(£2) x L>®(9§2) and that m and p satisfy the follow-
ing condition:

m(z) > 0 almost everywhere (a.e.) on 2 and p(z) > 0 a.e. on 012

such that / m(z) dx—i—/ plx)dz #£0. (2.1)
Ie; a0

(We stress the fact that the weight-functions m and p may vanish on subsets of
positive measure.)

The (nonlinear) perturbations f: Rx 2 xR — R and g: Rx 92 x R — R satisfy
the following conditions.

(C1) f and g are Carathéodory functions (i.e. measurable in z, and continuous
with respect to (A, u) € R x R).
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(C2) There exist hy € L"(£2) and hy € L™ (892) (with r > N and r’ > N—1) and
continuous functions Ay, Ao: R — Rt and U;,Us: R — R such that
[f(N 2, 8)] < Ay(Mhy(2)Uy(s) for all (A, z,s) € R x 2 x R.
lg(A, 2, 8)| < A2(MN)he(x)Ua(s) for all (A, z,s) € R x 92 x R.

We shall also assume the following conditions on the functions U; and Us:
(C3) lim|g|00 Ui (8)/5 = 0 and lim|g o0 Ua(s)/s = 0.

Note that condition (C3) is satisfied in particular if f,g: R x 2 x R — R are
continuous, and

o ST g

|s|—o0 S |s]—o0 S

=0

uniformly for a.e. x € 92 and A on bounded intervals.
The following theorem states the existence of solutions for the non-resonance
problem.

THEOREM 2.1. Suppose that f and g satisfy (C1)—-(C3). Then, for all A € R\ {u;}i,
there exists at least one solution of problem (1.1). Moreover, for each compact set
K C R\ {ui}i, there exists a constant C = C(K) such that any solution of (1.1) is
bounded in C°(£2) by C.

Before proving theorem 2.1, we first state and prove some relevant auxiliary
results.
Consider first the linear problem
—Au+u=a(z) in 2,
b (2.2)
a—z =b(z) on 0.
It is well known (see [12, p. 75]; [14, p. 162]; [18, p. 255]) that if a € LI(§2) with
q > 1, then there exists a unique solution u; € W24(£2) for the following problem:
—Auy +uy =a in £,
2.3
% =0 on 0f2. 23)
v
We define the operator
A: Dom(A) — L1(02)
by
A=—-A+1,

where

ov
It follows from the estimates in [14, p. 162] and [18, p. 255] that

Dom(A) := {u c W1(0): gu _ 0}.

lurllw=a(2y < Cllallace) and  ur = A™'(a) € W>9(02).
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Moreover, the operator A has an associated scale of interpolation—extrapolation
spaces and, in particular, for each p > 1, we have that A: WL1P(£2) — W=LP(£2) is
an isomorphism.

On the other hand, we use the boundary trace imbedding theorem,

Np —
i: WHP(0) < LY02) for any p > 1 with 1 < ¢ < ]\f p’
-p

which is continuous, and compact for 1 < ¢ < (Np—p)/(N —p) (see [1, p. 164]; [13,
p. 344]), and the dual of the linear map 1,

i*: (L9(002))* — (WP (02))*,

to get the embedding L9 (92) < W17 (£2), where (L9(02))* = L4 (862) with
1/¢* +1/q = 1, and (W'P(02))* = WP () with 1/p* + 1/p = 1. Therefore,
choosing any ¢’ > 1, we get the embedding Lq/(&()) — W=LP(£2), which is contin-
uous for p* < Ng*/(N — 1) and compact for p* < Ng*/(N —1).

It follows that, for b € LY (002) with ¢’ > 1, the unique solution, us, of

—Aus +us =0 in {2,
2.4
%2y on o0 24)
ov
is in WP(02) and [Jug||wrr () < Cloll Lo a2y )
Using embedding theorems, we get that, for every (a,b) € L1(§2) x L7 (912) with
g > 1and ¢’ > 1, the linear problem (2.2) has a unique solution u € W (£2) given
by u = uy + ug, where

N 'N
min { — , 4 for 1 < g < N,
N—-qg N-1
P= (25)
]\?_1 for ¢ > N.

Now, define the resolvent operator Sy by
So(a,b) := (u, ['u),

where I'u represents the trace of u. Note that, whenever ¢ < %N orqg <N -1,

. gN qgN
- N.
p mm{Nq’Nl}<

On the other hand, if ¢ > %N and ¢ > N — 1, then p > N, and by Sobolev
embeddings theorems we have that W1P(£2) is embedded in C%({2) with a <
1 — N/p. Moreover, for each u € C*(£2) with 0 < a < 1, the trace I'u € C%(92)
(and therefore, if needed, each u € C*(£2)) can be rewritten as (u, 'u) € C*(£2) x
C(012).

In what follows, we shall show that any weak solution u € H'({2) of the nonlinear
equation (1.1) lies in fact in C*(£2). To accomplish this, we shall need several
regularity results of the associated linear problem (2.2). The following lemma states
the regularity of the solution of the linear problem.
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LEMMA 2.2. If N > 2 and a € L9(£2), b € LI (002) with ¢ > 1 and ¢’ > 1, then the
linear problem (2.2) has a unique solution u € WYP(§2) satisfying

[ullwre2) < Clllallzee) + 10l Lo (52)): (2.6)

where (2.5) holds.
In particular, we have the following.

(i) If ¢ < 1N or ¢ < N —1 (which implies 1 < p < N), then u € L? (2),
Tu e LV'(09) for all (#,p") € [1, Np/(N ,p)] [1, (N — 1)p/(N = p)].
Moreover, the map So: LI(£2) x L9 (002) — LP (£2) x LP (912) is continuous
for all (p',p") € [1, Np/(N —p)] x [1,(N —1)p/(N — p)], and compact for all
@, p") €1, Np/(N* )) x [1,(N =1)p/(N = p)).

