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Abstract. In this paper we provide a sharp bound for the dimension of a
family of ruled surfaces of degree d in P3

K. We also find the families with
maximal dimension: the family of ruled surfaces containing two unisecant
skew lines, when d ≥ 9 and the family of rational ruled surfaces, when d ≤ 9.

The first tool we use is a Castelnuovo-type bound for the irregularity of
ruled surfaces in PnK. The second tool is an exact sequence involving the nor-
mal sheaf of a curve in the grassmannian. This sequence is analogous to the one
constructed by Eisenbud and Harris in 1992, where they deal with the problem
of bounding families of curves in projective space. However, our construction
is more general since we obtain the mentioned sequence by purely algebraic
means, studying the geometry of ruled surfaces and of the grassmannian.

A classical subject in algebraic geometry is the study of ruled surfaces in pro-
jective space. If one is interested in studying families of ruled surfaces of a given
degree d, the first question that one has to answer is what the maximum possible
dimension is.

As ruled surfaces of degree d in P3
K = P(V ) correspond to curves of degree d

in the grassmannian G = G(2, 4), embedded in P5
K by Plücker embedding, the

problem we are dealing with is equivalent to that of bounding the dimension of the
Chow variety of curves of degree d in G, i.e. the connected component of the reduced
structure of the Chow scheme (representing the Chow functor) parametrizing curves
of degree d in G. Throughout this paper, K is an algebraically closed field of
characteristic zero, and Σ will denote a family of (integral) ruled surfaces of degree
d in P3

K.
In this paper we provide a sharp bound to the dimension of Σ. We assume that

the general point C of Σ corresponds to an integral curve, equally denoted C. We
also assume d ≥ 3 since for d = 1, 2 one can easily see that the dimension is 5, 9
respectively.

The arithmetic genus of this curve is the irregularity q of the corresponding ruled
surface S birationally immersed in P3 as

P(E′∨C ) ↪→ P3 ×OC → P3

where

0→ E → V ∗ ⊗OG → E′∨ → 0
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is the dual of the universal sequence

0→ E′ → V ⊗OG → E∨ → 0.

Let us review some properties of G. The tangent bundle of G is Hom(E′, E∨) =
E′∨ ⊗E∨ = E′(1)⊗E(1). A section s ∈ H0(E∨) = V ,

0→ O s→ E∨ → Iαp(1)→ 0,

vanishes along the α-plane αp ⊂ G parametrizing all lines in P3 passing through
p = 〈s〉. Analogously, a section s′ ∈ H0(E′∨) = V ∨,

0→ O s′→ E′∨ → Iα′π (1)→ 0,

vanishes along the α′-plane (or β-plane) α′π ⊂ G parametrizing all lines in P3

contained in π.
It is easy to check that E ⊗ Oαp = Ωαp(1) = Tαp(−2) and analogously for

E′ ⊗Oα′π .
Recall that an integral ruled surface is called regular if the lift E′∨

C̃
of E′∨ by

C̃
ϕ→ C ⊂ G

has H1(E′∨
C̃

) = 0 (as noted in [ASP], this vanishing is equivalent to the fact that the

corresponding ruled surface is a projection of a linearly normal surface of Pd+1−2q,
i.e. it is regular in the terminology of the classics).

Proposition 1. For an irreducible component Σ of the Chow variety whose generic
element corresponds to a regular ruled surface of irregularity q we have

dimΣ ≤ 4d− g + 1

where g (≤ q) is the geometric genus of the general curve C ∈ Σ. This is an equality
if C is smooth.

Proof. The dimension of Σ is that of the tangent space to the Hilbert scheme Hd,g,
whose irreducible component H at C is dense in Σ and smooth at C.

If C is smooth, the proof is easy: The normal bundle has presentation

0→ TC → TG|C → NC,G → 0,

thus degNC,G = degωC(4) = 2g− 2 + 4d. From V ⊗E′∨C → E∨⊗E′∨C = TG|C → 0
we obtain that H1(E′∨C ) = 0 implies H1(TG|C) = 0, thus H1(NC,G) = 0. Therefore

dimΣ = h0(NC,G) = degNC,G + 3(1− g) = 4d− g + 1.

Assume now C is not smooth. Let ϕ : C̃ → C ↪→ G be the desingularization of
C and define its normal sheaf as cokernel

0→ TC̃ → ϕ∗TG = E∨
C̃
⊗E′∨

C̃
→ Nϕ → 0.

