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Test for random number generators: Schwinger-Dyson equations for the Ising model

H. G. Ballesteros and V. Martn-Mayor'
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We use a set of Schwinger-Dyson equations for the Ising model to check several random number generators.
For the model in two and three dimensions, it is shown that the equations are sensitive tests of bias originating
with the random numbers. The method is almost costless in computer time when added to any simulation.
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PACS numbegps): 02.70.Lq, 02.60.Pn, 05.50q, 75.40.Mg

I. INTRODUCTION investigation of the reasons for PRNG-induced bias is inter-
esting in itself[11], but it has not yet reached predictive

Among the sources of systematic error in Monte Carlopower (one wants to knowbefore carrying out the simula-
(MC) simulations, the most frightening is the lack of ran- tion).
domness in the pseudorandom number gener@&NG.
Indeed, in a modern MC simulation as many a$*tandom Il. THE EQUATIONS
numbers may be generatftl. This is as long as the longest Generally speaking, Schwinger-Dyson equations are rela-
test of random numbers we have heard 2f Therefore, a tions of the t

I ype

PRNG needs to be fast and thus not too sophisticated, but it
also should not bias the simulation results. Shift-register 80 SH
PRNG's[3] have become very popular, due to their speed, = <M> - < O%>
but they have been shown to be unreliable for some applica-
tions [4]. The study of the trustworthiness of a PRNG iswhereO is an arbitrary operator and is the Hamiltonian
quite difficult as the answer is problem-dependent[notice, however, that for Eql) not to be a trivial G=0
algorithm-dependent, and(most important precision- statementO should be an odd operator H is symmetric
dependent. For instance, in R¢h] some commonly used under the¢— — ¢ transformatiolh The problem is that the
shift-register PRNG’s were shown to yield incorrect resultslongest MC runs are usually done in discrete spin models, for
for the two-dimensional Ising model simulated with the which there are no continuous variables. Nevertheless, for
Wolff's single-cluster algorithni6]. Of course, this failure is  spin models the measure usually ha&sasymmetry, which
related to one’s statistical accura@fl the generators in Ref. allows us to obtain equations analogous to EfQ. As an
[5] would be “correct” with 5% errors In particular, the example, let us consider the Ising model on the cubic lattice,
R250 shift-register PRNG was found to be very dangerousvith nearest-neighbors interaction. The Hamiltonian is
for a single-cluster update, but safe for use with the Metropo-
lis algorithm. Not long after that, R250 was shown to fail in H
the Metropolis update of the Blume-Capel model for some
lattice size§7]. Another example of the difficulty in certify-
ing PRNG's can be found in Ref8]. There, the standard Whereo are the usuak, spin variables. Let us calf the
Cray PRNG (usually called RANF is shown to be “very ~sum of the spins coupled with spin . The self-evident re-
good” in the author's own wording. This means that thelation
longest run did not find bias in a two-dimensional Ising
model simulation, where comparison with the exact solution 2 f(o)= 2 f(—o),
was possibl¢9]. Nevertheless, it has produced wrong results o=-1,1 1
in a U(1) lattice gauge-theory simulatidri0]. Moreover, it
is fairly common for one’s simulation to be, itself, the long- Yields for any observable depending on the spirtand pos-
est run ever carried out for this particular problé¢aother-  sibly also on otheps O(a;; .. .), thefollowing relation:
wise, why bother doing ij? Unless independent, algorithmi- —280:5
cally different simulations are performed, it is clear that (O(0y3+))=(O(= 0y --)e 2P7i%), (3
one’s result will not be yeestablished Further confidence |
can be obtained if sensitive consistency tests are also carrie
out. In this paper, we want to show that Schwinger-Dyson 1=(e 2PuiS), (4)
identities may be useful in this respect, especially when no

exact solution is at hand. Let us finally mention that the <0-io-j>:_<a-i0-je_zﬁ‘7isi>+25ij, (5)

@

:_ﬂz a0}, (2
(i)

o=-1,

H particular, one gets

where §;; is the Kronecker symbol. In order to improve sta-
*Electronic address: hector@lattice.fis.ucm.es tistics, it is useful to sum Eq4) for all the lattice sitegthe
Electronic address: victor@lattice.fis.ucm.es lattice size beind., its volume isV= LP). One obtains
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Xn 2= (X203t Xn 2350 mod 22 ©

