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on-shell self-energy Feynman diagrams. Indeed, the MSR mass scheme can be viewed as

the simplest extension of the MS mass concept to renormalization scales � mQ. The MSR

mass depends on a scale R that can be chosen freely, and its renormalization group evo-

lution has a linear dependence on R, which is known as R-evolution. Using R-evolution

for the MSR mass we provide details of the derivation of an analytic expression for the

normalization of the O(ΛQCD) renormalon asymptotic behavior of the pole mass in per-

turbation theory. This is referred to as the O(ΛQCD) renormalon sum rule, and can be
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1 Introduction

Achieving higher precision in theoretical predictions in the framework of quantum chromo

dynamics (QCD) is one of the main goals in high-energy physics and an essential ingredient

in the indirect search for physics beyond the Standard Model. In this endeavor accurate

determinations of the masses of the heavy charm, bottom and top quarks play an important

role since they enter the description of many observables that are employed in consistency
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tests of the Standard Model and in the exploration of models of new physics. Because

quark masses are formally-defined renormalized quantities and not physical observables,

the quantities from which the heavy quark masses are extracted need to be computed

in perturbative QCD to high order. Among the most precise recent high-order analyses

to determine the heavy quark masses are QCD sum rules and the analysis of quarkonium

energies for the charm and bottom quark masses [1–10] and the top pair production thresh-

old cross section at a future lepton collider for the top quark mass [11–13]. Over time all

of these analyses have been continuously updated and improved by computations of new

QCD corrections, and more are being designed and studied currently to also allow for more

precise determinations of the top quark mass from available LHC data [14–21].

In all the analyses of refs. [1–13] the use of short-distance mass schemes was essential to

achieve a well-converging perturbative expansion and a precision in the mass determination

well below the hadronization scale ΛQCD ∼ 200–300 MeV. The heavy quark pole mass

mpole
Q , which is the perturbation theory equivalent of the rest mass of an on-shell quark,

on the other hand, leads to a substantially worse perturbative behavior due to its linear

infrared-sensitivity, also known as the O(ΛQCD) renormalon problem [22, 23], and was

therefore not adopted as a relevant mass scheme for analyses where a precision better

than ΛQCD could be achieved. Nevertheless, the pole mass still served as an important

intermediate mass scheme during computations because it determines the partonic (but

unphysical) poles of heavy quark Green functions. Typical short-distance quark mass

schemes which have been employed were the renormalization-scale dependent MS mass

mQ(µ) and so-called low-scale short-distance masses such as the kinetic mass [24], the

potential-subtracted (PS) mass [25], the 1S mass [26–28], the renormalon-subtracted (RS)

mass [29] or the jet mass [30, 31]. The basic difference between the MS mass to the low-

scale short-distance mass schemes is that the perturbative coefficients of its relation to the

pole mass scale linearly with the heavy quark mass, mQ(µ)−mpole
Q ∼ mQ(αs + . . .), while

for the low-scale short-distance mass schemes the corresponding series scales linearly with

a scale R� mQ. This feature enables the low-scale short-distance quark mass schemes to

be used for predictions of quantities where the heavy quark dynamics is non-relativistic in

nature and fluctuations at the scale of mQ are integrated out. This is because radiative

corrections to the mass in such quantities involve physical scales much smaller than mQ.

One very prominent example in the context of top quark physics is the non-relativistic

heavy quarkonium dynamics inherent to the top-antitop pair production cross section at

threshold at a future lepton collider [11–13], where the most important dynamical scale

is the inverse Bohr radius mt αs ∼ 25 GeV � mt. On the other hand, the MS mass is

a good scheme choice for quantities that involve energies much larger than mQ, such as

for high-energy total cross sections, or when the massive quark causes virtual and off-shell

effects. This is because in such cases the heavy quark mass yields corrections that either

scale with positive or negative powers of mQ such that QCD corrections associated with

the mass have a scaling that is linear in mQ as well. The difference between the MS mass

and the low-scale short-distance masses is most important for the case of the top quark

because in this case the difference between mt and the dynamical low-energy scales can be

very large numerically.
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For the top quark mass there are excellent prospects for very precise measurements in

low-scale short-distance schemes such as the PS mass or the 1S mass from the top-antitop

threshold inclusive cross section at a future lepton collider [11–13]. Current studies indicate

that a precision well below 50 MeV can be achieved accounting for theoretical as well as

experimental uncertainties [32–34]. Currently, the most precise measurements of the top

quark mass come from reconstruction analyses at the LHC [35, 36] and the Tevatron [37]

and have uncertainties at the level of 500 MeV or larger. Moreover, the mass is obtained

from multivariate fits involving multipurpose Monte Carlo (MC) event generators and thus

represents a determination of the top quark mass parameter mMC
t contained in the par-

ticular MC event generator. Recently, a first high-precision analysis on how the MC top

quark mass parameter can be related to a field theoretically well-defined short-distance

top quark mass was provided in refs. [38, 39] and general considerations on the relation

were discussed in refs. [40, 41]. For the analysis, hadron level predictions for the 2-jettiness

distribution [42] for electron-positron collisions and O(αs) QCD corrections together with

the resummation of large logarithms at next-to-next-to leading order [31, 43, 44] were em-

ployed. Since the 2-jettiness distribution is closely related to the invariant mass distribution

of a single reconstructed top quark, the relevant dynamical scales inherent to the problem

are governed by the width of the mass distribution which amounts to only about 5 GeV

in the peak region of the distribution where the sensitivity to the top mass is the highest.

Interestingly, as was shown in ref. [38], the dynamical scales increase continuously consid-

ering the 2-jettiness distribution further away from the peak. In the analysis of [38] the

MSR mass scheme mMSR
Q (R) was employed which depends on a scale R and for which the

dependence on R is described by a renormalization group flow such that R can be continu-

ously adapted according to which part of the distribution is predicted. Other applications

of the MSR mass using a flavor number dependent evolution in R to account for the mass

effects of lighter quarks were given in refs. [45, 46]. In contrast to the µ-dependent MS

mass mQ(µ), which evolves only logarithmically in µ, the MSR mass has logarithmic as

well as linear dependence on R.

The MSR mass scheme was succinctly introduced in ref. [47] and discussed conceptually

in ref. [41], but a detailed discussion has so far not been provided. A key purpose of this

paper is to provide sufficient details such that phenomenological MSR mass analyses, such

as the results of ref. [38], can be easily related to other common short-distance mass schemes

that are being used in the literature.

The definition of the MSR mass given by the perturbative series for the MSR-pole

mass difference mMSR
Q (R) − mpole

Q is obtained directly from the MS-pole mass relation

mQ(mQ) −mpole
Q and is therefore the only low-scale short-distance mass suggested in the

literature that is derived directly from on-shell heavy quark self-energy diagrams just like

the MS mass.1 The MSR mass thus automatically inherits the clean and good infrared

properties of the MS mass. Furthermore, by construction, the MSR mass matches to the

MS mass for R = mQ(mQ) and is known to the same order as the series of mQ(mQ)−mpole
Q

1The name ‘MSR mass’ arises from a combination of the letters ‘MS’ standing for the close relation to

the MS mass and the letter ‘R’ standing for R-evolution.
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without any further effort, which is currently O(α4
s) from the results of refs. [48–55]. As

already argued in refs. [40, 47], the MSR mass can therefore be considered as the natural

modification of the “running” MS mass scheme concept for renormalization scales below

mQ, where the logarithmic evolution of the regular MS mass is known to be unphysical.

Since the MSR mass is designed to be employed for scales R < mQ, it can be useful —

for applications where a clean treatment of virtual massive-flavor effects is important —

to integrate out the virtual effects of the massive quark Q from the MSR mass definition.

We therefore introduce two types of MSR masses, one where the virtual effects of the

massive quark Q are integrated out, called the natural MSR mass, and one where these

effects are not integrated out, called the practical MSR mass. The difference between

these two versions of the MSR mass is quite small and very well behaved for all R values

in the perturbative region, and the practical definition should be perfectly fine for most

phenomenological applications. But the natural definition has conceptual advantages as

its evolution for scales R < mQ does not include the virtual effects of the massive quark

Q, which is conceptually cleaner since these belong physically to the scale mQ.

We note that the R-evolution concept of a running heavy quark mass scheme for

scales R < mQ elaborated in ref. [47] has already been suggested a long time ago in

refs. [56, 57]. The R-evolution equation we discuss for the MSR mass was already quoted

explicitly for the renormalization group evolution of the kinetic mass [24] at O(αs) in

these references, but the conceptual implications of R-evolution and its connection to the

O(ΛQCD) renormalon problem in the perturbative relations between short-distance masses

and the pole mass were first studied systematically in ref. [47]. The second main purpose

of this paper is to give further details on R-evolution and also to discuss its relation to

the Borel transformation focusing mainly on the case of the MSR mass. We note that the

concept of R-evolution is quite general and can in principle be applied to any short-distance

mass which depends on a variable infrared cutoff scale (such as the PS and the RS masses) or

to cutoff-dependent QCD matrix elements with arbitrary dimensions. In fact, R-evolution

has already been examined and applied in a number of other applications which include the

factorization-scale dependence in the context of the operator product expansion [58], the

scale dependence of the non-perturbative soft radiation matrix element in high-precision

determinations of the strong coupling from e+e− event-shape distributions [59–62], even

accounting for the finite mass effects of light quarks [63, 64] and hadrons [61, 65].

The basic feature of the R-evolution concept is that for the difference of MSR masses at

two scales, mMSR
Q (R)−mMSR

Q (R′), its linear dependence on the renormalization scale pro-

vides, completely within perturbation theory, a resummation of the terms in the asymptotic

series associated to the pole-mass renormalon ambiguity to all orders. The R-evolution then

resums the factorially growing terms in a systematic way that is O(ΛQCD)-renormalon free

and, at the same time also sums all large logarithms that arise if R and R′ are widely sepa-

rated. This cannot be achieved by more common purely logarithmic renormalization group

equations, but is fully compatible with a Wilsonian renormalization group setup. We note

that the summations carried out by the R-evolution was achieved prior to ref. [47] for the

RS mass in [66] (see also ref. [67]). Their method (and the RS mass) is based on using an

approximate expression for the Borel transform function. The summation for a difference
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of RS masses (for scales R and R′) is obtained by computing the inverse Borel integral over

the difference of the two respective Borel functions. This method and R-evolution lead to

consistent results, but the R-evolution does not rely on the knowledge of the Borel functions.

The essential and probably most interesting conceptual feature of the perturbative

series of the R-evolution equations is that it provides a systematic reordering of the terms

in the asymptotic series associated to the O(ΛQCD) renormalon ambiguity in leading, sub-

leading, subsubleading, etc. contributions. So using the analytic solution of the R-evolution

equations allows one to derive analytically (i.e. without any numerical procedure or model-

ing) the Borel-transform of a given perturbative series from the perspective that it carries

an O(ΛQCD) renormalon ambiguity. As a result one can rigorously derive an analytic ex-

pression for the normalization of the non-analytic terms in the Borel transform that are

characteristic for the O(ΛQCD) renormalon. The analytic result for this normalization

factor was already given and discussed in ref. [47], but no details on the derivation were

provided. We take the opportunity to show the details of the derivation here. We call the

analytic result for the normalization of the O(ΛQCD) renormalon ambiguity the O(ΛQCD)

sum rule, because it can be quickly applied to any given perturbative series. To demon-

strate the use and the high sensitivity of the O(ΛQCD) renormalon sum rule we apply it also

to a number of other cases, pointing out subtleties in its application to avoid inconsistencies

and misinterpretations of the results.

We note that also other methods to determine the normalization factor have been used.

In ref. [29] it was determined from a computation of the residue of the Borel transform of

the series following a proposal in ref. [68]. This approach, which we call Borel method can

also be carried out analytically and provides the correct result, but has been observed to

converge very slowly. We can identify the reason for this analytically from the solutions

for the R-evolution equations, and we also discuss the connection of this method to our

O(ΛQCD) sum rule based on explicit analytic expressions. In ref. [69] the normalization

factor was computed taking the ratio of the n-th term of the series to the asymptotic

behavior. This ratio method converges very fast and provides results very similar to the

O(ΛQCD) sum rule. Recently, the ratio method was applied in ref. [70], accounting for the

O(α4
s) corrections to the pole-MS mass relation [54, 55]. We show that our O(ΛQCD) sum

rule provides results that are in full agreement with the ones obtained in ref. [70] and also

leads to very similar uncertainties.

