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A scheme for solving Whitham hierarchies satisfying a special class of string equa-
tions is presented. The 7-function of the corresponding solutions is obtained and the
differential expressions of the underlying Virasoro constraints are characterized.
Illustrative examples of exact solutions of Whitham hierarchies are derived and
applications to conformal maps dynamics are indicated. © 2006 American Institute
of Physics. [DOI: 10.1063/1.2218982]

I. INTRODUCTION

Nonlinear integrable models of dispersionless typel_4 arise in several branches of physics and
applied mathematics. They have gained prominence after the discovery of their relevance in the
formalism of quantum topological fields,>® and of their role in the theory of deformations of
conformal and quasiconformal maps on the complex plane.779 Recently, new applications have
been found'®'® which include dynamics of conformal maps, growth processes of Laplacian type
and large N limits of random matrix partition functions.

From the point of view of the theory of integrable systems, these models turn to be furnished
by members of the so called universal Whitham hierarchies introduced by Krichever in Refs. 4
and 5. A particularly important example of these hierarchies is the dispersionless Toda (dToda)
hierarchy.lo_m’”’18 The solutions of dispersionless integrable models underlying many of their
applications satisfy special systems of constraints called string equations, which posses attractive
mathematical properties and interesting physical meaning. Takasaki and Takebe'®** showed the
relevance of string equations for studying the dispersionless Kadomtsev-Petviashvilii (KP) and
Toda hierarchies and, in particular, for characterizing their associated symmetry groups. Never-
theless, although some schemes for solving string equations in the dispersionless KP and Toda
hierarchies were provided in Refs. 23-25, general efficient methods of solution for string equa-
tions are still lacking.

In a recent work™ a general formalism of Whitham hierarchies based on a factorization
problem on a Lie group of canonical transformations has been proposed. It leads to a natural
formulation of string equations in terms of dressing transformations. The present article is con-
cerned with the analysis of these string equations and, in particular, their applications for charac-
terizing exact solutions of Whitham hierarchies. Thus, we provide a solution scheme for a special
class of string equations which determines not only the solutions of the algebraic orbits of the
Whitham hierarchy,5 but also the solutions arising in the above-mentioned applications of disper-
sionless integrable models.*** We characterize the 7-function corresponding to these solutions
and, by taking advantage of the string equations, we also derive the differential expressions of the
underlying Virasoro constraints.
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The elements of the phase space for a zero genus Whitham hierarchy are characterized by a
finite set

(@i (D), a=0,....M,

of punctures ¢q,, where q,:=, of the complex p-plane and an associated set of local coordinates
of the form

n°

o d
p+2ﬂ a=0,
n:lp

(1)

o™=

d. -
: +2din(p—qi)”, a=i=1,...,M.
P—=4i =0

The set of flows of the Whitham hierarchy can be formulated as the following infinite system of
quasiclassical Lax equations:

0Z4

={Q .24} 2
P @
where the Poisson bracket is defined as
JoF 0G  0F G
{F.Gy= o2 2
dp dx  dx dp
and the Hamiltonian functions are
@ =1, 5
o =logidp—q), n=0, p=i=1,....M.

Here (-);4) and (-)( ) stand for the projectors on the subspaces generated by {(p—g;,)™"},_, and
{p"}"_, in the corresponding spaces of Laurent series. Henceforth, it will be assumed that appro-
priate nonintersecting cuts connecting p=o with the points ¢; are made which allow us to define
the logarithmic branches associated with €);,. As several of these branches will appear simulta-
neously in certain equations, to avoid possible misunderstanding we introduce the notation con-
vention log;(p—¢;). For M=0 and M =1 these systems represent the dispersionless versions of the
KP and Toda hierarchies, respectively.

In what follows Greek and Latin suffixes will be used to label indices of the sets {0,...,M}

and {l,...,M}, respectively. In our analysis we use an extended Lax formalism with Orlov
functions
o0 : M
- 0 v
ma(z,t) = E ”fanZZ ! + - + E Z", tOO == E tiO’ (4)
n=1 Za  n=2 Zq i=1
such that

{zpmy=1, Va,

and verifying the same Lax equations (2) as the variables z,.

The basic notions about the Whitham hierarchy which are necessary for the subsequent dis-
cussion are introduced in Sec. II. String equations and symmetries are discussed in Sec. III, where
the main results concerning the construction of solutions from meromorphic string equations and
their Virasoro invariance are proved. Section IV presents a scheme for solving an special class of
string equations, which is illustrated with several explicit examples. A formula for the correspond-
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ing 7-function is given which generalizes the expression of the 7-function of analytic curves found
in Ref. 10. Finally, we analyze the Virasoro symmetries associated to the string equations and
obtain the corresponding Virasoro constraints in differential form.

