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Test for random number generators: Schwinger-Dyson equations for the Ising model

H. G. Ballesteros* and V. Martı́n-Mayor†

Departamento de Fı´sica Teo´rica I, Universidad Complutense de Madrid, 28040 Madrid, Spain
~Received 4 June 1998!

We use a set of Schwinger-Dyson equations for the Ising model to check several random number generators.
For the model in two and three dimensions, it is shown that the equations are sensitive tests of bias originating
with the random numbers. The method is almost costless in computer time when added to any simulation.
@S1063-651X~98!05411-7#

PACS number~s!: 02.70.Lq, 02.60.Pn, 05.50.1q, 75.40.Mg
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I. INTRODUCTION

Among the sources of systematic error in Monte Ca
~MC! simulations, the most frightening is the lack of ra
domness in the pseudorandom number generator~PRNG!.
Indeed, in a modern MC simulation as many as 1013 random
numbers may be generated@1#. This is as long as the longes
test of random numbers we have heard of@2#. Therefore, a
PRNG needs to be fast and thus not too sophisticated, b
also should not bias the simulation results. Shift-regis
PRNG’s @3# have become very popular, due to their spe
but they have been shown to be unreliable for some app
tions @4#. The study of the trustworthiness of a PRNG
quite difficult as the answer is problem-depende
algorithm-dependent, and~most important! precision-
dependent. For instance, in Ref.@5# some commonly used
shift-register PRNG’s were shown to yield incorrect resu
for the two-dimensional Ising model simulated with th
Wolff’s single-cluster algorithm@6#. Of course, this failure is
related to one’s statistical accuracy~all the generators in Ref
@5# would be ‘‘correct’’ with 5% errors!. In particular, the
R250 shift-register PRNG was found to be very danger
for a single-cluster update, but safe for use with the Metro
lis algorithm. Not long after that, R250 was shown to fail
the Metropolis update of the Blume-Capel model for so
lattice sizes@7#. Another example of the difficulty in certify-
ing PRNG’s can be found in Ref.@8#. There, the standard
Cray PRNG~usually called RANF! is shown to be ‘‘very
good’’ in the author’s own wording. This means that t
longest run did not find bias in a two-dimensional Isi
model simulation, where comparison with the exact solut
was possible@9#. Nevertheless, it has produced wrong resu
in a U~1! lattice gauge-theory simulation@10#. Moreover, it
is fairly common for one’s simulation to be, itself, the lon
est run ever carried out for this particular problem~other-
wise, why bother doing it?!. Unless independent, algorithm
cally different simulations are performed, it is clear th
one’s result will not be yetestablished. Further confidence
can be obtained if sensitive consistency tests are also ca
out. In this paper, we want to show that Schwinger-Dys
identities may be useful in this respect, especially when
exact solution is at hand. Let us finally mention that t
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investigation of the reasons for PRNG-induced bias is in
esting in itself @11#, but it has not yet reached predictiv
power ~one wants to knowbeforecarrying out the simula-
tion!.

II. THE EQUATIONS

Generally speaking, Schwinger-Dyson equations are r
tions of the type

05 K dO

df~x!L 2 K O
dH

df~x!L , ~1!

whereO is an arbitrary operator andH is the Hamiltonian
@notice, however, that for Eq.~1! not to be a trivial 050
statement,O should be an odd operator ifH is symmetric
under thef→2f transformation#. The problem is that the
longest MC runs are usually done in discrete spin models,
which there are no continuous variables. Nevertheless,
spin models the measure usually has aZ2 symmetry, which
allows us to obtain equations analogous to Eq.~1!. As an
example, let us consider the Ising model on the cubic latt
with nearest-neighbors interaction. The Hamiltonian is

H52b(
^ i , j &

s is j , ~2!

wheres are the usualZ2 spin variables. Let us callSi the
sum of the spins coupled with spins i . The self-evident re-
lation

(
s521,1

f ~s!5 (
s521,1

f ~2s!,

yields for any observable depending on the spins i ~and pos-
sibly also on others!, O(s i ; . . . ), thefollowing relation:

^O~s i ;¯ !&5^O~2s i ;¯ !e22bs iSi&. ~3!

In particular, one gets

15^e22bs iSi&, ~4!