The paper is organized as follows: in section 2 we provide the definition of the natural

and practical MSR masses, mMSRn
Q and mMSRp

Q , based on the perturbative series of the MS-

pole mass relation mQ(mQ)−mpole
Q , and we also analyze the difference between these two

MSR masses. This section provides the conventions we use for the coefficients of perturba-

tive series, but it can otherwise be skipped by the reader not interested in the MSR masses.

In section 3 we present the R-evolution equations which describe the scale dependence of

the MSR masses and we also show explicitly how the solutions of the R-evolution equations

sum large logarithms together with the high-order asymptotic series terms related to the

O(ΛQCD) renormalon. We in particular show for the top quark mass under which condi-

tions the use of the R-evolution equations and its resummation is essential and superior to
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renormalon-free fixed-order perturbation theory, which does not sum any large logarithms.

To our knowledge, such an analysis has not been provided in the literature before. We also

point out that the solution of the R-evolution equations is intrinsically related to carrying

out an inverse Borel transform over differences of functions in the Borel plane such that the

singularities related to the O(ΛQCD) renormalon cancel. In section 4 we present the analytic

derivation of the O(ΛQCD) renormalon sum rule and demonstrate its utility by a detailed

analysis concerning the normalization of the O(ΛQCD) renormalon ambiguity in the series

for the difference of the pole mass and the MSR masses. The derivation of the sum rule

allows to derive a new alternative expression for the high-order asymptotic behavior of a

series that contains an O(ΛQCD) renormalon which we discuss as well. To demonstrate the

high sensitivity of the sum rule and to explain its consistent (and inconsistent) application

we discuss its strong flavor number dependence and apply it to the massive quark vacuum

polarization function, the series for the PS mass-pole mass difference, the QCD β-function,

and the hadronic R-ratio. This section can be bypassed by the reader not interested in

applications of the O(ΛQCD) sum rule, but we note that section 4.5.3 discusses implications

for the PS mass that are relevant for section 5 and may be important for high-precision top

quark mass determinations. Some subtle issues in the relation of the MSR masses to the

PS, 1S and MS masses are discussed in section 5. Finally, we conclude in section 6. The

paper also contains two appendices. In appendix A we specify our convention for the QCD

β-function coefficients and present a number of expressions and formulae for coefficients,

quantities and matching relations that arise in the discussion of R-evolution, the O(ΛQCD)

renormalon and on various mass definitions throughout this paper. In appendix B we pro-

vide details on the relation of the Borel method and our sum rule method to determine

the normalization of the O(ΛQCD) renormalon ambiguity of the pole mass. Finally, in ap-

pendix C we quote the coefficients that define the PS and the 1S masses for the convenience

of the reader and also show how the MSR masses can be obtained from a given value of

the 1S mass in the non-relativistic and Υ-expansion counting scheme [26, 27].

2 MSR mass setup

2.1 Basic idea of the MSR mass

The MS mass mQ(µ) serves as the standard short-distance mass scheme for many high-

energy applications with physical scales of the order or larger than the mass of the quark

Q. It relies on the subtraction of the 1/ε divergences in the common MS scheme in the

on-shell self-energy corrections calculated in dimensional regularization. Despite the fact

that it is an unphysical (i.e. theoretically designed) mass definition, it is infrared-safe and

gauge invariant to all orders [48, 71] and its series relation to the pole mass mpole
Q thus

serves as the cleanest way to precisely quantify the renormalon ambiguity of the pole mass.

The relation of mQ ≡ m
(n`+1)
Q (m

(n`+1)
Q ) to the pole mass in the approximation that the

masses of all quarks lighter than Q are zero reads

mpole
Q −mQ = mQ

∞∑
n=1

aMS
n (n`, nh)

(
α
(n`+1)
s (mQ)

4π

)n
, (2.1)
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with

aMS
1 (n`,nh) =

16

3
, (2.2)

aMS
2 (n`,nh) = 213.437+1.65707nh−16.6619n` ,

aMS
3 (n`,nh) = 12075.+118.986nh+4.10115n2h−1707.35n`+1.42358nhn`+41.7722n2` ,

aMS
4 (n`,nh) = (911588.±417.)+(1781.61±30.72)nh−(60.1637±0.6912)n2h

−(231.201±0.102)nhn`−(190683.±10.)n`+9.25995n2hn`

+6.35819n3h+4.40363nhn
2
`+11105.n2`−173.604n3` ,

where α
(nf )
s stands for the strong coupling that renormalization-group (RG) evolves with

nf active flavors, see eq. (A.1). The coefficients aMS
n at O(αs, α

2
s, α

3
s) are known analytically

from refs. [48–53]. The O(α4
s) coefficient aMS

4 was determined numerically in refs. [54, 55],

and the quoted numerical uncertainties have been taken from ref. [55]. Using the method

of ref. [72] the uncertainties of the n`-dependent terms may be further reduced. Using

renormalon calculus [22, 23, 73] one can show that the high-order asymptotic behavior

series of eq. (2.1) has an ambiguity of order Λ
(n`)
QCD, which depends on the number of massless

quarks (indicated by the superscript) but is independent of the actual value of mQ.

A coherent treatment of the mass effects of lighter quarks is beyond the scope of this

paper, and we therefore use the approximation that all flavors lighter than Q are massless.

These mass corrections come from the insertion of massive virtual quark loops in the

self-energy Feynman diagrams and start at O(α2
s). At this order and at O(α3

s) the mass

corrections from the virtual massive quark loops have been calculated analytically for all

mass values in ref. [49] and [74], respectively. The dominant linear mass corrections at

O(α3
s) were determined in ref. [75]. At O(α4

s) and the mass corrections are not yet known,

but the corrections in the limit of large virtual quark masses are encoded in the ultraheavy

flavor threshold matching relations of the RG-evolution mQ(µ) at scales above mQ [76].

The idea of the MSR mass is based on the fact that the O(ΛQCD) ambiguity of the

perturbative series on the r.h.s. of eq. (2.1) does not depend on the value mQ, as already

mentioned above. This is an exact mathematical statement within the context of the calcu-

lus for asymptotic series and means that we can replace the term mQ by the arbitrary scale

R on the r.h.s. of eq. (2.1) and use the resulting perturbative series as the definition of the

R-dependent MSR mass scheme. It was pointed out in ref. [41] that, for a given value of R,

one can also interpret the MSR mass field theoretically as having a mass renormalization

constant that contains the on-shell self-energy corrections of the pole mass only for scales

larger than R. In other words, the pole mass and the MSR mass at the scale R differ

by self-energy corrections from scales below R: while the pole mass absorbs all self-energy

corrections for quantum fluctuations up to scales mQ, the MSR mass at the scale R absorbs

only self-energy corrections between R and mQ. Since the pole mass renormalon problem is

related to the self-energy corrections from the scale ΛQCD < R, this explains why the MSR

mass is a short-distance mass. In this illustrative context the MS mass absorbs no self-

energy corrections up to the scale mQ. Since the scale R is variable, the MSR mass can serve

as a short-distance mass definition for applications governed by different physical scales and

– 7 –
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thus can also interpolate between them. Since the MSR mass is expected to have applica-

tions primarily for R < mQ, it is further suitable to change the scheme from n`+1 dynamical

flavors, which includes the UV effects of the quark Q, to a scheme with n` dynamical flavors.

This can be achieved in two ways, either by simply rewriting α
(n`+1)
s in terms of α

(n`)
s , or

by integrating out the virtual loop corrections of the quark Q. This results in two different

ways to define the MSR mass, where we call the former the practical MSR mass and the

latter the natural MSR mass, either one having advantages depending on the application.

We note that the notion of a scale-dependent short-distance mass which was first

suggested in refs. [56, 57] has also been adopted for the kinetic [24], the PS [25], RS [29]

and jet masses [30, 43]. However, none of these short-distance masses is defined directly

from the on-shell self-energy diagrams of the massive quark Q such as the MSR mass. This

has a number of advantages, for example when discussing heavy flavor symmetry properties

in the pole-MS mass relation of different heavy quarks.

2.2 Natural MSR mass

The natural MSR mass definition is obtained by integrating out the corrections from the

heavy quark Q virtual loops in the self-energy diagrams of the massive quark Q, such that

its relation to the pole mass reads

mpole
Q −mMSRn

Q (R) = R
∞∑
n=1

aMS
n (n`, 0)

(
α
(n`)
s (R)

4π

)n
, (2.3)

where the coefficients are given in eq. (2.2). The natural MSR mass only accounts for

gluonic and massless quark corrections, and has a non-trivial matching relation to the MS

mass. The matching between the natural MSR mass and the MS mass can be derived from

the relation [mQ ≡ m(n`+1)
Q (m

(n`+1)
Q )]

mMSRn
Q (mQ)−mQ = mQ

∞∑
k=1

[
aMS
k (n`, 1)

(
α
(n`+1)
s (mQ)

4π

)k
− aMS

k (n`, 0)

(
α
(n`)
s (mQ)

4π

)k]
,

(2.4)

and will be discussed in more detail in section 5.3.

We note that, formally, the natural MSR mass (as well as the practical MSR mass

discussed in the next subsection) agrees with the pole mass in the limit R → 0. However,

taking this limit is ambiguous as it involves evolving through the Landau pole of the strong

coupling and dealing with its non-perturbative definition for |R | < ΛQCD. This issue is a

manifestation of the renormalon problem of the pole mass.

2.3 Practical MSR mass

The practical MSR mass definition is directly related to the MS-pole perturbative series

of eq. (2.1). To obtain its defining series one rewrites α
(n`+1)
s (mQ) as a series in α

(n`)
s (mQ)

in eq. (2.1) using the matching relation given in eq. (A.7) and then replaces mQ by R,

obtaining

mpole
Q −mMSRp

Q (R) = R
∞∑
n=1

aMSRp
n (n`)

(
α
(n`)
s (R)

4π

)n
, (2.5)

– 8 –



J
H
E
P
0
4
(
2
0
1
8
)
0
0
3

with

aMSRp
1 (n`) =

16

3
, (2.6)

aMSRp
2 (n`) = 215.094− 16.6619n` ,

aMSRp
3 (n`) = 12185.− 1705.93n` + 41.7722n2` ,

aMSRp
4 (n`) = (911932.± 418.)− (190794.± 10.)n` + 11109.4n2` − 173.604n3` .

The practical MSR mass still accounts for the virtual corrections from the massive quark

Q with an evolving mass R and has the convenient feature that it agrees with the MS mass

at the scale of the mass to all orders in perturbation theory [mQ ≡ m(n`+1)
Q (m

(n`+1)
Q )]:

mMSRp
Q (mMSRp

Q ) = mQ(mQ) . (2.7)

The formula for the difference of the natural and practical MSR masses at the same

scale R up to O(α4
s) reads

mMSRn
Q (R)−mMSRp

Q (R) = R

[
1.65707

(
α
(n`)
s (R)

4π

)2
+
(
110.050 + 1.4236n`

)(α(n`)
s (R)

4π

)3
+
(
(344.± 31.)− (111.59± 0.10)n` + 4.40n2`

)(α(n`)
s (R)

4π

)4
+ . . .

]
. (2.8)

In figure 1 the difference between the natural and the practical MSR top quark masses

mMSRn
t (R) − mMSRp

t (R) is shown for R between 1 and 170 GeV (here n` = 5).2 The

numerical difference between these two masses is quite small. The natural MSR mass is

larger than the practical MSR mass and the difference increases with R reaching about

30 MeV at R = 170 GeV. The error bands reflect variations of the renormalization scale

µ in αs between R/2 and 2R, showing very good convergence, exhibiting a perturbative

error of ± 5 MeV for R ∼ 1 GeV and below ± 1 MeV for R & 3 GeV due to missing terms

of O(α5
s) and higher. This indicates that the different way how the natural and practical

MSR masses treat the virtual massive quark effects does not reintroduce any infrared

sensitivity, as is expected since the mass of the virtual quark provides an infrared cutoff.