Il. THE WHITHAM HIERARCHY

In order to display the main features of the Whitham hierarchy it is convenient to use the
following concise formulation in terms of the system of equations:

dzyArdm,=dw, Va, (5)

where w is the one-form defined by

W= E O, dt . (6)

wn

To see how to get from system (5) to the Whitham hierarchy, note that by identifying the coeffi-

cients of dp Adt,, and dxAdt,, in (5) we obtain

2o My Imy 9z, Iy,

p Iy G Iy Ip
(7)

2o My IMy 0z Iy,

ox ot,,  ox oy, ox

and, in particular, a Q¢ =p, for (w,n)=(0,1), system (7) implies

{zamat=1.
Thus, using this fact and solving (7) for dz,/dt,, and dm,/dt,,, we deduce
024 om,,
— ={Qun 24 ={Q,,,m,}.
It yn n

It is now natural to introduce the S-functions of the Whitham hierarchy. Indeed as a conse-
quence of (5) we find

d<madza > ledzlm> -0, Va,
an
so that there exist functions S,(z,,¢) such that

dS, =mydz,+ 2 Q,,d Y a, (8)
s,n

pun>

and from (4) we see that they admit expansions of the form
n Uan+l 1
Saz 2 Zatzm+10g Zata()_va(t)_ E o Lo — . (9)
n=1 =1 1 Z,
It is important to notice that from (1)—(4) and (8) it follows that
t 1
dSo= 2 (nzf 19,z + (20) 0,+)dt0,) + Ldzy+ O(‘z)dzo, 20—,
n=1 20 Z0

and consequently we may take

UO(t) =0.
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FIG. 1. (Color online) Right exteriors of vy, and I',,.

To proceed further some analytic properties of the dynamical variables of the Whitham hier-
archy are required. Thus we will henceforth suppose that there exist positively oriented closed
curves I',, in the complex planes of the variables z,, such that each function z,(p) determines a
conformal map of the right exterior of a circle vy, := z;l(F ) on the exterior of I,,. We will assume
that the circle 7, encircles all the y;,(i=1,...M) (see Fig. 1). Moreover, for each « the functions
S, and m, will be assumed to be analytic in the exterior of I,

Under the previous conditions one can prove that

‘9ﬁ,mva,n+l = aa,nvﬁ,m+1’ v a’ﬂ’ n,m= 0. (10)
Here the functions v;; are defined by
Vj1*=0U;— E logj,-(— l)th’ (1 1)
j<i

and we are denoting

logji(_ 1):= logj(%' - q]') - 108;‘(‘1]' -q)=- logij(_ 1).

In other words, it is ensured the existence of a free-energy function F=F(t), the logarithm F
=log 7 of the dispersionless mfunction, verifying

dF= 2 Uunsidlg,. (12)
(a,n)#(0,0)

Let us first prove (10) for the case (a,n)=(i,0),(B,m)=(j,0). From the equations

oSk =—1log(p-q)),
it follows that

dov;=logiq;—q;), dv;=loglq;—q;),
so that the functions defined in (11) satisfy

diovj1 = djovj1 -

We indicate the strategy for proving the remaining cases of (10) by considering the choice a
=i,B=j=1,n,m=1 of (10). From (4) and (8) it follows that
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1
Ui,n+1=ﬁjg Z?midzi’ (9_;-,me =(Z.;n)(i,+)’
Fi

so that

1 % 1 1
J: v = — Z’.’d(z'?’) . = _é (Zn) . d(Zm) . = —é (Zm) . d(Zn) . =0 v
j,mYin+1 . i j 7 (j+) . i/(i+) (j,+) . (j,+) i/(i+) i,nYjm+1>
2mi),, 2mil, J 27i ¥ J
(13)

where we have taken into account that (z}) ; +)d,(z}")(j.+) is a rational function of p which has finite
poles at g; and g; only and a zero residue at .

lll. STRING EQUATIONS AND SYMMETRIES

As it was shown in Ref. 26, the analysis of the factorization problem for the Whitham
hierarchy shows that this hierarchy admits a natural formulation in terms of systems of string
equations of the form

P(z;,m;) = Po(z9.1m0)
0i(z;m;) = Qolzo,mg)

where {P,, Qa}ﬁf=O are pairs of canonically conjugate variables

i=1,2,....M, (14)

{Pa(p’x)?Qa(p’x)} = 1, Y a. (15)
In what follows we consider the problem of finding systems of form (14) which are appropriate to
generate exact solutions of the Whitham hierarchy.
Given a solution (z,(p,t),m,(p.t)) of system (14), if we denote
Palp.t) := Po(za(p.).ma(p.1),  Qu(p.t) := Qulza(p,t),mu(p. 1)),
then (14) and (15) imply

dP,AdQ,=dPsAdQs Va,B (16)

and

dP,AdQ,=dz,Adm,, V a, (17)

respectively. Hence solutions of the system of string equations verify

dP,AdQ,=dzgndmg, V.. (18)

The next result provides a convenient framework for our subsequent discussion of solutions of
(14).

Theorem 1: Let (z,(p,t),m(p,t)) be a solution of (14) which admits expansions of forms
(1)—(4) and such that the coefficients of the two-forms (18) are meromorphic functions of the
complex variable p with finite poles at {q,, ... ,qy} only. Then (z,(p.t),m(p,t)) is a solution of
the Whitham hierarchy.

