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Abatract

Very often. decigion procedures in B corumittee campansale Tootantinl
manipulalions by taking into sccount the arderesd profile of gu alificaliomes.
It is therefore rejected the standard assumption of wh underlying asso-
ciative binary copnective allowing the evaluation of arbiteary finite se-
quences of iterna by means of & one-ly-ooe pequential procme. [ this g
prr we develop a mathematical approsch for n-ssocinkive copee v
allowing & scquential definition by means af hinary fuzzy conpectives, 11
will be then steessed that & connective rule sluild he undlevatoud nx o
eansistent sequence of Binacy coimective operators. Clopnmilters stiewill
previously decide about which connective rule they will e condilering,
not just st a single operatorn

HKeywords: Fuzzy Connectives, Fuzzy Seta, Aggregation Operafols.

1 Introduction.

Many real-life problems are solved by means of some information aggroEniion
procedurss, if we observe chunke of partial fisformaliou and we have to chab-
orate a global opinion we have an aggregation process which can b rnoihiAnd
in terms of aggregation Tulea, In principle, the anly property whicle i reepiredd
i just the ahitity to trensform the data set fmo o simpler cepreseutation, 1t
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exarmple, if we expect data with a fixed and known ditnension », we de lotd
need to define huw A+ 1 or n - | items of information have Lo he Azgropsted)
inio one gingle index. Nevertheless, in practice we ravcly koow in advance thel
dimensien of the res] problem we are going to be faced Lo, Mareover, evon HE
we do know the dimension of the input date we have the semantic prohleny
of using the same aggregalion operator everylime this is ihe case, on ints of4
ditferent dimensions. Therefore, any aggregation rule has to be shle to oprrated
with an arlltrary dimeneien of the data sot, even whon we assane that anch ;.
data et hes nice mathematicsl propertics like bomogensity and nen-redundpntd
informatien. -

Whet » committee has to decide about the qualilication of candidates, Hied
ohjetive is just Lo aggregate the opinion of each committos memnher inlo a ginole 3
index. Hach committes member represents a piece of iiformation. Qnite ulion, o
the rumber of voting members may be oot fixed fe.z, unavoidable lasl minntg 3
abeences], or the number of votitg inembers can not be o praoed knawn {this jz 3
the case when we just have & qualitative definition of the crisp set of voters. ie, 3
the list of properties giving people the Aght to vete). Moreover, if the munber
of potential veters is too big, exivtence of an algorithm aflawing some limi of 3
pequential reckoning will help calenlua,

A stendard solution to such & liasic semantical and operationn] prahiem i §
the assumiption of Associativity. Uoder Associativity, we can aggregate nfor. 3
ration by pieces, item by item, by applying & wtigue binary canmective, no 3
mattar the dimension of onr date set. The aggregated value can be obtuined 4
by aggregating information by means of a sequential ane-by-gne process. Tho .
aggrogation process is fully characterized by a single binary sggregation mile, 3
the one applied to the ficet couple of sggregated elements, Then the same 1
computation in applied iteratively until the data set bus been completely rond. 3
This iz the case with classical fuzzy conncctive operalors for conjunction and
dizjunction, t-nerms and t-conorms (see, eg.. [TH.

Asspciativeness ia & quite frequent assumption I group decision making
medels. Associative decialon procedures are not affected by the urder in which 3
individuels express their opinions, and cvery aggregatod opinion ts ronsiderod 3
jnat like ansther individusl opinton. However, iinpoctmit operators ate nol
sastciAbive, ]

Some decision procedures in & committes sumetimes do not tale into se- k
count comnruitlee highest and lowest qualifieations fur sach candidate, and then 3
they cvaluate the mesn of the remaining tmaddie values. This is & particalar
case of Orderad Weighted Awerepng (OWA | operstors, introduced by Yager 2
[12| 1 order to fill the gap between min (which is the maximal b-norrn] and 3
maz {which is the minimal t-conorm). OWA operators are not. associative, and !
their appbication requires that the number of items 1o be ageregated has been
prevlonsly fixed.

Cleasical Mean Rule, for exemple, takes into acoomt social support of each
eltarnative, in such wey that group opinisis are ne longer squivalend Lo indis
vidual opinions {see, e.g, [10!). Notice that & key OWA conneclive operalor

]

fike the standard mean, defined a5 & mapping
Mo [0 1™ = [0,1]

guch that i
i= 119
'll"fn{'ﬂ'll- --.ﬂ'n.j = E !;1 1.
is ot associative, Each mean My is just the mesn of n numbers (it has been
defined for a Fxed 1), My is just an operstor, not a rule, When we relor to Lhe
Mear Rulewe refer to the rele that evaiuates the above wean [or every u. The
Mean Ruleis nol a single mapping My, but the complete sequence fAfa e 0l
all those mappings. ) .
Moreover, it shauld be alao pointed out that an operatienal caloithua far th
Mear Rule would not Esllow the abeve fermmls, But a feft recursive calenlus