The numerical uncertainties in the O(α4
s) correction are below the level of 0.1 MeV and

negligible. Note that the difference between the natural and the practical MSR masses at

the common scale R starts at O(α2
s) and that the uncertainty band from scale variation

is an underestimate at this lowest order. However, the series results and error bands at

O(α3,4
s ) show good behavior and convergence. In ref. [38] the practical MSR mass was

employed, but the numerical difference to the natural MSR mass is subdominant to the

uncertainties obtained in the analysis there.

In the rest of the paper we will simply use the notation of the MSR mass with the

definition mpole
Q − mMSR

Q (R) = R
∑

n an
[
αs(R)/(4π)

]n
when the difference between the

natural and practical definitions and the value of n` are insignificant but we will specify

explicitly our use of the practical or the natural MSR masses (or any other mass scheme)

and the massless flavor number n` for any numerical analysis.

2Throughout this article we use α
(nf=5)
s (mZ) = 0.118 and mZ = 91.187 GeV.
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Figure 1. Difference of the natural and practical MSR top quark masses (n` = 5) as a function of

R in GeV at two, three and four loop order (the one loop result vanishes). The uncertainty bands

are obtained from scale variations in αs(µ) with R/2 < µ < 2R.

3 R-evolution

The dependence of the MSR mass mMSR
Q on the scale R is described by the R-evolution

equation [47], which is derived from the logarithmic derivative of the defining equations (2.3)

and (2.5) and using that the pole mass is R independent:

R
d

dR
mMSR
Q (R) = −RγR(αs(R)) = −R

∞∑
n=0

γRn

(
αs(R)

4π

)n+1

, (3.1)

where

γR0 = a1 , (3.2)

γR1 = a2 − 2β0 a1 ,

γR2 = a3 − 4β0 a2 − 2β1 a1 ,

γRn = an+1 − 2
n−1∑
j=0

(n− j)βj an−j .

The overall minus sign on the r.h.s. of eq. (3.1) indicates that the MSR mass always de-

creases with R. Note that this equation applies to all MSR schemes and we have therefore

suppressed the superscript on the an’s. The crucial feature of the R-evolution equation is

that it is free from the O(ΛQCD) ambiguity contained in the series that relates the MSR

mass to the pole mass because the ambiguity is R-independent. This is directly related

to the fact that for determining the R-evolution equation also the overall linear factor of

R on the r.h.s. of eqs. (2.3) and (2.5) has to be accounted for. Therefore the R-evolution

equation does not only have a logarithmic dependence on R, as common to usual renor-

malization group equations (RGEs), but also a linear one. Both of these issues are actually

tied together conceptually. The numerical expressions for the coefficients γn for the natural

and practical MSR masses are given explicitly in eqs. (A.11) and (A.12). We implement
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renormalization scale variation in the R-evolution equation by simply expanding αs(R) in

eq. (3.1) as a series in αs(λR) and by varying λ, typically in the range 0.5 < λ < 2. In

principle one may also consider varying the boundaries of integration, as it is common for

usual RGEs, but only the former way of implementing scale variations in the R-evolution

leads to variations of the scale solely in logarithms, which is the standard used for the usual

logarithmic RGEs.

By solving the R-evolution equation one sums, at the same time and systematically,

the asymptotic renormalon series as well as the large logarithmic terms in mMSR
Q (R0) −

mMSR
Q (R1) to all orders in a manner free from the O(ΛQCD) renormalon:

mMSR
Q (R0)−mMSR

Q (R1) = −
∞∑
n=0

γRn

∫ R0

R1

dR

(
αs(R)

4π

)n+1

. (3.3)

It is straightforward to solve the R-evolution equation numerically and it shows very good

perturbative stability even for low values of R very close to the Landau pole [58] in the

perturbative strong coupling. Details of how to solve the R-evolution equations analytically

have already been given in [47] and shall not be repeated here.

It is instructive to briefly discuss what the solution of the R-evolution achieves by

considering the difference of the MSR mass, mMSR
Q (R0)−mMSR

Q (R1), in the context of fixed-

order perturbation theory (FOPT), where it is well-known that the renormalon ambiguity

contained in the series for mpole
Q −mMSR

Q (R0) and the series for mpole
Q −mMSR

Q (R1) only cancel

if one expands in αs with a common renormalization scale µ. This is nicely illustrated in the

β0/LL (leading log) approximation where the pole-MSR mass relation has the all order form

[
mpole
Q −mMSR

Q (R)
]
β0/LL

=
a1
2β0

R

∞∑
n=0

(
β0αs(R)

2π

)n+1

n! (3.4)

=
a1
2β0

R
∞∑
n=0

(
β0αs(µ)

2π

)n+1

n!
n∑
k=0

1

k!
logk

µ

R
.

The series by itself is divergent and not summable, but[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

= (3.5)

=
a1
2β0

∞∑
n=0

(
β0αs(µ)

2π

)n+1

n!

(
R1

n∑
k=0

1

k!
logk

µ

R1
−R0

n∑
k=0

1

k!
logk

µ

R0

)

=
a1
2β0

∞∑
n=0

(
β0αs(R1)

2π

)n+1

n!

(
R1 −R0

n∑
k=0

1

k!
logk

R1

R0

)
,

is easily seen to be convergent. In the context of FOPT, when the sum over n is truncated,

the unavoidable appearance of large logarithms log(R0/R1) for let’s say R0 � R1 may

degrade the convergence and cause sizable perturbative uncertainties. Due to the addi-

tional linear dependence on R0 and R1, as shown in eq. (3.5), these logarithms cannot be

summed by common logarithmic renormalization group (RG) equations. The same type

of logarithms also appear for example in the relation of any other low-scale short-distance
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mass to the MS mass and their effects can be significant particularly for the top quark. By

solving the R-evolution equation one sums, at the same time and systematically, the asymp-

totic terms in the renormalon series as well as the large logarithmic terms in mMSR
Q (R0)−

mMSR
Q (R1) to all orders in a manner free from the O(ΛQCD) renormalon. It is again instruc-

tive to see how this is achieved in the β0/LL approximation of eq. (3.4), which explicitly

shows the factorial growth of the perturbative series. When calculating the derivative to get

the R-evolution equation, the whole series collapses exactly (i.e. without any truncation!) to[
R

d

dR
mMSR
Q (R)

]
β0/LL

= −a1R
(
αs(R)

4π

)
, (3.6)

which is the one-loop version of eq. (3.1). Moreover, the exact solution of the R-evolution

equation at this order

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

= − a1
∫ R0

R1

dR

(
αs(R)

4π

)
, (3.7)

can be easily seen to be exactly equal to the r.h.s. of eq. (3.5) which sums the renormalon

series and the large logarithms at the same time into a convergent series.

Conceptually, the solution of the R-evolution equation is directly related to the Borel

space integral over the Borel transform for the series for mMSR
Q (R0) − mMSR

Q (R1). Since

this has not been shown in [47] we briefly outline this calculation here at the β0/LL level.

Starting from eq. (3.7) one can shuffle the integration over R into an integral over αs(R)

by using the QCD β-function and the relation ΛLL
QCD = R exp (− 2π/β0αs(R)). Using the

variable t = − 2π/(β0αs(R)) one can then rewrite the integral as [ti = − 2π/(β0αs(Ri))]

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

= − a1
2β0

ΛLL
QCD

∫ t0

t1

dt

t
e− t (3.8)

= − a1
2β0

ΛLL
QCD

[∫ ∞
t1

dt

t
e− t −

∫ ∞
t0

dt

t
e− t
]
,

where the two integrals in the last line are just the difference of the MSR masses at R0,1 to

the pole mass, and the pole mass ambiguity is encoded in the singularity at t = 0, which

arises because t0,1 < 0,[
mMSR
Q (Ri)−mpole

Q

]
β0/LL

=
a1
2β0

ΛLL
QCD

∫ ∞
ti

dt

t
e− t . (3.9)

Upon changing variables to the Borel plane parameter u = −(t/ti−1)/2 and writing ΛQCD

in terms of Ri and αs(Ri) in both integrals, this gives

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

=

∫ ∞
0

du [B(R0, µ, u)−B(R1, µ, u)] e
− 4πu
β0αs(µ) . (3.10)

Here

B(R,µ, u) =
a1
2β0

R
( µ
R

)2u 1

u− 1
2

, (3.11)
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Figure 2. Difference of the natural top quark MSR mass (n` = 5) at two different scales R

including contributions from one to four loops. Results are shown for the difference between a high

scale R1 = 161 GeV and two lower scales R2 = 2 GeV (top two panels) and R2 = 50 GeV (lower

two panels). The high and low scales are connected by a fixed-order perturbation theory conversion

[left two panels, as a function of the scale µ in αs(µ)] or via R-evolution [right two panels, as a

function of the λ renormalization parameter].

is the well-known Borel transform with respect to αs(µ) of the β0/LL series in eq. (3.4).

In eq. (3.10) the singular and non-analytic contributions contained in the individual Borel

functions cancel and the integral becomes ambiguity-free.

To illustrate the impact of using R-evolution compared to using FOPT we show in

figure 2 the difference of natural MSR masses ∆mMSRn
t (R0, R1) ≡ mMSRn

t (R0)−mMSRn
t (R1)

for n` = 5 in fixed-order perturbation theory (FOPT) and with R-evolution. The curves

in figure 2a show ∆mMSRn
t for (R0, R1) = (2, 161) GeV in FOPT for the common renor-

malization scale µ between R0 and R1 at 1 loop (cyan), 2 loop (green), 3 loop (blue) and

4 loops (red). We see a good convergence for µ around
√
R0R1, but a deterioration of

the series when µ gets closer to either R0 or R1. For µ . 1/2
√
R0R1 the series even gets

out of bounds and breaks down completely. If one uses scale variation as an estimate of

the remaining perturbative error, one therefore obtains a significant dependence on the
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choice of the lower bound of the variation, and one has no other choice than to aban-

don in an ad hoc manner scales closer to R0 to estimate the scale variation error. The

curves in figure 2b show ∆mMSRn
t for (R0, R1) = (2, 161) GeV from numerically solving

the R-evolution equation as a function of the renormalization scale parameter λ between

0.5 and 2. The color coding for the order of the R-evolution equation used for the eval-

uation is the same as for figure 2a. As explained below eq. (3.1), the parameter λ is

the renormalization scaling parameter in the R-evolution equation which determines by

how much the scale in αs differs from the scale R. Thus a variation between 0.5 and 2

means that in the solution of the R-evolution equations scales between R/2 and 2R are

covered at each value of R along the evolution, which in this case includes scales between

1 and 322 GeV. Comparing the curves in figure 2a and 2b we see that the renormalization

scale variation in the R-evolved results is much smaller than the one of FOPT. For the

FOPT result with scale variation between
√
R0R1/2 — which we pick by hand — and R1

we obtain ∆mt = (9.838 ± 2.504, 8.981 ± 0.361, 9.465 ± 0.222, 9.427 ± 0.047) GeV at

(1, 2, 3, 4) loops. Using R-evolution with λ variation between 0.5 and 2 we obtain ∆mt =

(8.817 ± 1.059, 9.440 ± 0.246, 9.512 ± 0.040, 9.486 ± 0.025) GeV which is fully compatible

with the FOPT result, but shows more stability and smaller errors. It is also quite instruc-

tive to see that using R-evolution the 3-loop result is significantly closer to the 4-loop result

than the corresponding 3-loop FOPT result. The results show that for R0 � R1 employing

R-evolution to calculate MSR mass differences is clearly superior to FO perturbation theory.

To compare to a situation where the scales R0 and R1 are of similar size we have

also shown in figures 2c and 2d the results for ∆mt in FOPT and from R-evolution for

(R0, R1) = (50, 161) GeV. Here the results from both approaches are completely equivalent

showing that the logarithm log(R0/R1) is not large and the summation of the renormalon

contributions from higher orders only constitutes very small effects. Furthermore using

renormalization scales close to R0 or R1 in FOPT is not problematic. Numerically, using

FOPT with scale variations between R0 and R1 we obtain ∆mt = (5.618 ± 0.498, 5.928 ±
0.086, 5.961 ± 0.010, 5.954 ± 0.004) GeV at (1, 2, 3, 4) loops, while using R-evolution with

λ variations between 0.5 and 2 we obtain ∆mt = (5.555 ± 0.577, 5.919 ± 0.114, 5.959 ±
0.015, 5.954± 0.005) GeV. We find that FOPT and R-evolution give equivalent results even

for (R0, R1) = (20, 161) GeV, and that the use of R-evolution is essential for R0/R1 < 0.1.

