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Resumen

Una máquina de estados finita (FSM) es un modelo matemático de computación definido

por una lista finita de estados, datos de entrada y datos de salida, en el cual los datos

de salida no están determinados únivocamente por el último dato de entrada recibido sino

también por el estado actual y, por ello, por los datos de entrada previos. Un mutante

de una máquina de estados finita es otra máquina de estados finita obtenida mutando la

primera. La mutación puede consistir en alterar la respuesta a un dato de entrada, tanto

modificando el estado al que la máquina se desplaza como el dato de salida que genera, o

en crear un nuevo estado y sus transiciones correspondientes. Un test es una secuencia de

datos de entrada con sus correspondientes datos de salida.

El objetivo principal de este proyecto es desarrollar un sistema que genere mutantes de

una FSM y les aplique una serie de tests para evaluar su efectividad a la hora de distinguir

la FSM original de sus mutantes.

Palabras clave: Máquinas de estados finitas, prueba de mutaciones, desarrollo de

herramientas, conformidad.
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Abstract

A finite state machine (FSM) is a mathematical model of computation defined by a finite

list of states, inputs and outputs, in which outputs are not only determined by the last input

but also by the current state, and so by past inputs. A mutant of a finite state machine

is another finite state machine obtained by mutating the first machine. This mutation can

consist in changing response of the machine to an input, be it the output or the state to

which the machine transitions, or in adding a new state and its corresponding transitions.

A test is a sequence of inputs with its corresponding outputs.

The main goal of this project is to develop a system that generates mutations of an FSM

and applies a series of tests to evaluate their effectiveness at distinguishing the original FSM

from its mutants.

Keywords: Finite state machines, mutation testing, development of tools, confor-

mance.
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Chapter 1

Introduction

In this chapter we will give an informal presentation of the core concepts referenced through-

out this document and we will review previous literature about said core concepts. In

addition, we will go over the objectives of this project and how we intended to achieve

them.

1.1 Finite state machines, mutants and tests

Finite state machines, in the following FSM, are an automata-like formalism with a finite

amount of states. We can move from one state to another by providing an input to the

machine. The machine will possibly change its state and produce an output process.

A mutant is an FSM obtained by modifying another FSM. This modification can take

many forms, be it the addition of a new state or changing how the machine reacts to an

input when in a specific state. The main use of mutants is to be the basis of mutation

testing, as mutants serve to be an approximation of the errors made by programmers.

A test case is a sequence of inputs, to be provided to a system, and information about

expected/unexpected outputs after the application of each input. Test cases allow us to

feed the same inputs to a mutant and to the original machine so that we can conclude that

both systems are not equivalent if the outputs differ.

The main objective of our project consists in developing a system that serves as a tool

for a generalized study of mutation testing in FSMs. Our system will give users the ability

to apply mutation testing to either their own FSMs and test cases or ones created by the

system itself.

1
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Figure 1.1: State diagram for a turnstile

Source: https://en.wikipedia.org/wiki/Finite-state machine

1.2 Previous Work

Automata Theory established itself as a theoretical branch of Computer Science during the

20th Century when mathematicians began developing machines which completed calcula-

tions more quickly and reliably. The name itself denotes automatic processes carrying out

specific tasks. Thanks to the use of automata, computer scientists are able to better under-

stand how machines compute functions, solve problems and what it means for a function

to be computable or for a question to be decidable [1].

The first researchers to give birth to a finite-sate machine include a team of biologists,

psychologists, mathematicians, engineers and some of the first computer scientists. Two

neurophysiologists, Warren McCulloch and Walter Pitts, were the first to present a descrip-

tion of a finite automata in 1943 in their paper ”A Logical Calculus Immanent in Nervous

Activity” [2]. In later years, two computer scientists, G.H. Mealy and E.F. Moore, general-

ized the theory to new machines, the Mealy machine and the Moore machine. The Mealy

machine determines its outputs through its current state and the input; a Moore machine

determines its output through the current state alone [3, 4].

Work on automata and automata learning is still being developed. An automata wiki

has been made to collect benchmarks and frameworks from different automata. We have

obtained the text representation and framework of the FSMs we will develop in this project

from said wiki [5].

Mutation testing originated in the 1970s and initially considered imperative program-

ming languages like FORTRAN [6, 7]. The first mutation testing tool was Mothra, which

operated on FORTRAN programs [8, 9]. This led to Mothra and its mutation operators

acting as a blueprint for most work on mutation testing. More recent work has investigated
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Figure 1.2: Moore machine

Source: https://www.tutorialspoint.com/automata theory/moore and mealy machines.htm

Figure 1.3: Mealy machine

Source: https://es.wikipedia.org/wiki/Máquina de Mealy

object-oriented programming languages [10, 11]. There has also been interest shown in

mutating a model of the system under test rather than the source code [12].

The logic behind the use of mutation testing is based on the assumption that, because

mutants are small alterations of the original system, a test suite that kills mutants is likely

to also find real faults. The reason why mutation operators make small changes is the

hypothesis that states that programmers usually make small mistakes [6]. Mutation testing

is still being expanded on and the topic itself is of increasing interest, as the results of
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several development trend analyses clearly show [13].

1.3 Objectives

The main objective of this project was to produce a tool 1. with which to apply test suites to

sets of mutants of an FSM to find out the efficiency of different tests at killing the mutants

and presenting this data in a readable manner. The system should be able to generate test

suites, FSMs and mutations of said FSMs in case those were not provided by the user.

Our starting point was the Automata Wiki 2 from where we obtained the text format

for our FSMs. With this our system had to be able to parse said text format into the

corresponding FSM. This way we would be able to read from a text file containing an

already existing FSM and create it within the system making it so FSMs with numerous

states and transitions would not have to be made at the moment of executing the system.

This also meant that we had to parse the machines created within an execution of the

system into their corresponding text form.

In order to modify and work with FSMs in a practical manner, the system divides

the machine into its components, these being its states and transitions. This way we can

more easily work with each of the individual parts that make up the machine and their

functionalities instead of having to make broad changes affecting the whole structure of the

FSM.

The ability of the tool to work with the states and transitions of the machine in an

individual level allows it to modify them while keeping the functionality of the rest of the

FSM intact. This way it creates mutants by modifying a transition of the FSM or by adding

a new state with its corresponding transitions connecting it to the rest of the FSM. Doing

so does not modify the initial FSM as the tool mantains the multiple machines created

throughout its runtime. It is this which lets it compare the various mutants to the initial

FSM through mutation testing.

The system will use test cases to compare mutants and the FSM they were created from.

It keeps a list of test cases that can be either created by the user or created randomly by

the system following a set of guidelines set by the user. It applies these tests to both the

FSM and its mutants comparing the outputs obtained and generating a matrix during the

execution which shows the results of the comparisons. With this matrix the user can know

at first glance which tests were better at killing the mutants and which mutants are alive.

An important feature that was not originally planned but that we have included during

the development of the system is that we can still apply our mutation testing framework

1This tool can be found at https : //github.com/superspike/AutomatasTesting, instructions about how

to instale it can be found at the same site
2https://automata.cs.ru.nl/
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when working with non-deterministic FSMs. In particular, this leads to a more complicated

representation of test: they cannot be sequences of inputs and outputs but must have a

tree-like structure.