Proof: In view of the hypothesis of the theorem the coefficients of the two-forms (18) with
respect to the basis

{dp Adty,, dt,, Adtg,}

are determined by their principal parts at g,,,(«=0, ..., M), so that by taking (18) into account we
may write
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M
dza/\dma= E (dzlu/\dm,u,)(,u,&)a V a.
=0

Moreover the terms in these decompositions can be found by using expansions (4) of the functions
m,, as follows:

o0
. dz dv
dzﬂ/\dmﬂzdzﬂ/\<z nZ'de,, + 2+ —un
uw Glun n
n=1 Zu  n=2 Ly

- u 1 dv,,
=d<EZ,u,dt,u,n+10gZ,ud[,u0_E 7_&1),

n=1 n=2 = 1 ZI-L

so that

(dzlu, A dm,u.)(,u.,+) = d(Z (ZHM)(M,+)dt,un - (1 - 6#0)10g(p - qM)dt,u,O) = d(z Q,U,ndt,un) .
n=1 n

Thus we find

dz,Adm,=dw= d(}‘, Q,mdt,m>, Va,

on

and, consequently, this proves that the functions (z,(p.t),m(p,t)) determine a solution of the
Whitham hierarchy. |

Following the dressing scheme of Refs. 19-22 it can be shown®® that each solution of the
Whitham hierarchy is determined by an associated system of string equations.

As it was shown in Ref. 26 a complete formulation of the symmetry group of the Whitham
hierarchy is obtained by considering deformations of the associated factorization problem. On the
other hand, a natural representation of this group is provided by the following symmetries of string
equations implemented by Hamiltonian vector fields.

Theorem 2. Given a vector function

JF = (FO(Zo,mo), e ,FM(ZM’mM))7 (19)

the infinitesimal deformation

(s\]“‘Pa = {Fa’Pa}’ 6\I3Qa = {Fan Qa}3

(20)
5JFZQ' = {Zw (Fa)—}’ @l?ma = {mw (Fa)—}’
where
(Fo)- = Fo= 2 (Fg)g.)-
B
determines a symmetry of the system of string equations (14).
Proof: We have to prove that given a solution (z,,m,) of (14), then at first order in €
(P; + €6pP;)(z; + €5pz;,m; + €5pm;) = (Po + €63P) (20 + €85z, + €6ymy)
21

(O, + €6;0)(z; + €6pz;,m; + €6ym;) = (Qp + 6p00) (20 + €pz0,mg + €5pmy),

for all i=1,...,M. Let us consider the first group of equations of (21), they can be rewritten as



083512-7 String equations in Whitham hierarchies J. Math. Phys. 47, 083512 (2006)

_5JFZz _5JFm {FZ,P}— 5JFZO _5JFm0+{F0aP0}
om; om
or, equivalently, by taking (20) into account, as

{Fi= (F)_,P}={Fo~ (Fo)_,Po}, Vi. (22)
By hypothesis P;(z;,m;)=Py(zg,mg). On the other hand

Fi=(F)_=Fy— (F)_= 2 (Fp) )
B

so that (22) is satisfied. The proof for the second group of equations of (21) is identical. O
We note that the condition for a solution (z,,m,) of the string equations (14) to be invariant
under a symmetry (20) is

(Fa(za’ma))— = 0’ v a, (23)

or equivalently

Fo= 2 (F e Va (24)

In other words, the functions F,(z,,m,) must reduce to a unique meromorphic function of p with
finite poles at the punctures g; only. As a consequence it follows that, under the hypothesis of
Theorem 1, solutions of the Whitham hierarchy satisfying a system of string equations (14) are
invariant under the symmetries generated by

P=(Py(zg.mp), ... Poulzanmy), Q= (QO(ZOsm())’ s Oulzanmyy),

and, more generally, they are invariant under the symmetries generated by

m_(P(r)+le+l - Pr+1Qx+l’ }’2—1, SBO, (25)

which determine a Poisson Lie algebra W of symmetries

(Vi Vo =((r+ D"+ D = (7" + D(s+ D)V g

In particular the functions V,:=V, and V,:= -V, generate two Virasoro algebras.

{V,,,Vr/} = (r_ r,)VHr’v {VS,VSr} = (S - S’)\V.Hs’

IV. A SOLVABLE CLASS OF STRING EQUATIONS

In Ref. 26 a class of string equations was introduced which manifests special properties with
respect to the group of dressing transformations. We next provide a scheme of solution for this
class.

Let us consider systems of string equations associated to splittings

{,...M}=1UJ, INJ=QD

of the form
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nj_ _n _O_Lm — S0
7' =2’ T, ! =2
. . %
iel1 my 1 myg jeldJ 1 / | (26)
L B m
i—1 -1 n; 0
n;zj no 7o T -1
ng no Z

where n, are arbitrary positive integers. For J=@ these systems furnish the solutions describing
the algebraic orbits of the Whitham hielrarchy,5 while the case /=@ includes the systems of string
equations considered by Takasaki'® and Wiegrnann-Zabrodinmf14 in their applications of the
dToda hierarchy. The discussion of our scheme for solving (26) requires the consideration of the
two cases J=0 and J# @ separately. In what follows we consider solutions with only a finite
number of times ¢,, different from zero.