Overall we see that, if R0 and R1 are of similar size, FO perturbation theory and R-

evolution lead to equivalent results, but that it is in general safer to use R-evolution. So

the situation is very similar to the one we encounter when considering the relation of the

strong coupling for two different renormalization scales.

We note that the possibility to sum the renormalon-type logarithms displayed in

eq. (3.5) by considering the Borel integral over the difference of Borel transforms as shown

in eq. (3.10) was pointed out already in ref. [66] prior to ref. [47]. However, this exact

equivalence [via a transformation of variables as given below eq. (3.9)] of R-evolution and

the method using the integration over Borel transform differences can only be analytically

shown at the β0/LL approximation. Beyond that, both approaches sum up the same type

of logarithms but differ in subleading terms. Numerically, both approaches converge to the

same result and have comparable order-by-order convergence. From a practical point of
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view, however, the concept of R-evolution may be considered more general. This is because

R-evolution can be applied directly to any series having the form of (2.3) or (2.5) while

using the Borel integration method requires that the corresponding Borel transforms are

known or constructed beforehand. For general series, such as for the difference of MSR

masses as discussed above, this is not possible without making additional approximations.

In practice, the approach of ref. [66] to sum the renormalon-type logarithms has therefore

only been applied for series (referred to as RS-schemes) which were explicitly derived from

a given expression for the Borel transform.

4 Analytic Borel transform and renormalon sum rule

Using the solution of the R-evolution equation it is possible to derive, analytically and rig-

orously, an expression for the Borel transform of the MSR-pole mass relation. This Borel

transform is designed to focus on the singular contributions that quantify the O(ΛQCD)

renormalon of the pole mass. This result was already quoted in the letter [47] where,

however, no details on the derivation could be given due to lack of space. In the follow-

ing we provide these details on how to obtain the analytic result for the normalization

of the singular terms. The analytic results for the normalization can be applied to other

perturbative series as a probe of O(ΛQCD) renormalon ambiguities, and we therefore call

it the O(ΛQCD) renormalon sum rule. This sum rule was first given in ref. [47], and is

very sensitive to even subtle effects if O(α4
s) corrections are known. We apply the sum

rule to obtain an updated determination of the size of the pole mass O(ΛQCD) ambiguity,

accounting for the O(α4
s) results of refs. [54, 55] which became available recently but were

unknown when ref. [47] appeared. To demonstrate the sum rule’s capabilities to probe

O(ΛQCD) renormalon ambiguities in perturbative series and to clarify subtleties in how to

use it properly, we also apply it to a few other cases. Interestingly, the analytic manipu-

lations arising in the derivation of the sum rule lead to an alternative expression for the

high-order asymptotic behavior of a series that contains an O(ΛQCD) renormalon. This

expression differs from the well known asymptotic formula which is known since a long

time from [77], and we therefore discuss it as well.

4.1 Derivation

The analytic derivation for the Borel transform of the MSR-pole mass relation starts from

its expression related to the solution of the R-evolution equation given in eq. (3.1) which

was already derived in ref. [47].

mMSR
Q (R)−mpole

Q = −
∫ R

0
dR̄ γR(αs(R̄)) (4.1)

= −ΛQCD

∫ ∞
tR

dt γR(t) b̂(t) e−G(t)

= ΛQCD

∞∑
k=0

eiπ(b̂1+k)Sk

∫ ∞
tR

dt t−1−k−b̂1e−t

= ΛQCD

∞∑
k=0

eiπ(b̂1+k) Sk Γ(− b̂1 − k, tR) ,
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where in the second line we changed variable to t = − 2π/(β0αs(R̄)) and used the iden-

tity (A.6) to scale out ΛQCD, and in the third line we employed the coefficients given in

eq. (A.15). The expression in eq. (4.1) gives an all-order representation of the original series

that is more useful for analyzing O(ΛQCD) renormalon issues than eqs. (2.3) and (2.5). This

is because using the R-evolution equation of eq. (3.1) (which is linear in R) and its solution,

provides, through the sum in k, a reordering of the original series in leading and subleading

series of terms from the perspective of their numerical importance in the asymptotic high

order behavior related to the O(ΛQCD) renormalon. This allows to derive rigorously a

representation of the Borel transform [given in eq. (4.7)] reflecting efficiently the hierarchy

of leading and subleading terms with respect to the O(ΛQCD) renormalon, which is the

information that is not contained in the original series. That such a separation is possible

in a systematic way may not be obvious, but it is achieved by the R-evolution equation. We

stress that the result of eq. (4.7) should not be considered as the exact expression for the

Borel transform because it does not encode information on possible poles (or non-analytic

cuts) other than at u = 1/2. We note that these poles and the associated renormalons can

be studied by considering solutions of R-evolution equations involving powers of R different

from the linear dependence shown in eq. (3.1), see [78].

We note that the expression in the last line of eq. (4.1), which involves the incomplete

gamma function Γ(c, t) =
∫∞
t dxxc−1e−x, also arises in the analytic solution of the mass

difference (3.3),

mMSR
Q (R0)−mMSR

Q (R1) = ΛQCD

∞∑
k=0

eiπ(b̂1+k) Sk
[
Γ(− b̂1 − k, t0)− Γ(− b̂1 − k, t1)

]
. (4.2)

Here the cut in the gamma functions Γ(c, t) for t < 0 cancels in the difference for each k in

the sum, and the result on the r.h.s. is real. We mention that the first term (k = 0) in the

sum over k provides the summation of the leading terms in the β0/LL approximation shown

in eqs. (3.5) and (3.7). In eq. (4.1) the cut still remains and arises from the integration

of the Landau pole in the strong coupling located at t = 0 in the integral in the next-

to-last line. The resulting imaginary part in the numerical expression corresponds to the

imaginary part that arises in the inverse Borel integral for mMSR
Q (R)−mpole

Q , see eq. (3.10),

and simply reflects the ambiguity of the pole mass. From the point of view of the analytic

solution of eq. (4.1) based on a perturbative expansion, the imaginary part is well-defined

and analytically unique.

To proceed we asymptotically expand the incomplete gamma function in inverse powers

of t (i.e. powers of αs)

ΛQCDeiπ(b̂1+k)Γ(−b̂1 − k, t) = −R
[
eG(t)e−t(−t)−b̂1

] ∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)
(−t)−1−k−m

= −R
∞∑
`=0

g`

∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)
(−t)−1−`−k−m , (4.3)

where the coefficients g` are given in eq. (A.13), and coincide with the sk coefficients defined

in ref. [77]. We stress that the equality in eq. (4.3) is the asymptotic expansion and is not

– 16 –



J
H
E
P
0
4
(
2
0
1
8
)
0
0
3

an identity, so that the imaginary part due to the cut in the incomplete gamma function

does not arise on the r.h.s.. Inserting eq. (4.3) in eq. (4.1) gives

mMSR
Q (R)−mpole

Q = −R
∞∑
k=0

Sk

∞∑
`=0

g`

∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)
(−t)−1−`−k−m . (4.4)

We then perform the Borel transform with respect to powers of αs(R) according to the

rule (−t)−1−n → 2 (2u)n/Γ(n+ 1) giving

Bαs(R)

[
mMSR
Q (R)−mpole

Q

]
(u) = (4.5)

= − 2R
∞∑
`=0

g`

∞∑
k=0

Sk

∞∑
m=0

Γ(1 + b̂1 + k +m)

Γ(1 + b̂1 + k)Γ(1 + k + `+m)
(2u)`+k+m

= − 2R
∞∑
`=0

g`

∞∑
k=0

Sk
(2u)`+k

Γ(1 + k + `)
2F1(1, 1 + b̂1 + k, 1 + k + `, 2u) .

Using identities for the hypergeometric function we can rewrite

(2u)`+k

Γ(1+k+`)
2F1(1,1+b̂1+k,1+k+`,2u) =

Γ(1+b̂1−`)
Γ(1+b̂1+k)

(1−2u)−1−b̂1+` (4.6)

− 1

(1+b̂1−`)Γ(k+`)
2F1(1+b̂1−`,1−k−`,2+b̂1−`,1−2u) ,

and the Borel transform can then be cast into the form [47]

Bαs(R)

[
mMSR
Q (R)−mpole

Q

]
(u) = −N1/2

[
R

4π

β0

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)−1−b̂1+`

]

+ 2R
∞∑
`=0

g`Q`(u) , (4.7)

where

N1/2 =
β0 Γ(1 + b̂1)

2π
P1/2 , (4.8)

P1/2 =

∞∑
k=0

Sk

Γ(1 + b̂1 + k)
,

and N1/2 and P1/2 are two conventions for the normalization. Here

Q`(u) =
∞∑
k=0

Sk (2u)k+`

(1 + b̂1 − `) Γ(k + `)
2F1(1, 1 + b̂1 + k, 2 + b̂1 − `, 1− 2u) (4.9)

=

∞∑
k=0

Sk

k+`−1∑
i=0

2i Γ(1 + b̂1 + i− `)
Γ(1 + b̂1 + k) Γ(i+ 1)

ui .

Setting u = 1/2 in eq. (4.9) one gets Q`(1/2) = 1/(1 + b̂1 − `)
∑∞

k=0 Sk/Γ(k + `). Since

the Sk coefficients are renormalon-free and further damped by the factorial in the denom-

inator, this sum is finite. Furthermore, the sum on the second line of eq. (4.7) is also
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finite for u = 1/2. Therefore one concludes that the sum of Q` coefficients is regular at

u = 1/2, implying that the first line of eq. (4.7) fully contains the leading-renormalon sin-

gular behavior. In ref. [47] the expression for the Borel transform in eq. (4.7) was given

using P1/2, but here we have shown an alternate convention with N1/2 which agrees with

the terms Nm and N discussed in refs. [8, 70], and hence eases comparison of our numer-

ical results with theirs. For the phenomenological relevant values n` = (3, 4, 5) we have

N1/2/P1/2 = (1.27, 1.18, 1.09). The analytic difference between these normalizations is that

P1/2 vanishes in the limit n` → −∞ while N1/2 is finite in this limit. We will predominantly

use N1/2 for the numerical examinations in the following subsections.

The manipulations that lead to the expressions for P1/2 and N1/2 involve the rear-

rangement of the infinite sums over ` and k in eq. (4.5). These can be seen to be identities

if one assumes that the QCD β-function and its inverse have some region of convergence.

In practice, because only the first few terms in perturbation theory are known and one

truncates the sums over ` and k, no formal convergence issue arises. We note that the

analytic manipulations involving the R-evolution equation and the derivation of eq. (4.7)

are also valid in schemes for the strong coupling other than MS, and to apply them to such

schemes one simply needs to account for the perturbative rearrangement for the coefficients

an and the QCD β-function due to the scheme change. As an example, all manipulations

and the results simplify considerably in a strong coupling scheme ᾱ where the coefficients

b̂n vanish for n > 1 and which also implies g` = 0 for ` > 0 and that the coefficients of

the QCD β-function have the exact form βn = β0(β1/β0)
n. Since such a scheme change

can be achieved via a relation of the form αs(µ) = ᾱ(µ) + [β2/β0 − (β1/β0)
2] ᾱ3(µ) + . . . ,

which does not contain any O(ᾱ2
s) term, the overall normalization of N1/2 (or P1/2) remains

unchanged [73]. In this scheme we have Sk>0 = γ̃Rk − b̂1γ̃Rk−1, and eq. (4.8) can be rewritten

in the equivalent form N1/2 = (β0/2π)Γ(1 + b̂1)
∑∞

k=0 γ̃
R
k (1 + k)/Γ(2 + b̂1 + k) and was

derived recently in ref. [79]. There is, however, no advantage in using this form, because

the coefficients γ̃Rk in the ᾱ scheme still have to account for the reordering of the series due

to the scheme change from αs to ᾱ. Other schemes, such as the ’t Hooft scheme, where all

coefficients of the QCD β-function beyond β0 and β1 vanish, have been studied in ref. [78].