Finally, the user of the system has access to all the developed functionalities through

an easy to use and intuitive interface.

In order to accomplish this main objective, a series of smaller objectives had to be met

first:

• Flexible implementation of an FSM. In the beginning of the project we were aware of

the fact that additional functionalities were likely to be added to the system. There-

fore, it was a necessity that the implementation of the FSM was not overly complex

and allowed for easy modifications and addition of new features.

• Implementation of test cases that facilitates measurement and comparison of the qual-

ity of a given test suite and works regardless of the type of both input and output

data.

• Finding a way to represent in an easily understandable and readable manner the

results obtained when comparing the quality of the tests composing a test suite to

various mutants of a given FSM.

• Giving users an interface that allows them to easily understand and use the system.

Different amounts of information can be provided by the user and the system will have

to generate the rest of the information needed to function while following guidelines

that can be set by the user.

1.4 Project structure

The plan of the project was to divide the development of the system into three main blocks.

The first one corresponds to the functionality of finite state machines and its mutants, the

second one considers everything related to definition and application of tests and the last

one implements the representation and interface of the tool.

1.4.1 Finite state machine functionality

As stated in the forthcoming Definition 1, a Finite State Machine is defined by a finite set

of states, one of them marked as the initial state, finite input and output alphabets and a

set of transitions, where each transition is defined by an origin state, a destination state,

the applied input and the obtained output. Because of this structure, the attributes of

the machine consist of an initial state, a list of states, an input alphabet and an output

alphabet. With transitions being the most complex part of the project we created multiple
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classes to manage their attributes and functionalities. These classes will allow us to better

work with the different states and the transitions between them.

Each state is univocally distinguished by an integer number, with the number corre-

sponding to the initial state being 0. While this is enough to differentiate each state from

each other it is not enough to manage its transitions. Because of this each state will also have

an instance of the TransitionFunction class which will manage all the transitions of which

the state is origin of. The attributes of each transition will be the ones stated previously,

these being origin and destination states, an input and an output.

TransitionFunction is the class used to manage the transitions for each state. It consists

of an integer size that equals the number of transitions the state is the origin of and a

HashMap map that maps together input strings and the list of transitions for said input

for that particular state.

1.4.2 Test functionality

During the early stages of the system the attributes of a test case were a sequence of inputs

and its corresponding list of outputs, inputs and outputs respectively, and the FSM M on

which the test would be run. These let us compare the outputs obtained by different test

cases when applied to different mutants of an FSM.

During development the ability to apply mutation testing to non-deterministic FSMs

was added to the system. With this change one input could have more than one possible

output corresponding to it. As a direct consequence the existing structure of a test case

was no longer valid and a more complex one was needed. To address this each input now

had a corresponding list of outputs instead of only one output. This change allowed us to

process all the possible outcomes caused by an input and gave tests a tree structure where

every input generates a branch for each of the outcomes it can trigger.

To make the comparisons between test cases easier and for a more coherent code we im-

plemented the TestComparer class which contains the attributes and functions that allow us

to compare the efficiency with which different tests kill different mutants of the machine M .

1.5 Interface functionality

Users should be able to use the system with as little necessary existing data as possible

but also not be limited to the amount of data they can feed the system as to not limit

its functionality. This breeds the necessity of an interface that allows users to input any

existing data they may have into the system but also allows them to request the system to

generate the rest of the data necessary for the execution.

The interface will give users the ability to determine the different characteristics of the

FSM and its mutations or let the tool generate them given some guidelines. The creation



1.5. INTERFACE FUNCTIONALITY 7

of tests follows the same path where users can let the tool generate random tests following

limitations given by the user or they can give the tool specific tests to use.
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Chapter 2

Formal definitions

In this section we will introduce the formalisms to specify finite state machines, tests and

mutants, which will all be fundamental to develop our system as they are our main objects

of interest.

Definition 1. A Finite State Machine, FSM, is a tuple M = (S, s0, I, O, T ), where S is

a finite set of states, s0 ∈ S is the initial state, I is the finite input alphabet, O is the finite

output alphabet and T ⊆ S × S × I × O is the set of transitions.

We say that an FSM M is deterministic if there do not exist two different transitions

(s, s1, i, o), (s, s2, i
′, o′) ∈ T such that i = i′.

Figure 2.1: Example of an FSM

In Figure 2.1 we show a graphical representation of an FSM. For example, the tuple

(s1, s2, i2, o1) is one of its transitions.

We say that an implementation Imp conforms to an FSM M if for all possible evolution

of M the outputs that the implementation Imp may perform after a given input are a subset

of those of M .

9
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Definition 2. A first-order mutant Mu of an FSM M is a variation of M obtained by

modifying either the output or the destination state of a transition trans = (s, s′, i, o) ∈ T ,

or by adding a new state s′2 to S and a new set of transitions corresponding to s′2. If Mu

is functionally equivalent to M then we say that Mu is an equivalent mutant.

First-order mutants imitate the effects that an error would have over M . Going back

to the FSM M showed in Figure 2.1 and its transition (s1, s2, i2, o1), we obtain a mutant

Mu by mutating the output of the transition to (s1, s2, i2, o2) (see Figure 2.2).

Figure 2.2: Mutation Mu of previous FSM

Definition 3. A test case is a tuple t = (In, O, M), where M = (S, s0, I, O, T ) is an

FSM, In ∈ I∗ is the list of inputs that we will apply and O ∈ P(O)∗ is the list of sets of

outputs that we will analyze after the application of each input. Let Outn be the nth set of

O and in the nth input of In. Then the elements oi ∈ Outn are the outputs corresponding

to the transitions trans ∈ T where trans = (s, s′, in, oi). A set of tests T = {t1, ..., tn} is

a test suite.

Let M be a set of mutants of M . We say that a test case t = (In, O, M) ∈ T kills the

mutant m ∈ M if m and M produce different sets of outputs when receiving In as input.

In this case we also say that T kills m. If a mutant has not been killed then it is alive

Let M be a set of mutants of M and T be a set of test cases. The mutation score

of a test case is the percentage of mutants belonging to M that it kills. Analogously, the

resilience of a mutant belonging to M is given by the percentage of tests of T that it

survives.

As an example, let us consider the sequence of inputs i = i1, i2, i2. When the FSM

M depicted in Figure 2.1 is given i as input, it generates the sequence of sets outputs

Out = {o3}, {o1}, {o2}. The test case t = (i, Out) kills the mutant Mu of M given in

Figure 2.2 since the sequence the mutant generates is Outm = {o3}, {o2}, {o2}, which is

different to the output set sequence Out.
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Due to non-determinism given a set of inputs In and an FSM M we can have multiple

transitions for each input i ∈ In and consequently multiple outputs o and multiple destina-

tion states s′. Therefore, after applying the first input i0 from In we might have to apply

the second input i1 to more than one state s. To follow this trace of outputs and states we

use tests with a tree structure as we can see in Figure 2.3. This lets us ”go down the tree”

alternating inputs received and outputs obtained getting a representation of the outputs

obtained when applying a given test case t to an FSM M . We can then compare it to the

one obtained from applying the same test case to a mutant mu of M killing it if there are

differences in the outputs obtained after each input.