(i) If ¢ = 1N and ¢ —1 (or q = 1N and ¢ = N — 1), which in both
cases zmply p = N then ue LV (Q) and I'u € Lp (8(2) for any p' > 1.
Moreover, the map So: LI(£2) x LY (d2) — L¥' (£2) x L (92) is continuous
and compact for 1 < p’ < oco.

(iii) If ¢ > 3N and ¢ > N — 1 (which implies p > N ), then u € C*(£2) with
[ullga(ay < Clllallze@) + 1l Lo 02));

where 0 < oo < 1—(N/p). Moreover, the map So: LI(2)x L1 (082) — C*(2)x
C*(092), with 0 < a <1 — (N/p), is continuous and compact.

Proof. The existence, uniqueness and the estimate (2.6) are proved in a similar
way as in [2,5,14,19]. To prove (i), we use the fact that if 1 < p < N, then
WLP(£2) is compactly embedded in L?' (£2) with 1 < p/ < Np/(N — p). Moreover,
if u € WHP(82), then T'u € W'=1/PP(90) (see [8, p. 315]), which is also compactly
embedded in LP" (862) with 1 < p” < (N —1)p/(N — p). Similarly, one can use the
Sobolev compact embedding theorem to prove (ii) and (iii). O

The next corollary is a technical result that will be used for the regularity of
a weak solution. Keeping the notation of the above lemma, we analyse where the
minimum defining p is attained (see (2.5)).

COROLLARY 2.3. Assume that N > 2, and let (a,b) satisfy the conditions

la(z)] < ha(z)wi(x),  [b(e)] < ho(z)ws (),

where hy € L"(02), wy € L*(2), hy € L™ (812), wo € L (802) with r > iIN,s>1,
" >N—-1ands >1.

Let
1 1 1 1 1 1
—=24= ad ==—=+4-,
q r s qg s
where (2.5) holds.
Assume that p < N, then the following hold.

(i) Ifp=gN/(N —q), then ¢ < AN and So(a,b) € L5T9(£2) x LP" (912) with

(
(2 1\/1 2\ _(N—1)p 1)p



Bifurcation and reaction—diffusion equations 655

(i) If p= ¢ N/(N —1), then ¢ < N —1 and So(a,b) € LV (2) x L*' 9 (902) with

1 1\/1 1\t Np
5/ = [ — — d ! = .
S(N—l r’><q’ N—l) >0 and p N—p
(iif) Furthermore, in any case |So(a,b)|| < C([willr=(@) + [lw2ll 1 90))-

Proof.

(i) Suppose that p = ¢N/(N — q). Since, by assumption, p < N, one can see clearly
that ¢ < %N. From lemma 2.2, u € L”/(Q) for p’ = Np/(N — p). Now, we need to
prove that there exists § > 0 such that p’ > s + §. Indeed, by the definitions of p’,
p, q and taking into account that r > %N , we have that

1 1 1 1 2 1 1 2 1

P p N ¢ N r s N s

Choosing 6 = p’ — s > 0, a direct calculation shows that

()63

(ii) Suppose that p = ¢’ N/(N —1). Since p < N, one can see clearly that ¢ < N—1.
From lemma 2.2, I'u € LP" (812) for p" = (N —1)p/(N — p). We need to prove that
there exists ¢’ > 0 such that p” > s’ + §’. By the definitions of p”, p, ¢’ and taking
into account that ' > N — 1, we have that

1 N 1 1 1 1 1 1 1

— = - ===t <=
p (N—-1p N-1 ¢ N-1 T’Jrs’ N-1 ¢

Choosing ¢’ = p”" — s’ > 0, a direct calculation shows that

PN (RS Y 6 N N
N—-1 ¢ N-1 '
(iii) This is a consequence of lemma 2.2 (see (2.6)) and the Holder inequality. O

Now, we analyse the regularity result and prove that any weak solution u €
H'() is in fact in C*(£2) for some for 0 < a < 1. The following result is one of the
main differences from the problem with only one nonlinearity, either at the interior
or at the boundary. It is a non-standard bootstrap argument. As in corollary 2.3
(see (2.6) and (2.5)), the regularity of a solution depends on the minimum of both
the interior and the boundary regularities.

THEOREM 2.4. Assume that conditions (C1)-(C3) hold. For any M > 0, if u €
H(82) is a solution of the nonlinear problem (1.1) for some |\| < M, then

Ls’(arz)) (2.7)
for some positive a« < 1, where C = C(M), s =2N/(N—-2), s’ =2(N—-1)/(N —2).

[ullca(a) < C(1+ |lul

Le(2) + [Tl

Proof. The proof is based on a four-step regularizing procedure.
In step 1 we start the procedure, letting p, ¢, ¢’ initially be as in lemma 2.2;
these will be made more precise later, in terms of the regularity of the nonlinear
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terms. Next we distinguish different cases of lemma 2.2. In step 2 we consider the
q > %N and ¢ > N — 1 case by using lemma 2.2(iii). In step 3, when ¢ = %N
and ¢ > N—1 (or ¢ > 3N and ¢ = N — 1), we use lemma 2.2(ii). In step 4
we consider the case when ¢ < %N and ¢ < N — 1, invoking lemma 2.2(i). In
turn, this step is divided into several parts. In part (a) we initialize the bootstrap
argument. Part (b) is divided into two further sub-parts. We first distinguish where
the minimum defining p is attained (see (2.5)). We then consider the case where
the minimum defining p lies on the regularity of the ‘interior’ term, in other words
p=¢gN/(N —q) < ¢N/(N —1). We then consider the minimum defining p, which
lies on the regularity of the ‘boundary’ term, which means p = ¢’ N/(N — 1) <
gN/(N — q). We prove that, in any case, this minimum can be ‘raised’ at most in
the combination of those two sub-parts. In part (c) we iterate this procedure for
g=¢ <iNorq = q; < N —1,4,j > 0. This part in turn is also divided into two
sub-parts: we consider first the case where ¢; < %N for ¢ > 0, and then the case
where q;» < N —1 for 5 > 0. We conclude that, in a finite number of iterations,
which may be different for the nonlinearity at the interior and the nonlinearity at
the boundary, the corresponding ¢;, > %N , and also q}o > N — 1. This situation
corresponds to the case treated in step 3, which ends the proof.
Now, let us carry out the procedure.

