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Abstract

We construct new solvable rational and trigonometric spin models with near-neighbors interactions by an extensio
Dunkl operator formalism. In the trigonometric case we obtain a finite number of energy levels in the center of mas
while the rational models are shown to possess an equally spaced infinite algebraic spectrum. For the trigonometri
of the rational models, the correspondingeigenfunctions are explicitly computed. We also study the scalar reductions of t
models, some of which had already appeared in the literature, and compute their algebraic eigenfunctions in closed
the rational cases, for which only partial results were available, we give concise expressions of the eigenfunctions in
generalized Laguerre and Jacobi polynomials.
 2004 Elsevier B.V. All rights reserved.

PACS: 03.65.Fd; 75.10.Jm
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Calogero–Sutherland (CS) models are one of the most extensively studied types of exactly solvable
tegrable quantum Hamiltonians describing a system ofN particles in one dimension with long-range two-bo
interactions[1–5]. Apart from their intrinsic mathematical relevance[6–8], these models arise naturally in ma
different fields, such as Yang–Mills theories[9,10], quantum Hall liquids[11], random matrix theory[12–15],
propagation of solitons[16], fractional statistics and anyons[17–21], etc. Several generalizations of CS models
particles with internal degrees of freedom (“spin”) havebeen developed over the last decade using two main
proaches, namely the supersymmetric formalism[22–24]and the Dunkl operator method[25–30]. Spin CS models
are intimately connected with integrable spin chains with long-range position-dependent interactions, like t
brated Haldane–Shastry spin chain[31,32]. Indeed, when the coupling constant of a spin CS model tends to in
the particles “freeze” in the classical equilibrium positions of the scalar part of the potential, thus giving
a spin chain of Haldane–Shastry (HS) type. This mechanism, usually called the “freezing trick”, was first us
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by Polychronakos[33] to construct the first integrals of the original HS spin chain by taking the large cou
constant limit of the corresponding integrals of the Sutherland spin model. These ideas have also been succes
applied to construct integrable and exactly solvable spin chains of HS type from other spin CS models[34–37].

In a recent paper[38], Jain and Khare proposed new solvable versions of the original Calogero
Sutherland scalar models featuring near-neighbors interactions. These new models are closely relat
so-called short-range Dyson models[39,40] in random matrix theory, in that the square of the ground-s
wavefunction of the many-body system coincides withthe joint probability distribution function for eigen
values of the corresponding short-range Dyson model. Several generalizations of the Jain and Kha
els appeared in a subsequent paper[41], including their extension to theBCN root system and to highe
dimensions. The previous publications open a number of interesting questions, such as the existence
other solvable scalar models with near-neighbors interactions, or the construction of spin models wit
neighbors interactions and their corresponding spin chains of Haldane–Shastry type. These short-range
chains with position-dependent interactions are of particular significance, since they occupy an inter
position between the well-known Heisenberg chain (short-range, position-independent interactions)
usual HS-type spin chains (long-range, position-dependent interactions). A first step in this direction is th
recent work by Deguchi and Ghosh[42], in which several spin 1/2 models related to the scalar models
Jain and Khare were introduced and partially solved using the supersymmetric formalism. These auth
pointed out how to obtain the spin chains corresponding to these models by applying Polychronakos’s freezin
trick.

In this Letter we present three new families of solvable scalar and spinN -body models with near-neighbo
interactions. By contrast with Ref.[42], our approach is based on a modification of the Dunkl operator forma
and provides a wide range of totally explicit solutions for all values of the spin. The potentials of these spin
are given by

(1a)V1 = 2a2
∑

i

cot(xi − xi−1)cot(xi − xi+1) + 2a
∑

i

sin−2(xi − xi+1)(a − Si,i+1),

(1b)V2 = ω2r2 +
∑

i

b(b − 1)

x2
i

+
∑

i

8a2x2
i

(x2
i − x2

i−1)(x
2
i − x2

i+1)
+ 4a

∑
i

x2
i + x2

i+1

(x2
i − x2

i+1)
2 (a − Si,i+1),

(1c)V3 = ω2r2 +
∑

i

2a2

(xi − xi−1)(xi − xi+1)
+

∑
i

2a

(xi − xi+1)2
(a − Si,i+1),

wherer2 = ∑
i x

2
i anda, b > 1/2. Here and in what follows the sums run from 1 toN , and we are identifying

xN+1 with x1. The operatorsSij permute the spin coordinates of the particlesi andj . In other words, if|s1, . . . , sN 〉
(with −M � si � M, M being a half-integer) is an element of the basis of the spin spaceS, then