Figure 2.3: Tree test
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Chapter 3

Development of the system

In this chapter we present the main ideas, concepts and decisions related to the development

of the system. Throughout the development process, different classes were implemented

and modified, with new functionalities added to them and their structures and attributes

changed frequently. We will review the classes that make up the system and their main

functions, along with any important changes made to them during development together

with the reasoning behind said design decisions. The code for some of the most important

and interesting functions can be found in the appendix A.

3.1 Mealy Machine Package

In this package we have all the classes related to the construction and management of FSMs,

their structure and their functionality.

3.1.1 MealyMachine.java

The MealyMachine class is the base of the system as it is the class that will construct

the FSMs and their mutants. As such, the class has the attributes needed to store the

necessary information to define an FSM. As presented in Definition 1 these are an initial

state initialState, which is 0 for all the FSMs, a list of all the states of the FSM stateList,

an input alphabet inAlph, an output alphabet outAlph and a set of transitions T . This

last attribute will be shown in the upcoming Section 3.1.3 as it is implemented in the State

class.

Due to the different ways in which a user can provide the required information to the

system, we had to implement various constructors of the MealyMachine class since the early

phases of the project. The first ones were the more simple constructors, which allowed us

to execute the system and check for possible errors in it. One of these was a constructor

13
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such that given the number of states and the length AlphLength of the alphabet, it would

generate an FSM with one transition for each input in every state with a random destination

state and output (that is, initially, only complete FSMs were produced). The other one was

a constructor such that given the number of states and AlphLength, it asked the user to

input through text the transitions of the FSM. This allowed us to create FSMs with specific

characteristics and check whether the system was working properly or not.

Later into development of the system we extended its features so that randomly gener-

ated FSMs did not have to be complete anymore, that is, every state no longer needed a

transition for each possible input. We did this by adding a new argument to the construc-

tor where we could specify the chance that a state would have a transition for each input.

The most important constructor is the one that generates a text representation of the FSM

following the format mentioned in Section 1.3.

At this point there was no distinction between input and output alphabets as both

were the same sequence of integer numbers ranging from 0 to AlphLength-1. We recognized

that users would have FSMs where inputs or outputs were not integer numbers. Our first

attempt to address this was to implement the input and output alphabets as two separated

HashMaps, which would map the inputs or outputs as strings together with a unique integer

number. This allowed the system to still treat alphabets as integer numbers while allowing

users to have inputs and outputs of any kind. This decision, however, generated a new

problem. In different situations we would want to search for a specific integer, which were

the keys of the maps, while sometimes we wanted to search for the specific string inputted

by the user. This was not possible due to limitations of the HashMap data structure. To

fix this we implemented a Translator class which kept two HashMaps for each alphabet:

one where the strings were the keys of the map and one where they were the values. In

addition, it did the necessary operations with the maps to obtain the inputs and outputs in

the desired format for each situation. Finally, we implemented alphabets as lists of strings

as the search of a specific element within a list is more efficient than the same operation in

a HashMap.

For the creation of mutants we needed two main functions. One to clone an FSM, as we

still needed the initial FSM in order to create more mutants and to later apply mutation

testing, and one to mutate the cloned machine. This last function turned into three as

we had to create three different types of mutants. For two of them we needed to mutate

a transition of the machine, be it its output or destination state. To do this we selected

at random one state of the FSM followed by selecting a random transition of said state.

After this, we randomly chose an output from the output alphabet or a state from the list

of states of the FSM and changed the parameters of the selected transition to reflect its

new output or destination state. For the third type of mutation we had to add a new state

to the FSM and create its transitions connecting it to the rest of the FSM with a chance
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determined by the user for the state to have a transition tied to any particular input. To

avoid a situation in which for every input there was no transition generated making it so

the new state was not connected to the rest of the FSM we first select a random state from

the machine and create a transition between the selected state and the randomly generated

one. Let us emphasize that this last type of mutation does not appear in the previous work

on mutation of FSMs reviewed to prepare this project. The code to apply these mutations

can be seen in Appendix A.1

Further down into development we decided to add to our system the ability to manage

non-deterministic FSMs. To determine if an FSM is non-deterministic we added two new

attributes to Mealymachine: an integer number noDet which determines the maximum

amount of transitions a state can have for any particular input, and a boolean det which

is false if noDet> 1. Since the MealyMachine class stores the list of states of the FSM and

its input and output alphabets, we decided to implement most of the necessary functions

within it, as we can access the most information from this class. The main challenge that

arose with non-determinism was that after an input, our FSM could now be at multiple

different states, and so we would have to apply the next input to all of those states. To deal

with this problem we implemented TreeAux.java. TreeAux stores the state s and input i

which started the transition with s as destination state of one node of the tree and a list

of all its children. To generate its children, an instance of TreeAux calls a function from

MealyMachine which returns a HashSet of pairs of the destination states reachable from

s and the inputs which start the corresponding transitions. The TreeAux attributes and

function to create its children can be found in Appendix A.2

The TreeAux class allows us to easily store the sets of outputs and destination states

generated when applying test cases to a non-deterministic FSM.

3.1.2 Transition.java

Before going over the implementation of the states of the FSM and how each state manages

its transitions we will show the implementation of transitions themselves. This is done in

the Transition.java class.

A state transition has four main elements: the state in which the FSM is before the

transition happens orig, the input that triggers the transition input, the state in which the

FSM is after the transition dest and the output that results of it output. This lead us to

implement transitions as objects with those four attributes.

Transitions are objects that provide necessary information for the rest of the system to

properly function. As such, they do not have many functions themselves besides the neces-

sary ones to construct them and modify their attributes. The other functions implemented

in Transition allow us to clone a transition, to check whether two transitions are equal by

comparing each one of their attributes, and to parse a transition from its text format into
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its four attributes or vice versa. This last one is particularly useful as it allows for the

parsing of every transition of a state to be done by recursively calling this function for each

of the transitions of a state.

3.1.3 State.java

In a previous section we showed the implementation of all the components of an FSM, as

we described them in Definition 1, except for its transitions. Transitions are the way an

FSM changes its state to another one. It proved easier and more organized to implement

the functionalities regarding transitions in the State class and have each state contain the

information of the transitions of which it is the origin state. Once we implemented tran-

sitions and considering how states of the FSM react to receiving inputs, instances of the

State class needed to be univocally distinguishable and store all the transitions of which

they were the origin state. These two elements were implemented as an Integer acting as

the state ID id and an ArrayList of instances of the Transition class.

Initially, most of the functions in State were similar to those in Transition, as states were

mostly instances of a class which provided a way to structure information about the FSM

and did not have many functionalities of their own. Most of the functions were constructors

of the class or functions to alter or obtain the attributes of a state. There was, however, one

main exception which allowed for the whole system to work. Given the fact that transitions

are stored within each state, we implemented the step function in the State class. Originally,

step received an input as an argument and returned the transition which occurred when

that instance of State received said input. This allowed the system to apply the first input

to the starting state and obtain the corresponding output and the state to which apply the

next input and to follow this process until all inputs were applied.