STEP 1. Using conditions (C1)—(C3) and the fact that |A\| < M, we have that
(@)t FO 2, u)] < Cr(1+ha (@) (1+u(z)]) and Ap(e)u-+g(h 7, 0)] < Ca(1+
ho(z))(1 + |u(z)|), where C; and Cy are constants independent of u. Therefore,

—Au+u=a(z) in {2,

Ju

v

with fa(z)] < C1(1 + hi(2))(1 + |u(z)]) and [b(z)| < Ca(1 + ha(2))(1 + |u(z)]).

By conditions (C2), 1+ hi(z) € L"(£2) and 1+ ho(z) € L™ (02) with r > LN

and 7/ > N — 1. Since u € H*(£2), we have u € L*(£2) and I'u € L* (8£2) with

s = 2N/(N —2) and s’ = 2(N — 1)/(N — 2). From Hoélder’s inequality, (a,b) €
L1(02) x LY (92) with

=b(z) on I2,

1 1 1 1 1
=—+- and —=—+—.
T S

q/ ,r/ /

1
q s
STEP 2. From lemma 2.2(iii), we have that if ¢ > %N and ¢ > N — 1, then
u € C*(£2) with

[ullca(ay < Clllallza) + 1l Lo o2))

<
SO [lull ooy + 1Tyl

La"(an))7
which completes this step of the proof.

STEP 3. If ¢ = %N and ¢ > N—1 (or q= %N aqd ¢ = N —1), from lemma 2.2(ii)
we obtain that (u, ['u) = Sp(a,b) € LP (§2) x LP (912) for any p’ € [1,00). Conse-
quently, (a,b) € L™¢(2) x L" ~=(002) with r — ¢ >_%N and ' —e > N — 1, and,
finally, from lemma 2.2(iii) we deduce that u € C*(§2), which ends this step of the
proof.
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STEP 4. Assume that ¢ < N or ¢ < N — 1. Then, from lemma 2.2(i), we deduce
that u € WHP(£2) and

(u, T'u) = So(a,b) € L¥ (R2) x LP" (82),

where p’ = Np/(N —p) and p”’ = (N — 1)p/(N — p) with p = min{gN/(N —
9),¢dN/(N -1)} <N.

(a) Let us define so = s, g0 = ¢, s4 = 5, ¢4 = ¢, Poo = P, Py = P’ and pj, = p”.
With this notation,

wN %N } < N.

poo:mm{Nqo’Nl

Let us define, in a general setting, u € W1Pii (£2) and

(u, I'u) = So(a,b) € L4 (£2) x LV (842),

. N N ¢;N
p”:mln{N_ql’N]—]_} fOI'1<qz‘<N, pU:NJ—]. fOTQi>N7

(N - 1)pi,j

fori,j =0,1,....
N = pi;

and pj; =

(b) Assume ¢; < 3N or ¢j < N — 1 (which implies 1 < p;; < N) throughout
part (b). We shall prove, in at most two iterations, that u € W1Pi+1.i+1(£2) with
Pit1j+1 > Pij-
(1) Assume that p;; = ¢;N/(N — ¢;). Then, from corollary 2.3(i) it follows that
u € L¥+1(§2) with s;41 = s; + ;, and

2 1\/1 2\
s=s(z-0)(G-%) >0

Therefore, (a,b) € L9+1(£2) x L% (82) with
111
di+1 T Sit1

and ¢;41 > ¢;. Moreover, from lemma 2.2, u € WhPi+1i ().

If giy1 > 3N and q; < N —1, then pi11; = ¢;N/(N — 1) < N and we shall
skip to part (2).

On the otherl hand, if Git1, < %N, then p;41,; < N and, moreover, (u,I'u) =
So(a,b) € LPi+1.3(£2) x LPi+1.i(952).

To conclude this sub-step, we can assert that u € WPi+14 (£2), with p; 1, =
p;j. Moreover,

N < ;N

if
"N SN-TU

then Di+1,5 > Dijs (28)
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and

N @GN
N—-—¢ N-1

if

;N qir1 N
N—-1 N-—-¢n

then p;; = piy1,; = and py1; < N. (2.9)

The situation in (2.9) is treated in (2), where we shall prove that p; 41 j41 >
Di+1,5-

(2) Assume that p;; = ¢;N/N — 1. Then, from corollary 2.3(ii) it follows that
Iu € L¥+1(882) with si11 =8+ 0} and

1 1\/1 1\
=¢dl—m-=) == — 0.
i SJ(N—l r/)<q§ N—1> o

Therefore, (a,b) € L% (£2) x L%i+1(d12) with

1 1 1
==+ and ¢, > d,.
‘J;'H r! 5;'+1 ! !

Moreover, from lemma 2.2, u € W1Pii+1(§2).

It f1,3+1 < N —1, then p; j4+1 < N, and, moreover, Sy(a,b) € L”;ﬁ,j+1((2) X
LPii+1(082). Consequently, u € WhPii+1(§2), with p; j11 > pij. Moreover,

. OGN N
if NJ_ 1< ]\?_ 4 then p; j11 > pij, (2.10)
and
i o __aN
N -1 N —q’
aN ¢ N

then Pij = Dij+1 = and Dij+1 < N. (211)

N_Qi N -1

If (2.11) holds, we return to sub-step (1) for p; j;1 and observe that p; 11 ;41 >
Pij+1 (see (2.8)).

