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Polynomial surfaces are avery useful tool in order to represent the geomagnetic field over small area of the
Earth’s surface. Nevertheless, the method has not always been applied with enough precision, nor its
limitations are considered in detail. This work analyses the conditions of applicability of this method to data
from the aeromagnetic survey of the Spanish mainland accomplished in 1986, and the fulfilment of the
necessary conditions to enhance a merely descriptive model to produce another of inferential character. The
best statistical adjustment with only descriptive character, valid for the whole Spanish mainland, is a third
degreemodel. The study provesthat the conditionsof validity for inferential modelsare met using polynomials
of second and third degreein restrictive areas, but not over the whole Iberian Peninsula. In this case, the model
of second degree is proposed as the best option because of its simplicity and the extension of its region of
validity. Toagreat extent, therestrictionsto enhancethe descriptive model saredueto theown nature, specially
to their geographical dependence, and can also affect the analysis of other kinds of geophysical data.

1. Introduction

Sometimes, an airborne magnetic survey not only aims
at obtaining maps of the Earth’s main magnetic field, but
also to look for a mathematical model that allows its
description and representation in the surveyed area as
well as the determination of the anomalous field. In this
way, itispossibleto perform ageophysical interpretation
of the region of interest. Haines (1990) classifies the
analytical procedures to reach such objective, into five
main groups: Polynomial Surfaces, M ethodsof Equivalent
Dipolar Sources, Spherical Harmonic Analysis,
Rectangular Harmonic Analysis, and Spherical Cap
Harmonic Analysis. Thelast four methods are based upon
theMagnetic Field being derived from apotential whereas
the first method, which has been chosen for this study,
does not require such acondition. Thisfinal methodol ogy
has been previously applied to the magnetic survey of
Norway, Sweden, Finland and Denmark (Haines, 1968;
Haines et al., 1970); Canada (Haines and Hannaford,
1972, 1974) and Japan (Tanaka et al., 1986).

A polynomial surface used in this kind of study is a
surface that only depends only on the latitude, ¢, and the
longitude, A, and it is obtained by fitting 3rd or lower
degree polynomial sto observations of the magnetic field.
Hence, for ageneric magnetic component, P, the model of
the polynomial surfaceis

P=p,+pA+p,9+pAp +pA°+ped° (1)
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Mathematically, it can be considered as a power series
truncated in the highest order term. Despitethe simplicity
of this expression and due to the relations between its
components, these models can present geometrical
incongruitieswhen morethan threeindividual components
of the magnetic field are measured. In these cases the
geometrical restrictions can be satisfied by imposing
conditions on the coefficients, although the procedure
becomes more complicated as coefficients become non
linear within the fitting functions. Another problem
affecting the use of least squares is the uncertainty
associated with the limits of the region of interest, dueto
the lack of observation points outside it. Thisfact brings
asaconsequence that the areas where the adjustments can
be considered reliable are smaller than those where the
data sampling takes place.

In addition, models of B components must satisfy
Maxwell equations, i.e., to be consistent from the physical
point of view. For an area free from electromagnetic
sources, the well known equations: O:-B = 0 and
0 x B = 0 determine the conditions to be met by the
coefficients of the models for each component to ensure
consistency (Haines, 1967). Even if the curl of B is not
null, it ispossibleto study statistically the existence of an
inconsistency in the area (Haines, 1968).

Thebidimensional character of the polynomial surfaces
model does not exclude the possibility of extending the
anomaliesderivedto an altitudedifferent fromthat chosen
in survey. In this way, those details that introduce errors
inthemeasurementsareattenuated (upward prolongation),
while some anomalies of small amplitude for which the
resolution is difficult because of the flight altitude, are
stressed (downward prolongation). In both cases it is
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possible to match anomaly maps of adjacent regions
which have been laid up to different altitudes, so that a
unique map describing a wider area and of the same
altitude is obtained (Galdeano and Rossignol, 1977)

In this work, we look upon the applicability of the
polynomial surfaces model to the data array of the
aeromagnetic survey carried out on the Spanish mainland.
Asonly the field intensity is considered, no geometrical
incongruitiesarepresent. The conditionsto be met by data
inorder that the obtained model sarenot merely descriptive
but haveinferential character aswell, are highlighted. As
it will be proved, this objective raises strong restrictions
intheextension of areasinwhich model scan be considered
valid. Theresultant model iscompared to the | GRF85 and
to the representation obtained by Torta (1992) applying
Spherical Cap Harmonic Analysis (SCHA), after moving
them to 1987.0 and 3,000 m of altitude above sea level.