_ {1‘2 = I]Mn_1{ﬂ1|. fii |ﬂn—l]'+'ﬂ-r|.
N )

Mﬂ[:alr' sea ﬂﬂ)

or aiternatively, & right tecursive caloulus

oy + {_ﬂ- == I}Mn—l{.ﬂ'il - .,I'.'I.“:]

n

J""fn{nls i run.]' e

whera Ma(a.b) = {a + ¥}/2 {see |3, 10l for & dircussion on some ethienl sad
jonal i=ues).
C'-'IIT;I:';::::;E]‘I it is ;]mt oo easy to talk aboul G_WA rules, I;‘l;]t.hough sevira)]
interosting families of OWA operater have been introduced in the pasl, show.
ing the grest flexibility in the choiece of typea of OWA aperators {a::-, :;;11:.
[13, 14, 15]), not every [amily of QWA operators can be properly coumidered ny
" n;irf.thia paper we generalize the arguiments int.mdur‘er% hy thrf aathara in [2].
where each O'WA Tule was represeried in terms of & family :..rf hinery OWJI& ap-
eratora (see slso [3, 4, 5]} Any conuective ru.!g will hg mnu?wnd A% a c:onms:l.mul
family of connectives capable af solving arlitrary dimetsicn pjmhlﬂms, .‘hs u
congequencs, it is ciaimed that committess should slways provipunsly fx their

coherent connhective {aggragation) mile.

2 Recursive connective rules.

A eonopective male should allow an Regregated vabie for any poggilile dimension
of the Fst of items to be ppgregated. That is, a vonnective rila ghould T 1
sequenes of connective operatora

(b (02" — 10, U s

t0 be nsed to sggregate sy finite mumlrer of items. We shall forus our aLt.t_Jum?n
here on these coptective tules which allow the aggregation of arbitrany lists in
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4 TecyrRive manner. In particutar, weshell conpider those familios of connee v B
oparalors that can be defined by rmeans of 8 left or & tight recursive opplicadion
of binery operators, once en apprapriale re-arrsngement of the itrms 1o e
sggregated has been previously realized. In this way, a connective mie shanld 4
he understaod ae 8 family of connective operators which can bo recumsively

evalunted.

Obvicusly, in arder to be considored as a rule, some consistency assnniyition g
hes to ba impesad on the family of connectivea. Not every family of connectives 8
either defines a connective rule or can be consdered to congistent, or allow -3

racuraive definition,

DEFINITION 1 Ar ordering rule x ont o set of Hems A, 4 £ B, 45 n Sty _:'

of permutations
T B —H

such #hal for cvety finile sequence of tlems
B ={ay.82...,4,), 85; € 4 Wi,
& et deguence i defined on B in such o way hal
apl{a) < walb) = rola) < rolhd

whenever ¢, b £ B MO,

Ao ordering rule tells us the exuct position each new element will phwed iy '_

any provisusly given ordered set of iterms.

An immediste example of ordering ride la the natural decreasing order of 3

real numbers
L o iy

which assigns Lo each list of n numbera (a1, .., ag,) its sorting permintation

ola1,. .., an)= {r.l.[”,. . .n|ﬂ|:|

such that o > a; forall i < 5.

DEFINITION 2 4 lsft'recursive connective rule ia o family of connecfive

aperaforg
{"?!'ﬂ . |'|]. l]ﬂ = [U, ll.l'n}l
such that there emiats a seguense of binery operators
[ (0,0 — 9, ]}z
terifying

#afuy, az)

¢"11|:'31| e .ﬂn}

La{w{ai}, r{az}) end
L!I{'?l‘l. ‘{w{ﬂ'l}l LR t{“‘“—l}l}r?rl[ﬂ'“j}

Jor some ordering rule r.

e DEFINITION 3 A collection of connectiue operators

B [0 goid 1o be o right-recuraive connective rule whenever

& and

. hold for seme femidy of binery operalers

and some ordering rule =,

recursively defined if and only il it can be Yeli-recursively defined. This crn Be
aper a8 follews, Let

Diefine the parmutation # in such & way that for any «

Moreover, put Lx{n, b) = Belh a] for all & Then we have
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Might-recursivenenss can be analogoualy defined.