Summarizing, in (1) and (2) of part (b) we check where the minimum defining
p=pij = min{gN/(N —¢:),q;N/(N — 1)} is attained, and then we prove that, in
any case, this minimum can be raised at most in the combination of both (1) and
(2), proving that u € WhPit1i+1 () with p;y1 41 > pij-

(c) Iterating this procedure, we shall prove that, in a finite number of steps, we get
(a,b) € L% (£2) x L% (042) with ¢;, > $N and ¢j, > N — 1. (2.12)
(1) To ascertain (2.12) when ¢; < 3N, let us set
1 1 1
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and define

-1
2 1\/1 2 1 1,1
(51‘:82' -~ — - T X7 >07 Si :Si—’_éi’ = + ’
(N r) (Qi N) o itr T Sitl

Observe that s;41 > s; and giy1 > ¢;.

Consider the sequence {g;} with ¢; < IN. If {¢;} is a infinite set (observe
that {g;}; is an increasing sequence and 1 < ¢; < %N for all i € N), then
there exists lim; 00 @i =: @oo, and 1 < oo < %N.

Moreover, {s;}; is an increasing sequence, and, by definition,

Therefore, there exists

Consequently, there exists lim; oo 8; =: S0, and

1<

r 2 1\
' i ) )
1\S°°\<N > < 00 (2.13)

r— r

Also, by definition, §; = s;41 — s;. Then, there exists lim;_, o, §; = 0. Let us
set doo = lim;_, o0 §; = 0.

If go < %N , then, by definition,

so_e (2 oNV( L2V,
oo T Sy T oo N ’

IN.

which contradicts doc = 0. Then, necessarily, ¢oo = 3

Now, using the definition of §; we can write

;= 0; L_23\(2 1_1—>0 as i —
s,—lqi vy i — 00,

which again contradicts (2.13). Consequently, {g;} is a finite set (for example,
{90,491, --,4i,-1}), and g;, = %N, completing this part of the proof.

On the other hand, assume q; < N — 1. Let us set

1 _1 1
g
and define
-1
1 1 1 1
I / ! /
1) _SJ(N—I_T/>(Q/_N—1> >0, Sj+1—8j+(sj,
J
1 1 1
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Observe that s;, ; > s’ and ¢j,; > ¢j. Let us consider the sequence {q}},
when ¢; < N — 1. If {¢}} is an infinite sequence, we observe that {q}}; is
increasing, and ¢; < N — 1 for all j € N. Then there exists lim; o ¢} =: ¢5,

and 1 < ¢/, < N —1.

Moreover, {s’}; is an increasing sequence, and, by definition,

1 1 1
59_(]3' 7!

Therefore, there exists

Consequently, there exists lim;_; oo s;- =:58,

r’ , 1

1< <5<
SISt STUINSD -1

< o0. (2.14)

Also by definition, 0% = s, ; — 5. Thus, there exists lim; ,o d; = 0. Let us
set 05, = lim; 0 07 =

We proceed as before. If ¢ < N — 1, then, by definition,

5 1 1\ /1 1 71>0
=S| —-—-—— )| — = —— ,
o N-1 +)\¢, N-1

which is a contradiction, so ¢, = N — 1. Now, from the definition of 53- we
can write

1 1 1 !
/A v .
which contradicts (2.14). Consequently, {q}} is a finite set, for example,
{a0, 415+, @j—1}, and ¢} > N — 1, ending this part of the proof.

Combining sub-steps (1) and (2) of (¢), we achieve (2.12), which, combined with
step 3, completes the proof. O

In the next lemmas, we derive some spectral properties of the resolvent operator
So in L2(£2) x L?(042). Throughout this paper, we shall consider the inner product
on L?(§2) x L*(912) defined by

((u,v) / uw+/(mvz (2.15)

LEMMA 2.5. The resolvent operator So: L*(£2) x L?(082) — L?(£2) x L*(002) is a
linear, self-adjoint, positive and compact operator. If we denote its eigenvalues by
{7i}, then 7, = 1/p;(1,1), where p; = pi(m, p) are the generalized eigenvalues.

Proof. Let a; € L*(2) and b; € L*(912), and let v; be the corresponding solution
of —Av; + v; = a;, Ov;/Ov = b; with i = 1,2. The linearity of Sy follows from the
definition of the resolvent operator and the linearity of the trace operator.
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By a weak formulation of the problem, we have that
<(a17 b1)7 SO(CLQ, b2)> = <(a13 bl)a (U27 FUQ)>

:/ a1V + b1l 'vg = Vv1Vuy +/ V1V
2 o2 2 2

= / asv1 + bgF’Ul = <So(&1,b1), (ag,bg»,
2 o0

which implies that Sy is self-adjoint.

Moreover, by the maximum principle, Sy is a positive operator in the sense that
if a,b > 0, then u > 0, where (u,I'u) = Sp(a,b) (see [3]). The compactness of Sy
follows from lemma 2.2. O

LEMMA 2.6. For any A € R with X & {u;};, define the operator Sy: L?(£2) x
L2(002) — L2(2) x L2(092) by Sx(a,b) := (u, I'u), where u € H' () is the unique
solution of
—Au+u=Im(z)u+a(z) in 2,
ou (216)

W Ap(z)u+b(x)  on 0N

Then Sy is self-adjoint, continuous and compact. Moreover, if g > %N and ¢ >
N —1, then Sx: L9(£2) x LY (82) — C°(2) x C°(d12) is continuous and compact
and, for any compact set K C R\ {u;}, the norm of Sx: LI(2) x LY (32) —
CY(02) x C°(892) is uniformly bounded for A € K. Also, ||Sy|| — 0o as A\ — p; for

some 1.

