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Biopolymer-coated nanocrystalline hydroxyapatite (HA) made as macroporous foams which are degrad-
able and flexible are promising candidates as orthopaedic implants. The C-terminal (107-111) epitope of
parathyroid hormone-related protein (PTHrP) exhibits osteogenic properties. The main aim of this study
was to evaluate whether PTHrP (107-111) loading into gelatin-glutaraldehyde biopolymer-coated HA
(HAgu) scaffolds would produce an optimal biomaterial for tissue engineering applications. HAg), scaf-
folds with and without PTHrP (107-111) were implanted into a cavitary defect performed in both distal
tibial metaphysis of adult rats. Animals were sacrificed after 4 weeks for histological, microcomputerized
tomography and gene expression analysis of the callus. At this time, bone healing occurred only in the
PTHIP (107-111) presence of PTHrP (107-111)-containing HAg, implant, related to an increase in bone volume/tissue vol-
In vivo bone regeneration ume and trabecular thickness, cortical thickness and gene expression of osteocalcin and vascular cell
Rat adhesion molecule 1, but a decreased gene expression of Wnt inhibitors, SOST and dickkopf homolog
1. The autonomous osteogenic effect of the PTHrP (107-111)-loaded HAgy, scaffolds was confirmed in
mouse and human osteoblastic cell cultures. Our findings demonstrate the advantage of loading PTHrP
(107-111) into degradable HAg), scaffolds for achieving an optimal biomaterial that is promising for
low load bearing clinical applications.

© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The number of traumatic and non-traumatic fractures, particu-
larly if producing secondary bone defects, has increased enor-
mously in the past few decades, associated with the increase in
lifespan in our societies [1]. In this context, the development of
optimal strategies to accelerate bone repair after fracture is likely
to have a great socioeconomic impact.
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Bone healing involves a variety of cellular and molecular events
that lead to new bone formation [2,3]. This process recapitulates
most of the features of normal bone development during embryo-
genesis, but it is highly influenced by factors such as mechanical
loading and the relative abundance of osteoprogenitors (e.g. low
in older patients). In addition, injured bone tissue revasculariza-
tion, providing oxygen, nutrients and cell precursors, is critical
for bone healing [4]. However, the resolution of fractures often re-
quires the use of synthetic materials as implants to replace bone
tissue damage.

Different types of ceramics have been widely used in this respect,
because of their similarity with the mineral component of natural
bone [5,6]. Current interest is focused on bioactive and biodegrad-
able bioceramics as scaffolds exhibiting suitable osteointegration
and osteoconductive features in bone tissue engineering applica-
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tions [7,8]. In this line, hydroxyapatite (HA) and other calcium phos-
phates are widely used as degradable scaffolds with interconnected
porosity, including macropores in the 1-500 pum range allowing cel-
lularinternalization [3]. Recently, three-dimensional HA foams with
a high degree of porosity were prepared by sol-gel routes, and
coated with gelatin-glutaraldehyde biopolymers to give them flex-
ibility and easy manipulation in orthopaedic applications [9-11].
These materials were shown to allow cellular colonization and
excellent biocompatibility both in vitro and in vivo [11,12].

The increasing importance of growth factors to improve the
osteoinductive properties of implanted scaffolds is well recognized
[13]. In fact, these agents (now represented mainly by bone mor-
phogenetic proteins) comprise about 20% of the whole orthopaedic
market in the US - a 3-fold higher figure than the current percent-
age of resorbable implants - and this percentage is expected to
grow rapidly [14]. An emerging factor in this regard is parathyroid
hormone-related protein (PTHrP), the N-terminal fragment of
which has been shown to induce bone anabolic actions in rodents
and humans upon systemic daily administration [15,16]. In addi-
tion, the C-terminal 107-111 domain (also known as osteostatin)
of PTHrP also exhibits osteogenic features in vitro, and stimulates
bone accrual in vivo [17-25]. Of note, we recently showed that
loading non-degradable Si-based ceramics with the latter penta-
peptide gives them osteogenic and angiogenic features both
in vitro and in vivo as implants in a cavitary defect in the rabbit fe-
mur [26-29]. These effects of osteostatin were thought to be due to
its release into the local environment, because this type of ceramic
elicits the formation of a fibrous capsule that hampers close con-
tact between the implant and the surrounding tissue [27,29]. In
any event, these recent observations point to PTHrP (107-111) as
an interesting peptide in a bone tissue engineering scenario.