As previously mentioned, during development we first made it so that FSMs did not have

to be complete and later on added non-deterministic functionality to them. Because of this

we had to implement additional functions within the State class. Non-completeness meant

that states no longer needed to have a transition for each input, as such we added functions

to check which inputs were accepted by a state. When we implemented non-determinism, a

state could have more than one transition with the same input. This meant that while we

could still store the transitions of a state in a list of transitions, it was no longer practical

to do so since it was in our best interest to be able to easily access all the transitions tied

to the same input. As a solution, we implemented a new class TransitionFunction.

3.1.4 TransitionFunction.java

With the implementation of TransitionFunction we had a class fully devoted to managing

the transitions of a state.
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In this situation we do not need a list of transitions for each state but for each input

that a state could receive. Therefore, we added a HashMap mapa as an attribute to Tran-

sitionFunction. This way we could map together the inputs that the state could receive

and the list of transitions triggered by said input. Thanks to the existing functions of a

HashMap we could also easily access and modify the map. Another attribute of the class

was an integer nodet, which represents the maximum amount of transitions that can have

the same input as the input.

Through TransitionFunction we could now receive a list of all the possible outputs that

we could obtain after applying an input to a state. In the same way, we could generate a

list with all the possible states the FSM could be at after receiving an input. Thanks to

this possibility we could implement the setStatesI function covered in Appendix A.3. This

function takes an input i as an argument and returns a set of pairs with the destination

states and outputs of all the transitions in the state with i as the input. This function allows

the system to keep track of the multiple branches a non-deterministic FSM can take and

the outputs in can generate when applying a set of inputs to it. This lets us compare the

behaviour of different non-deterministic FSMs to the same set of inputs and, in particular,

to apply mutation testing by comparing an FSM and its mutants.

3.2 Test Suite Package

Having already implemented FSMs and their ability to receive inputs and generate outputs,

the next step was to implement tests as an object we could work with, instead of treating

them as non-connected sequences of inputs and outputs, an approach that only works if we

restrict ourselves to test that will be applied to deterministic FSMs.

3.2.1 Test.java

A test case is, at its base, a sequence of inputs which will be applied to an FSM and will

encapsulate information to decide whether the observed outputs are expected or not. At

each stage, the observed output will also guide the next step of the application of the test.

Because of this, the three attributes we initially decided to use in order to define a test

were two ArrayLists of Strings, one for inputs and one for outputs, and the FSM in which

the test would be run unless specified otherwise. While this allowed for mutation testing

with deterministic FSMs it would prove unable to properly function with non-deterministic

FSMs. The impact the addition of non-deterministic functionality to the tool had on test

implementation will be covered in depth in the forthcoming Section 3.3.

Given that a user could either specify which inputs they wanted for their test case

or they could specify a set of guidelines for the system to follow and create a random

test case within them we implemented various constructors for Test. This way the system
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could generate tests by taking the input directly from the user or generate sequences of a

determined length of random inputs taken from the sequences that can be performed by

the FSM.

Most functions implemented in this class serve to access and modify the various elements

of the test case and to present its data in a more readable manner. The two exceptions

being the runTest and the runTestMachined functions, which apply the sequence of inputs

from the test to its machine in the case of the former, or another specified FSM in case of

the latter, and obtain the sequence of outputs generated by the transitions of the FSM.

With test cases implemented and able to be run and generate the sequences of outputs

we wanted to compare we now needed a class to manage said comparisons.

3.2.2 TestComparer.java

As stated at the beginning of this document, the objective of the project was to create a

tool that would facilitate all the activities involved in the process of mutation testing from

FSMs. For this, we still had to implement a way to compare the results obtained from

applying a test to an FSM and its mutants, evaluate and present the information obtained

in an understandable and logical manner.

With this in mind, we implemented the TestComparer class. Every instance of the

class has an FSM M , the type of mutation the FSM will be subject to mutType, the

amount of mutants of the FSM we will generate numMuts, a list to store said mutants

mutList, a list of the tests that we will run on the FSM and its mutants testList and an

ArrayList of ArrayLists of integer numbers which acts as a matrix to store the information

obtained when running the tests on the FSMs compMatrix. When constructing an instance

of TestComparer we take as inputs the initial FSM, the type and number of mutants that

will be generated and the probability for each input to trigger a transition for the new state

generated in case the mutants are generated by creating a new state and not by altering

an already existing one. With these attributes set, we create the mutants and store them

in mutList. A function addTest was implemented to add tests which we will later apply to

the FSM and its mutants.

In order to apply mutation testing we implemented two main functions. The first func-

tion, compare, takes two FSMs and a test as input and applies the test to both machines

obtaining the outputs generated by each of them. As a following step, it compares the

sequences of outputs generated and returns how many inputs it took for the FSMs to gen-

erate a different output or 0 if no different output was generated. This allows us to not

only know if a test kills the mutant but also tells us how many inputs it had to go through

in order to do so. This serves to see which tests are more efficient at killing the mutants.

The second function, runAll, iterates through all the test cases in testList and through the

mutants in mutList, calling the compare function on each iteration using as arguments the
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initial FSM, the mutant and the test. This way we obtain for each test the comparison of

applying it to the initial FSM and to each of the mutants, generating a list of the numbers

returned by the compare function. After iterating through all the tests, we obtain a matrix

where each row represents a test and each column represents a mutant, so that the value

in the position [i, j] of the matrix is the amount of inputs it took for test i to kill mutant

j, or 0 if mutant j is alive. This first implementation of mutation testing can be found in

Appendix A.4.

3.3 Adaptation of tests for non-determinism

The addition of non-determinism to FSMs meant that new functions and classes needed to

be implemented in the system. This was no different in the case of tests. An FSM could

now generate more than one output when receiving a single input. This meant that our

implementation of tests was not valid to cope with non-determinism and neither was our

implementation of TestComparer. Before going over how we implemented non-determinism,

we will first describe a class that we had to implement for it to happen.

3.3.1 Tree.java

In order to adapt tests to the situation where FSMs may have more than one transition

for each input, we have to consider that each input needs to take into account a list of

outputs instead of only one output. This also means that we cannot precisely know at

which state the FSM is after a sequence of inputs: we will have to manage a list of states

at which it can be. The easiest way to track this, and to allow for the implementations

of non-determinism to work, is the use of a tree structure. The core functions of Tree

explained in this section will be found in Appendix A.5. Each Tree instance has an integer

state univocally identifying a state of the FSM, a string input which determines the input

of the transition that had state as its destination state, and a list of more instances of Tree,

which are the children of the initial Tree hijos paired with the outputs obtained when going

to each of them through their corresponding transitions.

In order to generate the children of an instance of Tree, we take an FSM and an input

as arguments and through the use of the function setStatesI, introduced in Section 3.1.4, we

generate a set of pairs of the destination states and corresponding outputs of the transitions

that have as origin state the attribute state of our tree and as input the input received as an

argument. Iterating through this set, we can generate the children of our tree by creating

pairs, taking each of the destination states in the set returned by setStatesI and the input

taken as an argument and adding them to hijos together with the outputs returned by

setStatesI.



20 CHAPTER 3. DEVELOPMENT OF THE SYSTEM

To apply mutation testing we have to obtain the outputs of a test. For this we imple-

mented the outputs function. This function recursively goes down the tree obtaining the

possible outputs generated for each input and accessing the information stored in each of

the instances of Tree. Finally, it returns an ArrayList of ArrayLists of outputs where the

nth ArrayList of outputs represents the set of outputs corresponding to the nth input of

the test.

