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We develop a computational method for calculating the spatial profile of the electromagnetic field after scat-

tering by an array of waveguides.

Our formalism is very general and includes chromatic dependence, the
influence of the array arrangement, and other effects such as the effect of stress.
plitude and phase of scattered light provide valuable information about the features of the waveguides.

Our calculations of the am-
These

results can be applied to different areas of study, such as biological waveguides and fiber sensing. © 2003

Optical Society of America

OCIS codes: 060.2310, 060.2370, 060.4370, 230.7370, 290.4210, 330.5310.

1. INTRODUCTION

Scattering of light by a bundle of anisotropic optical fibers
(waveguides) is an interesting tool with which to obtain
information on the geometrical—i.e., arrangement or
size—and optical properties of the array of fibers. In con-
nection with the formulation of light scattering by single
isotropic optical waveguides, there are a number of well-
developed methods in the literature,’? and such useful
approximations as the well-established eikonal are com-
monly applied.? On the other hand, multiple scattering
has been treated within several theoretical frameworks.
It is especially worth mentioning the analysis of light
scattering by an array of N fixed isotropic obstacles with
arbitrary shape, which has been treated by considering
the formalism of multiple scattering as an application of
quantum-mechanical multiple scattering in the context of
classical fields.* Also, multiple scattering by volume
gratings has been solved through a modified Fujiwara’s
theory.® However, to our knowledge, none of these for-
malisms have yet been applied to study multiple scatter-
ing by an array of N isotropic optical waveguides. More-
over, scattering by multiple anisotropic waveguides,
which is the subject of this work, has scarcely been con-
sidered. This can be attributed to the mathematical com-
plications that arise as a result of the tensor formalism
that is required for including the anisotropy of the me-
dium. In an earlier work, we have treated multiple scat-
tering by an array of N birefringent optical waveguides
with cylindrical symmetry.® We have shown that the
solution in the form of a system of two coupled in-
tegral equations is rather complex to be applied in nu-
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merical calculations, even for the simplest case of two
waveguides.

In this paper, we present a numerical procedure to cal-
culate scattering by multiple, anisotropic, cylindrical
waveguides that has its basis in a first-order approxima-
tion for multiple scattering. Our general formalism al-
lows us to consider different geometrical arrangements
for packing and to analyze the influence of geometrical
and optical parameters on the amplitude and phase of the
total scattered light field. In particular, arrays of fibers
with various wavelength sensitivities can be considered,
thus allowing us to simulate a polychromatic response.
Finally, other properties that affect the scattering pro-
cess, such as photoelasticity, can also be included. Such
fibers are of current practical interest. For example, ap-
plications of our method include simulation of retinal pho-
toreceptors and biological waveguides, polarimetric fiber-
optic sensors, and, in general, mechanical stress sensors.
It should be remarked that multiple-scattering theories
have been previously used within the context of ocular
structures.”® These works, however, were not related to
photoreceptor optics, but to different scattering phenom-
ena, such as the propagation of light through the cornea’
or multiple scattering by cellular organelles at the retinal
nerve fiber layer.® An important distinction of these for-
malisms is that our model, being more general, allows us
to take into account the waveguiding properties that
characterize the behavior of retinal photoreceptors. With
regard to optical-fiber-based sensors, we point out here
that previous work presented by other authors requires a
modal analysis and far-field-radiation-pattern character-
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ization for particular modal orders.® Our method, with
its basis in the analysis of the forward-scattering inten-
sity pattern, would require a less sophisticated and there-
fore less costly procedure.

The paper is organized as follows. We introduce the
conditions of our physical system in Section 2. In Section
3 we review the mathematical formulation of light scat-
tering for a single anisotropic waveguide. Then we dis-
cuss the approaches that have allowed us to reach a
simple matrix equation that can be numerically inte-
grable. Section 4 describes in detail the numerical pro-
cedure. In Section 5, the theoretical formalism is gener-
alized for an array of waveguides by way of the sampling
theory. In Section 6, we incorporate photoelasticity into
the model. This mechano-optical effect consists in a
change in birefringence induced by mechanical strain.
Section 7 contains some numerical results and applica-
tions. Finally, in Section 8, we summarize and draw the
main conclusions of our work.