1 -
1:<v > e‘zﬁ"isi>. ©®)
! The second has been the Parisi-RapudPB) PRNG [4],
which has been found not quite correct in four-dimensional

Summing to the nearest neighbors in E5), we obtain an . )
g g Es) site percolatior1]:

expression which is very useful in MC renormalization
group investigation_s of the dynamics of the Poliakov loop in XER: Y, xor Y g1, (10)
lattice gauge theorigd 2]:

. where
O:<V2i gisi(1+e2ﬁ"i3i)>. (7) Yn=(Yn_24+Yn_55) mod 2%

It is trivial to generalize Eq(7) when more couplings are Our last ggnerator is defined with the help of a congruen-
tial generator:

included in the Hamiltonian, as needed in a MC renormal-

ization gr.O.Up Study. . o . Zn+1:(16802n) m0d231_ 1).
In addition, a nonlocal identity is obtained from E&)
summing to alli andj: Then, the Parisi-Rapuano-congrueniBRCO PRNG[1] is
5 . defined as
— -2 (riSi
O__v+<WiE,j oioj(1+e %P )>. 8 XPRC= (XPR 27 ) mod 22 (11)

Our statistics have been the following. In two dimensions we

At this point, it is natural to ask if the right-hand sides of : B . ;
Egs. (6), (7), and (8) can be measured with reasonable stahave considered =16 lattice. We have simulated at the

tistical accuracy. We shall see that the answer is positivetXact critical point up to 6 digits:

Then the next natural question to ask is if a PRNG-inducing B.=0.440687
bias also spoils the fulfilment of these equations. We shall © '
find a positive answer only for Eqé6) and (7). We have measured every 20 Metropolis sweeps or 20 single

~ Finally, let us mention that the, symmetry is embedded cjysters, performing 8 10’ Metropolis full-lattice sweeps,
in the symmetry of many other models, therefore E@$.  and updating % 107 clusters. For the Swendsen-Wang algo-
(7), and(8) hold as they are for @) spin models, or, with  rithm, we measured every 5 sweeps, and generated the clus-

trivial modifications, for SU() lattice gauge theories. ters 4x 10° times.
In three dimensions, the critical coupling is known with
Ill. NUMERICAL RESULTS great accuracy15|. We have simulated at
We have studied the Ising modevith periodic boundary B=0.221654.

conditions in two and three dimensions at their critical

points. Three update methods have been considered: Més shown in Ref[7], it might happen that the bias only
tropolis [13], the Swendsen-Wang cluster metHdd], and  appears for some lattice sizes. Therefore, we have studied
Wolff's single-cluster(SC) [6]. For each update, we have L=16 and 24 lattices. For Metropolis or single-cluster, we
employed three PRNG’s. One has been the problemidlic measure every 10 sweeps. We perform’ Ietropolis

R250: sweeps, and generate "16lusters. In the Swendsen-Wang
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FIG. 1. Difference with the exact results for the energy and the specific heat iR &tfiée. We also plo#\; andA,. Full circles
correspond to the Swendsen-Wang update, open circles to single cluster and squares are from the Metropolis update.
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case, we measure every 4 sweeps, generating the clusters 4TABLE I. The bias forE,C, ,A;,A;,, for the 16 lattice simu-

x 10P times. We have found quite clear results for the dif-lated with the SGR250, SCPR combinations. To be able to mea-
ferent simulations, except for the single-cluster update of théure the bias in the SER combination, we needed a much longer
16% and 16 lattices, with PR as PRNG. We have found it simulation(see text The constancy of the ratios is a check for Eq.
convenient to extend these two simulations, although this i§13).