We discuss the structure of the non-analytic terms multiplied by N1/2 in eq. (4.7)

in section 4.4 below. The second term in eq. (4.7) is purely polynomial and represents

contributions in the Borel transform B(u) that account for the portions in the original

series of eqs. (2.3) and (2.5) that go beyond the pure O(ΛQCD) renormalon corrections

that numerically dominate the series. These terms may include renormalon contributions

of a different kind [such as O(ΛQCD)k>1], which are however not probed by an R-evolution

equation that is linear in R [58]. Moreover, they account for the difference of the pure

O(ΛQCD) renormalon asymptotic form of the series (encoded in the value of N1/2) and the

actual coefficients of the original series given in eqs. (2.3) and (2.5). The latter are recovered

in the asymptotic limit were the sums over k and ` are carried out up to infinity. Note

that in practice, for a finite order determination of the Borel transform for a given value

of N1/2 or P1/2, one truncates the sum over k and ` in eq. (4.9), and in this case the terms

coming from the Q` represent finite polynomials. For the construction of a Borel transform

that reproduces the known coefficients exactly, it may then be more suitable to simply fit
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the coefficients of the remaining polynomial terms such that the known coefficients in the

original series are reproduced exactly.

4.2 Renormalon sum rule

The analytic expression for N1/2 is quite useful as it can be applied to any perturbative

series as a probe for O(ΛQCD) renormalons, given the information on the available coeffi-

cients of a perturbative series. We therefore call the formula for N1/2 (or equivalently P1/2)

in eq. (4.8) the O(ΛQCD) renormalon sum rule [47]. Formally to any given order in k, N1/2

is a linear functional acting on perturbative series in powers of αs since the coefficients Sk
in eq. (4.8) are linear in the coefficients an of the perturbative series, see eq. (A.15). So

given two series defined by the sequence {cn} = (c1, c2, . . . ) and {dn} = (d1, d2, . . . ), where

cn/dn are the coefficients of order [αs/(4π)]n in the series, one has

N1/2[{α cn + β dn}] = αN1/2[{cn}] + β N1/2[{dn}] . (4.10)

As a word of caution, we emphasize that applying the N1/2 sum rule to a truncated

series does (like any other type of renormalon calculus in the context of perturbative

QCD) not rigorously and mathematically prove or disprove the existence of an O(ΛQCD)

renormalon, since the existence of renormalons is by definition related to the asymptotic

high-order behavior and mathematically strict proofs, if they exist, are related to elaborate

all-order studies of Feynman diagrams. So using the sum rule should be better thought

of as an analytic projection of the known terms of a perturbative series onto the known

pattern of a pure O(ΛQCD) renormalon series, which is generated from the singular terms

in the Borel transform in eq. (4.7) that are multiplied by N1/2 or P1/2 and known to all

orders. This projection becomes more accurate the more terms of a series are known and

mathematically converges (only) if the yet unknown high order terms keep following the

renormalon pattern expected from the low order terms.3

Although the series in k for N1/2 in eq. (4.8) is not ordered in powers of the strong

coupling, it is possible to implement renormalization scale variation by rescaling R → λR

in the original series of eqs. (2.3) and (2.5) and subsequently expanding again in αs(R).

This leads to

S′0 = λS0 ,

S′1 = λ
[
S1 − S0 log λ

]
,

S′2 = λ
[
S2 − 2S1 log λ+ S0

(
log2 λ− (b̂2 + 2 b̂1) log λ

)]
,

S′3 = λ

[
S3 − 3S2 log λ+ S1

(
3 log2 λ− (b̂2 + 3 b̂1) log λ

)
+ S0

(
− log3 λ+

(
2 b̂2 +

9

2
b̂1

)
log2 λ+

(
3 b̂2 + b̂3 − b̂1(b̂2 + 3 b̂1)

)
log λ

)]
, (4.11)

3For example, applying the sum rule to a series that follows an O(ΛQCD) renormalon pattern up to order

m, but then changes to a convergent series beyond, the value of N1/2 approaches a finite value up to order

m, but then decreases and approaches zero when more terms beyond order m are included. Note however

that there is no reason to expect a perturbative series in QCD to behave in such a manner.
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Figure 3. N1/2(n` = 5) for the natural and practical top quark MSR masses. On panel (a) results

are shown as a function of λ including contributions from one to four loops. The size of the bands

at four loops reflects the error introduced by the numerical uncertainty in the O(α4
s) coefficient

for the MS-pole conversion series. On panel (b) results are shown as error bars in blue (red) for

the practical (natural) MSR masses at k-loops accounting also for the η parameter variation as

described after eq. (4.14).

and one can show that in the asymptotic limit, i.e. to all orders in k, the sum rule expression

for N1/2 or P1/2 is invariant under variations of λ. Thus for a finite order determination

of N1/2 the λ-dependence decreases with order, and the remaining variation with λ can be

taken as an estimate for the uncertainty due to the missing higher order terms in the same

way as renormalization scale variation in RG-invariant power series in αs is commonly

used to estimate perturbative uncertainties. The invariance under changes of λ is directly

related to the facts that the O(ΛQCD) renormalon ambiguity of the series in eqs. (2.3)

and (2.5) is R-independent and that carrying out the Borel transform of eq. (4.5) in the

previous section with respect to αs(µ) instead of αs(R) leads to the simple rescaling factor

µ/R of all the non-analytic terms proportional to N1/2.

4.3 Sum rule for the pole mass renormalon

We now apply the sum rule to the series of the MSR-pole mass relations to quantify the

O(ΛQCD) renormalon of the pole mass. Note, that to fully determine the order k result, the

O(αk+1
s ) (k+ 1)-loop corrections from eq. (2.3) and eq. (2.5) and the O(αk+3

s ) (k+ 2)-loop

correction to the QCD β-function, βk+1 need to be known. So at k = 3, both the recently

determined O(α4
s) 4-loop correction from eqs. (2.3) and (2.5) [54, 55] and the O(α6

s) 5-loop

correction to the QCD β-function [80] are required. To simplify terminology we call the

result that truncates the series for N1/2 after the k-th term the “(k+ 1)-loop” or “O(αk+1
s )

result”, referring to the order to which the series is being probed with the sum rule.

In figure 3a the numerical results for N1/2(n` = 5) are shown for the natural (solid

lines) and practical (dashed lines) MSR masses for 0.5 < λ < 2 using terms in the se-

ries for N1/2 up to k = 0 (cyan), k = 1 (blue), k = 2 (green) and k = 3 (red).

The thickness of the O(α4
s) curves correspond to the numerical error of the coefficients
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quoted in [55] and shown in eqs. (2.6) and (2.2) and indicates that this error is more than

an order of magnitude smaller than the uncertainty due to missing higher order terms

and therefore negligible. We therefore do not account for this uncertainty any further

and adopt the central values given in eqs. (2.6) and (2.2). Using the λ dependence in

the range 0.5 < λ < 2 as an error estimate due to the missing higher orders we ob-

tain for N1/2(n` = 5) at O(αks), k = (1, 2, 3, 4) the numerical results Nnat
1/2(n` = 5) =

(0.531 ± 0.318, 0.468 ± 0.104, 0.483 ± 0.029, 0.446 ± 0.024) for the natural MSR mass and

Nprac
1/2 (n` = 5) = (0.531± 0.318, 0.475± 0.109, 0.494± 0.032, 0.441± 0.033) for the practical

MSR mass. The central values are the mean of the respective maximal and minimal value

obtained in the range 0.5 < λ < 2. Both results are fully compatible, as is expected since

the difference of the natural and practical MSR masses is free from an O(ΛQCD) renor-

malon as already discussed in section 2.3. We see that the λ-dependence of N1/2 nicely

decreases when including more higher-order terms and that there is excellent convergence.

The convergence and the reducing λ-dependence both indicate that the numerical size of

the recently calculated 4-loop correction in the MS-pole mass relation [54, 55] is fully com-

patible with the expectations based on the knowledge of the corrections up to 3 loops and

the proposition that the MS-pole mass is dominated by an O(ΛQCD) renormalon behavior

already at the known low orders.

It is quite instructive that one can invert this line of arguments and use the sum rule as

a tool to determine a prediction for higher order terms in the perturbative series under the

assumption that the O(ΛQCD) renormalon-type behavior observed at lower orders persists

also at higher orders. Indeed, using for example the O(α3
s) result for the practical MSR

mass Nprac
1/2 (n` = 5) = 0.494 ± 0.032 and the coefficients aMSRp

1,2,3 of the relation between

practical MSR and pole masses [see eqs. (2.6)] and the β-function coefficients up to β4 as

an input, one can fit for the O(α4
s) coefficient giving aMSRp

4 (n` = 5) = 224620 ± 18656.

Converting to the (n`+1) flavor scheme we obtain for the O(α4
s) coefficient in the MS-pole

mass relation aMS
4 (n` = 5, 1) = 230192 ± 14747 compared to the result aMS

4 (n` = 5, 1) =

211807± 5504 from [54] and aMS
4 (n` = 5, 1) = 214828± 422 from ref. [55]. The prediction

for the O(α4
s) coefficient based on the sum rules has a larger error but is fully compatible

with the results from the explicit loop calculations. This is remarkable given that the sum

rule result is obtained with essentially no additional computational effort. We note that

estimates for the coefficient aMS
4 were given before for example in refs. [8, 81–84]. These

were not based on the renormalon sum rule but used available information on the high-order

asymptotics of the perturbative series (see section 4.4). The analyses of refs. [8] and [84]

were quoting an uncertainty for the estimate using the known corrections up to O(α3
s) and

obtained the results aMS
4 (n` = 5, 1) = 241920± 23552 and aMS

4 (n` = 5, 1) = 229632 + 7936
− 44800,

respectively, which are fully compatible with the sum rule estimate we showed above at

the same order.

The results for N1/2(n` = 5) represent the O(ΛQCD) renormalon ambiguity for the top

quark pole mass assuming that the other quark flavors including the charm and bottom

quarks are massless. The other cases of phenomenological interest are n` = 3 and n` = 4

and the corresponding results for the natural and practical MSR masses are given in table 1.

As our final results for the N1/2 values for the number of massless flavors n` = 3, 4, 5 we
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quote the 4-loop results for the natural MSR mass

N1/2(n` = 3) = 0.526± 0.016 , (4.12)

N1/2(n` = 4) = 0.492± 0.020 , (4.13)

N1/2(n` = 5) = 0.446± 0.026 . (4.14)

Note that the uncertainties are slightly larger than the ones quoted in table 1. Following

ref. [70] we have also included an additional uncertainty coming from varying the defining

coefficients aMS
n = aMS

n (n`, 0) of the natural MSR mass based on the idea that using the

association of R with the MS mass at the scale of the MS mass is in principle not mandatory.

Since one may as well consider different renormalization scales for the MS mass and the

O(ΛQCD) renormalon ambiguity is not affected by this choice, we have determined modified

coefficients an from eq. (2.3) by setting R = m
(n`)
Q (m

(n`)
Q ) and completely reexpanding the

series in terms of R′ = m
(n`)
Q (ηm

(n`)
Q ) using the RG equation for the MS mass for n`

dynamic flavors. Using the resulting series coefficients we have reevaluated the sum rule

using variations in η between 0.5 and 2 and added the resulting uncertainty (while keeping

λ = 1) quadratically to the ones shown in table 1 (which relate to the choice η = 1). The

results including the η variation are shown in figure 3b exemplarily for n` = 5.

The results of eqs. (4.12)–(4.14) are compatible with those given in refs. [8, 70]. For

example for n` = 5 [70] obtained 0.4616+0.027
−0.070 ± 0.002, where the first uncertainty is from

a double scale variation similar to ours and the second uncertainty is from the numerical

determination of the four loop coefficient. In refs. [8, 70] the determination of the nor-

malization N1/2 was based on the ratio method, which arises from a comparison of the

perturbative coefficients an from explicit QCD loop calculations to the coefficients aasyn of

the series generated by a pure O(ΛQCD) renormalon in eq. (4.16) based on the relation that

limn→∞ an/a
asy
n = 1. In ref. [8] the static QCD potential and the MS-pole mass relation

were studied, and in ref. [70] the MS-pole mass was examined. (In ref. [8] the static po-

tential based numbers are roughly 1.4σ higher than those in eqs. (4.12)–(4.14), which may

be related to the points discussed below in section 5.1 for the PS mass.) The agreement of

our sum rule results and those obtained from the ratio method in ref. [70] underlines the

capabilities of R-evolution and the renormalon sum rule concept.