With this structure, and its functions, we can now apply a sequence of inputs to non-

deterministic FSMs and construct the different branches the execution can take. This

approach allows us to store the list of various possible outputs after each input and compare

them between different FSMs.

3.3.2 NonDeterministicTest.java

The implementation of NonDeterministicTest ended up being mostly identical to its cor-

responding implementation of Test. One of the main differences was the outputs being an

ArrayList of ArrayLists of strings instead of an ArrayList of strings, since processing the

response to an input might now involve various outputs and therefore we had to have a list

of outputs for each corresponding input. The other one was the function runTest. Due to

non-determinism, we could no longer just apply the first input of the test to the starting

state of the FSM and obtain a second state to which to apply the second input and by re-

peating this process applying all the inputs of the test case obtaining all the corresponding

outputs. We now have to take into account all the possible transitions given an input. In

order to implement this idea, we used the the Tree structure introduced in the previous

section. Thus, we are able to construct the tree representing the different branches of the

execution and to obtain the corresponding list of sets of outputs that must be considered

in the test.

3.3.3 NonDeterministicTestComparer.java

Similarly to NonDeterministicTest, NonDeterministicTestComparer was not changed much

from its deterministic version. Its attributes stayed the same except for changing the list

of tests to a list of non-deterministic tests. The most important difference was the manner

in which we compared the results obtained when applying a test to the initial FSM and

to one of its mutants. Now each mutant of the FSM and the FMS itself generated a list

of outputs for each input of the test. We can say that a mutant mu exhibited a different

behaviour from the FSM M if any of the lists of outputs mu generated is not generated by

M . In other words, a mutant is now killed if it generates a list of outputs not generated

by the initial FSM. As lists can store different instances of the same output we can observe

differences in both the content and the size of the lists. This is useful in case a mutation
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of the FSM would make it so after a sequence of inputs the mutant could end in a state

with no transition for the upcoming input. In this case no transition would happen for that

specific branch of the mutant execution and in consequence no output would be generated

either. This leads to the list of outputs generated for the input to have one less output

which lets the system know there was a difference in the outputs generated by the mutant

and the FSM.

Representation of the effectiveness of each test at killing mutants was also modified to

where now the values of the comparison matrix are either 1 if the mutant is killed by the

test or 0 if not.

These changes to the implementation due to the addition of non-determinism can be

found in Appendix A.6 and Appendix A.7.

3.4 Visual Interface Package

The interface had to give the user the ability to provide the system with different amounts

of information and ask the system to generate results, following a set of guidelines set by the

user. In order to achieve this goal and to avoid visual clutter, we decided to separate the dif-

ferent functionalities in three different screens: FirstScreen, CreateManualAutomatonScreen

and TestingScreen.

First, we needed a class to include and manage said screens. We implemented the Con-

tainer class. Its attributes are the three screens that we previously mentioned, FirstScreen

fs, CreateManualAutomatonScreen cma and TestingScreen ts, and the MealyMachine mm

and NonDeterministicTestComparer tc that will carry on the functionalities of the system

explained in previous sections.

3.4.1 FirstScreen.java

FirstScreen is the first screen the users see when using our system. It allows them to set the

number of states of the FSM, the approximate amount of transitions the FSM will have and

both the input and output alphabets. Once these values are set, the user can either let the

system randomly generate the transitions of the FSM or be taken to a second screen and

manually construct them. These two options can be chosen by pressing the buttons Create

Random automaton and Create Manual automaton, respectively. Once the FSM is created,

it will be represented in text form in the Dot Automata text section. The Begin test button

will take the user to a new screen where they can construct and set the parameters for the

mutants and the test suite.

We implemented the AlphList class to receive the information provided by the user

regarding the input and output alphabets and transform it into a format that the system

can work with. In this class we also take into account that we have to process two alphabets
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Figure 3.1: FirstScreen

and were particularly careful to avoid unnecessary and redundant code. This decision lets

us to store either the input or output alphabet into a list of strings, the format in which

the rest of the system interprets both alphabets, and return it to other functions.

3.4.2 CreateManualAutomaton.java

As mentioned in Section 3.4.1, once the user has set the values for the input and output

alphabets, they can choose to manually introduce the transitions of the FSM by pressing

the Create Manual automaton button and being taken to the corresponding screen.

A transition has four parameters that the user can give value to: origin state, destina-

tion state, input that triggers the transition and output generated by the transition. The

CreateManualAutomaton screen had to give the user the ability to set these values, see

what transitions had been generated and delete generated ones in case a mistake was made.

Once all transitions are available, the user can press a button to generate the FSM.
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Figure 3.2: CreateManualAutomaton

The Add button will check the values provided for these four parameters and add a

transition made of said values. Remove will remove the selected transition from the list

or do nothing if no transition is selected. Generate automaton creates an FSM using as

information the data input in the previous FirstScreen screen and the transitions created

in this one. After that, through the Container class, it will return to FirstScreen with the

created FSM represented in the Dot automata section.

3.4.3 TestingScreen.java

TestingScreen (see Figure 3.3) allows the user to provide the necessary data to construct

the mutants of the FSM and the test suite that will be applied to the system and compare

the efficiency of different tests applied to the various mutants of the FSM.

In the top part of this screen, users can choose with which mutants they want to work.

We give them the option to choose the type of mutation and the amount of mutants. In
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Figure 3.3: TestScreen

addition, we added a checkbox to give them the opportunity of generating all the mutants

of a certain type. If this option is marked, then the tool will ignore the indicated amount

of mutants as to avoid the generation of duplicated mutants. If the user selects to generate

mutants of type 2, then we ignore this checkbox because of the high cost in memory and

time of generating all the mutants of this type.

We decided, during development, that having the user to create each test case by adding

each of the inputs, one by one and choosing them from the possible inputs of the alphabet,

would be slow and tedious. In order to prevent this undesirable situation, we give the user

the ability to write the test case as a list of inputs separated by a space, in the Write

input text box, and to add them to the test suite via the Add test button. While this can

lead to input errors, we trust the user will use the Remove test button to remove any test

mistakenly constructed. The user can also click the Add random test button and a new

screen will appear and prompt them to choose the length of the test and the amount to be
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generated.

(a) Add random test (b) Add all tests of length K

Clicking on the Add all tests of lon k button will create a new screen equal to the one

generated through the Add random test button but with a different functionality. As the

name of the button indicates, this screen allows the user to choose an integer number. Then,

all possible combinations of inputs of the specified length that the machine can process will

be added to the tests. This means that no sequence of inputs the FSM cannot follow will be

generated and added to the tests. For this feature, we implemented TreeAux.java, a class

very similar to the Tree class shown in Section 3.3. Let us emphasize that users have to be

careful with the use of this function, because the time it takes to generate all the inputs

can be very high if the ramification factor of each state is large enough.

Let us note that our tool also lets the user to select mutants from files, whose format

will be specified later on. This is an important feature in order to reuse mutants generated

either by other researchers or by previous uses of our tool.

Lastly, when the Compare button is clicked, we create an instance of the NonDester-

ministicTestComparer class with the data that the user has provided in this screen. After

that, the NonDeterministicTestComparer generates the specified amount of mutants of the

FSM, runs all the test cases on the FSM generating the corresponding outputs to then run

them on the mutants and returning the comparison matrix. Once the comparison has been

done, we can see the comparison matrix and if we double click on any of the test cases we

can see its corresponding list of sets of outputs.