A. The case J=0@

The corresponding system is given by

Z?i=Z30,

1 m 1 my i=1,...,.M. (27)
AT T a1

niZ::lt nozgo

The first group of equations (27) is satisfied by setting

M n;
=200 = E(p) := p 0ty op"0 7+ o +ug+ 22—,
i1 1 P —q)
and, obviously, appropriate branches of z, can be defined which are compatible with the required
asymptotic expansions (1). On the other hand, notice that the remaining string equations in (27)
can be rewritten as

(28)

d
m;= moﬁa (29)
dZ,‘
so that they are verified by taking
aS
my=—, VYa, (30)
024

for a given function S(p,t), which means that all the S, are equal to S. Moreover, it is straight-
forward to prove that the expansions (4) are satisfied if we set

No M [N
§= 2 to,(z) 0.0 + 2 (E £50(@) o = 1ol (p = q,->> : (31)
n=1 j=1 \n=1
In order to satisfy the hypothesis of Theorem 1, the functions z;° and m/ zgo—l must be rational

functions of p with possible finite poles at the points g; only. In view of (28) this condition is
verified by zg. On the other hand, (27) and (30) imply that

Lm 3,8

nozpt T GE
Therefore, the requirements of Theorem 1 are satisfied provided that

3,5(p,) =0, (32)

where p, are the zeros of
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d,E(p,) =0.
We observe that the number of zeros p, is

M
M+nyg—1+ 2 n;,
i=1
which equals the number of unknowns {g;,u, ... ,uno_z,vix}. Equation (32) coincides with those
formulated by Krichever in Ref. 5 for determining the algebraic orbits of the Whitham hierarchy.
Example: M =2, ng=n;=n,=1, Ny=2, Ny=N,=1.
In this case (28) reads

Us

+

=E(p)=p+ ,
P—q1 P—4q2

and (32) leads to

- t10 - t20 + 2[021}1 + 2t0202 = 0,
qitio+ 2qat10+ 2G50 + Gatrg + t01U1 — 4ot — 1101 + 19102 — 4G 1T0o0s — 102 =0,

2 2 2 2
=2q1q2t10— 42" 1o — 41 10 — 24192120 — 2otV + 2G5 TooU 1 + 2Gat1101 — 2q110102 + 2, o0

+ 2q1t21U2 = 0,

2 2 2 2 2 2
41910+ 41"t + G2 10101 — @ 11V + Gy T2 — g, 102 =0.
By solving this system we obtain

2tg1t10 = 2810811 + 2801000 — T1ita0 — t20f21>
Atop(t10+ 1)

2,=E(p)=p+

+ f20 , 0<a<2.
4t (p = 2101(t10 + 1) + 2tp0tas + gty + f21))
0\P—
4t (110 + 1)

B. The case J#@

Now we consider system (26) for the generic case J+# @. We look for functions m, of the
form

N, M
v
mg(z,t) = E manZn Ty E Om, too=— 2 tio» (33)
n=1 i=1

a n=2 24
for arbitrary positive integers N,. In order to verify the hypothesis of Theorem 1 and expansions

(1), we set

0k

no — S — .
20=2"=E\(p) :=p 0+ u, ,p" +u0+22 +22 , Viel,
’ "o lel n= 1(17 C]z)n kel n= 1(17 Clk)"

(34)
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00 nor

=E,(p): ECP”+EE % EE

n n’ VJ EJ’ (35)
lel n=1 (r—aq) kel n=1 (P Q)

where ng, ngy;, g (L € 1,k € J), the poles ¢; and the coefficients of E; and E, are to be determined.
By introducing the functions

Ma = Myas (36)

and taking (34) and (35) into account it follows that the system of string equations (26) reduces to

o o . .

M,y= n_Miz - n_szEl(P)Ez(P)’ Viel, jel. (37)
i J

On the other hand, due to their rational character, the functions M, can be written in terms of

their principal parts at the poles gz

M

My=2 (M)
=0

and by taking (4) into account we get

Ny M

(Moo= E nt0,(20)0.4) + toos  too=— E 1o,

n=1 i=1

N;

(M= E nt;u(2)) i4)-

n=1

Therefore (37) is satisfied by

M
My= 2 nto,(20) 0,4) * oo + 2 2 nt, () i4) = 2 E nt (Z7)0,+)s fop=— > Lio
j=1

iel Min=1 jeJ ] n=1
(38)
n; n; . .
M,‘=_MQ, MJ':—_'LM(), VlEI, JEJ,
n n
provided M, verifies the equation
Mo=E(p)E5(p). (39)

At this point notice that from (34), (35), and (37) it follows that (39) is the only equation to
be satisfied in order to solve the system of string equations (26). Both sides of (39) are rational
functions of p with finite poles at {g, ...,qy} only, so that (39) holds if and only if the principal
parts of both members at {g,q;, ...,qy} coincide. Now we have that:

(i) At gy=2, the function M, has a pole of order N,, while E;(p)E,(p) has a pole of order
ngo+ng, consequently (39) requires that ngy=Ny—n, so that identifying the principal parts
at g, represents Ny+ 1 equations.

(i) At g, (i € I), the function M, has a pole of order N; and E,(p)E,(p) has a pole of order
n;+ng;. Hence ny=N;—n; and identifying the corresponding principal parts leads to N;
equations.

(iii) At g;, (j €J), the function M, has a pole of order N; and E;(p)E,(p) has a pole of order
ng;+n;. Hence ng;j=N;—n; and identifying the corresponding principal parts leads to N;
equations.
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Thus, Eq. (39) leads to N0+E?;11N,~+1 equations. On the other hand we have N0+E?;11Ni+M
unknown coefficients given by

ajy, ’aini’ [izl’ .. ’ZiiN,-—nl.’ L e I’

bjts - bjy s b, ... ,Zjnj, jel, (40)
Ugs -+ slpy 2>
Cps v oe ,CNO_HO.