Sij | . . . , si, . . . , sj , . . .〉 = | . . . , sj , . . . , si , . . .〉.
Note thatSij can be expressed in terms of the fundamental SU(2M + 1) generatorsSa

i , a = 1, . . . ,4M(M + 1), as
Sij = 1/(2M + 1) + ∑

a Sa
i Sa

j .
The spin potentials(1) reduce to solvable scalar potentials by settingSi,i+1 to 1. In particular, the scalar redu

tions of the potentials(1a)and(1c)are the models introduced by Jain and Khare. The potentials(1a)and(1c)with
M = 1/2 are similar to the spin 1/2 potentials introduced in Ref.[42], but differ from them by a spin-depende
term. The spin model(1b), as well as its scalar reduction, are both completely new. There is also a hype
version of the trigonometric potential(1a), obtained by replacingxk by ixk andV1 by −V1.

The starting point in the solution of the models(1) is the introduction of the following second-order differenti
difference operators, which play the same role as the quadratic combinations of Dunkl operators in the construct
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(2a)T1 =
∑

i

z2
i ∂

2
i + 2a

∑
i

1

zi − zi+1

(
z2
i ∂i − z2

i+1∂i+1
) − 2a

∑
i

zizi+1

(zi − zi+1)2 (1− Ki,i+1),

(2b)T2 =
∑

i

zi∂
2
i + 2a

∑
i

1

zi − zi+1
(zi∂i − zi+1∂i+1) − a

∑
i

zi + zi+1

(zi − zi+1)2 (1− Ki,i+1),

(2c)T3 =
∑

i

∂2
i + 2a

∑
i

1

zi − zi+1
(∂i − ∂i+1) − 2a

∑
i

1

(zi − zi+1)2 (1− Ki,i+1).

Here∂i ≡ ∂zi , the operatorKij permutes the variableszi andzj , and we are again identifyingzN+1 with z1. We
shall also need in what follows the first-order operators

(3)J− =
∑

i

∂i , J0 =
∑

i

zi∂i .

If Φ = ∑
s fs(z)|s〉, wherez = (z1, . . . , zN ) ands = (s1, . . . , sN ), is a state totally symmetric under permutatio

of both the spatial and spin coordinates of each particle, thenKijΦ = SijΦ. HenceTεΦ = T ∗
ε Φ, ε = 1,2,3, where

T ∗
ε = Tε |Ki,i+1→Si,i+1. The HamiltonianHε = −∑

i ∂
2
xi

+Vε of each of the models(1) can be obtained by applyin
a suitable gauge transformation and change of variables to a linear combination

(4)H̃ε = c T ∗
ε + c−J− + c0J0 + E0 .

More precisely, we can write

(5)Hε = µ · H̃ε

∣∣
zi=ζ(xi )

· µ−1,

where the constantsc, c−, c0, E0, the gauge factorµ, and the functionζ are given in each case by

(6a)(I) c = 4, c− = 0, c0 = 4(1− 2a), E0 = 2Na2, µ =
∏
i

sina(xi − xi+1), ζ(x) = e±2ix,

(6b)(II) c = −4, c− = −2(2b + 1), c0 = 4ω, E0 = Nω(4a + 2b + 1),

µ = e− ω
2 r2 ∏

i

(
x2
i − x2

i+1

)a
xb
i , ζ(x) = x2,

(6c)
(III ) c = −1, c− = 0, c0 = 2ω, E0 = Nω(2a + 1), µ = e− ω

2 r2 ∏
i

(xi − xi+1)
a, ζ(x) = x.