We have included a feature to show the mutation score of each test case next to them.

We also show another column including information about the most resilient mutants, that

is, those mutants that survive the application of the largest amount of tests.

Finally, in order to let researchers share their results on an specific machine, we added

the possibility of saving and loading inputs and mutant files. This is done by clicking in the

menu bar of the upper left corner and selecting the appropriate option. Next, we briefly

explain the format of these files.
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• Input files. Each string of inputs in a line separated by a space.

• Mutant files. We have two different formats, depending of the type of applied muta-

tion. For mutations of type 0 and 1, each mutant is in a line containing the type of

mutation, the origin of the transition that will be mutated, its destination state and

the value we are changing. This last value is the new output, in the case of mutation

of type 0, and the new destination state for mutations of type 1. Besides, for mutants

of type 2, the file will contain the .dot of each mutant separated by the string ###

in a different line.

Figure 3.5: Comparison matrix and corresponding outputs
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Experiments

In this chapter we will show different results obtained through usage of our tool. We will

consider different use cases representing the most typical applications of our tool.

4.1 Use case 1

In this example we will manually create the FSM shown in Figure 2.1, create 10 mutants

mutating a random output, and 8 random tests of varying lengths.

First, we introduce the input and output alphabets and set the number of states. The

percentage of transitions is not relevant in this case since we are going to be inputting

the transitions manually. We remind the reader that states are always treated as integer

numbers that start at 0 and count up, state 0 being the starting state (see Figure 4.1).

Figure 4.1: FirstScreen after alphabets are introduced

After this has been done, we click on the CreateManualAutomaton button and proceed

27
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to create the transitions. Because of the number of states and alphabets input in the

previous screen, our options when creating the transitions are limited to states 0, 1, and 2,

inputs to i1 and i2, and outputs to o1, o2 and o3. This way we cannot introduce transitions

that are not possible in our FSM (see Figure 4.2).

Figure 4.2: Transitions introduced in CreateManualAutomaton screen

Clicking the Generate automaton button will take us to the previous screen with our

FSM in text form in the Dot automata text box (see Figure 4.3).

Figure 4.3: FirstScreen after the transitions have been created

With the FSM completely created we only have to create the test suite before we run

the test cases on the FSM and its mutants to obtain the comparison matrix. For that,

we click on the Begin test button, and in TestScreen we choose the number and type of
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mutants and create 2 random tests for each length 6, 7, 8 and 9. After that, we apply the

tests and obtain the comparison matrix.

Figure 4.4: TestScreen after creating the test suite and running the tests

As was said in Sections 3.2.2 and 3.3.3, each column represents one of the mutants, each

row a test case from the test suite, and the number represents whether the mutant was

killed or not, with 0 indicating the latter and 1 the former (see Figure 4.4).

4.2 Use case 2

We will create a random FSM with 3 states, a 70% of transitions, 4 possible inputs and 3

possible outputs (see Figure 4.5). We can see the FSM both in text (see Figure 4.6) and

diagram form (see Figure 4.7).

We create 10 mutants and follow the same process to create the test suite as we did in

the previous use case, but instead of mutating the outputs, we will mutate the destination

states. The final result can be seen in Figure 4.8. We can see that no mutants were killed.

This makes sense as not many tests started with 1 as an input, which is the only input

accepted by the FSM on its starting state. We can also see that only the tests starting

with 1 were able to generate outputs when applied to the initial FSM (see Figure 4.9).

4.3 Use case 3

We will now use a modified version of the FSM that we used in our first use case (see

Figure 4.10), generate all possible tests of length 9 and create 10 mutants of type 2 with a
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Figure 4.5: Creating a random FSM with given alphabets and states

Figure 4.6: FSM Randomly generated as text

Figure 4.7: FSM Randomly generated as diagram

value of 0.7 for the percentage of transitions. As said in Section 3.1.1, this type of mutant

will have an extra state and its corresponding transitions will be created.

We first set the input and output alphabets and manually create the transitions of the

FSM (see Figure 4.11).

With the FSM created, we set the number and type of mutants and use the Add all

tests of lon k button to add all possible sequences of inputs of length 9 that our FSM can

process (see Figure 4.12).

Finally, we apply mutation testing and obtain the comparison matrix where we can see
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Figure 4.8: TestSuite and comparison matrix

Figure 4.9: Outputs generated by FSM when applied inputs from test case

in Figure 4.13, looking only at the results obtained for the first 8 tests, that all mutants

were killed.

4.4 Use case 4

Now we are going to work with a real system: the coffeemachine from a well-known and

recent benchmark [5]. Note that out tool includes, by default most of the FSMs belonging

to the benchmark. In order to import that machine, we click on File in FirsScreen and
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Figure 4.10: FSM that we will manually generate

Figure 4.11: Transitions introduced in CreateManualAutomaton screen

select the desired implementation (see Figure 4.14).

Our goal will be to find test cases that kill the most resilient mutants. In order to carry

out this task, we first generate all mutants of the first type. After that we generate all

inputs of length 5 and compare them. We proceed to save the 20 most resilient mutants

(see Figure 4.15).

Now, we add this set of mutants to the benchmark and uncheck the option of generating

all mutants. Finally we proceed to compare the same tests with this subset of the mutants

and save the the best 20 test cases (see Figure 4.16). We can see that neither a mutant

survives all tests nor a test case kills these subsets of resilient mutants. We could find one

better test if we explore the machine at a higher depth, with larger inputs.
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Figure 4.12: TestScreen after all tests of length 9 have been created

Figure 4.13: TestSuite and comparison matrix

4.5 Use case 5

We will work again with a machine of the benchmark. In this case we will choose the

machine m106 of the ASML benchmark. This is a specially large machine, with 25 states

and more than 1000 transitions. In this case, our goal will be to find test cases that kill

different mutants. In order to do this task we would need large inputs, so we cannot generate

all the inputs of a fixed length because this function takes a lot of time if the ramification

factor of each state is high enough, which is the case for this machine.
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Figure 4.14: Loading the coffeemachine implementation

Figure 4.15: Saving the most resilient mutants

We will start, as in the previous example, importing the implementation. As we have

already said, given the fact that the machine has a lot of states, we will certainly need large

inputs in order to kill some mutants. but we will not be able to generate all the inputs of

a certain long length. We will generate 1000 random input sequences of length 50, apply

them to 100 mutants of the second type and compare the tests.

The obtained result is not very good, as can be seen in Figure 4.17. Our best test

does not kill an important amount of mutants. Actually there are a lot of mutants that

survive all tests. In order to improve this situation, we could apply to the subset of alive
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Figure 4.16: Results of the second comparison

Figure 4.17: Results of the experiment

mutants this procedure again, generating other random tests and saving the ones that kill

most mutants. Iterating this process we can get a set of tests that eventually will kill the

initial set of mutants.
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Chapter 5

Contributions

In this chapter we indicate the specific contributions of each author to the project.

5.1 Contribution of Jose Maŕıa

The first thing I did was reading the papers we were given by our tutor in our first meeting.