in principle, a dangerous procedure. Of course, one cannot
proceed with the run until the results “look nice,” since this AAy Ah,

would bias the results. To avoid subjective decisions, wescRr250 —0.00235(11) 0.05924) 0.0014819) —0.0029(4)

have fixeda pl’iori the total (much |0nger than the |n|t|h| SCPR —0.00057(2) 0.011%®) 0.000244) —0.00047(8)
simulation time: these two simulations were 40 times longei 4o 0.24214) 01925 0.163) 0.164)

than the others. In this way, error bars shrink enough ta
distinguish between a large statistical fluctuation and a sys-
tematic error. which are the right-hand sides of Eq§) and (7). Unfortu-
Before presenting our results, a word of caution is in or-nately, Eq.(8) has been found to hold within errors in all
der. We have carried out 27 independent simulationgases. In the above expressidng,c is the MC average, not
(3 lattices<3 PRNGx3 updates), so, the number of ex- the expectation value. We show our resultsAgrandA, in
pected data points which are more than one standard devighe right-hand side of Fig. 1. The only significant deviation
tion away is uncomfortably large. Specifically, one can easfound is in the single-cluster update with R250. This does
ily estimate that the number of points that are more than 1.ot mean that the Schwinger-Dyson identities can be fulfilled
deviations away10% probability must be between 2 and 4. with a biasing PRNG, as this is, of course, a matter of accu-

Moreover, errors are not obtained with perfect accuracy. Alracy. In fact, performing a 40 times longer run with PR, we
lowing a 10% error in the error determination, we have con-<ind

sidered deviations larger than 3.3 error bars as a significant

AE AC

v

signal of bias(less than a 0.13% probabiljty A;=1.000244),
Let us first discuss our results in two dimensions. In the
left-hand side of Fig. 1 we plot the deviations of the energy A,=—0.0004178).

and the specific-heat from their exact valy&$. We find ) ]

significant deviations only for the single-cluster update whenlhus, both the exact solution test and the Schwinger-Dyson
using R250 and PR as PRNQthe former is not surprising identities test failed by this SC-PR combination, but the ex-
[5]). It is clear that the exact solution is the best of possibleaCt solution test is more sensitive in this case.

tests, but we would like to confront it with the Schwinger- We can discuss our results more quantitatively. For small
Dyson test. For this, let us define the quantities: bias, it is natural to expect that its main effect can be de-

scribed as a shift on the coupling, frophto B8’ =8—Ap.

1 With this assumption, we can relate the different bias. Let
A1=<— > ezﬁf’i5i> , AO be the the difference between the mean valu® ajb-
VA MC tained with some MC simulation, and its true Boltzmann
average, we obtain to first order g [16],
1
=({= : —2p0iS g0
A, <v 2 oiS(1+e .)> , (12) ro~— 89 13
mMC 4E
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FIG. 2. Simulation results for the energy, the specific haatandA,, in a 16 lattice. Dashed lines foE andC, are obtained from a
x? minimization, excluding the SC-R250 daf.is the probability of getting a larger value gf. Full circles correspond to the Swendsen-
Wang update, open ones to single-cluster, and squares are from the Metropolis update.



6790 H. G. BALLESTEROS AND V. MARTN-MAYOR PRE 58
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FIG. 3. Same as Fig. 2 for a 24attice.

In this way, we can understand that the bias for the energgpecific heat for SC-PR are not large compared to the errors.
has the opposite sign as the one for [16], and it is also  Nevertheless, we can compare the bias for the SC-R250 in
opposite to the bias for the specific hetis well known the 16 and 24 lattices(see Table I, which is a test of the
that the maximum of the specific heat of the two-dimensional. dependence of the linear coefficient in Ed.3). From
Ising model in a finite lattice is g8<.). The only evidence finite-size scaling theory, we can estimate that

that we can offer for Eq(13) is empirical, and it is shown in

Table I. Nevertheless, we find the agreement quite satisfac- (AC,/AE) —ps (24|
tory for such a rough calculation. Moreover, from Table | we (ACU/A—E)L:uf 16
can estimate that

~19..., (15)