In the present study, using a rat bone defect model, we evalu-
ated two combined approaches, i.e. the use of degradable HAg,
foams and the putative advantage of loading PTHrP (107-111) into
these scaffolds, to produce an optimal biomaterial for low load
bearing clinical applications.

2. Materials and methods
2.1. Preparation of carbonated hydroxyapatite/gelatin scaffolds

Three-dimensional HA foams were synthesized and shaped in a
one-step process following a sol-gel technique [9], using Pluronic
F127 (EO106PO70EO106) as a macropore inducer, followed by an
accelerated evaporation-induced self-assembly method [10].
Briefly, HA was synthesized from the reaction of calcium nitrate
tetrahydrate and triethylphosphite (TIP; Aldrich, Steinheim, Ger-
many), using a molar ratio of F127:TIP of 11. The resulting foams
were coated by immersion in a 1.2% (w/v) type A gelatin cross-
linked with 0.05% w/v glutaraldehyde solution and then lyophi-
lized for 24 h, as reported elsewhere [30]. Scanning electron
microscopy (SEM) in a JEOL 6400 microscope (Tokyo, Japan) was
used to characterize the macroporous 3-D architecture of the gel-
atin-glutaraldehyde biopolymer-coated HA (HAg,) foams and X-
ray diffraction (XRD) in a Philips X'Pert diffractometer using Cu
K, radiation. Supplementary details of the characterization of these
foams have been reported previously [9-11]. HAgj, scaffolds for
in vivo and in vitro assays were prepared as samples of 7 mg
(3 mm in height, 3 mm in depth and 3 mm in width) with a ratio
of 58 mg mm >,

HAg, scaffolds were loaded with synthetic PTHrP (107-111)
(Bachem, Bubendorf, Switzerland) by soaking them in a solution
of the peptide (at 100 nM) in 1 ml of phosphate-buffered saline
(PBS) solution (pH 7.4) with constant shaking at 4 °C for 24 h. Pep-
tide release from the loaded material was assessed by including a

radiotracer together with the cold peptide during PTHrP (107-111)
loading, as described elsewhere [26]. The radioactivity released
into the incubation medium was sequentially monitored by count-
ing in a y-spectrometer. By using this method, the mean uptake of
PTHrP (107-111) by these scaffolds after 24 h of loading was 60%,
equivalent to 0.7 ng of peptide per mg of scaffold. Meanwhile,
80% of this amount was released to the surrounding medium with-
in 1h, and virtually 100% at 48 h. It was previously shown that
minor amounts of this peptide (in the sub-nanomolar range) still
sustained biological activity [18,23,25,26].

2.2. In vivo rat model of bone healing

Our protocol, using a limited number of male Wistar rats
(6 months of age; n =5 per experimental group) was approved
by the Institutional Animal Care and Use Committee at the IIS-Fun-
dacién Jiménez Diaz, according to the European Union guidelines
for decreasing the pain and suffering of the animals. The rats were
placed in cages under standard conditions (room temperature
20 £ 0.5 °C, relative humidity 55+5% and illumination with a
12 h/12 h light/dark photoperiod), given food and water ad libitum
and allowed to move without restriction. Surgical interventions
were performed under aseptic conditions and general anaesthesia
was induced by injection of xylacine (10 mg kg™!) and ketamine
(25 mg kg~!). Both knees were shaved, and a transcortical defect
was generated by drilling a hole (2 mm in diameter and 3 mm in
depth) through the cortex of both distal tibial metaphyses, using
continuous irrigation with physiological saline to prevent bone
necrosis. The healing response in this simple defect recapitulates
that of a stabilized fracture, minimizing animal morbidity, trauma
and infection [31,32]. The unloaded HAg, scaffolds were im-
planted into the left tibial defect, whereas the right tibial defect re-
ceived the PTHrP-derived pentapeptide-loaded scaffold. Rats were
sacrificed after 4 weeks for histological, microcomputerized
tomography (1CT) and gene expression analysis of the callus.