The key idea in our approach to the solution of the models(1) is to find an increasing sequence of fini
dimensional linear spaces̃H0

ε ⊂ H̃1
ε ⊂ · · · invariant under the gauge HamiltoniañHε . Indeed, by Eq.(5) this implies

that the corresponding HamiltonianHε can be diagonalized in each of its invariant subspacesHn
ε = µH̃n

ε

∣∣
zi=ζ(xi)

,
n = 0,1, . . . . The operators(2) and(3) preserve the spacePn of polynomials inz of total degree at mostn, for
all non-negative integer values ofn. In our recent work on spin CS models[29,30], the operatorsTCS analogous
to Tε also leavePn invariant, and in addition commute with the total symmetrizer under particle permutationsΛ.
This guarantees that the corresponding operatorsT ∗

CS preserve the space of completely symmetric spin funct
Λ(Pn ⊗S). In the present case, however, the operators(2) do not commute withΛ, and hence it is not clear a prio
whether the operatorsT ∗

ε leave invariant any finite-dimensional space of spin functions. In fact, sinceJ− andJ0
obviously commute withΛ, the results of Jain and Khare[38] for the scalar case indicate that the operatorsT ∗

1
andT ∗

3 possess at least “trivial” invariant spaces of the formQ⊗ (ΛS), whereQ is a finite-dimensional subspac
of the space of totally symmetric polynomials inz. As it turns out, each of the operatorsT ∗

ε preserves a nontrivia
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subspaceT n
ε ⊂ Λ(Pn ⊗ S) for all n, namely

(7a)

T n
1 = 〈

f (τ1, τN−1, τN )Λ|s〉, g(τN−1, τN )Λ
(
z1|s〉

)
, q(τ1, τN )Λ

(
z1 · · ·zN−1|s〉

)
∣∣ f11 = fN−1,N−1 = gN−1,N−1 = q11 = 0

〉
,

(7b)T n
2 = 〈

f (τ1, τ2, τN)Λ|s〉, g(τ1, τN )Λ
(
z1|s〉

) ∣∣ f22 = fNN = gNN = 0
〉
,

(7c)

T n
3 = 〈

f (τ1, τ2, τ3)Λ|s〉, g(τ1, τ2, τ3)Λ
(
z1|s〉

)
, h(τ1, τ2)Λ

(
z2

1|s〉
)
, h(τ1, τ2)Λ

(
z1z2|s′〉) ∣∣ f33 = g33 = 0

〉
.

An outline of the proof of this statement, which is crucial for what follows, is presented inAppendix A. In Eq.(7),

(8)τk =
∑

i1<···<ik

zi1 · · ·zik

is the kth elementary symmetric polynomial,f , g, h, andq are polynomials of total degree inz less than or
equal ton, n − 1, n − 2, andn − N + 1, respectively, and (for instance)fk = ∂f/∂τk . The spin states|s〉 ∈ S
are arbitrary, while|s′〉 denotes a state such that the sum

∑
i |s′

i,i+1〉 is totally symmetric, where|s′
ij 〉 is defined by

Λ(z1z2|s′〉) = ∑
i<j zizj |s′

ij 〉. Note that the spaces(7) are also preserved by the operatorJ0. Similarly, the operato
J− leaves the spaceT n

3 invariant, while it preservesT n
1 andT n

2 provided thatfN−1 = fN = gN−1 = gN = q = 0
andfN = gN = 0, respectively. From Eqs.(4) and (6), it easily follows that the gauge Hamiltonians̃Hε preserve
the spaces̃Hn

ε given by

(9)H̃n
1 = T n

1 , H̃n
2 = T n

2

∣∣
fN =gN=0, H̃n

3 = T n
3 .

By diagonalizing the HamiltonianHε in its corresponding invariant spacesHn
ε , n = 0,1, . . . , one can in principle

construct an infinite sequence of exact eigenvalues and eigenfunctions, which shall be referred to as “algebraic
what follows. We have found in this way all the algebraic eigenvalues of the spin models(1). We also present ex
plicit expressions for the corresponding algebraic eigenfunctions, with the only exception of the spin eigenfu
of the model(1c)not factorizing asµf (τ1, τ2, τ3)Λ|s〉. In particular, we obtain all the algebraic eigenfunctions
the scalar reductions of the spin potentials(1), thus considerably extending the results of Refs.[38,41]. It should
be noted, however, that the point spectrum could possibly include additional eigenvalues and eigenfunctio
are not algebraic. We shall now discuss in more detail each of the models(1).