2. Data

The dataset used in this analysis consists of asample of
5,316 points out of the 2,019,690 that make up the
measurements obtained during the aeromagnetic flight
over the Iberian Peninsula. This flight was performed
from September 13th, 1986, to June, 4th, 1987.
M easurementsof themagneticfieldintensity wereobtained
at abarometricaltitude of 3,000 m, except for themountain
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areas for which the altitude was increased up to 500 m
over the peak. The horizontal distribution of the
measurement points spread over a net consisting of 104
lines of flight in the N-S direction, 10 km apart; 22 lines
of control in the E-W direction, 40 km apart, and 40
perimetric lines that closed most of the net. The
measurements were performed by a double-resonance
Overhauser effect magnetometer with asensibility of 0.01
nT. The samples were taken every half second, which
impliesameasurement every 34 m. A detailed description
of the aeromagnetic flight and the data processing can be
found in Ardizone et al. (1989), Socias et al. (1991) and
Ardizone (1996).

The data used in this study were selected from the total
DataFilein order to assure that they were representative
of the whole survey. They were taken every 10 km along
theflight linesand werelocated between parallel s 36°0' 3.6"
N and 43°48'0.0" N and meridians 3°15'3.6" E and
9017'13.6" W. The comparison of the cartographic
representation of these intensity values (Fig. 1) with the
corresponding original map published by the National
Geographic Institute of Spain (Ardizone et al., 1989),
proves that, in spite of the smoothing introduced by the
sampling, the most important details of the survey are
preserved. The number of data points may appear to be
sparsein absolutetermsbut itismathematically sufficient
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Fig. 1. Intensity of Magnetic Field obtained from processed data. ValuesaregiveninnT and contour interval scorrespond to 50 nT (Spanish Official

Lambert Projection).
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and even high if compared to that used to determine the
3rd order polynomial modelsfor Scandinavia. Inthat case
1,400 points of observation were applied to an extension
of 1,500,000 km?, more than three times the Iberian
Peninsulaterritory (493,486 km?). The distance between
two points was 30 km (Haines, 1968).

3. Model Determination

According to what has previously been stated, in order
torepresent theintensity of theearth’ smagneticfield over
the Spanish Peninsular territory, we chose amodel whose
generic formiis:

B = dg +dho(¢ ~7) + dm(/\ —/\_) + 0y, (p -(b_)Q\ —A_)

+o(¢ ~B)° + oo =4 ) -+ . )

Inthisexpression(® , A ) arethegeographical coordinates
of the gravity centre of the sample

P =40.427°
A =-3537°

(3)

and g are the perturbations or errors introduced when
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using any polynomial sapproachinstead of thereal explicit
form B = B(¢, A), which is actually unknown.
Through simple changes like:

w; = (¢ -40427) (A +3537)’,

(4)
expression (2) is reduced to afirst degree polynomial:

B =dgy +ioWyg + gy Wy +0h3Wyq +0a0Woq +dgoWo,
+--+g;. (5)

Todeterminethe coefficients, we apply theleast squares
method to the set of data described in the previous topic.
Nevertheless, because this set is a sample of the
measurements, this method only provides estimates of
such coefficients that we name as djj. Therefore, the
models (5) will be now:

B =dg + oWy + gy Wy +03Wyq +0a0Woq +dgoWop

+...+gj :é+ej

(6)

wherethee termrepresentstheresidual, whosevaluesare
an estimation of the errors.
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Fig. 2. Map of differences between the first degree polynomial model and the IGRF85 moved to the reference date (1987.0). Valuesare givenin
nT and contour intervals correspond to 10 nT (Spanish Official Lambert Projection).
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Table 1. Estimates of the first, second and third degree coefficients.
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The results of the least squares procedure applied to
first, second and third degrees models are summarised in
Table 1.