2. PHYSICAL CONDITIONS

We consider N parallel, infinite, dielectric cylindrical
waveguides along the Z axis inside an infinite optical me-
dium having refractive index ny. As incident light is in-
teracting with the fiber package, a multiple-scattering
phenomenon takes place. Analysis of the complex ampli-
tude distribution associated with the scattered field will
provide information on the optical properties of the fiber
package (see Fig. 1).

Let the two-dimensional vector p = (x, y) denote a ge-
neric position in the XY plane and let d be the average
distance between adjacent waveguides. Consider a gen-
eral case of birefringent, optically active waveguides. We
need to introduce the tensor representing the dielectric
permittivity associated with these media. For the single
isolated ith fiber

z R N
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X

Fig. 1. N coupled waveguides; configuration for each single fiber
as in Fig. 2. d = average distance between two adjacent (par-
allel) fibers. The impact plane XY defines the plane where the
amplitude of the light scattered by the fiber array is determined
(see text for details).
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Fig. 2. Model of an individual fiber; the wave vector of the in-
coming radiation B is defined at the Z direction (parallel to the
optic axis of the waveguide). According to the properties of bi-
refringent media, the electric displacement vector is defined at
the XY plane. The magnetic field is plane-polarized at the XY
plane. In assuming this model, the propagation modes are con-
sidered with propagation constant 3, along with the light scatter-
ing. This is the configuration considered in the present model
[see Eqgs. (2) and (3)].

enn €12 O

e(p) = | €21 &2 0 |. (1
0 O €33

In Eq. (1), e(p) is the dielectric permittivity tensor inside
the ith fiber. In general, it will be a function of the two-
dimensional vector p. The cross-sectional area of the ith
fiber is Q; = mR?, R, being the radius of the ith fiber. If
the medium is not optically active, then ;5 = €9; = 0.
For the case of an isotropic fiber all the elements of the
diagonal of the tensor have the same value ¢;; = &.

Let us assume that an incident, monochromatic, plane-
polarized scalar wave interacts with the ith fiber. We
shall assume that the magnetic field h = (h,, h,, 0) is
plane polarized at the XY plane (see Fig. 2). The wave
vector B of the incoming radiation is defined along the Z
direction (parallel to the optic axis of the waveguide).
The magnetic scalar field h;,(p) associated with the in-
coming wave is

h;,(p) = hy(p)exp(iBz). (2)

h;,(p) is transverse to the Z axis as displayed in Fig. 2(a).
In Eq. (2), B is the modulus of the wave-vector propaga-
tion associated with the incoming wave, defined above.
For convenience we shall analyze the magnetic scattered
field in the remainder of this paper.

3. LIGHT SCATTERING BY A
BIREFRINGENT OPTICAL WAVEGUIDE

Before introducing the mathematical formalism, we have
to consider some required mathematical properties of the
behavior of the scattered-amplitude function. This func-
tion and its first derivatives are continuous inside (};, al-
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though they may be discontinuous across the external
boundary of the ith waveguide, which, for simplicity, we
assume to be unclad.