2.3. uCT analysis

Both tibiae were scanned using GE eXplore Locus pCT scanner
(GE Healthcare, London, Canada). The X-ray tube settings were
80 kV of energy and 450 pA of current. The pCT image acquisition
consisted of 400 projections collected in one full rotation of the
gantry. The resulting raw data were reconstructed using a filtered
back-projection algorithm to a final image with a resolution of
93 wm in all three spatial dimensions. The reconstructed images
were viewed and analysed using MicroView software, version 2.2
with Advanced Bone Analysis plus (GE Healthcare). Bone volume/
tissue volume (BV/TV) as well as trabecular and cortical thickness
(Tb.Th and Ct.Th, respectively) were calculated.

2.4. Histological evaluation

Tibiae were removed and fixed in 10% neutral formaldehyde,
followed by decalcification with Osteosoft (Merck, Madrid Spain)
for 4 weeks. Bone specimens were dehydrated before paraffin
embedding using a Leica TP 1020 tissue processor. All histological
and immunohistochemical determinations were carried out onto
sagittal 4 um sections of each bone sample in a Zeiss Axiophot
optical microscope (Carl Zeiss, Oberkochen, Germany). For histo-
logical analysis, haematoxylin & eosin and Masson’s trichromic
staining were used. Osteoblasts (cubic cells adjacent to the bone
surface) and osteoclasts (polynucleated cells with a rough border
close to bone surfaces) were also quantified in the same trabecular
area (5 mm?) around the scaffold, loaded or not with PTHrP (107-
111), in which pCT evaluation was carried out as described above.
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Evaluations were performed by at least two independent observers
in a blinded fashion for each rat.

2.5. Cell culture studies

Cell culture experiments were performed using the well-char-
acterized mouse osteoblastic cell line MC3T3-E1 (subclone 4,
CRL-2593; ATCC, Mannassas, VA), which responds to C-terminal
PTHrP peptides [25,26,33,34]. The tested scaffolds were placed into
each well of 6- or 24-well plates before cell seeding. MC3T3-E1
cells were then plated at a density of 10,000 cells cm~2 in 2 ml of
osteogenic medium consisting of o-minimum essential medium
containing 10% heat-inactivated foetal bovine serum (FBS),
50 pg ml~! ascorbic acid, 10 mM pB-glycerol-2-phosphate and 1%
penicillin-streptomycin at 37 °C in a humidified atmosphere of
5% CO,, and incubated for different times. Human osteoblast-like
(hOB) cells, isolated from trabecular bone explants obtained from
knee samples discarded at the time of surgery on two osteoar-
thritic subjects (aged 69 and 80 years) [34], were cultured in Dul-
becco’s modified Eagle’s medium containing 15% FBS and the same
aforementioned supplements for 12 days. Some wells contained no
scaffolds as controls. Medium was replaced every other day.

Cell proliferation was assessed after MC3T3-E1 cell incubation
with the different materials for 4 days. At this time, 10 vol.% Ala-
mar blue solution (AbD Serotec, Oxford, UK) was added to the cell
culture. Four hours later, 1 ml samples of the cell-conditioned
medium were added to a 24-well plate and the fluorescence inten-
sity was measured using excitation and emission wavelengths of
540 and 620 nm, respectively. Following incubation with the
tested materials for 4 days, the cells were washed with PBS and
the alkaline phosphatase (ALP) activity was measured in cell ex-
tracts obtained with 0.1% Triton X-100 using p-nitrophenylphos-
phate as the substrate, as described previously [26,34]. The ALP
activity was normalized to cell protein content, determined by
the bicinchoninic acid (Thermo Scientific, Rockford, IL, USA) meth-
od with bovine serum albumin as standard. Matrix mineralization
in MC3T3-E1 or hOB cells exposed to the tested materials for
12 days was determined using Alizarin S red staining, with the
absorbance at 620 nm being measuring as described previously
[26,34].