Proof. Observe that Sy(a,b) = (u, ['u) = So(Am(z)u + a, A\p(z)u + b).
Hence,
S)\(aa b) = (U,FU)
= ASo(m(x)u, pu) + So(a,b)
= A\Sp 0 O(u, I'u) + Sp(a,b), (2.17)

where the map ©: L?(2) x L*(002) — L*(£2) x L?(012) is defined as O(u, ['u) =

(m(z)u, p(x)u).
Hence,
(u, I'u) — ASp 0 O(u, I'u) = Sp(a,b)

or, equivalently,
(I = A\Sp0O)(u, I'u) = Sy(a,d).

Then,
(I — ASp 0 O)Sx(a,b) = Sy(a,b).

Since A & {{i}i, it follows from the Fredholm alternative theorem that I — ASp o ©
is invertible. Thus,

S,\ = (I— )\S() 09)_1 OS().

Using the properties of Sy in lemma 2.5, we can now prove this lemma. O
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Note that u € H(£2) is a solution of (1.1) if and only if (u, I'u) is a fixed point
of

(u, I'u) = ASp 0 O(u, I'u) + So(f(A, -, u), g(\, -, T'w))
The following lemma concerns an a priori estimate that is needed later.

LEMMA 2.7. Assume that (C1)-(C3) hold. Then the Nemytskii operator

N:CO%2) x CO892) — L"(£2) x L" (012)
g’iU€TL by N(U,FU) = (f()‘v 7u)ag(>‘a ,FU))

with r > %N and v > N — 1 is well defined and continuous. Moreover, for each
M >0 and € > 0, there exists a constant C' = C(e, M) such that

IF s w2y + 119 - )l e 90y < €llullooa) +C (2.19)

Jorallu e CO(2), A\| <M.
In particular, the map C°(£2) x C°(992) 3 (u, I'u) = Sx(f(A, -, u),g(A, -, T'u)) €
C°(2) x C°(012) is continuous and compact for all X € R\ {u;}.

Proof. Tt follows from the bounds of f and g in condition (C1) that the map N is
well defined. The continuity follows from the continuity of f and g with respect to
the last variable, the bounds of f, g given by (C2) and the dominated convergence
theorem. The inequality (2.19) follows from (C3), which implies that for each € > 0
we have the inequality |U;(s)| < es+ C for ¢ = 1,2 and some constant C' = C(e),
and the fact that the function A(\) is continuous. O

Now, we are ready to prove the existence of solutions for the non-resonance
b
problem.

Proof of theorem 2.1. Consider the compact set K C R\ {¢;}. By lemma 2.6, there
exists a constant C' = C'(K) such that the norm of Sy: L"(£2) x L (92) — C°(£2) x
C°(912) is bounded by C for all A € K. Now, we shall show that the conditions of
the Schaefer fixed-point theorem are satisfied. Let § € [0, 1] and (u, I'u) € C°(£2) x
C°(9£2) be such that

(u, F'w) = 8SA(f (A, - u), g(A, -, Tw)) (2.20)
for some A € K. By lemma 2.7, we have that the map
CO(‘Q) X 00(8‘9) > (ua FU) — S)x(f(/\v '7u)5g(>‘7 ,FU)) € CO(‘Q) X CO(&Q)

is continuous and compact for A € K. We now need to show that (u, I'u) is bounded
in CO(2) x C°(992). It follows from (2.20) and lemma 2.6 that

[l(w, Tu) || oo @y x ooy < CIFA - u), g(A, ST Lroyx i (00)-
Using (2.19), we get that

| (u, FU)HCO(Q)xCO(aQ) < (j[&?HUHCO(Q) + C(e, K)].
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Choosing ¢ small enough such that 1-Ce > 1, we get that ||(u, T'u)llcoayxcon) <
2CC. Hence, (u,'u) is bounded in C°(£2) x C°(d42) independently of §. Then,
by the Schaefer fixed point theorem (see [11]), the operator C°(£2) x C°(9£2) >
(u, T'u) = Sx(f(\, - u),g(\, -, Tu)) € CO(02) x C°(912) has a fixed point (u, ['u) €
C°(£2) x C°(942). Due to lemmas 2.7 and 2.2(iii), we have that u € C%(£2). Equiv-
alently, (1.1) has at least one solution u € C%(£2). The proof is complete. O

3. Unbounded branches of solutions

In this section, we use the global bifurcation results of Rabinowitz [20,21] to show
the existence of unbounded branches of solutions bifurcating from generalized eigen-
values of odd multiplicity. From theorem 2.1 and lemma 2.6 we know that, when the
value of A is bounded away from the generalized eigenvalues, solutions of (1.1) are
bounded uniformly in A and, furthermore, the norm of the resolvent operator of the
linear problem associated with (1.1) blows up to infinity when A\ approaches a gen-
eralized eigenvalue. So, we can expect the existence of branches of solutions that
diverge to infinity in a certain norm when the parameter tends to a generalized
eigenvalue. We shall first analyse some necessary conditions for having solutions
blowing up in the C°({2) norm.

PROPOSITION 3.1. Let {A\,} be a convergent sequence of real numbers for which
there exist the corresponding solutions wy, of (1.1) with ||u,||co(q)y — 00 as n — oo.
Then there exists a generalized eigenvalue p; such that A\, — p; and, for any
subsequence of {uy}, there exists a subsequence {un, } such that

e g i CB(Q)
||unkHCO(Q)

for some B > 0, where ¢; is an eigenfunction associated with the eigenvalue p;.

