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Mode mapping in paraxial lossless optics
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A Collins transformation maps an orthonormal set of Hermite–Gaussian modes into an orthonormal set of
beams with a Gaussian envelope. Among these beams are Laguerre–Gaussian beams and the recently in-
troduced Hermite–Laguerre–Gaussian beams. Compact expressions for the complex field amplitudes of
these modes are derived. The results obtained are useful for description of the propagation of light through
first-order optical systems, for the solution of the phase-retrieval problem by noninterferometric techniques,
and for the design of mode converters and information processing systems. © 2005 Optical Society of
America
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Paraxial optical systems are actively used for infor-
mation processing, for phase retrieval, and for trans-
formation and characterization of optical beams. In
particular, the generation of vortex beams attracts
much interest of the scientific community because of
the possible applications of these beams in micro-
object manipulation, communication, etc. New fami-
lies of Gaussian beams1,2 that are closely related to
Hermite–Gaussian (HG) and Laguerre-Gaussian
(LG) beams and new schemes for laser mode convert-
ers, such as fractional Fourier-transform (FT) p /2
converters,3 have recently been proposed. Here we
define a general class of Gaussian beams, ABCD HG
modes, obtained from the HG or LG modes after
propagation through a first-order optical system de-
scribed by a Collins integral.4

A lossless paraxial system (or first-order optical
ABCD system with real matrices ABCD) is de-
scribed by its symplectic ray transformation matrix.
T,5 which relates position ri= sxi ,yidt and direction
qi= sui ,vidt of an incoming ray to position ro= sxo ,yodt

and direction qo= suo ,vodt of the outgoing ray:

Sro

qo
D = FA B

C DGSri

qi
D = TSri

qi
D; s1d

as usual, the superscript t denotes transposition. The
symplecticity of the ABCD matrix yields

ABt = BAt, CDt = DCt, ADt − BCt = I.

s2d

Any symplectic matrix is associated with two integral
transforms, which differ by +/− some number; see
Ref. 6, Sec. 9. Under the assumption that B is a non-
singular matrix, we can describe the action of a first-
order optical system on complex field amplitude fisrid

4
at its input by the Collins integral
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fosrod =
expsifd

Îdet iB
E E fisridexpfipsri

tB−1Ari − 2ri
tB−1ro

+ ro
tDB−1rodgdri, s3d

where the square root Îdet iB is chosen such that its
argument is in the region fp /2 ;pg. Constant phase
factor expsifd, with which we can cope, if necessary,
with the optical path length and the metaplectic sign
problem, is rather irrelevant in the scope of this Let-
ter and is dropped in the remainder of it.

There are two sets of orthonormal modes that are
widely used in optics: HG and LG modes. An arbi-
trary square integrable two-dimensional function,
representing, for example, complex field amplitude
fsrd, can be written as a linear superposition of HG or
LG modes. The orthonormal HG mode is given by

Hn,msr;wx,wyd = Hnsx;wxdHmsy;wyd, s4d

with

Hnsx;wd = 21/4s2nn!wd−1/2HnsÎ2px/wdexps− px2/w2d,

s5d

where Hns d denotes Hermite polynomials.7 The or-
thonormal form for the LG mode8 is

Ln,msr,wd = 21/2w−1fsminhn,mjd!/smaxhn,mjd!g1/2

3sÎ2pr/wdun−mu expfisn − mdwg

3Lminhn,mj
sun−muds2pr2/w2dexpf− pr2/w2g,

s6d

where x=r cos w and y=r sin w and where Ln
sads d de-

notes the generalized Laguerre polynomial.7

There are several first-order optical systems that
are special with respect to the HG and LG modes.
One of them is the separable fractional FT system,

6
described by its ray transformation matrix TfFT:
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cos gx 0 wx

2 sin gx 0

0 cos gy 0 wy
2 sin gy

− wx
−2 sin gx 0 cos gx 0

0 − wy
−2 sin gy 0 cos gy

4 ,

s7d

for which the HG and LG modes are eigenfunctions of
the corresponding Collins transformation. Note that,
for the (rotationally symmetric) LG modes, the frac-
tional Fourier transformer should be isotropic: wx
=wy=w and gx=gy=g.