Lo

{¢1t : I_I:II 1]“ . I.Dn 1]}1‘1-}1

#alay,ag) = Rafelar} n{nzl}

CTEL o PRk N A

.

dnlar,. .. o) = Rafr{or) #n-a(rlaz. .. w(eal))

ToormreEnnL

'[Rn . [0- 112 o ['I], ]]}n:vl

We immediately have that an operator ¢, : [0, 1" — [0, 1} can be rght-

'ﬁ‘ﬂ{al: v :uﬂ} = Rn{'-‘{aij: ‘ﬁ'n—l{tiﬂi}l - |1T[:"'1|}]]-
#{a) < #(8] & (=} = ={b).

(8) Ralr(e), (ez)) = Lulrlaad wlar}}
(b}

#alay. 02, as} = Ra{mla), sl iaz). vias))]
Ra{r(a), Re{w{aq), 1{ag))} = L3(La(r{aal, miaa)) ={s])
La{La(#(a.), #{62)), %laa))

{t] In generel, we can se2 by induction that

Bnlrler), daorimfaz). . . alan)]] =
Enldnoyi®lar)s. . Flaa. 1)) #laald

The ordering rule # is to be known as the dual erdering rule of T

The existence of & right {left) recursion representation of & given njreTAloY
does ot imply in general the existence of an equivalfant. left {right] TeniLesion
reprsentation by means of the same underlying arderin £ rule {a-ee. ek "f”_'“.‘:'“
for un exampla). Of course, some les will allow ne one-side Trearsive delinilion ;
{see mlso mext section). . . o A

In some cages, such B Fecursive represetithtion af & mpm-etwe. atles 34 iz ; i1
from the underlying ordering Tule, as shown in the following reanli.

—

|



Mereasing in each coordemate, for alln, Then (L, }nuy i wnique in s

for each ordering rule n suck that MR s i eqrectivorisr s et s LR e RS

.npemml‘ of dimensian =, then consistent aperators of lowsr dimension can e
f ohtained sccotding to the above teault, Ohviously, consistent npper dimension
b gperntors can not be freely chosen since for all =
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| THEOREM 1 et ) .

E {6 = 0,11 = [0, 1| }n b gucresively, from thin equation we can evaluste ' ]
§ :; ?;EJE[‘]Y‘EMT;?& connective rule uwith respect to the ordering rule . s Fin—al. .. Bglrfa ) wle)). . o7 {en -2)) o

: & 10 =0 and . = Y : el 3 : o

i B dnll, . 1) 1, wsth dy comtinugous and slrirgpl R snd 50 0T, whenever we stay in the rea] ranges, [} :

dafar, .., aﬂ} = Ln ['f“n—l'{“"{“l [ W(“ﬂ—l]:“{“u}}-

(Analogous result holds for right Ferursinen g ),
bnlzt, - o) = Lufen a(rlar), o 1{8ai)) Mlen))

Proof: First of all, notice that L,{0, 0} = 0 for i
1 bt = all . I f A
#a(0,0) = 0, it follows that PSS

e A S G e it

K ond, analogously,
D= 4a{0,0,0) = La{L2(0,0),0) = 7,3(0.0) dnlet, - an) = Bulm{a) enos(rleg). .. m{aull}
An interesting case to analyze ia the nne in which left and right recursiens

ard ag on,
ghare the same underlying ordering rule. That is, when

0= a0, 0) = LatLaca.. £2(0.0)...,0),0) = Lo(0.0) Salbss oyn) = Ralnar) dnoalrlonl. . vlan})) =

Analogousty, £4{1.1) = § for all n. Mareaver i ;

i : i A1) ; wr, every Lo is asqured 1o he atrclty 4 Ll ATAR L ookt T
mcrlfasmg toq, It is ditect for & = 2, and il we assiume il @9 troe forn — 1 1?1{13: i) .
we hava B

heolda for some ordering rule «. S

DEFINITION & if bath left and right recursimaness hold far the seme order- i

Lt & — mleq) € {ay...., 8.} incresses snd the ather valnes temmin con |
ing rule then roe have Tecursive rniles. P

stant, then dnfa1,. .., as) increases, and tharefore L., (2, h) also incroascs: |
2. if In this way, recursivensss gancralizes the concept of pemociativity, n Lhe
sanse that recursive rles are the oncs that can be evaluated iteratively (Toth i
gides), after an appropriate pre-arrangement ol data. This ability of hbeing
iteratively evaluated is in fact the deep reasot for sssocintivity i practice. An ; .
operakionsl caloulus algorivhm waually implies an iterative reckoning, Bul tliz i
iterative calelus does not necessarely Tequieres w unique binary operator. A
shown above, tha Mean Fule allows both left and right recumsive definitions, 1
although it 13 not associakive, £3)
The Mean Rule verifies an additional property: hoth telt and right tecumive .
definitiona ¢o not depend on the perrautation, i.e, they are the same o mattaer
the particular sequence of permitations being chosan, Lefl and right recursion : "
hold for any posible ordering rule. [ such a condition holds, we can talk Vi
sbout commutalive recursive tules. Commutative recumive rales will be thone i
connective rles which do not depand oo any particular erdening rule.
In some way we could aay that a connective mile {dolasg peoureive il Andd
enly if & set of general associstivity equations {in the sense of Mak M) held
for ench r, onee the items have heen properly ordered. [n fach, recvriveness ¥

helds whanever

* = Lﬂ_j{. 4 Lgl:?r{ﬂ..], n’{ug}] e T{En_l_:l},

increayves, due to continuity of ¢,_; and the induction hypathesis it s §
assured the el.'-cmt.enoe of & point (x(&}..., w{b._ 1) such that LT
mia;] for al 7, with some strict; inequality, such that o