After that, we decided to use Java as there were tools developed in this language that could

be useful or serve as inspiration. Then I started creating the model we would use in order to

simulate a MealyMachine. This includes the clases MealyMachine, Transition and State.

The first version of the model was restricted because the user could only introduce integers

as inputs and outputs. Therefore, changes were made in order to make it be able to use

any string. This was made with use of the class Translator, which we used in order to map

the old integers to new strings. We needed to keep the integers because they allowed us to

access a random element in constant time.

After the model was finished, I started developing the structures of the tests based on

the ideas our tutor gave us and the rsults presented in [12]. I started implementing the most

simple tests, which were the ones using an input and an implementation using the latter as

an oracle to generate the outputs. Then, with the help of Juan, I created the structure of

the testing tool. This includes the way we would generate mutants, how we would compare

them to the initial FSM and the way we would create the matrix used to see if a mutant

was killed or not.

The next task was implementing the GUI. This was done using javafx. In order to use

this technology, I had to install some packages in eclipse. I decided that I would divide the

interface in 3 parts:

• The main screen.

• The Mealy Machine editor.
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• The testing tool.

After this, we were told by our tutor that we could expand the tool in order to let the

user work with non-deterministic FSMs. Fortunately, not a lot of changes were needed. We

just needed to take into account that an input would not only generate a single output, but

a set of them. So, I had to group them into an Array and work with it.

Another thing we needed to take into account was the way we compared the application

of tests because now we were not comparing 2 single elements, but 2 sets of outputs. So,

it was not so easy to give a non-binary value to a test result. After talking with our tutor,

we decided to give a binary number as a result; 1 if the mutant is killed by the test or 0

otherwise.

We also implemented the suggestion of testing with all the inputs of a fixed length,

which was done by an BFS (Breadth First Search) of the machine.

In our next meeting our tutor told us to add the Mealy Machines from a well-known

benchmark [5] to the distribution of the tool. So, I added them to the system. I also added

to the interface all the buttons dealing with saving and loading mutants and inputs, and

getting statistics about them such as the mutant score for each test case and the resilience

of the mutants.

I contributed to the writing and proof-reading of this document. In particular, I wrote

the part of the document corresponding to use cases 4 and 5 and this section of the document

where I just enumerated the main tasks that I did for the project.

5.2 Contribution of Juan

The first step I took in regards to this project was reading the papers given to us by our tutor

so that I could have a better understanding of the concepts we would be using throughout

the implementation of the system.

Jose Maŕıa implemented the first working iteration of the tool, which we presented to

our tutor in one of our first meetings. Most of the functionalities were already implemented

but would be iterated upon to enhance them. This first iteration only had one alphabet

made of integer numbers, which it used both for inputs and outputs.

I changed the implementation to allow for two separate input and output alphabets

made of strings with the goal of giving the user more freedom in their usage of the tool. For

this, I implemented both alphabets as HashMaps. This choice would allow us to map the

strings that the user wanted to use for their alphabets to unique integer numbers. Thus,

there was no need to change how the system dealt with inputs and outputs beyond changing

how it accessed alphabets because it could still treat them as unique integers and only use

their string representation when receiving information or when outputting information from

and to the user.
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This proved to have some problems as in different moments we wanted to access the

key of the HashMap or its value with operations unique to only one of them. In order

to tackle this problem, we implemented the Translator class which kept and managed two

HashMaps for each alphabet. This let us access both the integers and the strings with all

the operations available to HashMaps. However, this was not the most practical solution

and Jose Maŕıa changed the alphabet implementation to a list of strings and changed how

the system worked with inputs and outputs to accommodate for this change.

The other main drawback of the first implementation of our system was its handling of

the comparison of tests. The utilities in the TestComparer class where initially divided into

two separate classes: TestComparer and TestTester. TestTester called for the creation of

the mutants of the FSM and applied a test to the mutants and the FSM storing the obtained

results. TestComparer would then compare the results obtained by each TestTester, one

for each test case.

The main cause of this problem was that each instance of TestTester only managed

one of the test cases. This meant that the mutants created for the application of one test

were not guaranteed to be the same mutants to which we applied any other test. As a

fix, I merged both classes into TestComparer, changing its list of instances of TestTester to

a list of test cases and a list of mutants of the FSM. This allowed for consistency in the

mutants to which all the test cases were applied and for a faithful representation of the

information obtained through mutation testing in the form of a comparison matrix where

each row corresponds to one of the test cases and each column corresponds to one of the

mutants of the FSM.

Jose Maŕıa implemented the rest of new and important functionalities such as non-

determinism and the necessary changes to the system in order to handle it and the multiple

modifications and additions to the interface. I helped on some small problems and increased

the readability of the code.

Lastly I was the main editor of this document, with the collaboration of Jose Maŕıa and

with great help and guidance from our tutor.
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Chapter 6

Conclusions and future work

We have developed a tool that allows users to apply all the steps involved in the process of

mutation testing ranging from the creation of the finite state machines and its mutants to

the creation and application of the test suites. We first looked at the Automata Wiki1 for

a text format to represent the FSMs the system would be working with. Our second step

was the decision to separate the classes of the system into three main packages that would

permit us to work with the machines, the test cases we would be applying to the machines

and the interface for users to use the tool in a more organized and self contained manner.

Following the division of the code into its main packages we divided the structure of the

finite state machines further down into its core components. This allowed the system to

more easily modify an aspect of a finite state machine without compromising the integrity of

the rest of the FSM. This meant dividing a machine into its states and transitions with each

state having a list of the transitions of which it is the origin state. To further take advantage

of this division, we implemented the process of an FSM receiving inputs and carrying out

the corresponding transitions at the lowest level possible through the State and Transition

objects. This ability to only modify an aspect of the FSM while maintaining its functionality

let us implement the necessary functions to create mutants of the FSM.

During development, the scope of the system was increased to also offer the ability to

manage non-determinism. While the tool was successful so far, its implementation proved

working with non-determinism to be cumbersome. This led us to implement two more

complex classes in TransitionFunction and TreeAux to control the transitions of each state.

Extensive work has been done in regards to test cases in the scope of FSMs [14]. Test

cases were initially implemented as a list of inputs, a list of outputs and the finite state

machine that would generate said outputs when receiving the list of inputs. In order to

compare the outputs generated when applying the same inputs to two different FSMs,

and present the information obtained in an easily understandable manner, we implemented

1https://automata.cs.ru.nl/
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the TestComparer class. In the same way as it happened with our implementation of the

FSMs, the addition of the non-deterministic functionality to the system meant that new

classes needed to be implemented to adjust for non-determinism. We added a new type of

test NonDeterministicTest, which instead of having a list of outputs had a list of lists of

outputs. This change, together with the addition of the Tree class, allowed us to manage

tests being applied to non-deterministic FSMs.

Lastly, for our tool to be of practical use, we implemented an understandable and easy

to use interface. This gave the user the ability to input into the system varying amounts

of information regarding the FSMs, the mutants and the test cases and have the system

create the rest of the information following a set of guidelines. Throughout development of

the system the interface was tweaked to allow for a better user experience. We repeatedly

tested the tool to examine its usability and effectiveness.