^s is j&52^s is je
22bs iSi&12d i j , ~5!

whered i j is the Kronecker symbol. In order to improve st
tistics, it is useful to sum Eq.~4! for all the lattice sites~the
lattice size beingL, its volume isV5LD!. One obtains
6787 © 1998 The American Physical Society



n
in

a

of
ta
iv
in
a

al
M

e

nal

en-

we
e

ngle

o-
clus-

th

y
died
e

6788 PRE 58H. G. BALLESTEROS AND V. MARTÍN-MAYOR
15K 1

V (
i

e22bs iSiL . ~6!

Summing to the nearest neighbors in Eq.~5!, we obtain an
expression which is very useful in MC renormalizatio
group investigations of the dynamics of the Poliakov loop
lattice gauge theories@12#:

05K 1

V (
i

s iSi~11e22bs iSi !L . ~7!

It is trivial to generalize Eq.~7! when more couplings are
included in the Hamiltonian, as needed in a MC renorm
ization group study.

In addition, a nonlocal identity is obtained from Eq.~5!
summing to alli and j :

052
2

V
1K 1

V2 (
i , j

s is j~11e22bs iSi !L . ~8!

At this point, it is natural to ask if the right-hand sides
Eqs. ~6!, ~7!, and ~8! can be measured with reasonable s
tistical accuracy. We shall see that the answer is posit
Then the next natural question to ask is if a PRNG-induc
bias also spoils the fulfillment of these equations. We sh
find a positive answer only for Eqs.~6! and ~7!.

Finally, let us mention that theZ2 symmetry is embedded
in the symmetry of many other models, therefore Eqs.~6!,
~7!, and~8! hold as they are for O(N) spin models, or, with
trivial modifications, for SU(2N) lattice gauge theories.

III. NUMERICAL RESULTS

We have studied the Ising model~with periodic boundary
conditions! in two and three dimensions at their critic
points. Three update methods have been considered:
tropolis @13#, the Swendsen-Wang cluster method@14#, and
Wolff’s single-cluster~SC! @6#. For each update, we hav
employed three PRNG’s. One has been the problematic@5#

R250: g
l-

-
e.
g
ll

e-

Xn
R2505~Xn2103

R250 1Xn2250
R250 ! mod 232. ~9!

The second has been the Parisi-Rapuano~PR! PRNG @4#,
which has been found not quite correct in four-dimensio
site percolation@1#:

Xn
PR5Yn xor Yn261, ~10!

where

Yn5~Yn2241Yn255! mod 232.

Our last generator is defined with the help of a congru
tial generator:

Zn115~16807Zn! mod~23121!.

Then, the Parisi-Rapuano-congruential~PRC! PRNG @1# is
defined as

Xn
PRC5~Xn

PR12Zn! mod 232. ~11!

Our statistics have been the following. In two dimensions
have considered aL516 lattice. We have simulated at th
exact critical point up to 6 digits:

bc50.440687.

We have measured every 20 Metropolis sweeps or 20 si
clusters, performing 83107 Metropolis full-lattice sweeps,
and updating 43107 clusters. For the Swendsen-Wang alg
rithm, we measured every 5 sweeps, and generated the
ters 43107 times.

In three dimensions, the critical coupling is known wi
great accuracy@15#. We have simulated at

b50.221654.

As shown in Ref.@7#, it might happen that the bias onl
appears for some lattice sizes. Therefore, we have stu
L516 and 24 lattices. For Metropolis or single-cluster, w
measure every 10 sweeps. We perform 107 Metropolis
sweeps, and generate 107 clusters. In the Swendsen-Wan
FIG. 1. Difference with the exact results for the energy and the specific heat in a 162 lattice. We also plotA1 and A2 . Full circles
correspond to the Swendsen-Wang update, open circles to single cluster and squares are from the Metropolis update.
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case, we measure every 4 sweeps, generating the clust
3106 times. We have found quite clear results for the d
ferent simulations, except for the single-cluster update of
162 and 163 lattices, with PR as PRNG. We have found
convenient to extend these two simulations, although this
in principle, a dangerous procedure. Of course, one can
proceed with the run until the results ‘‘look nice,’’ since th
would bias the results. To avoid subjective decisions,
have fixeda priori the total ~much longer than the initial!
simulation time: these two simulations were 40 times lon
than the others. In this way, error bars shrink enough
distinguish between a large statistical fluctuation and a s
tematic error.