The boundary conditions for a dielectric interface are
the usual ones.!® After the interaction of the incoming
field with the ith fiber, the total transverse magnetic field
arising from the fiber is

hscatt(p) = hl(p)exp(zﬁz) (3)

When we start from Maxwell’s equations and use stan-
dard Green’s function techniques, some direct (although
lengthy) calculations yield!

mm=me+L¥ﬂmmm?mm—Mﬁmw

+ Py(p,p)Thi(p'), )

where K2? = (n,27/N)?—B%, A=wavelength of light,
no=refractive index of the medium, and H Bl)EHankel
function of the first kind and zeroth order. In this equa-
tion, [;d?p denotes the integral over the total Ccross sec-
tion (); of the ith waveguide. Finally, matrices P; and P,
are given by
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quently, we have g1 = 891 = 0 and &1; = £99. After
these assumptions, expressions for P; and Py can be sub-
stantially simplified:

L 5| E11 ~ 1 0
P,= - K 0 o — 1) (7a)
P2HLD P2HD
. 1 ax'? ax'dy’
Py(p, p') = 4i833(833 — 1) 192H§)1) &ZHBI)
dy ' ox’ dy'?

(7b)

Finally, we will assume that the incident plane wave
has constant amplitude h'®(p) = h'®. In this situation,
the final result for the scattering amplitude of the mag-
netic field can be written symbolically as

1, A
h;(p) = h'® — ZPlllh“’) + PyIL,h, (8)
i
where I, denotes the integral of the Hankel function H E)l)

within the cross section (); of the cylindrical waveguide
(see Fig. 1):

l") 9 822_1

= - 5
1(p") 0 er—1)’ (5a)

#HG(Klp — p']) P2HM(K|p - p'))

. ) 1 —(892 — £33) P (892 — £33) ' ay .

(pp') = — ' , 5

’ tien| PHM(K|p — p'|) PHM(Klp — p'])
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The circumflex symbol * is used throughout to designate R ’
matrices. In this expression p’ = (x', y'). I, = fﬂd p'Hy' (Klp — p']), 9

Note that the first term on the right-hand side of Eq.
(4) is just the amplitude of the incident plane wave. The
second contribution contains information about the scat-
tering process. It depends on the scatterer’s features
(size relative to the light wavelength \, geometry, mate-
rial parameters, etc.) through the matrices P; and P,.

The integral Eq. (4) can be formally solved by indefinite
iteration. However, for weak scattering processes, it is
acceptable to keep only the first term of the iteration.
Such approach leads to the following formula:

1 n
Emewfpmmw»

h;(p) = h'(p) + J d?p’
Q;

)l

+ Py(p,p') [0 (p). (6)

Before developing our mathematical approach, we will
introduce a few simplifications. First, let us consider a
homogeneous fiber, that is, ¢ # e(p). Second, we assume
that the symmetry properties of the birefringent wave-
guide correspond to those of a uniaxial crystal.'? Conse-

and matrix I, is written as

. 1

I = —
2 4i833(833 811)[

| T
2 2 } (10)

LA o
The elements Ig’ﬁ(a = x, y) of matrix i2 correspond to in-

tegration of the second derivatives of Hy" within the area
Q;, that is,

PH
L = f d?p’ (Klp— p'). (1)
[9) ﬁxaﬁxﬁ

Note that in Eqgs. (56)—(9), the symbol p denotes a ge-
neric point in the whole XY plane, while points labeled p’
are constrained to the area (); within the fiber [see Fig.
3(a)l.

Now, the problem of solving the light scattering by an
optical fiber reduces to the numerical evaluation of inte-
grals I, and I5”.
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(@) (b)
Fig. 3. Integration region: (a) Circular section of a single fiber
Q = wR?%, where R is the radius of the fiber, p is the point of ob-
servation, and p’ is the radial variable of integration. In this
case, |p| > R, so|p— p'| > 0. (b) In this case, |p| < R. Then,

at|p — p’| = 0 the integrand shows a singularity; see text for de-
tails.

4. NUMERICAL PROCEDURE

Let us examine integral I;. It can be shown that the
Hankel function H gl) is integrable in the whole plane,®
even though it diverges at the origin, that is, at p = p’.
Nevertheless, to perform the numerical integration, this
singularity must be carefully handled.

When calculating I, at a given point p two situations
can take place:

1. Ifpoint p lies outside the integration area, i.e., p & ;
[see Fig. 3(a)l, the eventuality that p = p’ never occurs.
In that case, the numerical integration can be performed
straightforwardly by standard numerical methods. In
particular, we used a library routine for integrating by
Gaussian quadratures.'?