Other first-order optical systems—mode
converters—transform, for instance, HG modes into
LG modes and vice versa. To treat systems that con-
vert HG modes Hn,msr ;wx ,wyd into other modes, we
introduce normalized and dimensionless ray trans-
formation submatrices a, b, c, and d as

Fa b

c dG = FWo
−1AWi Wo

−1BWi
−1

WoCWi WoDWi
−1 G , s8d

with

Wi = Fwx 0

0 wy
G , s9d

where wx and wy are the widths of the HG mode at
the system’s input, and with Wo a similar diagonal
matrix, appropriately chosen, at its output. Several
HG-to-LG mode converters1,3,8,9 have been proposed;
we mention

a1 = d1 =
1

Î2
F0 1

1 0G, b1 = − c1 =
1

Î2
F1 0

0 1G ,

a2 = d2 =
1

Î2
F1 0

0 1G, b2 = − c2 =
1

Î2
F 0 − 1

− 1 0 G .

Case 1 is described in Ref. 1, Eq. (6), with a=p /4;
case 2 is described in Ref. 8, Eq. (14), with f=p /4.
The two systems are related by a Fourier transforma-
tion. The LG beams at the output of these systems
differ from one another only by a constant phase fac-
tor. The inverses of these operations perform a LG-
to-HG transformation.

Our goal is to find the expression for the beams at
the output of an ABCD system starting from the or-
thonormal HG modes. Note that one could also start
from the set of LG modes and obtain the same class
of beams, based on the additivity of first-order sys-
tems and knowledge of the LG–HG converter matrix.
We use the following notation: for a HG input beam
Hn,msr ;wx ,wyd [Eqs. (4) and (5)] we get the ABCD
HG beam Hn,m

ABCDsr ;wx ,wyd at the output of an
ABCD system after applying Collins integral Eq. (3).

Let us now derive the expression for the complex
field amplitude of the beam Hn,m

ABCDsr ;wx ,wyd. Ap-
plying the Collins integral to the generating function
of the HG modes, we can find the generating function

of the ABCD HG beams:
o
n=0

`

o
m=0

`

Hn,m
ABCDsr;wx,wydS 2n+m

n!m!
D1/2

sx
nsy

m

= 21/2/fdet Wo detsa + ibdg1/2 expf− stsa + ibd−1

3sa − ibds + 2Î2pstsa + ibd−1rg

3expf− prtsd − icdsa + ibd−1rg, s10d

where s= ssx ,sydt and where we have introduced nor-
malized and dimensionless space variables r= sj ,hdt

=Wo
−1r. Subsequently we find the derivative and re-

currence relations of this generalized class of Gauss-
ian beams,9 by differentiating generating function
(10) with respect to r and s, respectively:

F ]

]j
,

]

]h
Gt

Hn,m
ABCDsrd = 2Îpsat + ibtd−1

3fÎnHn−1,m
ABCDsrd,ÎmHn,m−1

ABCDsrdgt

− 2pHn,m
ABCDsrdsd − icdsa + ibd−1fj,hgt, s11d

2Îpfj,hgtHn,m
ABCDsrd = sa + ibd

3fÎn + 1Hn+1,m
ABCDsrd,Îm + 1Hn,m+1

ABCDsrdgt

+ sa − ibdfÎnHn−1,m
ABCDsrd,ÎmHn,m−1

ABCDsrdgt.

s12d

The combination of Eqs. (11) and (12) leads to the
following relationship for the ABCD HG beams:

2Îpsn + 1dHn+1,m = PHn,m,

2Îpsm + 1dHn,m+1 = QHn,m, s13d

with the operators

P = 2psU11j + U12hd − Z11

]

]j
− Z12

]

]h
,

Q = 2psU21j + U22hd − Z21

]

]j
− Z22

]

]h
s14d

and the matrices

U = sa − ibdtfsd − icdsa + ibd−1g*, s15d

Z = sa − ibdt. s16d

Note that the operators P and Q commute because
ZUt=UZt and that we are thus led to an alternative
definition of the ABCD HG beams:

Hn,m
ABCDsrd =

PnQmH0,0
ABCDsrd

2n+mspn+mn!m!d1/2 . s17d

Based on the formula9 ee exps−pri
tPri− i2pri

tqddri

=exps−pqtP−1qd /Îdet P for the calculation of the
Collins integral for the HG fundamental mode
H0,0sr ;wx ,wyd, an explicit form for the fundamental

sn=m=0d ABCD HG mode is found:
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H0,0
ABCDsrd = 21/2/fdet Wo detsa + ibdg1/2

3expf− prtsd − icdsa + ibd−1rg.

s18d

One can easily confirm the orthonormality rela-
tionship between Hn,m

ABCDsr ;wx ,wyd and
Hl,k

ABCDsr ;wx ,wyd:

E E Hn,m
ABCDsr;wx,wydfHl,k

ABCDsr;wx,wydg*dr

= dnldmk, s19d

which is a direct consequence of the orthonormality
relationship between the HG beams Hn,msr ;wx ,wyd
and Hl,ksr ;wx ,wyd at the input of the first-order opti-
cal system and the unitarity of this system.

Note that if ray transformation matrix T com-
mutes with the ray transformation matrix TFT of a
FT system6 [cf. relation (7) with gx=gy=p /2 and wx
=wy] we have d− ic=a+ ib and therefore U=Z. In
this case the operators reduce to

P = − Z11s]/]j − 2pjd − Z12s]/]h − 2phd,

Q = − Z21s]/]j − 2pjd − Z22s]/]h − 2phd, s20d

and the ABCD HG beams reduce to the two-
dimensional HG modes considered in Ref. 2. Inas-
much as

S d

dt
− 2ptDn

exps− pt2d = expspt2dS d

dt
Dn

exps− 2pt2d,

the beams then may as well be expressed in the form

Hn,m
ABCDsrd =

21/2s− 1dn+m expfpsj2 + h2dg

2n+mfpn+mn!m! det Wo detsa + ibdg1/2

3SZ11

]

]j
+ Z12

]

]h
DnSZ21

]

]j
+ Z22

]

]h
Dm

3expf− 2psj2 + h2dg. s21d

The recently introduced Hermite–Laguerre–
Gaussian modes1 are particular examples of two-
dimensional HG modes and are therefore ABCD HG
modes. They can be obtained from HG modes by the
Collins transformation parameterized by the
matrices

a = d =
1

Î2
Fcos 2a sin 2a

sin 2a − cos 2a
G ,

b = − c =
1

Î2
F1 0

0 1G . s22d

Simple expressions of these modes, which for a
=p /4 reduce to LG modes, can be obtained from Eq.

(21). [Note that in Ref. 1 the output field amplitude
Gn,msr uad is defined with an additional rotation of the
coordinate system through angle a.]

Because HG modes are eigenfunctions of separable
fractional FT (7) with unimodular eigenvalues, any
system described by the matrix TABCDTfFT with
Hn,msr ;wx ,wyd at its input produces at its output the
beam Hn,m

ABCDsr ;wx ,wyd with an additional constant
phase shift. This fact enlarges the number of optical
configurations used to produce certain kinds of
beams, for example, HG-to-LG converters. Moreover,
as the two systems characterized by TABCD and
TABCDTfFT produce—up to the constant phase shift—
the same output Hn,m

ABCDsr ;wx ,wyd from a HG mode
at their inputs, this implies that the ABCD HG mode
is an eigenfunction of the Collins transform corre-
sponding to the matrix T=TABCDTfFTTABCD

−1.
We can also use the orthonormality of the ABCD

HG modes to describe the evolution of an arbitrary
complex field during its propagation through a first-
order optical system. Because the HG modes form a
complete set, any function fisrd can be decomposed as

fisrd = o
m

o
n

qnmHn,msr;wx,wyd, s23d

qnm =E E fHn,msr;wx,wydg*fisrd dr. s24d

Every HG mode Hn,msr ;wx ,wyd maps into the
Hn,m

ABCDsr ;wx ,wyd mode at the output of the ABCD
system. Then we can write the expression for the
complex field amplitude in the output plane in the
form

fosrd = o
m

o
n

qnmHn,m
ABCDsr;wx,wyd. s25d

This is a generalization of the expression used for the
propagation through a fractional FT system to the
case of a general ABCD system. The mapping of or-
thonormal modes can be used for phase recovery
from intensity distribution, for analysis of imaging
systems, and for beam design.
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