In table 1 we have also shown the results for a number of other n` values as these

results are also of theoretical interest. Our results are in full agreement with and have

compatible uncertainties to the results given in table 1 of ref. [70] and in particular confirm

that N1/2 → 1 for n` → −∞, which is the classic large-n` limit where the perturbative

series are fully dominated by the massless quark bubble chain and the non-Abelian QCD

effects are diluted away. Our result for n` = 0 is also in agreement with ref. [8] and

the lattice determinations of refs. [69, 85], which found N1/2(n` = 0) = 0.600 ± 0.029,

N1/2(n` = 0) = 0.660±0.056 and N1/2(n` = 0) = 0.620±0.035, respectively. We note that

our analytic expression for N1/2 gets unstable and non-conclusive for 10 . n` . 30 which

is the so-called conformal region where the coefficient β0 of the QCD β-function becomes

small and in particular b̂1 = β1/(2β
2
0) becomes large. In this region the analytic formula

for N1/2 has singularities and does not approach any stable value. This is connected to the
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n` O(αs) O(α2
s) O(α3

s) O(α4
s)

N1/2(n`) from mMSRn
t

−1000000 0.531± 0.318 1.022± 0.378 0.817± 0.121 1.009± 0.068

−10 0.531± 0.318 0.654± 0.220 0.640± 0.062 0.684± 0.030

0 0.531± 0.318 0.558± 0.169 0.567± 0.058 0.582± 0.017

3 0.531± 0.318 0.514± 0.140 0.527± 0.046 0.526± 0.012

4 0.531± 0.318 0.494± 0.124 0.508± 0.039 0.492± 0.016

5 0.531± 0.318 0.468± 0.104 0.483± 0.029 0.446± 0.024

6 0.531± 0.318 0.434± 0.079 0.437± 0.027 0.381± 0.038

7 0.531± 0.318 0.387± 0.047 0.340± 0.059 0.271± 0.063

8 0.531± 0.318 0.184± 0.141 0.165± 0.142 0.053± 0.097

10 0.531± 0.318 − 3.381± 2.714 − 1.811± 0.492 − 2.434± 1.041

N1/2(n`) from mMSRp
t

−1000000 0.531± 0.318 1.022± 0.378 0.817± 0.121 1.009± 0.068

−10 0.531± 0.318 0.658± 0.222 0.641± 0.062 0.684± 0.028

0 0.531± 0.318 0.563± 0.172 0.572± 0.059 0.583± 0.016

3 0.531± 0.318 0.520± 0.144 0.535± 0.048 0.522± 0.017

4 0.531± 0.318 0.501± 0.129 0.517± 0.041 0.487± 0.023

5 0.531± 0.318 0.475± 0.109 0.494± 0.032 0.441± 0.033

6 0.531± 0.318 0.442± 0.083 0.457± 0.023 0.373± 0.052

7 0.531± 0.318 0.394± 0.050 0.366± 0.051 0.259± 0.083

8 0.531± 0.318 0.200± 0.134 0.201± 0.127 0.027± 0.132

10 0.531± 0.318 − 3.325± 2.681 − 1.638± 0.439 − 3.057± 0.649

Table 1. N1/2(n`) for the natural and practical heavy quark MSR masses. The results are given

for different theoretically interesting values of n` including contributions from one to four loops.

The errors shown are obtained from λ variations in the interval [0.5, 2] and the central values are

the mean value of the respective maximal and minimal values obtained in that interval.

fact that in this region no definite statement on the asymptotic large order behavior of the

perturbative series and in particular on the O(ΛQCD) renormalon can be made because the

infrared and ultraviolet structure of the QCD β-function strongly depend on a complicated

numerical interplay of the coefficients βi>0, which can become quite large and have different

signs. The unstable behavior of our analytical formula for 10 . n` . 30 differs from the

results obtained in refs. [8, 70], where the normalization N1/2 was observed being tiny.

However, as emphasized in ref. [70], this feature was an artifact of the ratio method used

in refs. [8, 70], and again indicates that in this n` region the canonical renormalon calculus

cannot be applied.
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In ref. [29] the Borel method to compute N1/2 was suggested based on the idea that the

Borel function (1−2u)1+b̂1Bαs(u) eliminates all non-analytic contributions in the first term

on the r.h.s. of eq. (4.7) and thus isolates the term N1/2 in the limit u→ 1/2 [68]. This ap-

proach entails that after the low-order terms in the expansion of the Borel transform Bαs(u)

around u = 0 are determined from the original series, one expands (1 − 2u)1+b̂1Bαs(u) in

powers of u and subsequently evaluates the resulting series for u = 1/2. The results of

refs. [29, 68] were based on the assumption that the analytic contributions [involving the

functions Q`(u)] on the r.h.s. of eq. (4.7) quickly tend to zero when multiplied by (1−2u)1+b̂1

and are unimportant. This is not the case, as the Taylor expansion (1 − 2u)1+b̂1 around

u = 0 converges very slowly to zero if one sets u = 1/2. This can be traced to the fact

that b̂1 is non-integer and in general the convergence radius of the binomial series is 1.

Here u = 1/2 corresponds exactly to the border of this radius. These terms are therefore

numerically sizable at any truncation order. As we show in appendix B, neglecting them

leads to a much larger dependence on the renormalization parameter λ at a given trun-

cation order. This is because the λ dependence of these terms is multiplied by a factor

converging to zero, but the convergence is rather slow. When many orders are included,

as shown in ref. [69] which accounted for terms up to O(α20
s ), the dependence vanishes

and the method converges to N1/2, which we have confirmed through a reanalysis. This

observation is consistent with the large scale uncertainties found in the detailed numerical

analysis of ref. [8]. The Borel method to determine N1/2 is therefore not very precise if only

the first few terms of the series are known. Interestingly, accounting for the analytic terms

on the r.h.s. of eq. (4.7), which are contained in the polynomials Q` and are computed sys-

tematically from R-evolution as shown in section 4.1, one can derive an improved version

of the Borel approach which agrees exactly with our sum rule formula of eq. (4.8). The

corresponding analytic calculation and a brief numerical analysis are given in appendix B.

4.4 Asymptotic higher order behavior

In this section we use the analytic manipulations that arise in the derivation of the sum rule

to derive an alternative expression for the high-order asymptotic form of a series containing

anO(ΛQCD) renormalon that differs from the well known formula derived in [77]. The latter

formula is related to the sum of the non-analytic terms, which are multiplied by N1/2 or

P1/2 in the Borel function of eq. (4.7), and reads[
mpole
Q −mMSR

Q (R)
]
asy

= N1/2R

∞∑
n=0

aasyn+1

(
αs(R)

4π

)n+1

(4.15)

= N1/2R

∞∑
n=0

4π (2β0)
n

(
αs(R)

4π

)n+1 ∞∑
`=0

g`
Γ(1 + b̂1 + n− `)

Γ(1 + b̂1)

= P1/2R

∞∑
n=0

(2β0)
n+1

(
αs(R)

4π

)n+1 ∞∑
`=0

g` Γ(1 + b̂1 + n− `) ,

giving the asymptotic form of the coefficients

aasyn = 4πN1/2(2β0)
n−1

∞∑
`=0

g` (1 + b̂1)n−1−` , (4.16)
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where (b)n = b (b + 1) · · · (b + n − 1) = Γ(b + n)/Γ(b) is the Pochhammer symbol. Given

the value for P1/2 or N1/2 the structure of the perturbative coefficients of eq. (4.15) is

completely fixed by the properties of the QCD β-function and does not depend any more

on the coefficients of the original series of eqs. (2.3) and (2.5). Thus eq. (4.15) has been

frequently used as the standard form for the asymptotic high-order behavior of perturbative

series dominated by an O(ΛQCD) renormalon. This is also reflected by the fact that the

imaginary part of the inverse Borel integration over the non-analytic terms in eq. (4.7) is

exactly proportional to ΛQCD

Im

∫ ∞
0

du

[
−N1/2R

4π

β0

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)−1−b̂1+`

]
e
− 4πu
β0αs(R) (4.17)

= P1/2 πΛQCD = N1/2
2π2

β0 Γ(1 + b̂1)
ΛQCD ,

with ΛQCD given in eq. (A.6). As a side remark, we note that inserting the series in

eq. (4.15), with a given value for N1/2, into the sum rule expression of eq. (4.8) one recovers

N1/2 in the limit of carrying out the sums over k, n and ` to infinity.

Interestingly, eq. (4.4) provides a remarkable alternative expression for the high-order

asymptotic of the MSR-pole mass series as it can be rewritten in the form

mpole
Q −mMSR

Q (R) =R

∞∑
n=0

(
αs(R)

4π

)n+1 n∑
k=0

n−k∑
`=0

(2β0)
n+1Sk g`

Γ(1+b̂1+n−`)
Γ(1+b̂1+k)

. (4.18)

In contrast to eq. (4.15) this expression still depends on the Sk coefficients non-trivially

and thus carries all the information contained in the original series due to the identity

an = (2β0)
n
n−1∑
k=0

Sk

n−1−k∑
`=0

g` (1 + b̂1 + k)n−1−`−k . (4.19)

This relation is interesting because it provides a separation of the coefficients of the original

series into leading and subleading terms with respect to the asymptotic high-order behavior.

So truncating the sums over k and ` in eq. (4.19) (e.g. accounting for the coefficients Sk and

g` up to the order they are known) provides the correct high-order asymptotic behavior for

n beyond the truncation order and, at the same time, reproduces exactly the coefficients

of the original series up to the truncation order.

Currently the coefficients an for the MSR-pole and the MS-pole mass relations are

known to order O(α4
s) and the QCD β-function is known to order O(α6

s) so that the

coefficients Sk and g` are known up to kmax = `max = 3. We may therefore write down

estimates for the still uncalculated coefficients an>4 using the expression

aasyn>4 = 4πN1/2 (2β0)
n−1

3∑
`=0

g` (1 + b̂1)n−1−` , (4.20)

which is the established formula from [77] shown in eq. (4.15), and

aasy ′n>4 = (2β0)
n

3∑
k=0

Sk

min(n−k−1,3)∑
`=0

g` (1 + b̂1 + k)n−1−`−k , (4.21)
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based on eq. (4.19), which encodes information on both the regular and asymptotic behavior

of the series.4 In table 2 we show estimates for the yet uncalculated coefficients a5≤n≤9
for the relations of the natural MSR mass and the MS mass mQ ≡ m

(n`+1)
Q (m

(n`+1)
Q ) to

the pole mass using eqs. (4.20) and (4.21) for n` = 3, 4, 5 and the results of eqs. (4.12)–

(4.14) for N1/2. The uncertainties for the coefficients aasyn are based on the uncertainties

shown in eqs. (4.12) – (4.14) and those for the coefficients aasy ′n are determined from λ

variations 1/2 < λ < 2, as explained in section 4.2 and η variations 1/2 < η < 2, as

explained below eq. (4.14). The coefficient estimates for the MS mass have been obtained

by using the second equality of (5.8) and eq. (A.7) to the order shown. We see that both

estimates are completely equivalent and have the same uncertainties. Our estimates for

the MS mass coefficients for n` = 5 also agree perfectly with those given in ref. [70] which

used the approach of eq. (4.20). We note that the relation (4.19) can also be inverted to

provide closed iterative expressions for the Sk coefficients to all orders, which are given in

appendix A and in particular in eq. (A.18).

We note that the asymptotic series coefficients aasyn in eq. (4.16) and the expression for

the coefficients an in eq. (4.19) allow for an alternative derivation of the renormalon sum

rule formula since the ratio an/a
asy
n approaches unity for n → ∞. Taking that ratio one

arrives at

N1/2
an
aasyn

=

(2β0)
n
n−1∑
k=0

Sk
n−1−k∑̀

=0

g` (1 + b̂1 + k)n−1−`−k

4π (2β0)n−1
∞∑̀
=0

g` (1 + b̂1)n−1−`

(4.22)

=
β0 Γ(1 + b̂1)

2π

n−1∑
k=0

Sk

Γ(1 + b̂1 + k)

n−1−k∑̀
=0

g` Γ(b̂1 + n− `)

∞∑̀
=0

g` Γ(b̂1 + n− `)
.

To the extent that the sums over k in the sum rule formula of eq. (4.8) and in eq. (4.22)

for n→∞ are convergent, one can use the Cauchy convergence criterion to show that the

expression of eq. (4.22) is equivalent to eq. (4.8) for n → ∞. This shows analytically the

equivalence of the ratio method and the sum rule.