2. If point p belongs to ); [see Fig. 3(b)], we will have to
deal with a locally divergent integrand. In this work we
have proceeded in the following way. We define a small
circular area 3 of radius § < 1/K centered at p as shown
in Fig. 3(b). Then we divide the integration space into
two parts: outside and inside the area . In the region
outside 3, no singularity is found, so the above-mentioned
standard routine can be applied. Conversely, inside X
the Hankel function H\" is singular. However, since we
have defined 6 < 1/K, it is permissible to replace the
function H{" by its small-argument approximation,'*
which is analytically integrable. In this way we obtain
two numerical values, one corresponding to the area out-
side 3, the other corresponding to the small area 3. Fi-
nally, we sum both contributions to obtain the final result
for 1.

Evaluation of Igﬁ is performed through a completely
analogous procedure. However, additional steps are in-
volved because the second derivatives of Hy" must also be
computed. This results in a substantial increase in the
computing time. Calculation of I, at a given spatial
point takes less than 0.002 s, while the computing time of
Ig’ﬁ is ~1 s. The number of spatial points required to
plot the surface of the scattering amplitude will deter-
mine the total computing time.

Fortunately, the scattered amplitude hg.; is mainly
dominated by the second (right-hand side) term in Eq. (8).
The third contribution (right-hand side) represents a mi-
nor correction and we will neglect it in the remainder of
this paper. The validity of this approximation will be dis-
cussed in Subsection 7.A. This simplification will allow
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us to save a large amount of computing time. For in-
stance, to obtain a plot of 6400 spatial points (such as
those shown in Figs. 6 and 7) typically requires ~15 sec-
onds of computing time. The same calculation takes 1.5
hours if the third (right-hand side) term of Eq. (8) is in-
cluded.

5. GENERALIZATION: LIGHT
SCATTERING BY AN ARRAY OF
BIREFRINGENT WAVEGUIDES

Let us consider now an array of parallel, cylindrical
waveguides; see Fig. 1. To generalize, the single-fiber re-
sults obtained above to a bundle of N fibers, we will apply
the sampling theory. Sampling methods have been used
successfully to solve different optical problems.’® In par-
ticular, a regular array of identical fibers is a very suit-
able candidate for treatment by the sampling approach,
as has been shown in previous work on biological
waveguides.!®

In the present work we are dealing with a function with
cylindrical symmetry. Hence, the sampling theorem
leads to the following expression for the total field ampli-
tude hy, 17

hy = — 2, 2, hi(nd/2, md/2)

A1

J2w/d[(x — nd/2)? + (y — md/2)?]V2
2m/d[(x — nd/2)2 + (y — md/2)2]1/2 ’
(12)

where h; is the scattered amplitude of each single fiber
and J; is the first-order Bessel function. The summation
indices n and m label the sampling points x,, = nd/2, y,,
= md/2, d being the separation between adjacent fibers.
Depending on the symmetry of the problem, different
sampling lattices may be used. Figure 4 shows two dif-
ferent geometries: a Cartesian grid of nine points [Fig.
4(b)] and a radially symmetric web of seven points [Fig.
4(a)l. Both packing arrangements have been typically
considered in the literature. In particular, the hexagonal
lattice [Fig. 4(a)] describes the observed arrangement of
photoreceptors in the human retina.®

Obviously, the shape of the total field must depend on
the chosen lattice. In particular, the effective aperture of
the array coincides with the contour of the packing.