2.6. Real-time PCR

Total RNA was isolated from osteoblastic MC3T3-E1 cells and
the rat tibia callus by a standard procedure (Trizol, Invitrogen,
Groningen, The Netherlands), and gene expression was analysed
by real-time PCR using an ABI PRISM 7500 system (Applied Biosys-
tems, Foster City, CA), as reported [26,34]. Real-time PCR was done
using Sybr premix ex Taq (Takara, Otsu, Japan) and the following
rat-specific primers: 5'-GCTGCATGAGGCACGCTAT-3' and 5'-
AGGGCATGCATATTCCGTTT-3' (dickkopf homolog 1, DKK-1); or
5'-GAGTACCCAGAGCCTCCTCA-3' and 5-AGCACACCAACTCGGTGA-
3’ (Sost). Osteocalcin (OC), osteoprotegerin (OPG), receptor activa-
tor of nuclear factor-xB ligand (RANKL), vascular endothelial
growth factor (VEGF) and vascular cell adhesion molecule 1 were
analysed using unlabelled mouse- or rat-specific primers and Taq-
ManM¢B probes obtained by Assay-by-Design®™ (Applied Biosys-
tems). The mRNA copy numbers were calculated for each sample
by using the cycle threshold (Ct) value. 18S rRNA (a housekeeping
gene) was amplified in parallel with tested genes. The number of
amplification steps required to reach an arbitrary intensity Ct
was computed. The relative gene expression was represented by
27AAC where AACE = ACtiarget gene — ACtiss. The fold change for
the treatment was defined as the relative expression compared
with  control, calculated as 2724%  where AACt
= ACtreatment — ACcontrol.

2.7. Statistical analysis

Results are expressed as mean + standard error of the mean
(SE). Statistical evaluation was carried out with non-parametric
Kruskal-Wallis test and the post hoc Dunn’s test or Mann-Whitney
U-test, when appropriate. A value of p <0.05 was considered
significant.

3. Results
3.1. Characterization of HAg, scaffolds

The preparation technique employed on HAgj, foams enables
one not only to synthesize and fabricated macroporous scaffolds
in a one-step process, but also to create a hierarchical intercon-
nected structure from the macroporous to the mesoporous range.
HAg, foams take up Trypan blue stain by diffusion through the
pores, indicating good interconnected porosity (Fig. 1A). SEM
micrographs of HAg, foams show interconnected macroporosity
with a porosity range of 1-400 pm (Fig. 1B). The XRD pattern cor-
responds to pure nanocrystalline HA (ICDD PDF 9-432) (Fig. 1C).
The average crystallite size calculated was 20 nm, based on all
the reflections by Rietveld refinement [35]. As previously reported,
transmission electron microscopy indicated a mesoporous network
with a pore size of 10-15 nm (Supplementary Fig. S1). The total
porosity measured by Hg intrusion of three representative HAg,
specimens is approx. 70% (Supplementary Fig. S2). Thermogravi-
metric analyses of these samples confirmed their content of 80%
wt. HA and 20% wt. gelatin (Supplementary Fig. S3). These scaffolds
behave as a hydrogel, i.e. the network is able to absorb fluid main-
taining its overall structure. The swelling ratio (W) was calculated
as (%): 100 x (Wt — Wd)/Wd, where Wd is the weight of dried foam
and Wt is the weight of hydrated foam. HAgy, foams have a W of
400% wt. when immersed in aqueous solution due to the hydro-
philic nature of glutaraldehyde-crosslinked gelatin (Supplemen-
tary Fig. S4).

3.2. PTHrP (107-111) loading onto HAgy, Scaffolds improves bone
healing of a cavitary defect in the rat tibial metaphysis

3.2.1. uCT analysis

The bone tissue response to the implanted scaffolds tested was
examined by pCT at the tissue/biomaterial interface and the
peripheral area of the implant. We found that the PTHrP (107-
111)-loaded scaffold completely healed the bone defect at 4 weeks
after implantation. This contrasts with incomplete bone union ob-
served by implanting the unloaded HAgy, scaffold instead (Figs. 2A
and 3A). Osteoinduction related to the presence of the PTHrP-de-
rived pentapeptide on this scaffold was confirmed by quantitating
the bone volume per total volume (BV/TV) at the cortical and tra-
becular compartments, as well as trabecular (Tb.Th) and cortical
thickness (Ct.Th) (Figs. 2B and 3B), corresponding to at each skele-
tal site in the regenerating tibia, respectively.