From 0 = V ⊗H1(E′∨
C̃

)→ H1(E∨
C̃
⊗E′∨

C̃
)→ 0 we concludeH1(Nϕ) = 0. A vector

in TCΣ = TCH corresponds to an infinitesimal deformation (i.e. a flat family over
the spectrum of the dual numbers) of C in G, which is equisingular, since curves in
H equisingular to the general curve C of H form a dense open neighborhood of C.
This means (cf. [AC], for instance) that such a vector does not lie in the subspace
H0((Nϕ)tor) ⊂ H0(Nϕ) of infinitesimal deformations partially desingularizing C.

(A singular branch of C corresponds to a point of C̃ where (Nϕ)tor has nonzero
stalk and it will not be desingularized by the infinitesimal deformation if it does
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not lie in this stalk). We can make the monomorphism of sheaves into a bundle
inclusion

0→ TC̃ ⊗OC̃(Z)→ ϕ∗TG → Nϕ/(Nϕ)tor → 0

after twisting TC̃ with the divisor Z where it fails to be so. Since Nϕ/(Nϕ)tor is
nonspecial we end up with

dim Σ = dimH ≤ h0(Nϕ/(Nϕ)tor) = degNϕ/(Nϕ)tor + 3(1− g)
= 2g − 2 + 4d− degZ + 3(1− g) ≤ 4d− g + 1.

Recall that a ruled surface is called developable if all tangent lines to the corre-
sponding curve in G lie in G (as a surface of P3 it consists of all tangents to a curve
in P3—the so-called tangent developable surfaces—or it is a cone, i.e. consists of
lines passing through a point in P3).

Proposition 2. For an irreducible component Σ of the Chow variety whose generic
element C has geometric genus g and corresponds to a nondevelopable and non-
regular ruled surface of irregularity q (≥ g), we have:

dim Σ ≤ 3d+ q + r − 1

where r = h0(E∨C)− 1.

Proof. Let p ∈ P3 and let

0→ E′∨ → E′∨ ⊗E∨ → E′∨ ⊗ Iαp(1)→ 0

be the sequence presenting the ideal of the corresponding α-plane αp, after tensoring
with E′∨. If we blow up G with center in αp, the ideal Iαp becomes the ideal of the
exceptional divisor, thus a line bundle, so the inclusion at the left of the previous
sequence becomes a bundle inclusion, which we want to identify. Consider the two
natural projections of this blow-up

G = G(αp) = {(π, L) ∈ P3∨ ã × G | p ∈ π, L ⊂ π}

P2 = {π ∈ P3∨ ã | p ∈ π}

˜ ˜

pr1 pr2

G

Take as generators of Pic G̃ = Z⊕Z the pullback by pr1, pr2 of the generators of
the Picard groups of P2 and G, so we denote pr∗1OP2(n)⊗pr∗2OG(m) by OG̃(n,m).

The above monomorphism of sheaves E′∨ ↪→ E∨ ⊗ E′∨, failing to be a bun-
dle inclusion in αp, lifts to a monomorphism of sheaves which becomes a bundle
inclusion

E′∨
G̃

(D) = E′
G̃

(−1, 2) ↪→ E∨
G̃
⊗E′∨

G̃

after twisting with the exceptional divisor OG̃(D) = OG̃(−1, 1) of the blow-up,

where it fails to be so. The restriction of E′∨
G̃

(D) to each pr1-fibre pr−1
1 (π) =

α′π is its tangent bundle E′(2) ⊗ Oα′π = Tα′π . From this we can conclude that
E′∨
G̃