The additional M —1 equations required for determining these coefficients arise by imposing the
asymptotic behavior (1)-(4) to (z,,m,). Note that (34) and (35) imply that the functions z, have
the asymptotic form (1). In what concerns the functions m,, from the expression (38) for M, it
follows that

Ny
" 1
M0=2nt0nzO+t00+(’) -1, Z0—>OO,
<0

n=1

so that m, satisfies an expansion of form (4). But in order for m; (i=1,2,...,M) to satisfy (4) we
must impose that

Res(mi,zizoo)=ti0, = 1,2, ,M (41)
However, let us see that as a consequence of the string equations (26) it follows that
M

> Res(my,z,=2°) =0, (42)
a=0

and, consequently, only M—1 of Eq. (41) need to be imposed. Indeed, we have

M M M
2mi >, Res(m gz, =) = D, fﬁ modz,= > jg M,0,2,dp.
a=0 a=0J T, a=0 Y vy,
On the other hand (34), (35), and (37) imply

m;d,z;=mgydpZg, I €1,

1
m;d,z; = modyzo — n_ﬁp(El(P)Ez(P))’ Jjeld,
0

so that
M M
27712 Res(ma,za = Oc) = § m()apz()dp = 0’ Yi= 2 Ya>
a=0 b% a=0

where we have taken into account that
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1
mydyzo = n_Ez(P)ﬁpEKP),
0
is a rational function of p with finite poles at g; only, and the fact that

7~0 in C\{CI],J/]M}

In this way we have a system of

M

No+ 2 N+ M,
i=1

equations to determine the same number of unknown coefficients. Therefore, according to Theo-
rem 1, this method furnishes solutions of the Whitham hierarchy.

C. Examples

(1) M=1, I=D, ny=2, n;=1, Ny=N,;=3. Note that in this case all the equations come from
(39). We set

2 9 ap as b
p=p tupt— +7— 5, 1= _+Cotcyp.
r-q (-9’ -q
From (39) one obtains the system
p3: 3t03=C1,

2,
P72 =co,

9t03u0
2

1. —
P t01+ —b1+Cll/lo,

0. daitys
2

- th + 2102140 =ac;+ blq + Colg,

p-9 - 617|2f13 =ay,
(P-a)™  =2bQ2t;,+9(co+19)t13) = arb, + ay(cy+¢1q),

(p-q)" =2by(t;;+4(co+ 1@t + 9(03"‘ 2¢9c1q + by +c%q2)t13)
=ayc; +ay(co+c,q) +bi(q* +u),

and by solving these equations we find

2
2 2(qto1 + t10 + 6o13t 12 + 36t01t0ato3t13 + S4qtoites 113)

2
Z =
=P 3t3(q + 610312 + 36tatost 13 + 546]%32?13)

N 4t10(t12 + Otooty3 + 9qtostys) _ 6f102"13
(P—q)(g+ 5461%32113 + 6103t + 61 nt13))  (p— a)(g+ 5461f032f13 + 6103(t1, + 6’02%3))2’
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1o
(p — @)(q + 6tgst s + 361t ost 13 + S4qt 371 13)

1= + 2t02 + 3pt03,

where ¢ is determined by the implicit equation

= 2101 + 3¢ 103 — 210+ 6qlat 1y — 1261103112 + 24q1oatostys + 547105 11 + 36003711111
+ 14410103711, + 21610511, = T2tg1t00t o3t 13 + 724100 Tostrs — 108q1oites 113 + 324G 710013113
+ 32403107115 = 1081557110115 + 216100105° 11115 + 324Gt 11113 + 129610571057 110115
+ 388810t ot 13 + 2916G%105 110t 13 + 259210, 10571157 + 11664410,°103°1, 3
+ 174960105105 1,5> + 8748¢°15,71,,2 = 0.

(2) M=2, I=D, ny=n;=n,=1, Ny=N,=2, N,=1. In this case there are three punctures {g,
=%,¢,,q>} and we have to impose Eq. (41) for i=1. We take

a b, by
Zp=p+ , == +
P—4q P—4q91 P—4q>

+cotcCip.

Then, by identifying powers of p, (p—q;)~" and (p—g,)~" in (39) the following system of equa-
tions arises

2. _
p7 2tp=cy,

1. -
P fo1=Cos

0. _
p dajt—ty—tyn=b +bytac,

(p—q)* =2bitp=a,

b, b,
p th=bigi+a|co+ciq + )
)

(p-q)™" —biy —4191(00"'01611 +
q1 q1—492

a

41—612.

- —ty=qy-

Moreover, by taking (38) into account, from (41) we get

b,
>f11
q1—492

b b, \? bt
—2<2b]<cl— 2 2>+(C0+C1ql+ 2 ) )t12+t20+ 22 =0.
(q1-q2) 91— 492 91— 9>

These equations lead to

= qity; = 2(2a, +6112)f02— (Co"'clql +

1
21 + 4101 (p - 1)