3.2.2. Histological findings

At 4 weeks after implantation, no signs of inflammation were
observed in the vicinity of HAg, materials. Complete repair of
the cavitary bone defect was not observed in the unloaded HAg,
control group at this time (Fig. 4A), though rats implanted with
PTHrP (107-111)-loaded scaffolds showed good healing of the cav-
ity (Fig. 4B). Consistent with the pCT results, the histological stud-
ies showed that, compared to the unloaded material, the
implantation of PTHrP (107-111)-loaded HAgy, scaffolds promoted
the appearance of a lot more new trabeculae around the bone inte-
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Fig. 1. (A) Representative digital micrograph of HAg, foams showing the diffusion
of Trypan blue stain, changing the colour of the scaffold. (B) Representative SEM
micrograph of HAg, foams. Inset: SEM micrograph at higher magnification (x200).
(C) Experimental (symbols) and calculated (solid line) X-ray diffraction patterns of
HAg, foams, obtained by Rietveld refinement. The lower trace is the difference
between the observed and calculated patterns. The vertical lines mark the position
of the calculated Bragg peaks for the apatite phase.

grated implants at 4 weeks (Fig. 4C-F). Furthermore, an increased
number of osteoblasts together with less abundant osteoclasts
were observed on trabecular surfaces in this healing bone area con-
taining the pentapeptide-loaded scaffold (Fig. 5).

3.2.3. Changes in gene expression

The expression of several genes relevant in osteoblastic function
was also examined in the rat tibial defect at 4 weeks post-implan-
tation. The presence of PTHrP (107-111) in the implanted scaffolds

was associated with augmented gene expression of both OC (a
marker of osteoblast maturation) and VCAM 1 (an angiogenic fac-
tor) in the bony callus. The Wnt pathway has a key role in osteo-
genesis, and Wnt signalling has been shown to be functional
early in the process of bone regeneration [36]. We found here that
the gene expression of two important Wnt pathway inhibitors, Sost
and DKK-1, was decreased in the injury callus with PTHrP (107-
111)-loaded HAg), scaffolds (Fig. 6).

3.3. PTHrP (107-111) gives osteogenic features to HAg, scaffolds in
osteoblastic cell cultures in vitro

In order to further confirm the observed osteogenic actions of
PTHrP (107-111)-loaded HAg,, scaffolds in bone regeneration in
rats in vivo, we used osteoblastic cells cultures exposed to these
biomaterials. Fig. 7A shows that MC3T3-E1 cell proliferation in-
creased by loading PTHrP (107-111) onto HAg, scaffolds. Cell
death, assessed by Trypan blue exclusion, was unchanged, at about
1%, in the presence of any of the tested scaffolds (data not shown).
We next evaluated the capacity of this pentapeptide-loaded HAc,,
material to affect osteoblastic function. It was found that the pres-
ence of PTHrP (107-111) in the scaffold increased the expression of
various genes related to osteoblast differentiation, namely OC and
OPG, whereas it decreased that of RANKL - a key factor for induc-
ing osteoclastogenesis — thereby increasing the OPG/RANKL mRNA
ratio, at 4 days of culture (Fig. 7B). In addition, this type of scaffold
containing this pentapeptide stimulated ALP activity at this time
point in MC3T3-E1 cells (Fig. 8A), and promoted matrix mineraliza-
tion in these cells and also in hOBs cells at day 12 of culture (Fig. 8B
and inset). VEGF gene expression was also up-regulated in this sce-
nario (Fig. 7B), which is consistent with the action of PTHrP (107-
111) and the native PTHrP (107-139) fragment in various osteo-
blastic cell preparations [25,26,28,33,34]. The unloaded HAg, scaf-
folds failed to affect either cell growth or matrix mineralization in
MC3T3-E1 cells within the time of the study (4-12 days), empha-
sizing the notion that PTHrP (107-111) gives bioactivity to these
scaffolds (Figs. 7 and 8).