The final system developed as the result of this project, and presented in this document,

already includes features that were not initially planned. However, during its development

we have identified several extensions that could further improve the tool. First, it would

be interesting to consider other textual formats to represent FSMs. The integration of a

graphical interface could facilitate the definition of FSMs. However, our experience with this

type of interfaces showed that this is only useful for very small FSMs. Although completely

out of the scope of this project, our system could be extended with other type of formalisms

based on FSMs. For example, it would be interesting to consider FSMs with time and/or

probabilistic information [14, 15].
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Appendix A

Implementation of core functions

A.1 Mutation functions

public void mutateOutput(){

Random r=new Random();

int randomInt1=r.nextInt(this.stateList.size());

while(this.stateList.get(randomInt1).getSize()==0) {

randomInt1=r.nextInt(this.stateList.size());

}

int randomInt2=r.nextInt(this.stateList.get(randomInt1).getSize());

int randomInt3=r.nextInt(this.outAlphabetSize);

this.stateList.get(randomInt1).getTransition(randomInt2).

setOutput(this.outAlph.get(randomInt3));

}

public void mutateDestiny(){

int randomInt1=r.nextInt(this.stateList.size());

while(this.stateList.get(randomInt1).getSize()==0) {

randomInt1=r.nextInt(this.stateList.size());

}

int randomInt2=r.nextInt(this.stateList.get(randomInt1).getSize());

int randomInt3=r.nextInt(this.stateList.size());

this.stateList.get(randomInt1).getTransition(randomInt2).setDest(randomInt3);

}

public void mutateSpecial1(double prob) {

int i=this.getNumStates();

Integer estadoComunicador=r.nextInt(this.getNumStates());

this.stateList.add(new State(Integer.toString(i)));

this.stateList.get(estadoComunicador).addTransition(

new Transition(estadoComunicador,i,
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this.inAlph.get(r.nextInt(this.getInAlphSize())),

this.outAlph.get(r.nextInt(this.getOutAlphSize()))));

double caso;

for(int j=0;j<this.inAlphabetSize;j++) {

caso=r.nextDouble();

if(caso<=prob) {

this.stateList.get(i).addTransition(new Transition(

i,r.nextInt(i+1), this.inAlph.get(r.nextInt(this.inAlphabetSize)),

this.outAlph.get(r.nextInt(this.outAlphabetSize))));

}

}

}

A.2 TreeAux attributes and children generation

public class TreeAux {

private String inp;

private Integer state;

private ArrayList<TreeAux> hijos;

public TreeAux(String a, Integer b) {

this.inp=a;

this.state=b;

hijos=new ArrayList<TreeAux>();

}

public void addChilds(MealyMachine m) {

//HashSet of pairs of <destination states, input>

//with the accepted inputs from this state

HashSet<Pair<Integer, String>> aux=m.acceptedInputs(state);

Iterator<Pair<Integer, String>> it=aux.iterator();

Pair<Integer, String> act;

while(it.hasNext()) {

act=it.next();

hijos.add(new TreeAux(

act.getValue(),act.getKey()

));

}

}
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A.3 setStatesI implementation

public HashSet<Pair<Integer,String>> setStatesI(String input) {

HashSet<Pair<Integer,String>> ret=new HashSet<Pair<Integer,String>>();

if(this.contains(input)) {

Transition caso;

for(int j=0;j<this.mapa.get(input).size();j++) {

caso=this.mapa.get(input).get(j);

ret.add(new Pair<Integer, String>(caso.getDest(),caso.getOutput()));

}

}

return ret;

}

A.4 First implementation of mutation testing applied to de-

terministic FSMs

public void runAll(){

for(int i = 0; i < testList.size(); i++) {

ArrayList<Integer> tempComps = new ArrayList<Integer>();

testList.get(i).runTest();

for(int j = 0; j < mutList.size(); j++) {

tempComps.add(compare(testList.get(i), this.m, mutList.get(j)));

}

compMatrix.add(tempComps);

}

}

public Integer compare(Test t, MealyMachine m1, MealyMachine mutation){

ArrayList<String> m1Out = t.runTestMachined(m1);

ArrayList<String> mutOut = t.runTestMachined(mutation);

for(int i = 0; i< m1Out.size() && i < mutOut.size(); i++) {

if(!m1Out.get(i).equals(mutOut.get(i))) {

return i + 1;

}

}

return 0;

}
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A.5 Core functions of Tree.java

public void generateChilds(MealyMachine m, String i) {

this.input=i;

HashSet<Pair<Integer,String>> aux=m.setStatesI(state, input);

Iterator<Pair<Integer,String>> it = aux.iterator();

Tree caso;

hijos=new ArrayList<Pair<Tree,String>>();

while(it.hasNext()) {

Pair<Integer,String> act=it.next();

caso=new Tree(act.getKey(),i);

hijos.add(new Pair<Tree, String>((Tree) caso.clone(),act.getValue()));

}

}

public ArrayList<ArrayList<String>> outputs() {

ArrayList<String> outs=new ArrayList<String>();

ArrayList<ArrayList<String>> ret=new ArrayList<ArrayList<String>>();

ArrayList<ArrayList<String>> aux=new ArrayList<ArrayList<String>>();

if(hijos==null || hijos.size()<=0)return ret;

for(int i=0;i<hijos.size();i++) {

outs.add(hijos.get(i).getValue());

}

for(int i=0;i<hijos.size();i++) {

aux=hijos.get(i).getKey().outputs();

for(int j=0;j<aux.size();j++) {

aux.get(j).add(0, hijos.get(i).getValue());

}

if(aux.size()<=0) {

ArrayList<String> soloUno=new ArrayList<String>();

soloUno.add(hijos.get(i).getValue());

aux.add(soloUno);

}

ret.addAll(aux);

}

if(ret.size()==0) {

for(int i=0;i<outs.size();i++) {

ret.add(new ArrayList<String>());

ret.get(i).add(outs.get(i));

}

}

return ret;

}
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A.6 NonDeterministicTest.java

public ArrayList<ArrayList<String>> runTest(MealyMachine m) {

Tree trace=new Tree(0);

LinkedList<Tree> cola=new LinkedList<Tree>();

LinkedList<Tree> cola2=new LinkedList<Tree>();

cola.push(trace);

Tree caso;

int i=0;

while(!cola.isEmpty() && i<inputs.size()) {

while(!cola.isEmpty()) {

caso=cola.pop();

caso.generateChilds(m, inputs.get(i));

for(int j=0;j<caso.getNumChilds();j++) {

cola2.push(caso.getChildTrees().get(j));

}

}

cola=cola2;

cola2=new LinkedList<Tree>();

i++;

}

outputs=trace.outputs();

return outputs;

}

A.7 NonDeterministicTestComparer.java

public void runAll(){

for(int i = 0; i < testList.size(); i++) {

ArrayList<Integer> tempComps = new ArrayList<Integer>();

for(int j = 0; j < mutList.size(); j++) {

tempComps.add(compare(testList.get(i), mutList.get(j)));

}

compMatrix.add(tempComps);

}

}

public Integer compare(NonDeterministicTest t, MealyMachine mutation){

ArrayList<ArrayList<String>> outs = t.getOutputs();

ArrayList<ArrayList<String>> outs2 = mutation.generateOutputs(t.getInputs());
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for(int i=0;i<outs2.size();i++) {

if(!outs.contains(outs2.get(i)))return 1;

}

return 0;

}
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