Proof. Let vy, := un/||unllco(q)- By the a priori estimate (2.7) and the fact that
[unllco(ay — oo we have that [|vy||ce gy is bounded by a constant C' that is inde-
pendent of n. It follows from the compact embedding of C%(£2) into C?(2) for
0 < 8 < « that there exists a subsequence {vy, } of the sequence {v,} such that
Un,, — ¢ in CP(£2). Since ||un, |lco(z) = 1, we have that [¢]lco(m) = 1. Hence,
¢ # 0. Observe that v,, is a weak solution of the equation

AT U
_A’Unk + ’Unk = )\nkm(l‘)funk _|_ M in Q

)

||Unk||00((z)
3.1
(%nk g()‘v Z, unk) ( )
° — )\nkp(x)vnk 4+ - k7 on 0f2.
v HunkHCO((z)
From (2.19) it follows that
FO 2, u,,) : r
W — O 1n L (.Q)
Unyllco(2)
and
9T ) oy g (092)
||Unk||c*0((z)

as ng — 0.
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Using the weak formulation of (3.1) and passing to the limit, and also taking into
account the fact that \,, — p with ¢ € R and v,, — ¢, we obtain that ¢ is a weak
solution of the equation

—Au+u=pm(x)u in 2,

3.2
Ou = pp(z)u  on 02 3.2)

v
Since ¢ # 0, it follows that u is a generalized eigenvalue and ¢ is its corresponding
eigenfunction. The proof is complete. O

COROLLARY 3.2. Assume that the hypotheses of proposition 3.1 are satisfied.

Ifun > 0 for alln, then A, — py and the sequence uy /||un |l ooy = ¢1 in CP(£2),
where ¢1 > 0 is the normalized eigenfunction associated with the first generalized
eigenvalue py .

Proof. From proposition 3.1, we get that any possible convergent subsequence
Un/||unllco(@y — ¢i for some i € N with ||¢;]| = 1. Since u,, > 0, we have that
¢; > 0. From [17], we know that p; is the only generalized eigenvalue that is simple,
so its corresponding eigenfunction does not change sign. Therefore, ¢; = ¢1. O

Now, we shall show that any generalized eigenvalue p of odd multiplicity is a
bifurcation point from infinity, that is, there exists a sequence (A, u,) € Rx H(£2)
of solutions of (1.1) such that A, — p and that [|u,||co(my — oo

THEOREM 3.3. Assume that the nonlinearities f and g satisfy the conditions (C1)-
(C3). If u is a generalized eigenvalue of odd multiplicity, then the set of solutions of
(1.1), which we denote by T, possesses an unbounded component, D, which meets
(1, 00) € Rx C(£2). Moreover, if A C R is an interval such that AN {u;}2, = {u}
and M = A x {u € C(2): u is bounded away from 0}, then either

(i) D\M is bounded in R x C(£2), in which case D\ M meets the set {(X,0): \ €
R} at (Mo, 0) such that f(Xo,+,0) = g(Xg,,0) =0, or

(ii) D\ M is unbounded.

If (ii) holds and D\ M has a bounded projection on R, then D\ M meets (ft,00),
where p # i € {u;}i; that is, D\ M meets another bifurcation point from infinity.

Proof. From (2.17) and (2.18), we see that (1.1) is equivalent to the fixed-point
problem
(U, FU) = )‘SO © @(U,FU) + SO(f()\, ) U),g(A, '7Fu))7 (33)

where Sy is the solution operator of (2.2). In order to apply [21, theorem 1.6], we
need to verify the following:

(a) So(f(A, - u),g(A, - T'u)) = o([|lullco(g)) at u — oo uniformly on bounded A
intervals;

(b) the map (\,u) — [[ul|2So(f(N, -, u/||ul|?), g(N, -, Tu/||ul|?)), where || - || =
[ - lcos), is compact.
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To verify (a), we first observe that if u € C({2), then, by lemma 2.7, we have that
(f(\, - u),g(N, -, Tw)) € L™(2) x L™ (962) with r > 3N and 7/ > N — 1. Therefore,
it follows from lemmas 2.2 and 2.7 that

||SO(f(>\, 'au)vg(Av ,FU))H C”(f()‘a ',U),Q()\, '7Fu))||Lr(_Q)XLT/(aQ)

[l
< C(s + ||(ffll ) (3.4)

Therefore, (3.4) yields So(f(A, - u),g(A, -, I'v)) = o([|ullc(g)) at u — oo uniformly
on bounded A intervals.

To verify (b), it suffices to show that T(A, Bs) is relatively compact in C({2)
for some § > 0, where Bs = {u € C(£2): |Ju|| < &}. Pick § > 0 very small and let
u € Bs. Considering w = u/||ul|?, it follows that ||w| > 1/4. Setting e = 1 in (2.19),

we have that
||(f(A? 'au)ag()‘7 '7F’u’))||L7‘(Q)><LT/(

i

8!2)<C

where C' is a constant depending on A and §. Hence,
[ull®[[CFO - w)y 9O Pu))ll @y x 2 02y < Cllull < C6.

Using the compactness on Sy in lemma 2.2, we get that

T(Xu) = [ull®So(f (A, - w/l[ull?), g(A, -, Tu/|[u]]?))
is compact. O

In the next corollary, we obtain a stronger result in the case of the simple eigen-
value p1. The result below implies the existence of branches of positive and negative
solutions bifurcating from infinity.

COROLLARY 3.4. Let py be the simple first generalized eigenvalue. Then the un-
bounded component D can be decomposed into two subcontinua DY and D~ and
there exists a neighbourhood O C M of (u1,00) such that (A\,u) € DH(D~)NO
and (A, u) # (p1,00) implies (A\,u) = (A, ap1 + v), where « > 0(aw < 0) and
[A—p1] =o(1), |lv|| = o(|a|) at |a| = oo, and ¢y is the eigenfunction corresponding
to the first eigenvalue 7.