4. Discussion

Recently, we showed the osteoinductive actions of locally deliv-
ered PTHrP (107-111) from SBA15-based ceramics as implanted
carriers into a rabbit bone defect [27,29]. This type of Si-enriched
ceramic has a narrow mesopore size distribution (in the nanometre
range) but a large surface area that governs the interaction with
the host bone tissue. However, these materials were non-degrad-
able and induced the formation of a thick fibrous cup around the
implant [3,27,29]. This prompted us to evaluate whether loading
PTHrP (107-111) into HAgy, scaffolds would provide a more appro-
priate biomaterial as an implant for improving new bone forma-
tion. These scaffolds were therefore implanted into a cortical
defect in the rat tibial metaphysis, in which bone regeneration is
known to proceed through intramembranous ossification [12].
Using this approach, we demonstrate that PTHrP (107-111)-con-
taining HA¢y, scaffolds display a clear advantage over peptide-un-
loaded scaffolds in promoting bone healing, as assessed by bone
structure and histology, as well as molecular criteria. The cell
autonomy of the osteogenic effects of this biomaterial was further
confirmed using in vitro osteoblastic cell cultures.

An idoneous bone filler should provide structural support and a
three-dimensional matrix to favour bone in- and on-growth, and
gradually degrade to non-cytotoxic products [37,38]. Previous
characterization of HAg, foamy scaffolds indicate that they fulfil
these criteria [11,12]. In fact, the nanocrystalline structure of HAgy,
scaffolds, which is similar to that of native HA in bone, was found
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Fig. 2. (A) Representative frontal plane images by 1CT of the area surrounding the HAc), implants, with or without loaded PTHrP (107-111), showing newly formed bone at
4 weeks after implantation into a cavitary defect in the rat tibia. (B) Trabecular bone volume/total volume (BV/TV) and trabecular thickness (Tb.Th) corresponding to the
evaluated bone area around the implant. The circle denotes the bone defect, whereas the square shows the area close to the defect where the trabecular parameters were
measured by pCT. Results are mean + SE (n = 5). *p < 0.05 vs. the corresponding unloaded HAg, scaffold.

HAg, +PTHrP(107-111)
A
B 60 - 0.6 ; P=0.05
50 1 0.5
g 40 - 1 E 04 I
] < 03
2 :
2 o
£ 20 8 0.2
10 0.1
0 0
HAgiy HAg .+ HAgiu HAg,+
PTHIP (107-111) PTHiP (107-111)

Fig. 3. (A) Representative transverse plane images by pCT of the area surrounding the HA,, implants, in the presence or absence of PTHrP (107-111), containing new bone at
4 weeks after implantation into a cavitary defect in the rat tibia. (B) Cortical bone volume/total volume (BV/TV) and cortical thickness (Ct.Th) corresponding to the evaluated
bone area around the implant as remarked by the circle. Results are mean + SE (n =5). *p < 0.05 vs. the corresponding unloaded HAgy, scaffold.
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Fig. 4. Representative images by light microscopy (from haematoxylin & eosin and Masson’s stained tissue sections) of the area surrounding the unloaded (A and C) and
loaded (B, D, E and F) with PTHrP (107-111) HAgy, scaffolds 4 weeks after implantation into a cavitary defect in the rat tibia. Arrows denote the presence of HAg, scaffold.

to promote bone formation, avoiding the generation of fibrous tis-
sue around the implant [12]. The biological performance of HAgy,
scaffolds allows their definition as third-generation materials for
orthopaedic use [39]. It was recently found that these scaffolds dis-
play excellent osteointegration properties when implanted into a
cavitary bone defect in the rabbit epiphysis; thus, complete bone
healing was observed at 4 months after implantation [12]. In the
present study, we examined the performance of both types of im-
plants tested - with and without PTHrP (107-111) - in a rat corti-
cal bone defect at 4 weeks, which is an insufficient time period for
complete bone healing [40]. This approach allowed us to more eas-
ily disclose the osteoinductive advantage represented by the PTHrP
(107-111)-loaded foams.