4.5 Other applications of the sum rule

To conclude our considerations concerning the O(ΛQCD) renormalon sum rule we discuss in

this section a number of subtleties in its proper use and a few interesting applications. As

it is sufficient for the purpose of the examinations, we use for simplicity only λ variations,

as explained in section 4.2, when quoting uncertainties of the sum rule evaluated here.

4.5.1 Number of massless flavors

An important feature of the O(ΛQCD) renormalon sum rule is that it probes the infrared

sensitivity of the perturbative series, which physically depends on the number of massless

4One can easily write eq. (4.21) as the sum of eq. (4.20) and a term build from the inverse Borel transform

of the Q` polynomials defined in eq. (4.9).
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n` aMSRn
5 × 10−7 aMSRn

6 × 10−9 aMSRn
7 × 10−11 aMSRn

8 × 10−13 aMSRn
9 × 10−15

3 3.394± 0.105 3.309± 0.102 3.819± 0.118 5.093± 0.157 7.706± 0.238

4 2.249± 0.090 2.019± 0.081 2.147± 0.086 2.641± 0.106 3.687± 0.148

5 1.379± 0.080 1.128± 0.066 1.095± 0.064 1.231± 0.072 1.572± 0.091

aMSRn ′
5 × 10−7 aMSRn ′

6 × 10−9 aMSRn ′
7 × 10−11 aMSRn ′

8 × 10−13 aMSRn ′
9 × 10−15

3 3.393± 0.105 3.309± 0.102 3.819± 0.118 5.093± 0.157 7.706± 0.238

4 2.248± 0.090 2.019± 0.081 2.147± 0.086 2.641± 0.106 3.687± 0.148

5 1.378± 0.080 1.128± 0.066 1.095± 0.063 1.231± 0.072 1.572± 0.091

aMS
5 × 10−7 aMS

6 × 10−9 aMS
7 × 10−11 aMS

8 × 10−13 aMS
9 × 10−15

3 3.401± 0.105 3.315± 0.102 3.824± 0.118 5.099± 0.158 7.714± 0.239

4 2.255± 0.090 2.023± 0.081 2.151± 0.086 2.644± 0.106 3.692± 0.148

5 1.383± 0.080 1.130± 0.066 1.097± 0.064 1.233± 0.072 1.575± 0.091

aMS ′
5 × 10−7 aMS ′

6 × 10−9 aMS ′
7 × 10−11 aMS ′

8 × 10−13 aMS ′
9 × 10−15

3 3.400± 0.106 3.315± 0.103 3.824± 0.118 5.099± 0.158 7.714± 0.239

4 2.254± 0.091 2.023± 0.081 2.151± 0.086 2.644± 0.106 3.692± 0.148

5 1.382± 0.081 1.130± 0.066 1.097± 0.064 1.233± 0.072 1.575± 0.091

Table 2. Numerical estimates for the perturbative coefficients aMSRn
n (MSRn-pole mass relation

in eq. (2.3)) and aMS
n [MS-pole mass relation in eq. (2.1)] for 5 ≤ n ≤ 9 and n` = 3, 4, 5 using

formulae (4.20) and (4.21) for their asymptotic high-order behavior. The quoted errors arise from

λ and η variations in the interval [0.5, 2] and the central values are the mean of the maximum and

minimum values in that interval.

quarks, n`, one employs in the computation of the series. In a computation in QCD,

however, n` might not be equal to the number of active flavors, nf , which governs the

ultraviolet behavior and the renormalization group evolution of the strong coupling α
(nf )
s

and other renormalized quantities, and a naive application of the sum rule may lead to

inconsistent results. In such a case, the series in α
(nf )
s should be better converted to the

n`-flavor scheme for the strong coupling, α
(n`)
s , before its coefficients are inserted in the

sum rule expression. This can be either realized by simply rewriting α
(nf )
s as a series in

α
(n`)
s , as it is done in the definition of the practical MSR mass, or by integrating out the

effects of the nf − n` massive quarks, as it is done in the definition of the natural MSR

mass. The latter approach is the physically cleaner way (which was the reason for using

the name ‘natural’), but both approaches are consistent as far as the application of the

sum rule is concerned.

In the following we discuss the pitfalls of using the sum in an inconsistent way. To

discuss the issue we recall that, since the O(ΛQCD) renormalon sum rule is a functional

on the perturbative series, it can also be seen as a function N1/2[n`, {an}] acting on the

coefficients an of the [αs/(4π)]n terms in the series. As indicated, N1/2 is a function of the

number of massless flavors n` through its dependence on β0 and the coefficients b̂k, which
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appear in eq. (4.8) and a function of the coefficients an contained in the expressions for the

Sk as shown in eq. (A.15). The function N1/2[n`, {an}] is therefore probing the series defined

by the set of coefficients {an} with respect to an O(ΛQCD) renormalon for n` massless

flavors, and it is essential for the sum rule to work properly that the value of n` agrees with

the number of massless flavors used for the computation of the coefficients an. Let us now

apply the sum rule to the coefficients {aMS,n`
n } of the series for mpole

Q −mQ(mQ)(n`+1) in

eq. (2.1), which is a series in α
(n`+1)
s , but contains the effects of n` massless flavors. Here

we use the shorthand notation

aMS,n`
n ≡ aMS

n (n`, nh = 1) . (4.23)

To be specific we take n` = 5. Probing the series with respect to an O(ΛQCD) renor-

malon for n` + 1 = 6 massless flavors, in accordance with the scheme for αs, one obtains

N1/2[6, {a
MS,n`=5
n }] = (0.531± 0.318, 0.526± 0.1298, 0.623± 0.070, 0.6360± 0.016) at order

n = (0, 1, 2, 3), where the errors are obtained from varying λ in the range 0.5 < λ < 2

and the central values are the mean value of the respective maximal and minimal values

obtained in the λ variation. We see that the sum rule appears to approach a value that

is much larger than the correct result of eq. (4.14), but this is a consequence of an incon-

sistent application of the sum rule. Indeed, one can show by simple algebra in the β0/LL

approximation [where b̂i≥1 = βi≥1 = 0, aasy,n`n+1 = a1(2β0,n`)
nn! and β0,n` = 11 − 2/3n`]

that the order n expression for N1/2 that is obtained — when probing with respect to an

O(ΛQCD) renormalon for nf massless flavors — has the form

[
N

(n)
1/2[nf , {aasy,n`n }]

]
β0/LL

=
β0
2π

n∑
k=0

Sk
k!

=
a1
4π

(
β0,n`
β0,nf

)n
. (4.24)

As long as β0,n is a positive number this expression diverges for nf > n` in the limit

n → ∞, which explains the behavior of the sum rule results shown above. On the

other hand, the expression of eq. (4.24) converges to zero for nf < n`. So when prob-

ing the coefficients {aMS,n`
n } of the series for mpole

Q − mQ(mQ)(n`+1) with respect to an

O(ΛQCD) renormalon for n` − 1 = 4 massless flavors we obtain N1/2[4, {a
MS,n`=5
n }] =

(0.531±0.318, 0.433±0.089, 0.405±0.027, 0.327±0.051) at order n = (0, 1, 2, 3) which is a

sequence of decreasing terms, as expected from eq. (4.24), which in addition does not behave

in a stable way. But, again, the behavior is a consequence of an inconsistent application

of the sum rule. On the other hand, if we probe the coefficients {aMS,n`
n } of the series for

mpole
Q −mQ(mQ)(n`+1) with respect to an O(ΛQCD) renormalon for n` = 5 massless flavors

we obtain N1/2[5, {a
MS,n`=5
n }] = (0.531±0.318, 0.475±0.109, 0.494±0.032, 0.442±0.033) at

order n = (0, 1, 2, 3), which converges to the correct result of eq. (4.14). We also learn that

adopting for the strong coupling α
(nf )
s a flavor number scheme where nf agrees with the

number of massless flavors is clean conceptually, but not crucial numerically such that the

sum rule works reliably. This is related to the fact that the matching relation of the strong

coupling in different flavor number schemes does not suffer from an O(ΛQCD) renormalon

behavior.
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This brief examination above underlines the importance that the O(ΛQCD) sum rule,

which probes the infrared sensitivity of the perturbative series, is applied consistently with

respect to the number of massless quarks, which may not agree with the number of active

flavors in the normalization group equation that is governed by ultraviolet effects. Of

course this feature may as well be used as a tool, as studying the convergence of the sum

rule may be employed to determine the number of massless flavors used, let’s say, in a

numerical computation of a perturbative series.

4.5.2 Moments of the vacuum polarization function

The zero-momentum moments Mi, i = 1, 2, 3, . . ., of the massive quark Q vector current

correlator Π(q2), defined by [jµ(x) ≡ ψQ(x)γµψQ(x)]

Mi =
12π2Q2

Q

m!

di

dq2i
Π(q2)

∣∣∣∣∣
q2=0

, (4.25)

(
gµνq

2 − qµqν
)

Π(q2) = − i
∫

dx eiqx 〈0|Tjµ(x)jν(0)|0〉 ,

provide one of the most precise methods to determine the charm and bottom quark MS

masses [1–10] and are known to utterly fail in precision when expressed in terms of the

charm and bottom pole masses. This mass sensitivity comes from the fact that the per-

turbative series for the moments Mi is due to dimensional reasons proportional to m−2iQ in

the form Mi = m−2iQ

∑∞
n=0 ci,n(mQ)[α

(n`)
s (mQ)/(4π)]n, where n` is the number of massless

flavors and we use the n`-flavor scheme for the strong coupling.5 The moments Mi are

related to weighted integrals over the hadronic R-ratio of QQ production and thus free

from the O(ΛQCD) renormalon. They can be rewritten in the form

mQ −
(
Mi

ci,0

)− 1
2i

= m′Q

∞∑
n=1

ai,n[mQ,m
′
Q]

(
α
(n`)
s (m′Q)

4π

)n
, (4.26)

where mQ and m′Q may be in general different quark mass schemes.

The moments Mi are suitable quantities to discuss the parametric aspect of renormalon

ambiguities and how they affect the proper application of the O(ΛQCD) sum rule. The first

three moments M1,2,3 are known to O(α3
s) [86–96] and the corresponding series coefficients

ai,n for n` = 4 in the MS mass scheme mQ = m′Q = m
(n`+1)
Q (m

(n`+1)
Q ) and the pole mass

scheme mQ = m′Q = mpole
Q using the n`-flavor scheme α

(n`)
s for the coupling are quoted in

table 3. Applying the sum rule to the series for the M1,2,3 on the r.h.s. of eq. (4.26) in the

MS scheme we obtain for n` = 4, relevant for the bottom quark, the results

N i=1
1/2 = (0.477± 0.286,− 0.178± 0.261, 0.013± 0.036) , (4.27)

N i=2
1/2 = (0.241± 0.145,− 0.007± 0.083,− 0.029± 0.058) ,

N i=3
1/2 = (0.127± 0.076, 0.031± 0.026,− 0.029± 0.048) ,

5In the recent sum-rule analyses [1–10] for the bottom quark mass n` = 4 was used, while for charm mass

determinations n` = 3 was employed, and the (n` + 1) flavor scheme was employed for the renormalization

group evolution.
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i O(αs) O(α2
s) O(α3

s) O(αs) O(α2
s) O(α3

s)

ai,n[mpole,mpole] ai,n[m(m),m(m)]

1 10.1235 83.7296 4669.92 4.79012 − 10.7255 − 310.275

2 7.76049 120.609 4589.81 2.42716 13.5516 − 334.42

3 6.61153 127.821 4754.39 1.2782 14.6354 − 199.81

ai,n[mpole,m(m)] ai,n[mpole, M̃ ]

1 10.1235 137.721 5719.41 10.1235 186.214 5831.25

2 7.76049 161.998 5695.26 7.76049 180.834 6005.71

3 6.61153 163.082 5829.87 6.61153 171.533 6063.32

Table 3. ai,n(mQ,m
′
Q) coefficients of the perturbative expansion for the mass-subtracted linearized

moments, as displayed in eq. (4.26), at one (left column of each block), two (middle column of each

block), and three (right column of each block) loops. The numerical values correspond to the case

n` = 4, studied in this section. The table is split into four blocks: the upper left one corresponds

to the pole mass expansion in terms of the pole mass, the upper right one shows the MS mass

expansion in terms of the MS mass, the lower left block displays the pole mass expansion in terms

of the MS mass, and the lower right displays the linearized iterative expansion for the pole mass.

at order n = (0, 1, 2), where the errors are obtained by λ variations in the range 0.5 < λ < 2

and the central values are obtained from the mean of the respective maximal and minimal

values in the λ variation. We see that the results for N1/2 are compatible with zero beyond

O(αs) and have uncertainties that decrease with order, illustrating the known fact that the

series are free from an O(ΛQCD) renormalon in the MS mass scheme.