Proof. One can use similar arguments to those in [21, corollary 1.8]. O

4. Subcritical and supercritical bifurcations from infinity

In this section, we shall focus on the type of bifurcation that occurs at the bifurca-
tion point by providing conditions in which we have a sub- or supercritical bifurca-
tion. Consider the problem

—Au+u=Im(x)u+ f(\z,u) in 2,

ou (4.1)
- Ap(z)u+ g\, z,u)  on 992,
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where 4 is a generalized eigenvalue, and (m, p) € C°(£2) x C*'(912). Observe that,
since (m, p) € C%(§2) x C%1(942), we have that ¢; > 0 in (2 (see, for example, [16]).
We begin by defining the sub- and supercritical bifurcations.

DEFINITION 4.1. A bifurcation from infinity at u; is said to be subcritical (respec-
tively, supercritical) if there exists a neighbourhood V' of (u;, 00) such that every
(non-trivial) solution (A, u) € V of (4.1) satisfies A < p; (respectively, A\ > p;).

Now, let us first analyse the behaviour of solutions when we know that the solu-
tion blows up in the C°(£2) norm. Consider a sequence \,, for which the correspond-
ing solutions u, of (1.1) are such that A, — p1 and [Jusllco(g) — 00 as n — oo.
Since, for each n € N, u,, is a weak solution of (1.1), we have that

(=) [ et + [ ptoyuno]

:/ f(An,x,un)¢1+/ 9O, 2, 1) 1. (4.2)
2 0N

Note that, near the bifurcation point of positive solutions, the sum of the two inte-
grals on the left-hand side of (4.2) becomes positive. Indeed, let v,, = w,/||un | co(2)-
It follows from proposition 3.1 that v, — ¢;.

Now,
/ﬂ m(@)unds + /0 Pt = oo [ /Q (@) nin + /8 ) p(z)vn@].

Taking the limit as n — oo, we get that

[m@sor+ [ @~ [ m@et+ [ paetso. 6

Note that the sum of the last two integrals is positive because of conditions on the
weight functions m and p and the fact that the eigenfunction associated with the
first eigenvalue p1, ¢1 > 0.

Therefore, the sign of u; — A, is dictated by the asymptotic behaviour of the non-
linearities f and g. We have the following additional conditions on the nonlinearities
f and g.

(C4) There exists v € R such that

— )\ _ )\
F,(z):= limsup M, Gy(z):= limsup M7
(s (koo) 5 (s Mo (koos) 5
E+($) = lim inf M, Q+(l') = limsup M7
(X7 Croc) 57 (s X (roos) 5
— )\ _ A
F_ (33) = limsup f(’if,S), G,(:c) = limsup g(,if,S)7
s s

(8,A)—=(—00,p) (8,A)—=(—00,p)

g\, x,s)
s

f\z,s) G (x)

, G = limsup
s

F_(z):= limsup
(8,A) = (—o00,)

(8,A) = (—o0,p)

with F_,F_,F,  F e L'(2)and G_,G_,G,,Gy € L'(002).

)
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REMARK 4.2.

(i) Note that Fi, F,, G4 and G also depend on v and the generalized eigen-
value .

(ii) Since f satisfies condition (C2), if v > 1, we have that F, = G, = 0.

THEOREM 4.3 (subcritical bifurcation from infinity at the first eigenvalue).
Assume that conditions (C1)-(C8) hold and suppose that there exists v < 1 such
that (C4) holds. If

/ E+¢1+7 —|—/ Q+¢>1+7 >0 <respectively,/ F o7 4 G_¢' < 0),
Q Ele) Q

(4.4)
then the bifurcation from infinity of positive solutions (respectively, negative solu-
tions) at uy is subcritical. Moreover, if

/F_F(;SHA’Jr/ G '™ <0 (respectively,/ E_¢1+7+/ (e ant >O),
2 o0 2 o1

(4.5)
then the bifurcation from infinity of positive solutions (respectively, negative solu-
tions) at uy is supercritical.

[210)

In order to prove this theorem, we need the following auxiliary result.

LEMMA 4.4. Suppose that the nonlinearities satisfy conditions (C1)-(C3). Let A,
be a sequence such that A, — u1 as n — oo and let the corresponding solutions u,
of (1.1) be such that |lun||c(ay — oo asn — oo. Then

(1) if u, >0, we have

JoE. ¢1+ + Joo G0 -
Jom(@)d? + [5, p() ¢2 oo H“nH&!}z)
1 — A

< lim sup

n—oo H’LLnHC(Q)

f F+¢1+’Y+f G+¢ 14+
f_Q ¢ +faQP (152 ’

(4.6)

(ii) #f up <0, we have

—(Jo Fad' + [, G10'7) 1 — An
5 3 hmmfi
me(x)gb +fan(a:)¢> nTreo ||Un||ﬂy ()

< i H1— An
imsup ————

n— 00 ||un||v_ Q)

—Jo o™ + [0 Gy 0™)
f(z m($)¢2 + fag p($)¢2

(4.7)



668 N. Mavinga and R. Pardo

Proof. We shall just prove (i), as (ii) can be shown in a similar way. From propo-
sition 3.1, there exists a subsequence of u, (that we again denote by wu,) such

that
Unp

— ¢1 in CP ().