(D) is the relative tangent bundle TG̃/P2 , after computing the first Chern class

and checking that we obtain (−2, 3) in both cases. We also note that this is just
the inclusion of bundles TG̃/P2 ↪→ (TG)G̃ obtained as composition of the bundle

inclusion TG̃/P2 ↪→ TG̃ with the monomorphism of sheaves TG̃ ↪→ (TG)G̃.
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Consider C in the statement of the proposition. First we assume it to be smooth.
Since we assume the corresponding ruled surface S of P3 to be nondevelopable,
there is only a finite number of planes which are tangent to S along a line of the
ruling. Pick p ∈ S, general in S, not in those planes. Out of p, the image of
E′∨C ↪→ EC ⊗ E′∨C = TG|C has null intersection with the bundle TC ↪→ E∨C ⊗ E′∨C
tangent to C. This is clear after our previous geometrical interpretation of the
monomorphism of sheavesE′∨ ↪→ E∨⊗E′∨: it is the inclusion of the bundle tangent

to the projection G̃→ P2 in the tangent bundle, pushed down to G. Thus it fails to
be a bundle inclusion only at αp. Therefore, the composition E′∨C ↪→ TG|C → NC
fails to be a bundle inclusion only at rp = C ∩ αp, where it is zero. We thus get a
bundle inclusion

0→ E′∨C (rp) ↪→ NC → ωC(3− 2rp)→ 0

whose rank 1 cokernel has been computed by comparing the first Chern classes.
Observe that h0(E′∨C (rp))− h0(E′∨C ) ≤ 1. Indeed, since p is general, the map

0 6= H1(E′∨C )∨ = H0(E′C ⊗ ω)→ H0(E′C ⊗ ω ⊗K(rp)) = K2

is not zero, thus

h0(E′C ⊗ ωC(−rp)) ≤ h0(E′C ⊗ ωC)− 1

so the inequality follows from the Riemann-Roch formula for rank 2 bundles.
Denoting r = h0(E∨C)− 1 as usual, we obtain from the short sequence

h0(NC,G) ≤ (r + 2) + h0(ωC(3− 2rp)) = 3d+ g + r − 1.

If C is singular we pick p ∈ S general, and proceed as before: We lift the bundle

inclusion E′∨(rp)→ TG to C̃ via ϕ and obtain a bundle inclusion E′∨
C̃

(rp) ↪→ (TG)C̃ ,

where we still denote rp in C̃. From our geometric description of the inclusion in

G̃, it becomes clear that the inclusion in C̃ does not factorize through

0→ TC̃ ↪→ (TG)C̃ → Nϕ → 0,

thus we obtain

0→ E′∨
C̃

(rp)→ Nϕ →M → 0

with (Nϕ)tor
∼= Mtor. The rank one cokernel

0→ E′∨
C̃

(rp)→ (Nϕ)/(Nϕ)tor →M/Mtor → 0

has degree (2g−2+4d−degZ)−(d+2) ≤ 3d+2g−4, thus h0(M/Mtor) = 3d+g−3
if M/Mtor is nonspecial, and h0(M/Mtor) ≤ g − 1 ≤ 3d+ g − 3 otherwise.

By a remark as in the proof of the preceding proposition

dimΣ ≤ h0(Nϕ/(Nϕ)tor) ≤ h0(E′∨C (rp)) + h0(M/Mtor)

≤ (r + 2) + (3d+ g − 3) = 3d+ g + r − 1.

Remark 3. Let us show now the relation between the inclusion of bundles that we
have introduced in the proof of Proposition 2 and the field tangent to the flow in
[EH]. This flow is used there to get a sequence involving the normal sheaf to a
curve in P3 and from this sequence an estimate of the dimension of the component
of the Hilbert scheme in which that curve is a general point.
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Let H be a plane of P3 not passing through p and let OG
H
↪→ E∨ be the section

of E∨ which vanishes in the corresponding α′-plane, denoted α′H , of G. Lifting it

to G̃ and composing

OG̃
H
↪→ E∨

G̃

D
↪→ E∨

G̃
(D) ↪→ TG̃

we get a monomorphism of sheaves failing to be a bundle inclusion just at D and
α′H . If we apply now pr2∗ we get a tangent field

OG → TG

that vanishes only at αp and α′H . This is analogous to the field tangent to the flow
in [EH] vanishing only at zero and infinity.

Lemma 4. Let S be a ruled surface of Pn of degree d not contained in a hyperplane
and not a cone. Its irregularity is sharply bounded by Castelnuovo’s bound π(d, n)
for nondegenerate curves of Pn of degree d.

Proof. If d < n, then necessarily d = n − 1 and g = 0. So we assume d ≥ n. It
suffices to prove that the curve C in G(1, n) which is the image of S after Plücker
embedding spans at least Pn, because in that case, the irregularity of S, which is
nothing but the genus of C, will be bounded by Castelnuovo’s bound π(d, n). We
prove that C spans at least a Pn by induction on n. We will show the sharpness
of the bound later on.