Lol La{r{badoniba)) ... ;wlba_y})

takes the new value, in such a way that

lﬁ‘n{'ir{ﬂl}, el !Tl:a?l],:l = ¢'”-|:ﬂ-{‘!’l::|l LR ".ru"'l'l.—l_:ll T{{l,.}]

and therefore Ly, hee incressed as well,

Hence, for ench a_ & there i .
s E ere 1s al most ane ¢ such Lhat L_f(-'-‘. ﬂ} = b (it i unique 3

whenever the paj '
e ;"m.-: pair (o, 8] belongs to the range uf L. and therefore = = o holds).

dnls1,. .. 6] = Laie, mf{a, 1}

we osn evaluate
l?n"ﬂl:_al:- -:‘Tn.]_"::'1!{”{“1}""’1{““”_ =

e=En_qf .. zhayl, = {a (e
- Laledan), ={azd] ... wlan 1) Rnlmloy ). doog(mlez), o omlandd] = faleaopimlar) mlen1)h x{n, )] i
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[ el the
Let, us pariiculetize the ahove ideas to the OWA cnse. First, we remined

) o and norne srderivg e 7. 1 each one of these binary cotnneyd Eonder some hey concapta sbout OWA operators.

Ln, By can be assumed to be defined in the cartesian preduct of twa nonliiyg
compact intervals on the real ling, being continmons strictly increasing In
eaordenale, then it can be shown {see [8]) that they are commantive g
basteally additive, in such way that

! i . , . _ 1
el il ﬂ’El{ﬂ'ﬂm} oot dinfan)) ] WA operator of dimensiot n ia a connective onerator

for some hemsinorphisma in the urdt interval gy, 47, ... frn. This Tesull pgd d: [ 1"~ 0.1
ellow & partieular representation of theoremm 1. If we take, for BXAI 1],
natural decrassing order o as the underlying ordering ruls, then each A
defined on & simplex %4-1 2 4. Assuming the aheve conditions in Pro
extanded cartesian product of two Nontrivial compact intorvals, 1Hhas continmlj
and strict continuity, would assure such an additjve salntisn (see [11]).

Associativity appesm when the ardering rule i taken as the identity {i.e
the ordering rule keeping pesitions ng Presented), and

that for eny liet (ay,.-..ax) then
dfan, ... on) = Ewmm-
1—1

for some mssociated liat of weights ¥ — {,....tun] such that

bn=le=F=Ry= Ry o Laeplfrall<i<n
n e

{that is, the whole recursive eonnective tule is characierized by B ine asa-3 ; 2 T w=1 g

clative binary connective F, with no pre-arrangement of dataj, ; OWA operalots are therefore aapuming the (decreasing) n _

Many conosctive rules {4y, 4, . -} we cen find in the litoratire Are the real line ss the underlying ordering rule 7. et
defined by meang of » unique commiative and mgsociative binary operatar ] OWA operators are obviously commutative, mor;ﬂ o oty o e 3} WA
¢ 0. 1% ~ [0,1] such that as pointed out above, not assaciative in general. :Irll an:t.i,na {:2 e

i intive i by il either il i the m g = c :
et Mfcll;mmeritzij ;‘:e};‘ef&re, given an WA aeralor O.E E1II.'|'IF;:-}::1]:I-'I‘1
thE‘ s 'En:i-rﬁy a.pa;ﬂiacl te aggregation problams of snch & d|£1emml|.:::i. T
B i J can nok ke applicd,

i i i dified, such OWA operator : ]
d‘m;%mmsﬁﬁlznmﬁm ahout OWA operators before going haek wo enr op
ree

fﬁn{“lw-qﬂﬂ} =¢{"'"p{qi[b'lb?}.bﬂJ....,h,!} i
Gt (Bnoy, Elbu-z, 80601, 5,00} .. 3

for (b1,....b,) any permutation of {81....,2n). When we refar to u n-norm
OT & t-CONOrNL 88 & cofinectite rule wa really mean Lhe family of someectio '
operniors in such m way univecally defined {only one binary conmective nat |
depending on the ordering rule), The whole family of cormective operniom 3
ia fully characterized by its first conpective aperator of dimension 2. wad po ]
Pre-arrangement of date is nesded,

eratiopality problem:

gi h i SLOTE 1R thl'_'-' 7
s M 8 ]Eiﬁ YE CRALITS S H.ted wilk OWJ’I- P LT

1 m a8z arpras
""I]“c"- eaLimakes ho'i'- EIUSE an 0'!"‘!"."‘! U]]erﬂt-ﬂr 15 1o lhc mat a weTato ].