To estimate the quality of the adjustment, we use the

Polynomial Estimation of coefficients Standard error standard error of regression (Sr) and the coefficient of
degree i of coefficients | yetermination (R?). Sk equals 32.42, 19.66 and 19.63 for
dog 44149.600 0.446 hefi dandthirdd | . Vel
1 ; 401,536 0228 thefirst, second and third degree polynomials, respectively.
Y 21791 0.172 R? is 0.9983 for the first model and 0.9994 for the two
01 . hd . . . .
i, 44151.000 0.464 other cases. Theseresultsindicatethat if we consider only
5 d, 395.362 0.153 the group of ob;ervanon; fitted in the sampllng, Fhe
dyy 21.602 0.116 accuracy of theadjustment increasesmorewhen switching
d, 2914 0.061 from the first to the second degree models than when
dy -4216 0.078 changing from the second to the third.
dyp 2.346 0.036 Toseethedifferencesand similaritiesbetween thethree
dog 44151.812 0.522 models, Figs. 2, 3, and 4 respectively show the deviations
dg 396.123 0.366 between them and the IGRF85 moved to the reference
3 o1 221 '33188 3'332 date of data, 1987.0. Asit can be seen, thetwo last models
(‘1’“ '4‘425 0'093 have a very similar behaviour, clearly different from the
20 = . .
a, 2.279 0.053 first degree.
dy, -0.097 0.040 . .
i 0023 0.028 4. Infer ent|a_l Analysis of th_e M odel_ N
dy .0.124 0.043 The polynomial modelsdetermined previously fitinthe
dyy -0.0002 0.012 data sample and have a descriptive character. This is
already a useful result but if we want them to possess an
inferential character, they have to fulfil the seven classic
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Fig. 3. Map of differences between the second degree polynomial model and the IGRF85 moved to the reference date (1987.0). Values are given
in nT and contour intervals correspond to 3 nT (Spanish Official Lambert Projection).
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conditionsof validity demanded by the Regression Theory:
Homogeneity, Robustness, Noncollinearity, Linearity,
Homoscedasticity, Normality and Independence
(Morrison, 1983; Weisberg, 1985; Pefia, 1989b). The
problems arising as a consequence of ignoring these
requirements are numerous and have been studied in
detail in the Regression literature (Weisberg, 1985). The
mainoneisthelossof accuracy when making theestimation
of the model provided by the least squares method. In the
next paragraphs, we summarizethe analysiscarried out to
verify thedegreeof fulfilment of theseconditions, starting
with the most general ones. A more detailed study can be
found in Ardizone (1996).

Homogeneity can be defined asthelack of observations
with abnormal residuals that may cause important
distortions in the model. Experience shows that the
residual swhich distant three times the standard deviation
from the mean, fall into this category. In our case, the
analyses have shown that for the first, second and third
degree models there are 1.03%, 1.90% and 1.84% values
which respectively exceed the limits indicated. So, the
residual values should be considered heterogeneous.

The robustness of the model, i.e., its independence of
any particular set of data, may be affected by the presence
of influential observations that for the i-th observation
can be detected through a statistical test based on the
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Cook’s distance, D,. This statistic can be defined as
(Weisberg, 1985),

o (. -d)" (x"x)(d; -d) 0

| (p+1)S%

where d is the vector of coefficients estimated by |east
squares; d_; isthe vector of coefficients estimated using
all of cases except the i-th; p + 1 is the number of
coefficientsof themodel and X isthematrix of observations
of independent variableswhich first columnis completed
with 1.

Therefore, it isusually accepted that observation “i” is
influential when its Cook’s distance exceeds the critical
value F, for asignificant level, which is equal to 5% in
this particular analysis. Applying this test to the three
models the results for F_are of 2.60, 2.10 and 1.83. The
maximum values of Cook’ sdistancefoundinour caseare
0.01 for thefirst degree model and 0.03 for the two other
cases. Thereby prove that there are not influential
observations.

For its part, the noncollinearity means the absence of
any intense correlation between independent variables.
The simplest way of looking into this property is to
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examine the correlation matrix of independent variables.
In our case, the correlation matrices corresponding to
each model are those shown in Table 2. In the first two
casesthe coefficientsof linear correlation between couples
of independent values are very low. Nevertheless, some
elements of the third, mainly r,r.,, r ., r,., 1., are high,
which indicates that the correlation is quite important in
somecases. Thisfact may beduetothechangeof variables
(4) performed to make the modelslinear. To quantify the
effect we use the conditioning index defined as:

L
IC = _M' 8
N ®

where L, and L _ are respectively the maximum and
minimum eigenvalues of the correlation matrix of
independent values. When the conditioning index is less

than 10, multicollinearity doesnot exist or it isconsidered
to bevery low. A value between 10 and 30 showsthat the
multicollinearity ismoderate and whenitisbigger than 30
it is deemed high (Belsley et al., 1980). In our case, IC
values are 1.073 for the first degree model, 1.685 for the
second degree and 6.508 for the third one. Therefore, the
first two models do not have multicollinearity and that of
the last one is very low. It can be stated that the least
square matrix is well conditioned in the three cases.
Only if the relationship of the magnetic field values
with the independent variables has been correctly
established, it is possible to say that our model fulfilsthe
linearity condition. Probably, the quickest method of
testing it is to analyze the plot of residuals versus the
estimated values. When the cluster of points depicted by
this graphic has a tendency to make a turn, a lack of
linearity, which possibly is due to the omission of any
relevant variable in the model, can affect the data. In our

Table 2. Matrixes of correlation between the independent values of each model.

Degree 1
Wio Wot
Wio 1.0000
Wo1 0.0706 1.0000
Degree 2
Wio Wolr Wi Wao Wo2
Wi 1.0000
Wo1 0.0706 1.0000
Wy -0.2145 0.3478 1.0000
Wao -0.2457 -0.2157 0.0474 1.0000
Woo 0.2848 0.1598 0.0564 -0.0654 1.0000
Degree 3
Wio Wor Wi W20 Wo2 Wi Wiz W30 Wo3
Wi 1.0000
Wo) 0.0706 | 1.0000
Wiy -0.2145 | 0.3478 | 1.0000
W -0.2457 | -0.2157 | 0.0474 | 1.0000
Wop 0.2848 | 0.1598 .| 0.0564 | -0,0654 | 1.0000
Wy 0.0940 | 0.7635 | 0.2571 | -0.3895 | -0.0567 | 1.0000
Wi, 0.6563 | 0.0950 | -0.2288 | -0.0361 | 0.6659 | -0.0079 | 1.0000
W3 0.8862 | 0.5229 | -0.3094 | -0.4176 | 0.2055 | 0.1588 | 0.5233 | 1.0000
Wos 0.047 | 0.8312 | 0.5190 | -0.1738 | 0.3348 | 0.6186 | 0.1718 | -0.0062 | 1.0000

Table 3. Asymmetry and kurtosis tests for each model residual distribution.

Polynomial Degree Skewness Statistic Critical Values
o=5%
1 0.30 9.07 +1.96
2 2.25 66.91 +1.96
3 2.32 69.20 +1.96
Polynomial Degree Kurtosis Statistic Critical Values
a=5%
1 1.81 26.92 +1.96
18.45 274.55 +1.96
3 18.99 282.64 +1.96
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case, the graphics are presented in Figs. 5(a), (b), and (c).
Thefirst of them, correspondstothefirst order polynomial
model. There, it can be noticed that the cluster of points
tends to turn to the negative values of the y-axis. On the
contrary, Figs. 5(b) and (c), that belong to the polynomial
models of second and third degree respectively, do not
show any significant curvature. In these cases the zone of
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Fig. 5. Plot of residuals versus estimated values of magnetic field for
the first (a), second (b) and third (c) degree models. A curvature
indicating lack of linearity in the first degree model can be clearly
observed in (a). On the contrary, in (b) and (c) the cloud of pointsis
closetothezerolinewhichrevealsthat every trend has been removed
by the model.

the highest density of observations spread around the x-
axisresidual mean. We can conclude that the first degree
model showsalack of definitionwhich may stemfromthe
absence of variables (in our case, those terms of adegree
higher than the first one). On the other hand, the two
remaining modelsarewell defined and haveavery similar
behaviour.

Thenormality of theresidual s of the polynomial models
has been studied with the Kolmogorov-Smirnov contrast
that compares the cumulative distribution of residuals
with anormal distribution of the same mean and standard
deviation (Siegel, 1986). If the statistical values of the
contrast |D|,, exceed acritical value|D|,,., the distribution
lacks of normality. According to this test, D], . equals
0.019 when a 5% level of significance is considered. As
the results obtained are 0.040 for the first degree model
and 0.160 for the two others, the hypothesis of normality
isrejected in the three cases. To look into the reasons for
this lack of normality we resort to testing for skewness
and kurtosis (Afifi and Azen, 1977), whose results are
shown in Table 3. They prove that the null hypothesis of
asymmetry and kurtosisisrejected for the chosen level of
5%. Consequently, in a more rigorous way, we can
concludethat thereasonswhy the hypothesisof normality
is abandoned are the asymmetry and the kurtosis of the
distributions. The first is due to the instability caused by
positive values of high residuals, whereas the second can
be attributed to the strong concentration of these kinds of
valuesinthetailsand inthe middle of thedistribution. All
thisis confirmed when we compare the histograms of the
residuals from each distribution with the curve of density
of normal probability and with the maps of residuals for
each model (Ardizone, 1996).