Before presenting our results, a word of caution is in
der. We have carried out 27 independent simulatio
(3 lattices33 PRNG33 updates), so, the number of e
pected data points which are more than one standard de
tion away is uncomfortably large. Specifically, one can e
ily estimate that the number of points that are more than
deviations away~10% probability! must be between 2 and 4
Moreover, errors are not obtained with perfect accuracy.
lowing a 10% error in the error determination, we have co
sidered deviations larger than 3.3 error bars as a signifi
signal of bias~less than a 0.13% probability!.

Let us first discuss our results in two dimensions. In
left-hand side of Fig. 1 we plot the deviations of the ener
and the specific-heat from their exact values@9#. We find
significant deviations only for the single-cluster update wh
using R250 and PR as PRNG’s~the former is not surprising
@5#!. It is clear that the exact solution is the best of possi
tests, but we would like to confront it with the Schwinge
Dyson test. For this, let us define the quantities:

A15K 1

V (
i

e22bs iSiL
MC

,

A25K 1

V (
i

s iSi~11e22bs iSi !L
MC

, ~12!
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which are the right-hand sides of Eqs.~6! and ~7!. Unfortu-
nately, Eq.~8! has been found to hold within errors in a
cases. In the above expressions^ &MC is the MC average, no
the expectation value. We show our results forA1 andA2 in
the right-hand side of Fig. 1. The only significant deviati
found is in the single-cluster update with R250. This do
not mean that the Schwinger-Dyson identities can be fulfil
with a biasing PRNG, as this is, of course, a matter of ac
racy. In fact, performing a 40 times longer run with PR, w
find

A151.00024~4!,

A2520.00047~8!.

Thus, both the exact solution test and the Schwinger-Dy
identities test failed by this SC-PR combination, but the e
act solution test is more sensitive in this case.

We can discuss our results more quantitatively. For sm
bias, it is natural to expect that its main effect can be
scribed as a shift on the coupling, fromb to b85b2Db.
With this assumption, we can relate the different bias.
DO be the the difference between the mean value ofO ob-
tained with some MC simulation, and its true Boltzma
average, we obtain to first order inDb @16#,

DO'2
]b^O&

4E
DA1 . ~13!

TABLE I. The bias forE,Cv ,A1 ,A2 , for the 162 lattice simu-
lated with the SC-R250, SC-PR combinations. To be able to mea
sure the bias in the SC-PR combination, we needed a much long
simulation~see text!. The constancy of the ratios is a check for E
~13!.

DE DCv DA1 DA2

SC-R250 20.00235(11) 0.0599~14! 0.00148~19! 20.0029(4)
SC-PR 20.00057(2) 0.0115~2! 0.00024~4! 20.00047(8)
Ratio 0.242~14! 0.192~5! 0.16~3! 0.16~4!
n-

FIG. 2. Simulation results for the energy, the specific heat,A1 andA2 , in a 163 lattice. Dashed lines forE andCv are obtained from a

x2 minimization, excluding the SC-R250 data.Q is the probability of getting a larger value ofx2. Full circles correspond to the Swendse
Wang update, open ones to single-cluster, and squares are from the Metropolis update.
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FIG. 3. Same as Fig. 2 for a 243 lattice.
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In this way, we can understand that the bias for the ene
has the opposite sign as the one forA1 @16#, and it is also
opposite to the bias for the specific heat~it is well known
that the maximum of the specific heat of the two-dimensio
Ising model in a finite lattice is atb,bc!. The only evidence
that we can offer for Eq.~13! is empirical, and it is shown in
Table I. Nevertheless, we find the agreement quite satis
tory for such a rough calculation. Moreover, from Table I w
can estimate that

DE'21.6DA1 ,
~14!

DCv'40DA1 ,

where the coefficient for the energy is really 1.58~19!, to be
compared with 1.33 from Eq.~13!. Notice that if Eq.~13!
could be rigorously established, it would be enough to e
mate the failure in the Schwinger-Dyson test for any PRN
to get the safe accuracy level for every observable. Howe
to our knowledge, such an interesting property has not b
proved for any PRNG test.