is defined as n
araesa{d] = ;:-1_"_1 Z{“ — ey,
3 OWA recursive rules, = R
; Misd to the measire of orness ta the measure of nrdness de
Az pointed out above, sometimes anly ene underlying ardering rulo is sliowed hy
the decision maler. Perhaps there ia anly ene netaral way of ranking vup data, 4
and date reach to us previeusly pre-arranged according ta sl an ardering E
rule. If this i5 the cese, the sbove concepts should he modified in order to
meet such a restriction. Fither & recursive definition is consistent with zirh an
ordering rule, or such s recirmive definition can nat be applied. Eilher both &
recursive definitions make use of such ag ordering nule, or it cun not e applied
a8 a recunsive rule. For example, it may be the case that daty are RESUMI] R
be ranked in ita natugal decreasing ordering, 83 happens witl OWA Tl

andness(p) — 1 — ernesalpl,

hich thetefore measures how close an OWA operatar is Lo the nin op-
whic
erator.

R = o T . ¢ .h
P [ } Gl'\' 2 AN ﬂ‘li\'."'L ﬂ‘p‘ﬁfﬂ or & Wi
L] A]H!t 18T It ortant notino 18 {;‘uﬂ-h*y- L : .
W Elght'ﬂ |w11 & T.I..'“L t'h.E [1'131 ':r-' Dr@ 15 H'IE GWA QHEIELU] wh‘JHE welf‘;]
e [’F.I'J 'bl.i'j] g not d'i.ﬁ‘ it to see ]'I Lt a tﬂ-f-ﬁ‘{l’r':l — Tt £ [I’.J o
] L TEREE] . I[. 1] 14 ll.I L1 T It ess
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» A particular cless of OWA operater ia given by Lhe PUONOREY T radireg &
They are OWA operalors that varify the property ;= to; if § < j. Any

bunyaney messure ¢ 33 such thal orness{g) = 1.

It rosy be the case that the existing loft and right recarrive delnitions de o

Dot make wse of the same underlyiog erdering rule. For vxample, tho
two OWA operators
i 1
#afar, a2) = 59+ Zoi2
and

i

. 1 1 1
dafay, ag, az) = 740 1 et + 70

ellow & left recursive rule, since we can write

_ 1l 1 1
Bala1182, 03} = 5 (gap) F5ez) 1 ey

But ance we heve chosen such a decressing natural ordering as onr ordering
fule, then there & no function & : [0, I}2 = [0, I] such that

$ale| oz, a3} = aapy, %ﬂuy + %ﬂm}]-
Hence, they can not he topether in the same right-recuratve ryle,
Moreover, not every family of OWA operatoth allaws satne one-side recursive
definition based npan che same natural ordering rule. For example, no Ieft or
right recursive rule can be defired i we take #5 = ¢ s sbove, hut

, 1 1 1
#alar. 2z a3) = Zap: + Zepg 38

3.2 OWA recursive rules.

Although the standerd essociative procedure can not le considered when denl-
ing with OWA operaturs, it may be the ease that o recursive analysio can
be applied to the decrearing ordered liat 210 o ). Thus, practical Owa
ageragation prolilerms where the number of valuss to be BEETEgated i3 ot pre-
viously known, should be solved hy choosing ene of these conslatent Tecibsive
families of OWA operators, by means only of such a natiral ordeting rule. Flach

one of these lamilies solves cvery nggregation probleo for any arbitrary size of
the ioput.

DEFINITION 5 A recursive OWA rule ie o reCurHey connectie rule af

OWA operators wiliwing left and Hight recursive definilions based wpon the nal-
urel decredsing ordering rule, by mens of binary OWA rules,

This recursiveness definition hes the advantxge thal nggregation weiglis
can be cornputed quickly by using & dynamic programining approsch {see 111,

fullowing 3
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Such B recuraiveness should nat be confused with the srdered linkege properiy,

3 spnsidered in 6] in order te characterige OWA operators.