Since the lack of normality is a result not only of the
asymmetry in the distribution of residuals but also of the
strong kurtosis originated by the residual s of high values,
the change of variable which is the normal procedure
adopted to overcome the skewness, is not useful in this
case. As will be seen later in this paper, the solution is
linked to the search of areas where the variability of
residualsis lesser.

The homoscedasticity, that is, the homogeneity of the
model perturbation variances, can be studied through
contrasts of hypothesis and graphics of residuals against
estimated values of the dependent variable. When, as it
happens in this case, only one measurement corresponds
to each point, the most efficient method is the last one.

Graphics of Figs. 5(a), (b), and (c) clearly show the
heterogeneity of variances with no need to use any test of
hypothesis. Indeed, although no systematically increment
or decrement with the estimated value of the earth’s
magnetic field intensity is observed, there exist groups
whose variability is by far greater than the rest because
they present residuals with very high values (greater than
two and a half times the residual standard deviation). In
order to reduce the effect of these data with atypical
residuals, the Huber’ s weighting function (Huber, 1981)
has been used. Nevertheless, the improvement has been
insignificant which indicates the need to use more robust
techniques.
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Finally, theindependence of theresidual s (thatisto say,
the lack of autocorrelations among them) can be studied
through the contrast of runs. With thislast expression we
mean a series of values whose residuals are either over or
below the average. The hypothesis of independence is
rejected when the number of runsis significantly high or
low. In our case, because of the large amount of data, this

technique has been performed through the normal
approximation (Siegel, 1986). The results of the analysis
applied to the residuals of the three polynomia models
indicate a critical value of +1.96 that corresponds to the
usual 5% level of significance, statistical valuesof —3.77,
—37.86 and —37,64. The respective numbers of runs are
699, 1,297 and 1,278. These results show that the

SECOND DEGREE MODEL
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g L

Fig. 6. Autocorrelation plot of theresidual s corresponding to the second degree model. Horizontal dotted linesindicatethelevel from which values
aresignificantly different from zero for the usual confidence level of 5%. Asit can be observed, autocorrelation existsonly in the first four lags

there and even then, values are low.
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Fig. 7. Autocorrelation plot of the residuals corresponding to the longest (752,7 km) North-South profile, named Profile 27. In this case, only the
coefficient of autocorrelation for k = 1 is significantly different from zero.
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hypothesis of independence must be rejected in the three
cases, which indicates that there exists an autocorrelation
intheresiduals. However, asyet we do not know whether
thisoneishigh or low. Thisquantitative aspect hasavery
special importance because the accuracy of the estimates
of the model coefficients will be low if the coefficient of
autocorrelation is high. To study quantitatively this
coefficient, we make use of the residual autocorrelation
plot. As an example, the case of the second degree
polynomial model itisrepresentedin Fig. 6 for thelag (k)
varying from 1to 10. Valuesof the correlation coefficient
for each lag k, r,, which exceed the pair of horizontal
dotted lines are significantly different from zero for a
level of 5%. As can be noticed, the overcoming takes
placeonlyinthefirstfour lags. Inaddition, valuesattained
are very low (the highest one is r, = 0.5542) and a
considerable decrease occurs from k = 2 upwards. The
behaviour for the residuals of third degree model is very
similar but in the case of the first degree, the result is
considerably worse and r, reaches a value of 0.8009
(Ardizone, 1996).

Inany of thethree cases, theexplanation for theexistence
of thepositiveautocorrelationistobefoundintheintrinsic
nature of data and in their local distribution. In fact,
because they are geographical data, the value of the
intensity of the earth’s magnetic field and the residual in
each point, are related to those surrounding them. This
influence comesfrom the own nature of these dataand can
not be avoided. In addition, the profiles correspond to
lines flown in direction North-South but are arranged
from West to East. As a consequence, there will exist
another source of autocorrelation in the data originating
from the sequential order of the profiles. According to
this, the values of the coefficients of autocorrelation
should decreasewhen thisinfluenceiseliminated because
only one profileisconsidered. Thiscan beseeninFig. 7,
which correspondsto theautocorrel ation pl ot of thelongest
(757.2 km) North-South profile. This time, only the r,
value can be considered notably different from zero,
unlike the case of the autocorrelation plot of the whole
survey (Fig. 6) where this was the case with three more
values. From this last result, we can conclude that the
effect of the autocorrelation on the efficiency of the
coefficientscan bereduced limiting the profilearrangement
in a predominant geographical direction.