2
Zp=p (r*(1 + 41t 15) = 2115(t10 + ta0) + 1(t1) + 2101112 — 1oy — 4ol 12t21)) s
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1
2
1= (r*(1 + 4toptp) = 2t15(t10 + tag) + 1(tyy + 2101110 — 1y — 4ot 1ot21))
4t15(1 + 4ot 1) (p = q1)
+ (=1 + Atoptyn) = 2t15(t10 + ta) + F(— 111 = 2101115 + 1ag + Aot 1at1))
4t1,(p = q2)
+ tOl + 2pt02,
where

q (FP(1 + dtgpt 1) + 2t15(t10 + tyg) — Pty + 2801112 + tyy + dtopt1at))),

- 21"(1 + 4t02t12)

qr= (r(1 + dtoat12) = 2t15(t10 + tag) + 1ty + 2101110 + 1y + 4ot aty),

B 2r(1 + 4t02t12)

and r is determined by

4 2 2 2 3 2, 2
3L+ 4oyt )™ = 4157 (1o + 120) " + 4r (1 + gt 1) (11 + 2101115 = (1 + degptp)ty)) + (2
2, 2 2 2 2
+ ety + Aot (1 + dtgot ) — Aoty — 16105ty 1o — 4ot 1atay — 16801 t0at 1y Ty + 1y
2 2, 2, 2
+8toat1oty” + 16101157ty ” + 2111 (210115 — (1 + 41t 15)151)) = 0.

(3) M=2, I={1}, J={2}, no=n,=n,=N,=1, N;=N,=2. In this case we take

U1l Uag Wai Wi
+ . n=Ep)=—"-+

P—q1 P9 P—49 P—q

0=21=E/(p)=p+ +cp.

By equating the coefficients of p', p° (p—¢,)7, i,j=1,2 in (39) one finds

1. _
P fo1=Cos
0. _
P —hio— =W+t wyy,

-2, 2 _
(P—q)™ 20" =v Wiy,

Uy Uy Wai
)):<41+ >W11+011(C0+ >,
91— 492 91— 492 91— 492

(p-q)™": Ull(fll +4l‘12(¢]1 +

(p-q)™ —2t22W212=l)21W21,
2
_ Wi VWi + (= (q192) + g,” + v )wy
(p—q)™" = (tyywy) - 4f22(00 + )W2l =CoUp + )
—q1tq; —q1tq>
and (41) leads to
U2
to 02 2Un(éh‘qu q) "
11011 11 1~ 492 11
= alp1 + 1o~ =2t 5+ —121<C0+ )
—q1t+q> (—q1+q) —q1t+q -q1+q

2
w 2w w
_2l22(<60+ 1 ) . 1l 212)=0-
-q1+q)  (q1—q2)

By solving these equations one obtains
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B 27 Pty + (tyg+ tag) (1 + 4t y5t5) — 1y (o) — 11y + 2815101 + 41115120
4(p = q)t(1 + 4t 5ty)

_ 10 (21 *t1y — (110 + 1) (1 + 4t 15t05) — 1 (tg; — 1y + 2115t + 4011 101)))

(p = q2)(1 +4t151))

E/(p)=p

)

2r 2t + (tyg + tag) (1 + 4t 5t0) = 1ty = 111 + 210t; + 4tg115t2)
2(p — g (1 +4t1515)
+ 2r12t12_ (t10+ 1) (1 + 41 15t2) = 11(tg) = 111 + 21 1oty + 4o 112120)
2(p — g2)(1 + 4t1515))

Ey(p) =ty —

b
where

ri (gt 120) (1 +4tiaty)) + ri(th1 + 2oty + for (= 1+ 411515)))
2 4r1t12

q1=

i

o (t10+ 10) (1 + 4t 15t5)) + 1y (81) + 2815t + to1(= 1+ 4t15t55))
2 4}’11‘]2

q2== »
and r| satisfies

4, 2 2 2 3 2, 2
= 1277ty + (119 + 120) (1 + 4t 15t50) " + 87 t15(tg) = 111 + 2t 1oty + g1t 1atan) — 1 (81" = 4t 1t 1oty
2 2
= 2101 () = 2t10121) (1 + 4t 15tp0) + (tg) + 4tg1t10t20) " + 4t15(= t1g + T + Loty ” — 41012t

+ 4t 15ty0t0)) = 0.

D. S-functions

According to the identities

pSa=Mydy10g 2, My=myz,,

it follows at once from (34), (35), and (37) that the functions d,S,, are rational functions of p with
finite poles at the points ¢; (i=1,...,M) only. Thus we may decompose the functions 4,5, into
their principal parts

0pSe= % (S a).)- (43)
and, in view of asymptotic behavior (9), we may write
(0,8 (at) = IpR s (44)
where
Ro= 2 (2 (aonfon = (1= 0a0)ta0 1080(p = 4. (45)
Further, from (34), (35), and (37) we obtain

3,8:=39,8, Viel,
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1 .
(9PSJ = r?pSO - n_oap(ElEz), vJ (S J, (46)
which leads to
ER,3+ OE (E\E3) j+)» ac{0}UI
eJ
S.= ' 47)
ERB EE2)0+)— E(EE2)1+ ael.
Nojcr

In principle, (46) implies the expressions (47) plus additional p-independent terms w (7). However
these terms can be removed by using (8) and (9). Indeed, assymptotic behavior (9) for S, requires
wo=0. On the other hand, (8) says that

dS; —dSy=m;dz; — mydz,

so that by using the string equations (26) we deduce

dSi—dS0=0 el

dWl'= .

ds; - dSO+ d(E\E,) =0, iel.
ny

E. ~functions

Theorem 3: The 7-function for the solutions of the Whitham hierarchy associated with the
class of string equations (26) is given by