Anyway, we can check that once an (W4 apsrﬁt.nr‘ol' dim?nsiuln n has hr'rl;‘:
fced, all OWA operators of lower dimension heloln,glrltg to ite right and 'Iu”
WA rules are almost univocally defined. In faet, it will Ihe ghown L};:I. ::m]rm_'.
WA apetator can be recursively defined, both left and right, once t va :1;@
to b ageregated have been pre-arranped according to the naturﬂll arder in the
peil line, These two recursive representations will e basically unique,

THEOREM 2 fetus congider 8 flred OWA operator 4 of ?iimm:aian n. Then
there erist ot leaat one famify of n — 1 OWA sperators of ditnension 2

LgveoiiLin
and ancther fomily of a = 1 OWA operators off of them also of dimensinn 2
Hy,..., Rn
allowing o lefl tecursion and o right recursion, respectively, in such o tway thal
dlag, ... byl
is equivalend to
Enflac1f.. LalLafojs,2m)emb .- oap)

anid
Bniapy, Rr-1{spz. - Rolorn—zp: Bz(ep-y am)) - 1)

Morecver, sach onre of theae binary QWA operaters ia gilfier unique o it rm
he freely chosen,

Proof: Let us sewume right recursion, for example. IE
Hﬂ_l:b],. f.'l-;} ={1- f{ﬂ]}lh‘:” + _fl:n]ﬁr;u_

Then,

n

ey, ... on) = Zwiﬂh] = {1~ fn))aq + finiby

i—1
where
b = Au-1lag, .. Ralepogp Refapm-n. dml] .00

in such a wayr that
fuh=1-un.

Henee, if % now asegme

Rn-1ib1,b2) = (1 — f{n — V)b + f(n — by,

o 2 ) D F e

o

ey a—

. .-r..: o ;

T AL
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it must be

#lans s 0n) = (L= S+ S0 = 03— gy 1 S0~ Uiy ﬁ'
where
b = Bn-zlegg,. .. Ralap_ g, A2is TILER ) IO Y

in such & way that

fin= 1= l=twgffln)=1 =gl ~ wy)

whenever w; = 1. [n case uwy = 1, it I8 the maz mile, and the ramaning hiu.ﬂ
OWA operators are not relevant at ajl, The process contitien 1l we roach tK3
triviel cate Ry In particular, in each atep we obtain

f[n_i]=1__w_f+1_

t
— Xy,

whenever Z}zl #y < 1 {atherwise, the remanining speratars will be not trleven
at alll. :

Metice that right reegrsion is unigue for the min rola fog = 1), and Inﬂ‘;.
recurgion will be unique for the mez rule {wre = 1), Incasew, 2 0 for all i, anrd

OWA operator would be strictly increasing in each coondenste and, theorom Iy
would epply. The above result proves that, in fact every WA oparutor llows Y

both left and right recursive definitions.

OWA rules as considerad in this paper wiil vansistently allow the recimive 4
definillen of each one of it operators. [n other words, our (A4 rules will 5'
be given by a sequence of GWA operaters thet can be explained in torms of 3
8 sequence of binary OWA sperstors allowing its right ot left reearsive rep- 4
resantation. It is therefore natural to characterize cach recursive A sule

by means of the sequence of weights associated te jis vight or lelt repursive
represantation (see [2]).

DEFINITION 6 A basis function i any Mma

Esch basis funetion § will then allow the recursive definition of twa families
al OWA operators. For any = > 2, we can define {w 8nd Ry, such that

Eafbi,bg) = {1 — fln}lby + f(n)bp
and

Rty B2} = fla)byy + (1 - fn)ibg
Then any laft recursive oporation

Lot i(Lnl- .- (Lafapp ag)),. .. a2

b zny right recuraive operation
1<

R B ' : 3 1 gt -
K hsined via left-recursion call and @ = (¢4, ¢h. .} i ohtained vin righ

: narators Will be defined, in particular, as follews:

FFT:'TEQ‘ £ that to Yy fntfﬂ'ﬂ!‘ n 3
2saociater a number in the unil interval (that is, fin) € [0.1] for all nj mith
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Ravifany, (Balag, - - Ralsj, ap-1.10)

always lerd to OWA aperators, for every n = 2, 85 it will e shown .mhm:i:
p one of these lwo families of OWA eperators ($ = {d2..... PR

A EE NN

i i ¥ CAcconling 1o
aiom calt], will be then associated to the basis Ifunu:tmn f " ;
[a::r:.heurlm, left recursive (LR} snd right recursive [R11) families of O34

« n io the dimensian of 1he OWA operators é., atd &)

|'I ]
« the weights of ¢y, are denoted by wim, - . e . and WY e e M will
denote the weights of ¢y ;

s for every n > 2 and every i — 1,2... ., n wedefine

Finl ili=n
Win = { f1— Fin)wyn-1 ificn

p forevery n = 2 and every i = 1,2,..., n we define

. {f{n! B

R W) P S

Thetefore,
b win = S Tma(d = £0)) for every n 2 2 und cvery £ 1.2, .