We start with the case n = 3. In this case G(1, 3) is embedded by the Plücker
embedding as a smooth quadric hypersurface in P5. If C lies in a general P2 ⊂ P5,
then C necessarily is of degree 2, which is a contradiction to the assumption that
the ruled surface has degree greater than or equal to 3.

It cannot be in an α or α′-plane, because then the ruled surface would be a cone
or would lie on a plane.

Let us suppose that it holds for n − 1. We will prove it for n. First of all, we
choose a point p ∈ S that is not on a line that meets all the lines of S. We choose
a general Pn−1 ⊂ Pn such that p 6∈ Pn−1 and define S′ to be the projection of S
from p into Pn−1. S′ is a new ruled surface of degree one less than S. We get any
fiber of S′ as the intersection with Pn−1 of the plane spanned by p and a line of S.
Therefore S′ is not a cone and does not lie in a subspace of dimension n− 2. Then
we consider the following diagram

G(1, n− 1)
ι′−−−−→ PMy y

G(1, n)
ι−−−−→ PN

Where ι and ι′ are the Plücker embeddings, M =
(
n
2

)
− 1 and N =

(
n+1

2

)
− 1.

Hence PM is a linear subspace of codimension n.
We will show that C spans a Pn. Indeed, the projection can be seen in PN as

a linear projection from the linear subspace of dimension n − 1 consisting of all
the lines in the original Pn passing through p, that we will denote by α(p), to the
distinguished PM in which G(1, n− 1) lies. Obviously, the projection maps a point
q ∈ PN outside α(p) to the point at which the linear subspace that it spans with
α(p) meets PM . The image of C under the projection is the curve C′ which is also
the image of S′ after Plücker embedding. If C lies in a Pn−1, the dimension of the
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space that this subspace spans with α(p) is less than or equal to 2n − 2. Call it
W . Clearly C′ ⊆ W ∩ PM = V . If dim V = n − 1, then V ∩ α(p) 6= ∅, which is
a contradiction. Then dimV ≤ n− 2 and C′ lies in an (n − 2)-dimensional linear
subspace, but this is impossible by the induction hypothesis.

For the sharpness of the bound, we recall that Castelnuovo’s bound for curves
in Pn is achieved by curves in Fe = P(OP1 ⊕ OP1(−e)) (e ≤ n − 3) embedded
by O(C0 + n−1+e

2 F ) or P2 embedded in P5 by OP2(2). Now we just observe that

those surfaces are embedded in G(1, n) by E = O(F ) ⊕ O(C0 + n−3+e
2 F ) and

OP2(1)⊕OP2(1) respectively.

The curves of bidegree (d1, d2) in a fixed smooth quadric surface of P3 form a
family of dimension (d1 + 1)(d2 + 1)− 1. This number attains a maximum

δQ2(d)
def
=

{
(d

2

4 + d) if d is even,

(d
2

4 + d− 1
4 ) if d is odd

depending on whether d is even or odd.
The number

δP3(d)
def
= δQ2(d) + 9

has been shown in [EH] to be the maximum dimension for a family of curves of P3

of degree d, which are nondegenerate, i.e. which do not lie in a P2. The maximum
for curves in P2 is

δP2(d) =
d(d+ 3)

2
.

The theorem below studies the analogous bound for ruled surfaces. Ruled sur-
faces having two unisecant skew lines of P3, i.e. curves of G lying in a smooth
quadric surface Q2 = P3 ∩Q4 form a family Σ1 of dimension δQ2(d) + 8.

On the other hand, the smooth rational curves of G of degree d form a family Σ2

of dimension 4d+ 1. Indeed, for such curves C ∼= P1 the bundle E′∨C
∼= OP1(a) ⊕

OP1(b) is generated by global sections

V ∗ ⊗OC → E′∨C

so has splitting numbers a, b ≥ 0, thus H1(E′∨C ) = 0. This vanishing shows, accord-
ing to [ASP], that Σ2 is irreducible and gives us the estimation of the dimension
from Proposition 1.