2log = E § 2 z tan mydz, — E § ;imjz-dzj+2t,-0vil
r; i

n>1 jey 4ming .
! I&
=E E LanVan+1 — E _E nt inUjn+1 — Z 2 (48)
a n=0 jelJ Njn=1 jelJ

Proof: Our strategy to prove (48) is to start from the free-energy function for the algebraic
orbits of the Whitham hierarchy5

1
FO - E % l;tan madza"' 52 tiOvil’ (49)
n>l

i

and determine the appropriate modifications to get the free-energy function for the solutions of the
class of string equations (26).
By differentiating F; with respect to #;,, n=1 we get

1
al,nFO = E% Zl’nldzl + 2 Ari ( 2 4 tam>a ((Z])(Z +))dp += E lOaZ nVils (50)
T

i m=1

and arguing as in the derivation of (13), we find that

§ (2 ton) s Dedir=$ 10 T Do)

On the other hand, for i # [ we have
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1
al,nSi = (Z;l)(l,+) == al,nvil + O(Z)’ P — 4

i
so that
i == (2w (@)

b (Z;l)(l,+)
2w}, p—4q;

1
dp=——@ ()., log(p —g;)d
p 2771.3% (2] .49, log(p — g)dp

1
=- é 79, log(p —q)dp, i#1,
2ti %

and the same expression turns out to hold for i=/. Hence, (50) can be rewritten as

m=1

1
SVt A
Y

1

z?(E IR o a,,s,)dp

1 n
SVt 2 47Tl§ (Zl )(l,+)(‘9pRa - (&pSl)(a,+))dp'
@ Vi

Further, we have that

1 1
Eé (Z? (l,+)(apRa/ - (apsl)(a,+))dp =- E§ (Z;l (l,+)(apRa - (apsl)(a,+))dp
Y Ya

1
-— 0 a,S,—34,S)dp,
47”.%),& (Z[)([,+)( PO a D I) P

so that from (46) and by taking into account

M

ﬂg (Dm0 E\Edp == 2 P (219, (E(Ey)dp,
Yo i=1 Jy;

we get

3z,nFo=Um+1+ jg @) 10y (ELE2)Ap = 0y + 2 § zjm;o) m;dz;
015147” jEJ4mn r;

=Vt 3z,n<2 3 § Zm; dZJ)’
jel ’7Tl}’lj F_,'

which shows that

al,n IOg T=VUlnt1-

By a similar procedure one finds

ﬁ(),n log T=Vop+1> n=1.

Nevertheless, proving that

vzn+1+;jg z,E d (2 (Ze) (@) tam = (1 = 8a0)tag 10g(p—qa))dp

(51)

(52)
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(91’0 lOg T=Vq, l:1, ,M (53)

requires a more involved analysis. First we differentiate F; with respect to #;,

1 1
doFo= > A E b4 fam>0" (= log(p—q))dp + = E 1iod10V;1 + S (54)

m>1

and use the following relations:

1 1
§ ( E Z tam) dp = _§ < E (Zz)(a&)tam) dp? aF l’
Yo pP- v P—4q

m=1 m=1

1 . m m
§ ( E Z;ntlm> dp =-2mi hm( 2 (ZZ - (Zl )(l,+))tlm) >
% pP—q

m=1 — Y1 P—4q1\m=1

E tindivi1 = 2 tio log/(q; — q) - E tio log;(—=1) = 2 tio logi(q; - q;) - E tio logy (= 1),

i#l i#l i>l i#l i<l

dovyy = lim log(z/(p - q))).
P

Then (54) becomes

1 1 dp
doFo= 2011 + 4o jg E (E (2 )(a+)fam (1= 8a0)ta0 loga(l’—qa)>
Y

lp dia#1 \m=1

1 : m m
+ 5 11m< E (2" = (") ) tim + i log 2+ 19 log)(p - 6]1))) 2 tio logy(—1).

P91\ m=1 1<l
(55)
Further, from asymptotic expansion (9) of S; we have that
v; = lim ( > 2ty + 1 log 7 — S,),
P—qi1\m=1
which allows us to rewrite (55) in the form
1 d
0')[0F0—U[1+_ P ER +—11m(S, Rl) U11+_§ ERQ—S[).
4ri v P~ dia*l 2 p—g P~ A\ a
(56)

Now by using (47) it is straightforward to see that

1 lw |1 dp 1
o= (2 R, ) —3— EE=2 4—39 mdiomdz;,  (57)
)y, P4 Nojes TT) 5, P =41 jel TN,
which shows that (56) is equivalent to (53). O

F. Conformal maps dynamics

We will outline how our scheme applies for characterizing dToda dynamics of conformal
maps, and, in particular, how (48) gives rise to the expression of the 7function of analytic curves
found in Ref. 10.
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FIG. 2. Conformal map z=z(p).

Given a simply connected domain D bounded by a closed path I' in the z-plane, there exists®’
a unique circle 7y in the p-plane and a unique conformal map z=z(p) satisfying

Z(p)=p+21;, z— 0, (58)
n=1

such that z=z(p) transforms the exterior of 7y into the exterior of I" (see Fig. 2). Note that the
conformal map used by Wiegma.nn-Zabrodin10 is given by z(rp+q), where ¢ and r are the center
and the radius of v, respectively.