i, = fin—it1) H?—-—n—i+2{j — f171) for every n = 2 and every 4
in
Y, & m, | )
[n. view of the above equations it i immediate to check thak $a snd & ar
in fact WA operatars, since for any r 2 2 we have

n 11
Zwﬁ.{ == Zw:m- =1
=1 i=1 .
i check now thet not every family {92, .. .. .. bl 08

upell'f;tir:li‘::alf:rt:cursively defined by meanas of 'Lrimu':,' GI"-'\-'.-K apcmm: on T'lim
besiz of the deevensing natural ordering. Recursive Cﬂnﬁlﬁt{!nf'}" cany e mlun i:.{
characterized by maeans of the weights of the DW.*'I..operatur:s. tfm' cfxarll:p T.~1H1
w; g = 0, in order ta be able to provids & left recurmive :‘haractem..nu:m llll:.;h.{.
alsn he g gy = 0. Anmlogously, wiyi g1 — U must hold for & Tigld reeurs
dEﬁZ;’T:;::{ ;:?:::1:2‘:’:.; irr?rljlied that 4y, of dill-né:mion " beh!g fined, tl;'m :“
lefi recursive and right-recursive sonsistent OWA operators with 1uhweF' : ;::1.[11-'
sion gs,.. ., $n—1 are univocslly defined. Mu:lrrs-. l_n ganeTal, 1.-.-'9: hm.rlel. pr: :v &:;
resutt, which slse gives & formal characterization af recirsive consistenc

OWA rulea.
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THEOBEM 3 Let us corsider a family of OWA operators {dg,. .. d, -, e
Then 4 can be defined by LE (%6, il is LR consiatent ) if ond ordy if s ann,) =3
wagty sy for alli 7= 12 .k end every k. Analopously, such a fomily of]
CWA operators can be defined by RR fis., it = RR connistent [ if end only 478
Wi EWal k+1 — WiRWar] k] Joralldj==1.2,.. .,k ond every k. "3

Proof: Direct since every weight of the OWA operstor of dimenaion & ia r:m_]._

tiplied by the same weight of the next hinary OWA operators in order to alloy

)

the OWA operetor of dimension & + 1. In case of right recursion, for cxample,”

E+1 P
Zw.lk‘lmq = f{k + l}ﬂ-!” + |:1 = f{k + 1}} Ewi.k“|i+l|
i=l =1
Hence,
Wit k-1
AT k4
Wik H ! 3
foralli= 1,2, ...k N

order 1o obtsin families of OWA operators which are consistent with gy, both 3

with reapect to left recursion and right recursion. B if a left {right) recursioy
exints, the aseociated LR (RR) bagis function is basically unique. Thus, each
bagie function is characterizing & LR (AR} consistent family of OWA operatom.

hMaoreover, it has been already poioted out sbove that cight {left) recursive _'

consistancy fur & given famity & — {da, ..., dy, ...} of OWA oporalom docs
not imply left (Aght} tecursive conpistency,

Being the underlying ordering rule fixed as the decreasing natural erder, il
may be the cese that both lelt end right recursions exist lor a givn [am-
ily of (YWA operators {da,... dy,...}. The associated left and tight basis
functions f and g will in this case defioe the same family of QWA oporulom
{ga,. ...} Many atandard lammilies of OWA opeartoms da Belong to this
class, os shown in Lhe next section.

The following thenrem relers Lo duality, end the next ane can he qnite varfil
in estirnabing the orness of recursive U'WA operators.

THEQREM 4 Let [ be 2 basis fenction with stseeioled LR fumily of QWA
operators &, and &' its asuoricted RRE fomily. Then $ = dp foralin, e &
is the dual of ¢ for atln.

Proof: Immediate [ ]

THEQREM &5 Let [ be basts function suck that (1= f{a]1f(n =1} = fin] for
all n, and b=t us denote by & and §' the corvesponding LK and RA familics of
OWA operetors, respectioely. Then every ¢ 35 a buoyancy meesure. Thersfrar,
wrness{fa) = 1 and andneas(gl} = é.

Proof: Also immediate lrom the expression of weights in terms of the hasis
funetion. [ ]
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4 Some examples.

E We will now provide some interesting examples of recursive fumilies ol A

ﬂpgratlﬁlrﬂ.