AE~ — 1.6AA where v~0.63 is the critical exponent for the correlation
' L length. From Table I, the above quotient can be estimated to
AC,~40AA, (14) be 1.15), which is certainly compatible with our prediction,

v ' but the error is so big that this is not compelling evidence for
where the coefficient for the energy is really 158, to be  Ed. (13). Now, if we assume again E¢13), we obtain for
compared with 1.33 from Eq13). Notice that if Eq.(13)  the 16 lattice AE~—5AA; and AC,~194AA;. From
could be rigorously established, it would be enough to estithese relations, and from the estimateAk?“ " we obtain
mate the failure in the Schwinger-Dyson test for any PRNGfor the bias(the statistical errors in Fig. 2 beinge andoc)
to get the safe accuracy level for every observable. However,

to our knowledge, such an interesting property has not been AES©PR~0.00015, ¢¢=0.00019,
proved for any PRNG test. (16)
For the three-dimensional case, we plot our results for the AC3“PR<0.007, o0¢=0.005.

energy and the specific heat in the left-hand side of Figs. 2

and 3. In this case, we unfortunately lack an exact solution tqhys, it is not surprising that the bias does not show up in
control for the bias. However, we can study the statisticalig. 2. For the 23 lattice we lack an accurate measure of the
compatibility of our data. From the plot it is apparent that thepjas forA,, and so we cannot obtain a bias estimate.
SC-R250 results are biased. In the figures, we show the data As a final remark, notice that the sign of the bias seems to
with a weighted estimate of the energy and the specific heaje independent of the lattice size and the space dimension
(excluding the SC-R250 dataln fact, no further significant  for R250. This seems to be consistent with the sinplee-
deviations are found. For the Schwinger-Dyson test, we findjimensional model proposed in Ref11]. However, in the

again strong signals of bias Ay andA, for the combination  pR case, thémuch smaller bias changes sign when going
of R250 with single cluster. We also find worrisome devia-

tions in the single-cluster update with PR as PRNG lfor TABLE II. Bias for E,C, ,A;,A,, for the 16 and 24 lattices
=16. To clarify if a bias is present in this case, we havesimulated with the SGQR250 combination. The “correct” value has
performed a 40 times longer run. The new results are been taken from the averaged estimate of Figs. 2 and 3. The ratios
test the lattice-size dependence of the coefficients in(Eg).
A1=0.9999668),

L AE AC, AA, AA,
A,=0.00010126).
16° —0.00124(19) 0.05#) 0.000265) —0.00082(16)
Thus, the PR PRNG does produce biased results in combp4? —0.00066(13) 0.046) 0.000143) —0.00044(11)
nation with the single-cluster update. In this case, we cannqtatio 0.5313) 0.9012) 0.5416) 0.544)

check Eq.(13) directly, as the deviations in the energy and
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from two to three dimensions. This suggests that the reasdmand, the Schwinger-Dyson equations test has shown that the

for bias is more involved in this case. single-cluster update with the R250 and PR PRNG'’s pro-
duces biased results, without resource to seven more simula-
V. CONCLUSIONS tions. It should be noticed that the measure of the Schwinger-

) ) Dyson equations is almost computer time costless, as the
~In this work, we have shown that some Schwinger-Dyson,ymper of possible exponential factors is finite, and the local
identities, Eqgs.(6) and (7), are a sensitive test of PRNG- energy should be measured anyway. Disk storage is not a
induced blgs. _Most important, they can be used Wheﬁ_”%hortcoming either, because no reweightiig] is to be
exact solution is at hand. We have provided some empiricajone, and the calculation can be made “on the fly.” They
evidence for a simple relation between the bias induced iRy e zi50 extremely helpful for code debugging. So, we be-
the different observabldour Eq.(13)]. This relation is ob- lieve Schwinger-Dyson equations to be very useful tools,

to produce a shift on the coupling. It might be possible to

justify this in terms of relevant and irrelevant operators, in
the framework of the renormalization group. Furthermore,
this suggests that an investigation along the lines of R&. We acknowledge interesting discussions with L. A.
could be useful to establish which new couplings are generFernandez, J. J. Ruiz-Lorenzo, and A. MomSudupe. The
ated by the PRNG-induced bias. If this relation could becomputations have been carried out using the RTNN ma-
established, the Schwinger-Dys@BD) equation test would chines at the Universidad de Zaragoza and the Universidad
provide an estimate on the maximwafeaccuracy that one Complutense de Madrid. We acknowledge CICyT for partial
can get for any observable, with the given PRNG. financial supportContracts Nos. AEN97-1708 and AEN97-
In three dimensions, where there is no exact solution a1693.
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