Case 1. The HamiltonianH1 commutes with the total linear momentumP = −i
∑

k ∂xk , so that it admits a
basis of eigenfunctions with well-defined total momentum. In fact, since in this caseτ l

N = exp(±2il
∑

kxk), mul-
tiplying an eigenfunction ofH1 with energyE and total momentump by τ l

N simply “boosts” its energy and tota
momentum. We shall take advantage of this fact to “normalize” the algebraic eigenfunctions to zero total m
tum. It easily follows from Eq.(7a)that when this normalization is performed one obtains only a finite numb
eigenfunctions ofH1. In the scalar case, there are exactly four eigenfunctions with zero momentum, namel

(10)ψ0 = µ, ψ1,2 = µ
∑

i

{
cos
sin

}(
2(xi − X)

)
, ψ3 = µ

[
Na

2a + 1
+

∑
i<j

cos(xi − xj )

]
,

whereX = 1
N

∑
i xi is the center of mass coordinate. Their respective energies areE0 (ground state),E1,2 =

E0 + 4(2a − 1+ 1/N), andE3 = E0 + 8(2a + 1). These are essentially the solutions found in[43].
In the spin case, to each scalar eigenfunction(10) there correspond

(2M+N
N

)
factorized solutions of the form

Ψ
(0)
n = ψnΛ|s〉, where|s〉 ∈ S is arbitrary. There are three additional families of algebraic spin eigenfunc

with zero total momentum, given by

Ψ
(1)
1,2 = µ

∑
i

{
cos
sin

}(
2(xi − X)

)|si〉, Ψ
(1)
3 = µ

[
a

2a + 1

∑
i

|si〉 +
∑
i<j

cos(xi − xj )|sj 〉
]
,
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where the spin states|si〉 are defined byΛ(z1|s〉) = ∑
i zi |si〉, and|s〉 ∈ S is any non-symmetric state. It should

noted that each of the spin statesΨ
(0)
n andΨ

(1)
n has the same energy as the scalar eigenfunctionψn.

Case 2. In this case the algebraic energies are given byEn = E0 + nc0 = E0 + 4nω, where the quantum
numbern = 0,1, . . . is the degree inz of the corresponding eigenfunction of the gauged HamiltoniañH2. This
follows easily from the fact that bothT ∗

2 andJ− lower the degree, whileJ0 preserves it. As for Calogero’s origin
model, the algebraic spectrum is equally spaced, but the spacing is twice the value suggested by the harm
term. Unlike the usual CS models, the algebraic levels of this model have a well-defined thermodynamic lim
En/N → ω(4a +2b +1) asN → ∞. This property, which was already noted in Ref.[38] for the scalar reduction
of the potentials(1a)and(1c), is in fact shared by all the models(1). In the scalar case, for eachn � 2 there are
two algebraic eigenfunctions with energyEn, namely

ψ(0)
n = µLα−1

n

(
ωr2), n = 0,1, . . . ,

ψ(1)
n = µ

[
ω2

(
N(α + 1)

∑
i

x4
i − αr4

)
Lα+3

n−2

(
ωr2) + n(n − 1)αLα−1

n

(
ωr2)], n = 2,3, . . . ,

whereα = N(2a + b + 1/2) andLλ
ν is a generalized Laguerre polynomial of degreeν. Note, in particular, tha

ψ
(0)
0 = µ has no nodes in the configuration space 0< x1 < · · · < xN , and is thus the ground state wavefuncti

In the spin case, for each energy levelEn we have first of all the factorized eigenfunctions of the formΨ
(k)
n =

ψ
(k)
n Λ|s〉, k = 0,1. In addition, for eachn � 1 there is a family of genuine spin eigenfunctions

Ψ (2)
n = µ

[
Lα+1

n−1

(
ωr2)Λ(

x2
1|s〉) − α

Nω
Lα

n−1

(
ωr2)Λ|s〉],

where|s〉 ∈ S is non-symmetric. Note that, as in the previous case, the spin eigenfunctions with lowest al
energyE0 are all factorized states.