4.1 Mean Rule.
The following result characterizas the Mean Rule a4 & commttative OWA rale,

THEOQOREM & Let § be o basis function with gssociated LB and AR fomilics
of OWA operators being identical b = &' that is, gin = ¢ for alin ). Then i
must b F(r) = 1/n for alln, and in turn the weights of eoch ¢, arm oy o = 1/n
for all i = T Py

Proof: We shall prove it by induction, just for tha REL case, The result in
obvious for 4 = 2. [et us assums w,;, = Ifm foralli=1,2.....» Then it
must be

wipey=fin+1)={l~fin+ 1 unn=[1~fin+ Bifn
in such & way that f(a 4 1) = 1f(n + 1). Therelera, since

fln+l]=1- M
we ahtain i
typLl = |:]. = _ﬂ:!‘l + 1}][11!..“} = ;‘I‘]‘

4.2 Constant basis function.

Together with the Mean Rule, another case ¢ priori deserving our stlettion are
those rujes characterized by a constant basis Functien {ie., when thete exists «
velue a & 10, 1] such that f(n] = o for all 2 2 2).

Tn case f(n) = 2 for all k > 2, each LR OWA operator ¢, will have wriglits

Wy = |:1 = ﬂ}n_l.
ard .
Win —{1—a)""a
far all i = 2,...,n. Analogously, weights for cach RR OWA operstor , will
he _
Win = |:1 £ a]l_lu
forelli—12,. . .,n—1and
by 43 — {l E I:I]n_l.

When e = 1 (o = 0] in left {right] recirrion we obtain the min rule, and in
right (left] recursion we abtain the maz rule.
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4.3 Harmonic QWA operators.
We recall that the n-th harmonic number i

=~ 1
HHZZE
=1

tlarmonic OWA operators are gbtained by taking

in)= -?
Thus,
1— f(n) = H;;-l,

By using theorem 5 it is immediata to see that the family of LA = If ermonis 3

CGWA operetors i8 & clasa of bue : :
; yency measures. For exampl .
cperators will have the following wejghts: pla, ity first OWA 3

w2 = 3 wgrgzé

o B 3 2

wWig= ﬁ » Wag = ﬁ ¢ Wag = H
w1.4=1_2'-w21=£ w =i s
25 ' 5 1.4 T wy 4 = E

4.4 A menotone fuszy quantifier.

In [12, 13] it ia shown how to obtain the evaluation of monotobe fuzzy quantiliers

by means oi: OWA operators. In particolar, given & monotone non decronsing -3
fuzzy quantifier ¢ such that @0} = 0 and @{1) = 1, the weights w, l‘:fr: ]
i=12,... 8 of an OWA operstor of dimension 1 to evabiate & are doﬁ:{:-d G

wens(()-o(5)

In case Qo) = 4" for some r = 0 we obtain that taking

f(nJ=1—Q(“;l)

for all », the assuciated loft-recursive family of OWA operatars does verily kuch
3 pra;terty. Hence, such a monotone fuzzy quantifier allows & loft recorive
aftnition. But 1t can not he right-recursively defined. .
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5 Final Comments.

owa rules do play & main rele in group decislon making, since maly ALER-
gation procedurss in practice are just particular casee. This paper generaliam

j: previous results abtained just for OWA operators in [2]. A general appronch
K {0 noh-essociptive connective rules allowing at eperaiional definition hax Iy
¥ proposed. By apetatienal we understand the ability of & recursiva one-ly-one
b cvalustion, on the basis of a previous re-arrangement af the data seb.

An & consequence, it has been siressed the fact thet a connective rule i
order ta be considersd & rule, should be able to desl with any arbitrery nuamlier
of itetns. An OWA operator is just en operator a3 the mean of n mumbers is.
None of them are connective meles, but single connectives. Congidernbly maony
peal life decision processes require at different times te aggregate {[oasilaly
very large] lists of inpute of different dimensiens. Connective niles have Lo
be defined before knowing Fuch & list. A connective rule is in general & mle
allowing aggregation of any list, ne mater its dimension.

Clonnective rules have been concelved here as consistent fanilie of conmec-
tive operators, allowing & representation in Lerms of right or left Tecursion of
binary connective operators, Asaociativity is just an ensy WAy of pssieing sl
an operatianal representalian.

O'twviously, there sre familiess of OWA operators thal represent rudes i L
gemme that they allow the evaluation of sny arbitrary munlber of ttems, naol
allowing the recursive approach as developed in this paper, bt being concisteni
inn some other alternative scnse. This is the case, for exarmnple, of the Hinomarl
OWA tule {pafay, .. ., an)tnat whete cach ¢y, is an OWA operator ol ditnengion
r with weights

Win = (ﬂ_ ])n’_]{l - a]“_i s R Pridrb it
' i—1

for some fixed a € {0, 1. Bach one of thess operators oan he ternrzively defied,
but the family iteelf does not verify the recursive OWA rule ocandirion given in
deflnition 5, neither the more general recarsivenesn definition 4. An operntive
description of this family of (WA operators, still by meesns of & sequence of
binary OWhA aparators and the natural decreasing ordering, can be haraed upon
the ordered linkage property of OW4 operators (see [€]).
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