5. Search for a Region where the Hypotheses of
the Model are Verified

Considering theresultsobtainedinthe previoussection,
we can deduce that the heterogeneity of the residuals and
the intrinsic nature of data are the main reasons for the
deviation from the hypotheses of normality,
homoscedasticity and independence. A possible solution
to these problems is suppressing the data that cause the
deviations already mentioned. One way to accomplish it
is to detect the residuals whose values are far from the
media and whose M ahalanobis distanceis high (Afifi and
Azen, 1977).

Mahalanobis distance from the i-th observation to the
mean, is defined as (Weisberg, 1985),

Table 4. Estimates of the coefficients of the second degree model with
inferential character.

Variables Coefficients Confidential Intervals
(95%)

Intercept. 44150.211 (44149.925, 44150.496)

Wi 394.797 (394.6397, 394.954)

Wy 23.291 (23.132,23.451)

Wi, -3.268 (-3.379, -3.157)

W -4.407 (-4.502, -4.312)

Wy 1.985 (1.903, 2.066)

- Te1
MD; = (x; —m) S™(x; —m) (9)

where x, isthe vector of observations of an-dimensional
variable; mthevector of their meansand Sisthecovariance
matrix of their components.

Thislast statisticisintroduced in order to strengthen the
accuracy of themodel becausethegreater theMahalanobis
distance of an observation, the lesser the accuracy of the
estimation of the predicted value. In order to estimate the
critical values of the Mahalanobis distances we have
employed the contrast of signification proposed by Afifi
and Azen (1977) and Jobson (1991). The analysis has
been applied only to the second and third degree models
because, as it has been already explained, the model
corresponding to the first degree does not even fulfil the
noncollinearity condition. The Mahalanobis distances
obtained for the second and third degree polynomial
models, for alevel of signification of 5%, are 11.10 and
16.92, respectively. For the second degree, after ten
iterations, we have reached the new model summarisedin
Table 4. Thisoneyieldsthe region shownin Fig. 8 which
contains 1,872 points (marked with dots) and where the
conditions of normality and homoscedasticity are already
verified. In this area, the statistical independence is not
yet satisfied but the results of the test of runs are better
than in the case of the whole Peninsula (Ardizone, 1996).
For this region, the differences between the model of
Table 4 and that of the same degree defined for the whole
group arelower than 6.68 nT and their rmsequals2.46 nT.

The third order model does not meet the hypothesis of
normality in this region yet and the procedure has to
continuealthough now withaMahal anobiscritical distance
of 16.92. The final result is a new region of validity
included within the area plotted in Fig. 8 and with only
962 observations. Since the second degree polynomial
model listed in Table 4 is more simple and its region of
validity islarger, it can beconsidered asthebest inferential
model.

6. Discussion

The analyses performed so far confirm the necessity of
distinguishing between polynomial surfaces used to
represent thegeomagneticfieldthat only haveadescriptive
character and those that seek to include an inferential
value. Models listed in Table 1 belong to the first group
and provide aworthy description of the geomagneticfield
according to the processed information. Although they
represent avery interesting result, itisnecessary beaware
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Fig. 8. Map of the magnetic field intensity corresponding to the model selected by Mallows’ criterium. This model constitutes the best non

inferential model for the whole Spanish Mainland.

that they are not able to make predictions of values
different to those used as starting point. The enhancement
of these models to give them this ability requires the
fulfilment of the seven previously described conditions,
which can introduce important restrictions in the area of
applicability.

With reference to these descriptive models (Table 1),
the values obtained for the standard error of regression
indicate that those of second and third degree represent a
remarkableimprovement withregardtothat of first degree.
This result has been confirmed by performing a spectral
analysis of the longest North-South profile. The spectra
corresponding to the models of second and third degree
share the same shape that, in agreement with the global
geomagnetic field characteristics, includes increasing
valuesfor higher latitudes. Thistrend is not present at the
first degree model spectrum whose amplitudes al so reach
different values (Ardizone, 1996). Moreover, the root
mean square of differences between the spectrum
corresponding to the first degree model and those of
second and third degree are 769.98 and 768.73,
respectively, whereas the value decreases to 8.12 when
the comparison is made between the second and the third
degree models. The similarity between these last two
models is also clearly revealed when they are compared
with the IGRF85 translated to the reference date (Figs. 3

Table 5. Optimal values of the model without inferential character
deduced from the Mallows' criterium.