Dramatic differences were observed in the pattern of bone re-
pair of this non-critical bone defect in the rat tibia between both
types of implanted HAg, scaffold evaluated. The occurrence of
bone regeneration leading to a completely sealed cortical defect
was strictly associated with the presence of PTHrP (107-111) in
the scaffold after 4 weeks. Consistent with previous data using
other types of non-degradable ceramics as carriers of this penta-
peptide [26], we observed here that, in vitro, PTHrP (107-111)
was released very rapidly (within 2 days) from HAgy, scaffolds into
the surrounding medium. Using the former materials, even small
amounts of this peptide (in the nanomolar range or lower concen-

trations) remaining in the non-degradable ceramic seemed to elicit
osteogenic actions [26,27,29]. The HAg, scaffolds have been
shown to be stable for about 2 weeks, but progressive degradation
occurs thereafter [11]. Thus, and consistent with previous observa-
tions in a rabbit model [12], we found here, using uCT and histo-
logical analysis, scarce HAgj, material (although still detectable)
in the bone defect area in our rat model at 4 weeks after implanta-
tion. Most proposed release strategies (i.e. using BMP2) provide a
burst immediately after the local (surgical) application [41]. How-
ever, it is presently debatable whether maintaining the peptide
bioactivity and its release burst are equally important factors in
this respect. Assuming similar PTHrP (107-111) kinetics in our
present in vivo setting, it seems that, besides the initial burst, even
the remaining material containing a small amount of this peptide
in the 2 days to 4 weeks time frame might contribute to improving
bone healing in this model.

Our present data show that PTHrP (107-111)-loaded HAg, scaf-
folds promote trabecular formation, with abundant osteoblastic
cells adhering to the trabecular surface in the vicinity of the
degrading biomaterial. This was related to an increased gene
expression of OC, a late osteoblast differentiation marker, and
accompanied by gene overexpression of VCAM 1, a vascular endo-
thelial marker [42], in the regenerated callus. In this regard, previ-
ous studies have shown that local or systemic administration of
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PTHrP (107-111) or the native PTHrP (107-139) fragment, respec-
tively, increased angiogenesis in other in vivo models of bone
regeneration in mice and rabbits [19,20,27,29]. The present
in vitro data further support the idea that PTHrP (107-111) loading
confers osteogenic and angiogenic potential to HAg, foams.

PTHrP (107-111)-loaded HAg,, scaffolds induced the opposite
effect (i.e. a decrease) on two well-known inhibitors of the canon-
ical Wnt pathway, DKK1 and Sost, in the healing bone defect. Of
note, the putative PTHrP (107-139) fragment has been reported
to decrease the expression of both genes in bone after its systemic
administration for 4 weeks to ovariectomized mice, and also in rat
osteoblastic UMR-106 cells [21]. Moreover, Sost downregulation
has been shown to be an important event in the early phase of frac-
ture healing in humans [43]. Furthermore, a previous study dem-
onstrates that systemic or local injection of a DKK1 adenovirus
hampered cortical defect healing in the mouse tibial diaphysis
[36]. It has also been shown that an anti-DKK1 antibody injection
was efficient to stimulate bone healing after trauma caused by a
stainless steel screw inserted into the rat tibial metaphysis [44].
Hence, our present findings add credence to the notion that PTHrP
(107-111) loaded onto HAg,, scaffolds may promote bone healing
through targeting the Wnt pathway.

Our results also indicate that PTHrP (107-111) loading onto
HAg scaffolds decreased the abundance of osteoclasts resorbing
new bone around the implant. This was not surprising, considering
the ability of this peptide to reduce the number of trabecular
osteoclasts when administered subcutaneously, as recently re-
ported [45], and the observed increase in OPG/RANKL mRNA ratio
induced by PTHrP (107-111)-loaded HAg,, scaffolds in osteoblast
cultures in this work. In fact, PTHrP (107-139) has consistently
been shown to display anti-resorptive features in rodents [17,20-
22], apparently by interacting with osteoclasts directly or indi-
rectly through targeting osteoblasts [19,23,26,28]. Also in this re-
gard, the local presence of PTHrP (107-111) was shown to inhibit
the transient inflammatory response as well as the appearance of
osteoclasts in a cavitary bone defect in the rabbit femur [27]. To-
gether these data strongly suggest that PTHrP (107-111) may inhi-
bit osteoclastogenesis during bone regeneration.

5. Conclusions

The present findings demonstrate the suitability of our experi-
mental combined strategy, adding credence to the notion that
loading these degradable HAg, scaffolds with PTHrP (107-111)
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produces an optimal cavity filling biomaterial that is promising in
low load bearing clinical applications.
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