Case 3. This is probably the most interesting case, since the algebraic eigenfunctions depend essential
three symmetric variablesτ1, τ2, τ3. As in the previous case, the algebraic energies are given byEn = E0 + nc0 =
E0 + 2nω, wheren is again the degree inz of the corresponding eigenfunctions ofH̃3. We shall begin, as usua
with the scalar case, for which we havebeen able to compute all the algebraic eigenfunctions in closed form
each energy levelEn with n � 3 there are two infinite families of algebraic eigenfunctionsψ

(k)
lm , k = 0,1, with

n = 2l + m. The first family is given by

(11)ψ
(0)
lm = µτm

1 L
−β
l

(
ωr2)P (α,β)

[ m
2 ] (t), l,m = 0,1, . . . ,

wheret = 2Nr2/τ2
1 − 1, α = N(a + 1/2) − 3/2, β ≡ β(m) = 1− m − N(a + 1/2), P (α,β)

ν is a Jacobi polynomia
of degreeν, and[x] denotes the integer part ofx. The second family reads

(12)ψ
(1)
lm = µτm−3

1 L
−β
l

(
ωr2)[P

(α+3,β)

[ m−3
2 ] (t)

∑
i

x3
i + 3τ3

1

2N2 ϕlm(t)

]
, l,m − 3 = 0,1, . . . ,

whereϕlm is a polynomial of degree[m/2] given by

(13)ϕlm = m + 2α + 2

m − 1
P

(α+2,β−2)
m
2

(t) − P
(α+3,β−1)
m
2 −1 (t) − 4α + 7

m − 1
P

(α+2,β−1)
m
2 −1 (t) + 1

3
P

(α+3,β)
m
2 −2 (t) ,

for evenm, while for oddm we have

ϕlm = 2P
(α+2,β−1)
m−1

2
(t) − P

(α+3,β−1)
m−1

2
(t) + 1

3
P

(α+3,β)
m−3

2
(t)

(14)+ m + 2α + 2

m(m − 2)
P

(α+1,β)
m−3

2
(t) − m + 2α + 2

m − 2
P

(α+2,β)
m−3

2
(t) .
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Note that, as in the previous cases,ψ
(0)
0 = µ is the ground state. The above results show that for allN � 3 the scalar

reduction of the HamiltonianH3 possesses two different families of eigenfunctions of the formµL
−β
l (ωr2)pν(x),

with pν a homogeneous polynomial of degreeν � 3, cf. Eqs.(11) and (12)–(14). This was verified only up toν = 6
andN � ν in Ref. [41].

In the spin case, the algebraic energies are of coursethe same as in the scalar case. As in the previous c
each scalar algebraic eigenfunction gives rise to

(2M+N
N

)
factorized spin eigenfunctions. The computation of

remaining algebraic spin eigenfunctions, which is considerably more involved than in Cases 1 and 2, is
progress. Even without an explicit knowledge ofthe eigenfunctions, for each algebraic levelEn one can easily
compute the number of independent states of the form(7c)of degreen. If all the eigenfunctions of this model (an
of its scalar reduction) were algebraic, the previous remark would imply that the degeneracy of the levels
explicitly found. The method of Ref.[37] could then be used to compute the partition function of the assoc
spin chain

H3 =
∑

i

(ξi − ξi+1)
−2Si,i+1,

where(ξ1, . . . , ξN ) is an equilibrium of the scalar potential

U3 = 1

2
r2 +

∑
i

1

(xi − xi−1)(xi − xi+1)
+

∑
i

1

(xi − xi+1)2 .

This remark obviously applies to the rational model(1b) as well. Note, however, that for this model one can
addition construct states of the associated spin chain by applying the freezing trick to the genuine spin eigenfu
tionsΨ

(2)
n presented above.
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Appendix A. Invariance of the spaces T n
ε under the operators T ∗

ε

The proof of the invariance of the spacesT n
ε in Eq. (7) under the corresponding operatorsT ∗

ε is a lengthy but
essentially straightforward calculation. For the reader’s convenience, we shall outline in this appendix the p
the spaceT n

1 , the other cases being fairly similar.
Note, first of all, thatT1Φ = T ∗

1 Φ for all Φ ∈ T n
1 , since all the states in this space are completely symm

under permutations. Let us begin by considering the action ofT1 on factorized states of the formf Λ|s〉, wheref

belongs to the finite-dimensional space of symmetric polynomials

(A.1)Qn
1 = 〈

f (τ1, τN−1, τN )
∣∣ f11 = fN−1,N−1 = 0, degf � n

〉
,

the symmetric variablesτk are defined in Eq.(8), fjk...l = ∂τj ∂τk · · ·∂τl f , and degf is the degree off in z. Since
T1(f Λ|s〉) = (T1f )Λ|s〉, we must show that the scalar spaceQn

1 is invariant underT1. If f ∈ Qn
1, thenKijf = f

and thus

T1f =
(∑

i

z2
i ∂

2
i + 2aX1

)
f,
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t

where

X1 =
∑

i

1

zi − zi+1

(
z2
i ∂i − z2

i+1∂i+1
)
.