Variables Coefficients Standard Error
of Coefficients
Intercept. 44151.6 0.49
Wio 396.261 0.324
Wor 21.9155 0.1769
Wi, -2.9567 0.0638
Wao -4.4102 0.091
Wop 2.308 0.0381
Wiy -0.0934 0.0394
-0.1286 0.0425
W30

and 4). In any case, thislast argument must be taken with
care because the data source of IGRF is clearly different
from that of the aeromagnetic survey.

Several criteriacan be used to select which of thesetwo
models can be considered more accurate. The most
practical is to compare the standard errors of regression
and the coefficients of determination. Nevertheless, in
this case this criterion is not useful because, as has been
already mentioned, these statistics produce very similar



100000

J. ARDIZONE AND M. HERRAIZ: APPLICATION OF THE POLYNOMIAL ADJUSTMENT

300000

500000

700000

900000

1100000

193

1300000

/J//
?/
~— ]

900000 Yy PAN 1900000

SNy (‘3 }

|

) 1

-
- //

7 |
700000 700000

/f// - ~J i

[ /
s \\1'»\//

500000{ | 'y 500000
300000 1300000

1

i

¢ /»/ REGION OF VALIDITY CONDITIONS
AW / (Model of second degree)
«\\/’Y ‘ i
et i ‘
| { | O Eaaaa—

1000004 / N | Om 100000m 200000m 300000m 400000m 1100000

] / AN A .~ ‘

] 7 f( ' ~—— I ‘k\/\m {:/ | ‘ |

100000 300000 500000 700000 900000 1100000 1300000

Fig. 9. Areawherevalidity conditions are satisfied for the second degree model and an inferential character can be established. Dots indicate the

observation points (Spanish Official Lambert Projection).

values for both models. To overcome this situation we
havealso appliedtheMallows' criterium (Morrison, 1983;
Weisberg, 1985) that is based on the minimisation of the
root mean square error of the prediction in the points of
observation. In our case, the model with the lowest value
of theMallows' coefficientislistedin Table5 and plotted
in Fig. 8. It gives the best statistical adjustment to the
analysed data that can be applied to the whole Spanish
Mainland without inferential character. Its explicit
expression is:

B = 44151.60 +396.261(¢p —40.427) + 21.9155() +3.537)
~2.9567(¢p —40.427)() +3.537) - 4.4102(p - 40.427)°
+2.308(A +3.537)° - 0.0934(¢ —40.427)* () +3.537)
-0.1286(¢ - 40.427)°. (10)

The analysis summarised in Chapter 3 proves that the
descriptive polynomial modelsarefar from satisfying the
necessary statistical requirementsto provide them with a
predictive capacity. The hypotheses of robustness and
noncollinearity are fulfilled by the three models but only
those of second and third degree satisfy the linearity and

the homoscedasticity. Conditions of homogeneity,
normality and independence of residuals are not met by
any of them. The reasons for this disagreement arise
mainly from the own nature of dataand their geographical
distribution, aspectsthat can not be avoided because they
have their origin in the characteristics of the Earth's
magnetic field. As the influence of these factors can be
increased by theway they are compiled and processed, the
measures adopted to introduce randomness in these steps
can attenuate the lack of independence. Some other
statistical tools can be used to diminish the skewness and
thelack of normality but lessening the area of application
istheonly robust procedureto obtain aninferential model.
Itimpliesanimpoverishment of themodel sand represents
a shortcoming of the polynomial adjustments. As a
consequence, the second degree model listed in Table 4
constitutesthe best solution with inferential character, but
itsareaof applicability isrestricted to theregion shownin
Fig. 9. Now, the explicit expression is

B = 44150.211 + 394.797(¢ —40.427) + 23.291() +3.537)
~3.268(¢p —40.427)() +3.537) - 4.407(p - 40.427)°
+1.985(A +3537)°. (1)
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DIFERENCES (nT)

Fig. 10. 3D (bottom) and 2D (top) representations of the differences between the second degree model and the IGRF85 moved to the reference
date (1987.0) and to an altitude of 3,000 m above sea level. Contour intervals correspond to 1 nT.