I—
" ”un”CO(fZ)

It follows by the weak definition of wu,, that

<m—An>[ /Q m()undr + /8 Qp(x)unasl} - /ﬂ F Qo 10) b1 + /a JCHERTRIN

(4.8)
| FOwzw)or =1 nn”/ Hon e <||u |> o

Using Fatou’s lemma and the fact that v, — ¢; and ¢; > 0, we have that

Y Y

> / F o'
(9]

g)\nafvun Un !
J R e T )< )¢1.
an N Un ||Un|\

)\n’ ) n
hminf/ 9 f 4 )( > o1 // Q+¢1+7.
n—oo Jon Un [[wnl| a0

Dividing (4.8) by ||u,||?, taking the limit and thanks to (4.3), we obtain that

1+~ G 1+~
lim inf A~ 1 > fn (b 2+f89*+¢ 5
n—00 Hu ||'y fQ ¢1 +fag p($)¢1
So, the first inequality in (4.6) is proved. The third inequality is proved similarly, and

the second inequality follows from the properties of limits. The proof is complete.
O

Note that

Similarly,

Hence,

Proof of theorem 4.3. From lemma 4.4 and (4.4) we have that u; > A, for every
n. Similarly, lemma 4.4 and (4.5) imply that uy < A, for every n. The proof is
complete. O

5. Resonance problem
In this section we are concerned with the resonance problem

—Au+u=pm(x)u+ f(z,u) in 2,

5.1
% = mp(x)u+ g(x,u) on 012, (5-1)
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where g7 is the first generalized eigenvalue. Consider the following one-parameter
family of problems:

—Au+u=Im(z)u+ f(x,u) in 2,

9 (5.2)

g Ap(z)u+ g(x,u)  on Of2.

v

As we shall see, the behaviour of the possible bifurcations from infinity at A = uy

n (5.2) determines the existence of a solution of (5.1). First, observe that every
possible bifurcation from infinity at p; is subcritical (respectively, supercritical) if
and only if there exists ¢ > 0 and M > 0 such that, for every solution (A, u) of
(5.2), if A € (p1, 1 +¢), then [lul[co(g) < M (respectively, if A € (u1 — ¢, p1), then
[ullcogy < M).

THEOREM 5.1 (existence for the resonance problem). Consider the nonlinear prob-
lem (5.2) and suppose that the hypotheses of theorem 4.3 are satisfied. Assume also
that every possible bifurcation from infinity at py in (5.2) is subcritical or every
possible bifurcation from infinity at py in (5.2) is supercritical. Then there exists at
least one solution of (5.1).

Proof. We shall prove that there exist (A, u,) solutions of problem (5.2) with
An = 1 such that [[u,llcog) < M. This follows from the fact that any possible
bifurcation from infinity must be either subcritical or supercritical. From theo-
rem 2.1 we know that, for any small ¢ > 0, (5.2) has at least one solution for all
A€ (0 —¢g,0+¢)\ {p1}. Assume that every possible bifurcation from infinity at
w1 is subcritical. It then follows that there exists a constant M such that, for any
An > p1 with Ay = 1, [[unllcooy < M. It follows from theorem 2.4 that wu, is
uniformly bounded in C%(§2). Since C*(2) is compactly embedded in C?(2), there
exists a subsequence of {u,} (that we again denote by {u,}) such that w, — u in
CP(£2). Using similar arguments to those in the proof of proposition 3.1, we get
that w is a solution for (5.2) with A = p;. This completes the proof. O

Based on results in theorem 4.3, we can deduce some consequences of theorem 5.1.

COROLLARY 5.2. Suppose that one of the following Landesman—Lazer-type condi-

tions is satisfied:

/ F o't +/ G ' >0 (respectivel%/ F ot + G_o't < 0)7
2 an [0 o0

/ F+¢1+7+/ Gio'™ <0 (Tespectively,/ E_¢1+7+/ G_ 't >O).
2 a0 2 o2

Then there exists at least one solution to (5.1).

6. Results of anti-maximum-principle type

In this section, we show the anti-maximum principle for the following linear prob-
lem:
—Au+u=Im(z)u+ f(z) in £,
ou (6.1)

W Ap(z)u+ g(x)  on 082
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Clement and Peletier [10] and Arcoya and Gamez [4] proved the anti-maximum
principle for elliptic problems with Dirichlet boundary condition, where the param-
eter A is only in the differential equation in the interior. Arrieta et al. [5] proved
the anti-maximum principle for the inhomogeneous linear Steklov problem, that is,
the parameter A is only on the boundary. Now, we shall prove the anti-maximum
principle for problem (6.1), where the parameter A is in the differential equation
both in the interior and on the boundary.

THEOREM 6.1. Let (m, p) € C°(2)xC%1(002) and let m and p satisfy the following
condition:
m(z) >0 a.e. on 2 and p(x) >0 a.e. on OS2 (6.2)

For every (f,g) € L"(£2) x L"(802) with r > N and r > N — 1, there eists

e=¢(f,g) such that
/Qf¢1+/fmg¢1 >0,

(i) if
then every solution (A, u) of (6.1) satisfies

(a) u>0in 2 if pn —e <A< 1,
(b) u<0in 2 if p <A< p+e,

Gi) if
/Qf¢1+/(mg¢51 =0,

then every solution (A\,u) of (6.1) with X\ # p1 changes sign on 952 and
consequently in 2.

Proof. (i) The Fredholm alternative theorem implies that the linear problem (6.1)
has no solutions for A = p7, and a unique solution if \ is not an eigenvalue of (1.2).
Moreover, from theorem 3.3 A = pu is a bifurcation point from infinity, and from
theorem 4.3 the bifurcation from infinity of positive solutions is subcritical, that is,
there exists e = ¢(f, g) such that, for every solution (A,u) of (6.1) with A — p,
|lu|]| &= oo and u > 0, we have p; — e < A < p;. Furthermore, the bifurcation from
infinity of negative solutions is supercritical, that is, there exists e = &(f,g) such
that, for every solution (A,u) of (6.1) with A — w1, |Ju|l = oo and u < 0, we have
< A< pup+e.

(ii) We first observe that (6.2) implies that m and p do not vanish simultaneously,
and that either m or p is positive on subset of positive measure. To prove (ii), it
suffices to multiply (6.1) by the eigenfunction ¢; and integrate by parts to get

=) [ mpon+ [ gty ) =0

Note that since the function m is continuous and the function p is Lipschitz we have
that ¢1 > 0 in {2 (see, for example, [16]). Now, since ¢; > 0 in (2 and condition
(6.2) holds, we conclude that u changes sign in 2. O
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