@ (b)
Fig. 4. Packing arrangements: (a) The section of the array fits
a hexagon formed by seven waveguides. (b) The section of the
array fits a square formed by nine waveguides.
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6. MECHANO-OPTICAL EFFECTS IN
ANISOTROPIC WAVEGUIDES

It is well known that the optical properties of a dielectric
waveguide can be altered by the action of external forces.
The major consequence is the production of an elastic de-
formation affecting the birefringent properties of the me-
dium (while maintaining the mass density). Such a phe-
nomenon can be observed and evaluated by the
photoelastic effect.®

For a mathematical description of this phenomenon,
one needs to consider a new dielectric permittivity tensor
€ in which additional terms accounting for the photoelas-
ticity are included. These terms are proportional to the
magnitude of the external force. They correspond to the
components of the so-called deformation tensor. To sim-
plify the model we assume that the optical activity is neg-
ligible. The representation of the modified dielectric per-
mittivity tensor is?°

g = Se(sik + a1l + a2u”5ik, (13)

where i, k, [ = 1,2,3. Also, in Eq. (13) ¢, = nez, where
n, is the refractive index of the extraordinary ray. In our
case (Fig. 1) and assuming a uniaxial medium n,
= \es3/eq, where g is the dielectric permittivity associ-
ated with vacuum, §;, is the Kronecker delta, a; are the
so-called elastic-optical constants of the medium, and u;,
are the components of the stress tensor. The latter are
proportional to the transverse force per unit length ap-
plied to each waveguide. Let us assume that the force is
applied in the Y direction (see Fig. 5); the mechanical ef-
fects will be produced in the XY plane, and we define

F
Uil = E%g,

Ugg = —3u11, (14)
Ugzz = 0.

Also, we consider that under the external force, each
waveguide behaves as a uniaxial crystal. Under this as-
sumption the dielectric permittivity tensor reads

g, 0 0
g = gy 0], (15)
0 0 &
where
€11 = &, t ajuy + agUge + agluss,
€99 = &, T agUy T QUge T aglss,
:‘533 = &, + aquiqq + Aol 99 + aqUsg. (16)

If we use Eq. (16) in Egs. (7a) and (7b) and introduce
these expressions into Eq. (8), we obtain the scattering
amplitude associated with a birefringent fiber having
photoelastic properties. Equations (15) and (16) are the
key to the subsequent numerical estimates.

The extension to the multiple-scattering formulation is
similar to Eq. (12), the only condition being that now one
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. d 4 Optic Axis

v

Fig. 5. A model for mechano-optical effect. A weak external
force F is applied and defined in some arbitrary XY plane. The
conditions of incidence of light are similar to those of Figs. 1 and
2. Note that here the optic axis may have a certain arbitrary
angle with respect to the Z axis (original optic axis prior to force
application).

has to use Eqs. (15) and (16) for the dielectric permittivity
tensor instead of Eq. (1).

7. NUMERICAL APPLICATIONS

A. Intensity and Phase Distribution of Light Scattered
by a Single Fiber

We have applied our computational method to investigate
light scattering by a birefringent, cylindrical waveguide
with ordinary refractive index n, = 1.34 and extraordi-
nary refractive index n, = 1.35. By numerically solving
Eq. (8) we have been able to obtain the intensity and
phase of the scattered light. We must recall here that we
have neglected the third (right-hand side) term of Eq. (8).
The validity of this approximation will be discussed at the
end of this subsection. Note that the remaining term of
Eq. (8) is a diagonal matrix. This means that, in this ap-
proach, the scattering process does not lead to any cou-
pling between the two orthogonal components of the field
X and Y. Then each component can be treated sepa-
rately, and consequently the vectorial problem of scatter-
ing of a planar, linearly polarized wave can be reduced to
the simpler problem of two independent scalar calcula-
tions, one corresponding to each component. Moreover,
both components are given by completely analogous for-
mulas. Therefore, we need only analyze the behavior of
one of them, since the result is immediately applicable to
the other.