Let us define the function

2(p)=z(Z,(p), (59)
where Z,, denotes the inversion with respect to the circle y

r2

Z}(P)’= q+
p
It is clear that

Ap)=zp). Vper

If T' is asssumed to be an analytic curve, then it can be described by an equation of the form

7=38(2), (60)

where S(z):=Z(p(z)) (the Schwarz function) is analytic in a neigborhood of 7. Thus, if I' encircles
the origin, S(z) can be expanded as

v,(1)

1
S@)= 2 L X L (61)

n=1 n=1

where the coefficients 7, (n=0), the exterior harmonic moments of I', determine the curve I" and
conformal map (58). Note, in particular, that the coefficient 7,

1 1
fo=——; Zdz=—f dxdy,
2mi )1 TJ)p

represents the area of D.
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In this way, by considering the harmonic moments as independent complex parameters, if we
define

a1=9, z20()=zp), zp)=zp),
to 3=ty Lp=—1, N = 0,

my=38(z0), my=-z(p(z1)),

we obtain a solution of the system of string equations

—my=zy, Z3=my. (62)

Further, by taking into account that

Ulnt1 =~ Vop+1 =~ Ups nZl’

and the identity

1 1 1 _ _
t(z) +22 nt,, = —§ z8(z)%dz = —jg z22dz= —J |z|*dxdy = té +2> nt,v,
2mi ) 2mi ) wJp

n=1 n=1

we see that (48) reduces to

1 _
2log 7= 2 E 2 =n)(tw, +1,0,) + tovy — EO’ (63)

n=1

where v(:=—v;;, which is the expression for the 7function associated to analytic curves obtained
in Ref. 10. Notice that (62) is the simplest nontrivial case (I=@, J={1}, ny=n;=1) of the class of
string equations (26).

G. Symmetry constraints

As we proved earlier, solutions (z,,m,) of systems of string equations (14) are invariant under
the symmetries

m—(P(r)HQHl - PIrVJIrlQHl 1”2—1,520.

Moreover, as a consequence of (14) we have that the following identities hold:

P(r)+le+l P;+1Q§+l =P;+1Q;+l =P6+1Q:;+l’ Vie 1’] - J, (64)

for the values of the functions P, and Q,, at a solution (z,,m,). In particular these identities lead
to the following expressions for the constraints arising from the invariance of (26) under the action
of V,,.

Theorem 4: If (z,,m,) is a solution of the string equations (26) then it satisfies the identities

2 (Z_ﬂl> Z(r_s)n“m¥+ldza+( 1)r
FLY

aef{0}UI ny

for all r,s=0.
Proof: From (34)—(37) we find that (64) takes the form

2 ( ) (s=r)n; r<+1dZ,'=0, (65)
nj )

O
+1 jedJ
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s+1 s+1 ni\ s+1 r+1
Zno(r+1) 1 mO _ Zn J(r+1) 1 m; _ EL/ nO j
0 no—l % n— i1 - n—1
n Z 1 Z nO j Z J

1
=—EME, Vieljel, (66)
ny
and we have that
1 m s+1 (1 m. )s+1 ( Er+l)Ea+l
ng(r+1)[ = 0 _ ni(r+l) M _ Y1 =2
Z d,log E| =z, d log £, = , 67
0 (”0280_1> p g niZ:li—l p gLy = (+]) s+1 ( )

n;\ s+l r+1 s+1 r+1 s+l
7 ne Mm: r+1 1 m E E
<_I_) (_ _OT_L1> (?p log E,=-— ZSO(HI ( " ?1> ﬁp 10gE1 +(9p< s+1>
ng n; Zj" s+ 1 ny ZOO ( l)n

for all r,s=0 and i €I, j € J. Hence if we proceed as in the proof of (42) and take into account
that

dy,log Ey\ =nyd, log zo=n;d,logz;, Viel,
d,log Ey=n;d,logz;, Vjel,

it is straightforward to prove that

1 m, \*!' dz s+1 2\ g ome VY dz;
2 or+1) o La 2 20 st}
ZZ( - ( n _1) ng - -+ - n—1 n}
r, r;

ae{0juI ez, Zq ey rtl 5\ 1o n;z z;
1 m s+1 (07 Er+1)Es+1
_ ny(r+1) 0 _ \Op=1 )=2 _
_§ zg" + (n Z"0_1> d, log E\dp = (r+ 1)n°+] dp=0, (68)
y
where y:=3" v,. This proves that the identities (65) hold. O

By evaluating the integrals of the left-hand side we obtain the symmetry constraints in terms
of differential equations for the free-energy function F=log 7.
Examples: For r=5s=0, Eq. (68) reduces to (42), so that it implies

Eta0=0

The cases (r,s)=(1,0) and (r,s)=(2,0) correspond to the Virasoro constraints induced by V, and
V,, respectively, and lead to the identities

ny
2 o7a,,F 2 ( E ntjnﬁjn_1F+n“ntjo+ 2 nn mn):o
n+n =n;
J

ae{0}UI jeq 1y n—n':nf—l

n
E 0"a 2n,, F+ E (VLO) ( E ]n( j.n' —lF)(aj,n"—lF) +2 2 ntjntjoﬁj,n/—lF

ae{0tUl jel n—n'—n"=2n« 2 n—n':2nj—l

+ 2 nn t]ntjn’a] nn_]F+ 2n; t]2n t]O+ E nn t]nt/n’ 70

n+n’ —n"=2nj—l n+n' 2n

1
+ - E nn' 0ttt ) =0.

n+n’ +n"=2n/
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