For the three-dimensional case, we plot our results for
energy and the specific heat in the left-hand side of Fig
and 3. In this case, we unfortunately lack an exact solutio
control for the bias. However, we can study the statisti
compatibility of our data. From the plot it is apparent that t
SC-R250 results are biased. In the figures, we show the
with a weighted estimate of the energy and the specific h
~excluding the SC-R250 data!. In fact, no further significant
deviations are found. For the Schwinger-Dyson test, we
again strong signals of bias inA1 andA2 for the combination
of R250 with single cluster. We also find worrisome dev
tions in the single-cluster update with PR as PRNG forL
516. To clarify if a bias is present in this case, we ha
performed a 40 times longer run. The new results are

A150.999966~8!,

A250.000101~26!.

Thus, the PR PRNG does produce biased results in com
nation with the single-cluster update. In this case, we can
check Eq.~13! directly, as the deviations in the energy a
y
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specific heat for SC-PR are not large compared to the err
Nevertheless, we can compare the bias for the SC-R25
the 163 and 243 lattices~see Table II!, which is a test of the
L dependence of the linear coefficient in Eq.~13!. From
finite-size scaling theory, we can estimate that

~DCv /DE!L524

~DCv /DE!L516
'S 24

16D
1/n

'1.9 . . . , ~15!

where n'0.63 is the critical exponent for the correlatio
length. From Table II, the above quotient can be estimate
be 1.7~5!, which is certainly compatible with our prediction
but the error is so big that this is not compelling evidence
Eq. ~13!. Now, if we assume again Eq.~13!, we obtain for
the 163 lattice DE'25DA1 and DCv'194DA1 . From
these relations, and from the estimate ofDA1

SC-PRwe obtain
for the bias~the statistical errors in Fig. 2 beingsE andsC!

DESC-PR'0.00015, sE50.00019,
~16!

DCv
SC-PR'0.007, sC50.005.

Thus, it is not surprising that the bias does not show up
Fig. 2. For the 243 lattice we lack an accurate measure of t
bias forA1 , and so we cannot obtain a bias estimate.

As a final remark, notice that the sign of the bias seem
be independent of the lattice size and the space dimen
for R250. This seems to be consistent with the simple~one-
dimensional! model proposed in Ref.@11#. However, in the
PR case, the~much smaller! bias changes sign when goin

TABLE II. Bias for E,Cv ,A1 ,A2 , for the 163 and 243 lattices
simulated with the SC-R250combination. The ‘‘correct’’ value has
been taken from the averaged estimate of Figs. 2 and 3. The r
test the lattice-size dependence of the coefficients in Eq.~13!.

L DE DCv DA1 DA2

163 20.00124(19) 0.051~4! 0.00026~5! 20.00082(16)
243 20.00066(13) 0.046~5! 0.00014~3! 20.00044(11)
Ratio 0.53~13! 0.90~12! 0.54~16! 0.54~4!
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from two to three dimensions. This suggests that the rea
for bias is more involved in this case.

IV. CONCLUSIONS

In this work, we have shown that some Schwinger-Dys
identities, Eqs.~6! and ~7!, are a sensitive test of PRNG
induced bias. Most important, they can be used when
exact solution is at hand. We have provided some empir
evidence for a simple relation between the bias induced
the different observables@our Eq.~13!#. This relation is ob-
tained under the assumption that the main effect of the bia
to produce a shift on the coupling. It might be possible
justify this in terms of relevant and irrelevant operators,
the framework of the renormalization group. Furthermo
this suggests that an investigation along the lines of Ref.@12#
could be useful to establish which new couplings are gen
ated by the PRNG-induced bias. If this relation could
established, the Schwinger-Dyson~SD! equation test would
provide an estimate on the maximumsafeaccuracy that one
can get for any observable, with the given PRNG.

In three dimensions, where there is no exact solution
et
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hand, the Schwinger-Dyson equations test has shown tha
single-cluster update with the R250 and PR PRNG’s p
duces biased results, without resource to seven more sim
tions. It should be noticed that the measure of the Schwing
Dyson equations is almost computer time costless, as
number of possible exponential factors is finite, and the lo
energy should be measured anyway. Disk storage is n
shortcoming either, because no reweighting@17# is to be
done, and the calculation can be made ‘‘on the fly.’’ Th
are also extremely helpful for code debugging. So, we
lieve Schwinger-Dyson equations to be very useful too
which can be easily measured in almost every circumsta
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