Because the method of polynomial surfaces is an
alternative proceduretothosebased on potentials, it could
be interesting to compare the results obtained by both
ways. The two most important potential model s proposed
for Spain are the IGRF85 and the representation obtained
by the Spherical Cap Harmonic Analysis (SCHA) (Torta,
1992). The comparison iscarried out here by means of an
statistical study of the differences between the second
order inferential model and these potential models moved
to the year of 1987.0 and to an altitude of 3,000 m above
sealevel. When doing this comparison it is hecessary be
aware of the differences between the source of data used
in the polynomial model and those of potential models. In
the first case data come from an aeromagnetic flight and
their minimum wavelength corresponds to about 510 km.
The SCHA model is mainly based on MAGSAT data
(althoughitincludesasignificant amount of datataken on

the earth surface) and the minimum wavelength can be
estimated in 416 km. In the case of the IGRF, this
wavelength is 4,000 km, approximately. The IGRF
represents, above all, variations originated by very deep
sources (closeto the earth’ s core), while those of the two
other models are found at a depth that is considerably
lower, presenting the possibility of havingitsorigininthe
inferior part of the earth’ s crust. These facts must be kept
in mind when analysing the results.

Figures 10 and 11 respectively plot the differences
between the second degree model and the IGRF and the
SCHA models. The resulting root mean squares of these
are 12.22 nT when the comparison is made with the IGRF
and 20.47 nT when the SCHA model is taken. These
results indicate that, although there exists a small
improvement when the comparison is made with the
IGRF, the behaviour of the polynomial surface is very
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DIFERENCES (nT)

Fig. 11. 3D (bottom) and 2D (top) representations of the differences between the second degree model and the SCHA (Torta, 1992) model moved
to the reference date (1987.0) and to an altitude of 3,000 m above sea level. Contour intervals correspond to 2 nT.

similar no matter which model is chosen. On the other
hand, whenthemean valuesarecal cul ated, thedifferences
with respect to the SCHA tend to keep a sign opposite to
that referred to the IGRF. This result suggests that the
polynomial model to represent a middle state between
both solutions.

The discrepancies that exist between the polynomial
and the potential solutions must be considered inthelight
of the previously commented different source of data. In
addition, the time shift of the models to 1987.0 and the
prolongation up to 3,000 m of altitude, introduce
uncertaintiesin the result because both models have been
built with data mostly coming from a satellite (between
500 and 300 km. of nominal altitude). So, thiscomparison
should be considered mainly as a mathematical exercise.

7. Conclusions

The method of polynomial surfaces stands as a useful
alternative to the potential methods because it does not
necessarily have to derive from a potential function

(Haines, 1968) and provides simpler models. In addition,
this method simplifies the procedure and, if some
requirements are satisfied, allows for the prediction
(evaluation of themodel at those pointswherethereareno
measurements) and the estimation of the corresponding
errors. When applied correctly, it makes possible the
inferential analysis of the model coefficients, and stands
as a way to obtain the optimal method by following
rigorous criteria.

In this study, the best descriptive model for the whole
Spanish mainland correspond to the third degree
adjustment given by expression (10).

The polynomial adjustment al so hassomedisadvantages
because the uncertainty in the boundaries can be high and
it requires arigorous statistical analysis of the conditions
of validity if the highest precision for efficient estimates
of the model isto be achieved. Due to its 2-dimensional
character, the analytical prolongation of the field is
complicated and when applied to different components,
geometrical and physical incongruities can arise. Some
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limitations of the polynomials models can be originated
from the data themselves. For instance, the lack of
independence is due to the latitudinal variation of the
geomagnetic field and can be attenuated by reducing the
region of analysis. In our case, the precise application of
polynomial analysisto geomagnetic data proves that the
validity conditions are met by the second and third degree
modelsintworestricted areasbut not in thewhol e Spanish
mainland. The second degree model, given by expres-
sion (11), has been chosen as the best solution becauseis
simpler than the third degree polynomial adjustment and
has alarger region of validity.

It isimportant to bear in mind that the characteristics of
geomagnetic data can also be found in other geophysical
information. Therefore, the advantagesand disadvantages
of polynomial surfaces mentioned so far can be present
when these models are applied to other fields of the
Geophysics.
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