From the identities

(A.2a)X1τ1 =
∑

i

z2
i − z2

i+1

zi − zi+1
= 2τ1 ,

(A.2b)X1τN = τN

∑
i

(
zi

zi − zi+1
− zi+1

zi − zi+1

)
= NτN ,

(A.2c)

X1τN−1 =
∑

i

X1

(
τN

zi

)
= N

∑
i

τN

zi

− τN

∑
i

X1zi

z2
i

= NτN−1 +
∑

i

(
1

zi − zi+1
− 1

zi−1 − zi

)
= NτN−1,

it follows that

(A.3)X1f = 2τ1f1 + NτN−1fN−1 + NτNfN .

On the other hand, the elementary identity

(A.4)∂if (τ1, τN−1, τN ) = f1 + (
zi

−1τN−1 − z−2
i τN

)
fN−1 + zi

−1τNfN

implies that∑
i

z2
i ∂

2
i f (τ1, τN−1, τN )

(A.5)

= (
τ2

1 − 2τ2
)
f11 + 2(τ1τN−1 − NτN)f1,N−1 + 2τ1τNf1N

+ [
(N − 1)τ2

N−1 − 2τN−2τN

]
fN−1,N−1 + 2(N − 1)τN−1τNfN−1,N + Nτ2

NfNN .

By Eqs.(A.3) and (A.5), the conditionsf11 = fN−1,N−1 = 0 guarantee thatT1f belongs toQn
1. Therefore, the

subspaceQn
1 ⊗ (ΛS) of factorized states inT n

1 is invariant under the action ofT1.
Let us turn next to the states of the formg(τN−1, τN )Λ(z1|s〉) ≡ gΦ, whereg is a polynomial of degree inz at

mostn − 1 satisfyinggN−1,N−1 = 0. Writing Φ = ∑
i zi |si〉, we have

T1(gΦ) =
∑

i

T1(gzi)|si〉.

On the other hand,

T1(gzi) = (T1g)zi + 2z2
i ∂ig + 2ag

(
z2
i

zi − zi+1
+ z2

i

zi − zi−1
− zizi+1

zi − zi+1
− zizi−1

zi − zi−1

)
,

and therefore, by Eqs.(A.3)–(A.5),

T1(gΦ) = [
2(N − 1)τN−1τNgN−1,N + Nτ2

NgNN

+ 2(aN + 1)(τN−1gN−1 + τNgN) + 4ag
]
Φ − 2τNgN−1Λ|s〉.

HenceT1(gΦ) belongs toT n
1 , as claimed.

Consider, finally, states of the formq(τ1, τN )Λ(z1 · · ·zN−1|s〉) ≡ qΦ, whereq is a polynomial of degree a
mostn − N + 1 in z satisfyingq11 = 0. Since

Φ = τNΛ
(
z−1

1 |s〉) ≡ τN

∑
z−1
i |si〉,
i
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rk,
calling q̂ = τNq we have

T1(qΦ) =
∑

i

T1

(
q̂

zi

)
|si〉 =

∑
i

[
(T1q̂)z−1

i − 2∂i q̂ + 2q̂z−1
i

]|si〉 = τ−1
N (T1q̂)Φ − 2

∑
i

∂i q̂|si〉 + 2qΦ.

Using Eqs.(A.3) and (A.5)we easily obtain

τ−1
N T1q̂ = 2τ1q̂1N + NτN q̂NN + 2a(2τ1q1 + Nq̂N),

and therefore (cf. Eq.(A.4))

T1(qΦ) = [
2τ1q̂1N + NτN q̂NN + 2(aN − 1)q̂N + 4aτ1q1 + 2q

]
Φ − 2q̂1Λ|s〉

clearly belongs toT n
1 .
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