The three panels of Fig. 6 illustrate the spatial depen-
dence of the scattering intensity |hg /2. A three-
dimensional plot has been drawn to show simultaneously
the dependence on X and Y. Hence, it is easily noted
that, as a result of the cylindrical symmetry of the physi-
cal problem, the spatial profile exhibits radial symmetry.
In this figure we show the influence of the radius of the
optical fiber for a fixed wavelength, A\ = 500 nm. We
have considered in Figs. 6(a)—6(c) three values of the fi-
ber’s radius R: 6(a) R = 0.5 um, 6(b) R = 0.75 um, and
6(c) R = 1.5 um. Note that the scattering peak, cen-
tered at the origin, broadens as the radius R decreases for
a fixed wavelength, as expected.
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A typical plot of the phase of the scattered field is
shown in Fig. 7. The phase exhibits a minimum value of
~m/4 rad at the center of the fiber (» = 0) and increases

Intensity (a.u.)

Intensity (a.u.)

(b)

2.0 RN
X(M,n) 40 40 A

(c)

Intensity (a.u.)

0.5

% 2.0

Y oo Q@
2.0

X(llfn) 40 40 BN

Fig. 6. Numerical analysis of Eq. (6) for the profile of the total
field scattered by a single waveguide. The intensity of the scat-
tered light is a function of the position. We consider three val-
ues for the ratio of the fiber radius to the wavelength of the in-
coming radiation: (a) R/N = 0.67, (b) R/\ = 1.33, and (¢) R/\
= 2.67.

4z

3n

27

Phase (rad)

0 T
0 2 4

r(um)
Fig. 7. Representation of the phase of the complex scattering-
field amplitude as a function of the spatial coordinates X and Y.
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monotonically as we move away from the origin. It
shows an increase of nearly 7/4 rad as p goes from 0 to
~R. For r7R, the phase exhibits a growing quasi-linear
behavior. As before, the wavelength A = 500 nm has
been considered.

To finish this subsection, let us evaluate the magnitude
of the third (right-hand side) contribution to the scattered
field in Eq. (8), which we have previously neglected in
these results. The neglected term depends on (1) the
value of the integrals of the second derivatives of ISB , and
(2) the birefringence. The values of all four integrals I15?
are 2.5 to 10 times smaller than for I,; that is I3#/1,
= 0.4. Hence, the relative importance of the product
P,yI, depends on the degree of birefringence of the fiber
through the factor |eg3 — &;;|/e33. In our calculations,
we have taken £33 = 1.35 and e1; = €99 = 1.34, which
leads to a value |e33 — &;;|e33 < 0.01.

B. Intensity Distribution of the Light Scattered by an
Array of Fibers

In this section we will consider an array of N identical bi-
refringent waveguides of radius R = 0.75 um and with
the same optical properties considered in Subsection 7.A,
i.e., n, = 1.34 and n, = 1.35. The separation between
the axis of adjacent fibers is d = 2.0 um.

We have applied our previous results to calculate the
individual contributions associated with each single fiber,
i.e., the terms A, in Eq. (12). The total scattered field A
is obtained through summation in n and m. From the
computational point of view, Eq. (12) implies the calcula-
tion of the single-fiber amplitude n X m times—one for
each term of the summation of Eq. (12)— at every spatial
point (x, ¥) to be plotted. Then the number of fibers of
the bundle and the number of spatial sampling points will
determine the computation time. For instance, a 6400-
point plot of the light field scattered by seven waveguides
takes ~1.5 min. In the case of ~50 waveguides, the com-
putation time would increase to <10 min.

We have observed that—in comparison with the case of
a single fiber—the scattering by an array shows a broader
peak intensity profile. We have investigated the two geo-
metrical arrangements shown in Figs. 4(a) and (b). The
scattered amplitude A calculated for a hexagonal lattice
with seven fibers is shown in Fig. 8(a); the case of a
square lattice of nine fibers is presented in Fig. 8(b).
Note that the shape of the spatial amplitude is slightly af-
fected by the geometrical arrangement. In particular,
the peak at the origin is narrower in the case of a square
lattice, but also, secondary peaks appear that are absent
in the hexagonal arrangement.