Theorem 5. The dimension of an irreducible component Σ of the Chow variety of
ruled surfaces of degree d ≥ 3 whose generic element C is not developable is sharply
bounded by

δG(d)
def
= max{4d+ 1, δQ2(d) + 8}

(which is δQ2(d)+8 if d ≥ 9, and 4d+1 if d ≤ 9). Furthermore, if Σ has dimension
δG, then it is 

Σ1 if d ≥ 10,

Σ2 if d < 9,

Σ1 or Σ2 if d = 9.
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Table 1

d δQ2(d) + 8 π(d, 4) + 3d+ 3
10 43 42
11 49 48
12 56 54
13 63 60
14 71 67
15 79 74
16 88 81
17 97 89
18 107 97

Proof of the theorem in case d ≥ 10. We can assume C is not regular, since other-
wise

dim Σ ≤ 4d− g + 1 ≤ 4d+ 1 < δG(d).

Assume first that the surface is linearly normal, i.e. r = h0(E′∨C ) − 1 = 3, so that
by Proposition 2

dimΣ ≤ g + 3d+ 2.

We know C spans at least a P4. If it spans a P3, then C is contained in a smooth
quadric or in a quadric cone. In the first case its dimension is at most δQ2(d) + 8
and Σ = Σ1 in case of equality. In the second case, the dimension is strictly less
than δQ2(d) + 8. If C spans at least a P4, then

dimΣ ≤ π(d, 4) + 3d+ 2 ≤ d2 − d
6

+ 3d+ 2.

This last number is smaller than δQ2(d) + 8 if d ≥ 19. If d ≤ 18, the inequality
π(d, 4) + 3d+ 2 < δQ2(d) + 8 can be checked by hand.

Assume now that C is not linearly normal, i.e. r > 3. Then we can use Propo-
sition 2 and Lemma 4:

dim Σ ≤ q + 3d+ r − 1 ≤ π(d, r) + 3d+ r − 1

≤ π(d, 4) + 3d+ 3 ≤ d2 − d
6

+ 3d+ 3.

Again this number is smaller than δQ2(d) + 8 if d ≥ 19 and for d ≤ 18 the
inequality π(d, 4) + 3d+ 3 < δQ2(d) + 8 is checked by consulting Table 1.

Proof in case d = 9 and C is not regular. Now δG(9) = 37. Assume first r = 3. If
C spans a P3, then C is contained in a quadric surface; thus dimΣ ≤ δQ2(d) + 8,
with Σ = Σ1 in case of equality. If C spans at least a P4, then

dimΣ ≤ π(9, 4) + 3 · 9 + 2 = 36.

Assume now that r = 4. Then

dimΣ ≤ π(9, 4) + 3 · 9 + 3 = 37.
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Let us see why this cannot be an equality. If so, the curve C has maximal genus
and therefore it is a smooth element of the linear system |3H| on a smooth rational
scroll of P4 (Theorem 3.11 in [H], for example). The dimension of the family of
smooth rational scrolls of P4 lying in G is 11, as computed in [AS]. Thus

dim(Σ) = dim |3H|+ 11 = h0(Sym3(OP1(1)⊕OP1(2))) + 10 = 32

which is a contradiction.
If r ≥ 5, then dimΣ ≤ π(9, 5) + 3 · 9 + 4 = 35.

Proof in the case d = 9 and C is regular. By Proposition 1

dimΣ ≤ −g + 37 ≤ 37

and in case of equality, C is rational and smooth, so Σ = Σ2.

Proof in case d ≤ 8. If d = 3, the theorem is trivial since the variety of twisted
cubics in G is easily seen to have dimension 13, which is δG(3). We can thus
assume 4 ≤ d ≤ 8 (see Table 2). If C spans a P3 it is a curve in a quadric and
dimΣ ≤ δQ2(d) + 8 < δG(d), so we can assume that C spans at least a P4. If C is
nonregular, then by Proposition 2

dimΣ ≤ π(d, 4) + 3d+ 3

which is strictly smaller than δG(d) = 4d+ 1.

Table 2

d 4d+ 1 π(d, 4) + 3d+ 3
4 17 15
5 21 19
6 25 23
7 29 27
8 33 32

If C is regular, then by Proposition 1

dimΣ ≤ −g + 4d+ 1 ≤ 4d+ 1

with equality only in case g = 0, i.e. Σ = Σ2.

Remark 6. If the generic element of a component is a tangent developable surface,
its dimension is sharply bounded by δP3(d) and in case it is a cone, it is sharply
bounded by δP2(d) + 3.
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