C. Effect of a Small External Force Applied to the
Array of Fibers

Finally, we have investigated the effect of the external
stress induced by an applied force; see Fig. 5. Without
loss of generality, we have chosen our coordinate system
so that the force is applied along the Y axis. Application
of a force along a certain direction within the XY plane
breaks the radial symmetry of the physical system.
Hence, X and Y directions are no longer optically equiva-
lent. The major effect of stress on the scattered-intensity
profile is found in the value of the central peak which cor-
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scattered light intensity (a.u.
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Fig. 8. Representation of the total intensity of the scattered
light for different arrangements of the fibers forming the bunch
(see Fig. 4): (a) seven fibers in a hexagonal lattice packing, (b)
nine fibers arranged in a square lattice.

1.0f ' &

Intensity (u.a.)
o
[6)]

0.0

0.60 0.05 0.10
Applied Force (N)

Fig. 9. Forward-scattering intensity versus the strength of the
applied force. The solid curve corresponds to X-polarized light,
the dashed curve to Y-polarized light.

responds to forward scattering. This is especially conve-
nient for possible applications, since the forward direction
is most suitable for scattering observation.

Our results are illustrated in Fig. 9, where the forward-
scattering light intensity is plotted as a function of the
strength of the applied force. The solid curve corre-
sponds to X-polarized light and the dashed curve to
Y-polarized light. The force has been varied in the range
0-0.1 N. Note that, since the force produces elastic de-
formation of the waveguides, an anisotropy is induced
that leads to a significant difference between the response
of both polarizations. For instance, for an applied force
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F = 0.05 N, a difference between them of more than 60%
can be observed.

This effect has interesting possibilities for applications.
First, our formalism could be the foundation of a new
model for the behavior of retinal photoreceptors. In par-
ticular, it might be applied to account for quite recent ex-
perimental results?! that revealed strains causing orderly
alterations in photoreceptor orientations in observers
with high myopia. Also, the authors have proposed to ex-
ploit the sensitivity of this effect, as it could be the basis
for an in-fiber stress-sensing technique.??

8. SUMMARY AND CONCLUSIONS

We have developed a numerical model that has allowed us
to solve light scattering by multiple, birefringent optical
waveguides for the first time in the literature, to our
knowledge. First, we have obtained the intensity of light
scattered by a single waveguide by introducing some sim-
plifying hypotheses to reduce the mathematical complex-
ity of the problem. In addition, we have been forced to
perform a two-step numerical integration to avoid singu-
larities of the integrand. Then we have extended the
single-fiber result to an array of N birefringent cylindrical
waveguides by way of the sampling theory. In addition,
we have considered the effect of mechanical stress by tak-
ing into account photoelasticity.

Our method allows us to calculate the intensity and
phase of the scattered field. The influence of different
parameters can be evaluated, which can then be used to
obtain valuable information about fiber properties. For
instance, we have observed a broadening of the central
peak of the intensity profile as the fiber radius decreases.

With regard to optical fiber applications, the use of ar-
rays instead of single fibers is advantageous because the
former produce stronger signals more easily detectable.
Moreover, biological waveguides, such us retinal photore-
ceptors, are found in arrays. Then we have investigated
the influence of different packing arrangements of the fi-
bers. We have found that, for a moderate size of fiber
bundles (N < 10), different patterns lead to slight differ-
ences among the spatial profiles of the scattered light.

Finally, we have found that application of an external
force breaks the radial symmetry of the physical system.
This leads to a relevant difference between light polarized
along or perpendicular to the direction of the applied
force. This effect could be profitably used in stress-
sensing procedures as an alternative to the well-known
method based on modal analysis of the far-field-radiation-
intensity pattern.

In conclusion, we have developed a powerful numerical
tool to investigate light scattering that may be used in dif-
ferent applications such as characterization of birefrin-
gent optical waveguides and stress sensing. Also, our
model can be applied to model the behavior of biological
waveguides. Further work is currently in progress.
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