Applying the sum rule to the series for the M1,2,3 in the pole mass scheme

mQ = m′Q = mpole
Q the corresponding results for n` = 4 read

N i=1
1/2 = (1.007± 0.604, 0.092± 0.278, 0.510± 0.113) , (4.28)

N i=2
1/2 = (0.772± 0.463, 0.345± 0.094, 0.420± 0.012) ,

N i=3
1/2 = (0.658± 0.395, 0.416± 0.053, 0.424± 0.013) .

Apart from the outcome for M1, which still happens to have a rather large error at order

n = 2 the results converge to the result 0.42± 0.01 which is incompatible with the correct

result 0.49 ± 0.02 from eq. (4.13). So the O(ΛQCD) renormalon ambiguity inherent to

the coefficients in the series of eq. (4.26) in the pole mass scheme appears to be about

15% smaller than for the coefficients of the MSR-pole mass series analyzed before. The

discrepancy is resolved by the fact that in the pole scheme with both mQ = m′Q = mpole
Q

the r.h.s. of eq. (4.26) is expressed using the ambiguous pole mass as a parameter. As a

consequence, the perturbative coefficients of the series and factors of mpole
Q on the r.h.s.

share the full O(ΛQCD) pole mass renormalon ambiguity contained in the l.h.s. of eq. (4.26).

To recover the full O(ΛQCD) pole mass renormalon ambiguity in the coefficients on the

r.h.s. one has to rewrite the series on the r.h.s. in terms of parameters that are free from

the O(ΛQCD) renormalon ambiguity. This can be achieved by re-expanding the series for
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mpole
Q −(Mm/ci,0)

−1/(2i) completely in terms of the MS mass using m′Q = m
(n`+1)
Q (m

(n`+1)
Q ).

The resulting coefficients in powers of α
(n`)
s (m′Q) are given in the lower left column of table 3.

Using these coefficients, the renormalon sum rule applied to the series for the M1,2,3 and

n` = 4 gives

N i=1
1/2 = (1.007± 0.604, 0.350± 0.159, 0.547± 0.047) , (4.29)

N i=2
1/2 = (0.772± 0.463, 0.525± 0.078, 0.495± 0.032) ,

N i=3
1/2 = (0.658± 0.395, 0.535± 0.110, 0.501± 0.034) ,

at order n = (0, 1, 2). This is in full agreement with the result 0.49± 0.02 given in eq. (4.13),

and also shows a substantially better behavior for the moment M1.

As an alternative to using the series for mQ = mpole
Q and m′Q = m

(n`+1)
Q (m

(n`+1)
Q ), one

can also define M̃i ≡ (Mi/ci,0)
−1/2i and re-express the r.h.s. of eq. (4.26) perturbatively

in terms of m′Q = M̃i for the different moments. (We refer to ref. [1] for details on this

iterative procedure.) The resulting coefficients in powers of α
(n`)
s (M̃i) are given in the lower

right column of table 3. Using these coefficients, the renormalon sum rule applied to the

series for the M1,2,3 and n` = 4 gives

N i=1
1/2 = (1.007± 0.604, 0.604± 0.075, 0.493± 0.071) , (4.30)

N i=2
1/2 = (0.772± 0.463, 0.589± 0.109, 0.501± 0.056) ,

N i=3
1/2 = (0.658± 0.395, 0.568± 0.129, 0.516± 0.040) .

These results behave similarly to those of eq. (4.29) and are again in full agreement with

the result 0.49 ± 0.02 given in eq. (4.13).

This analysis underlines the importance of using renormalon-free parameters for se-

ries coefficients that are being probed with the O(ΛQCD) renormalon sum rule, but also

illustrates the high sensitivity of the sum rule to even subtle high order effects.

4.5.3 Infrared sensitivity of the PS mass definition

The PS (potential subtracted) mass [25] is based on the concept that the total static poten-

tial energy of a color singlet massive quark-antiquark pair with separation r, 2mpole
Q + V (r),

is O(ΛQCD) renormalon free. It is defined from the integral

mpole
Q −mPS

Q (µf ) = − 1

2

∫
|~q |<µf

d3~q

(2π)3
Ṽ (~q 2) , (4.31)

where Ṽ (~q 2) is the momentum-space static potential calculated in perturbation theory. To

the extent that the total static potential is a well-defined and unambiguous quantity, the PS

mass is free from anO(ΛQCD) renormalon. The coefficients of the series for mpole
Q −mPS

Q (µf ),

expressed as a series in powers of α
(n`)
s (µf )/(4π), are given in eq. (C.1).

We now apply the O(ΛQCD) renormalon sum rule to the relation of the pole mass to

the potential PS mass. The examination is of interest because the static potential has

infrared divergences starting at O(α4
s) arising from higher Fock QQ-gluon states which
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lead to retardation effects that invalidate the frame-independent static limit [97, 98]. The

definition of the PS mass at O(α4
s) and beyond is therefore known to depend on the scheme

used for the subtraction prescription for these infrared divergences. In refs. [99] the au-

thors defined the following convention: the infrared divergence in the O(α4
s) corrections to

the momentum-space static potential [100, 101] is regularized dimensionally (with the MS

convention for the definition of µ), and the 1/ε divergence together with the corresponding

logarithm log(µ/µf ) that arises from the integral over the momentum-space static poten-

tial in eq. (4.31) are subtracted. We call this the standard convention, and it leads to

the coefficient aPS4 shown in eq. (C.2), where the term with the logarithm log(µ/µf ) is

dropped. In a minimal subtraction convention, only the 1/ε divergence is subtracted and

the logarithmic term displayed in aPS4 remains. So the convention of ref. [99] is equivalent

to the choice µ/µf = 1 for the dimensional scale in the minimal subtraction convention.

Using the O(ΛQCD) renormalon sum rule we can now track quantitatively if and how

much the convention for the infrared subtraction may affect the higher-order behavior in the

PS-pole mass relation. Applying the sum rule to the PS mass in the standard convention

of ref. [99] we obtain for n` = 5, relevant for the top quark,

N
µ/µf=1

1/2 = (0.531± 0.318, 0.376± 0.057, 0.503± 0.078, 0.545± 0.045) , (4.32)

at order n = (0, 1, 2, 3), where the errors come from λ variations in the interval [0.5, 2]. The

order n = 3 result that involves the O(α4
s) coefficient aPS4 is 22% higher and within errors

only marginally compatible with the result N1/2(n` = 5) = 0.446±0.026 of eq. (4.14). This

indicates that aPS4 in the standard convention is somewhat larger than expected assuming

that the pole-PS mass series is dominated by the pole mass renormalon. The same obser-

vation has also been made in refs. [54, 102] in the context of relating the PS mass to the

MS mass.

It is interesting to consider other minimal subtraction scheme choices that differ from

the standard scheme by reasonable variations of the subtraction scale µ. For example, for

the choice µ/µf = 1/5 we obtain N
µ/µf=1/5

1/2 = 0.455 ± 0.021 at order n = 3 for n` = 5,

which is fully compatible with eq. (4.14). That the sum rule result for the PS mass agrees

with the correct result of eq. (4.14) much better for a smaller infrared subtraction scale

is quite suggestive because the infrared divergence in the static potential is known to be

physically regulated by the massive quark kinetic energy, which is of order ~q 2/mQ ∼ µfv

where v is the relative velocity, and hence is parametrically smaller than |~q | ∼ µf . We stress

that our analysis does neither validate nor invalidate the concept of the standard PS mass as

a suitable mass scheme to carry out ongoing high-precision threshold studies [11, 13], as the

sum rule only probes the calculated orders and the effect of the retardation singularity on

the perturbative coefficients in the static potential beyond O(α4
s) on the PS mass scheme is

unknown. However, the analysis demonstrates that the scheme dependence in the PS mass

coming from the infrared divergences in the static potential at O(α4
s) is not a numerically

irrelevant issue and may become even more serious beyond O(α4
s). As far as the known

O(α4
s) results are concerned the issue already seems to affect the relation of the standard

PS mass to the MSR and MS masses as discussed in section 5.1.
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4.5.4 QCD β-function and massless quark R-ratio

As the concluding part of the discussion in this section we now apply the O(ΛQCD) renor-

malon sum rule to series that are known not to be plagued by any O(ΛQCD) renormalon.

As examples we take the series for the QCD β-function with

aβn = βn−1 , (4.33)

as defined in eq. (A.1) and the hadronic R-ratio for n` massless quarks

R(s) = 3

n∑̀
f=1

Q2
f

[
1 +

∞∑
n=1

aRn

(
α
(n`)
s (
√
s)

4π

)n]
, (4.34)

where
√
s stands for the center-of-mass energy, with [103–107]

aR1 = 4 , (4.35)

aR2 = 31.7712− 1.8432n` ,

aR3 = − 424.764− 76.8083n` − 0.33152n2` ,

aR4 = − 40092.2 + 4805.12n` − 204.134n2` + 5.504n3` ,

and Qf stands for the quark electric charges. Applying the sum rule for n` = 4 to the

series for the QCD β-function we obtain

Nβ
1/2 = (0.829± 0.497,− 0.004± 0.272, 0.065± 0.092, 0.038± 0.032) , (4.36)

and applying it to the hadronic R-ratio we obtain

NR
1/2 = (0.398± 0.239,− 0.003± 0.1311,− 0.071± 0.105,− 0.009± 0.029) , (4.37)

at order n = (0, 1, 2, 3). The errors are obtained from the variation 0.5 < λ < 2. In

both cases all results for N1/2 beyond O(αs) are compatible with zero as expected. We

note that at least for the hadronic R-ratio it is known that its perturbative series given in

eq. (4.34) has a renormalon ambiguity that is suppressed and scales with the fourth power

of the hadronic scale ΛQCD. This leads to an ambiguity in the R-ratio of O(Λ4
QCD/s

2),

which is associated to the gluon condensate, and adding the effects of the gluon conden-

sate in the context of an operator product expansion in terms of low-energy QCD matrix

elements [108, 109] this ambiguity is compensated in a physical prediction. For the QCD

β-function no conclusive statements on a higher-order renormalon ambiguity exist. The re-

sults in eqs. (4.36) and (4.37) show that the O(ΛQCD) renormalon sum rule is only probing

for an O(ΛQCD) renormalon and not sensitive to any higher order renormalon ambiguity.

It is straightforward to generalize the sum rule discussed here to higher order renor-

malons, which has already been studied in ref. [78].

5 Relation to other short-distance masses

From the perturbative series that relate other short-distance masses to the pole mass it

is straightforward to determine the perturbative series for the difference of these short-

distance masses to the MSR masses by eliminating the pole mass systematically such that
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the O(ΛQCD) renormalon is canceled exactly. If regular fixed-order perturbation theory

can be applied this is achieved by simply using a common renormalization scale µ and

a consistent scheme for the strong coupling throughout the calculation when the pole

mass is eliminated order by order. The corresponding formulae and codes for the relation

of frequently used short-distance mass schemes (such as the kinetic mass [24], the PS

mass [25], the 1S mass [26–28], the RS mass [29] and the jet mass [30, 43]) to the MSR

masses can be obtained on request, and we therefore do not intend to cover all possible

cases in this paper. However, we will cover several of them explicitly since there are a

number of non-trivial practical and conceptual aspects that arise in the relation of the

MSR masses to a number of other short-distance mass schemes we would like to point out

in the following.

5.1 Potential subtracted mass

The relations of the PS mass [25] and the natural and practical MSR masses at the common

scale R up to O(α4
s) have the form [as ≡ α(n`)

s (R)/(4π)]

mPS
Q (µf =R)−mMSRn

Q (R) =R
{

[40.9928−3.6248n`]a
2
s+[963.44−184.87n` (5.1)

+0.422n2` ]a
3
s+
[
−(1749.±417.)−(11168.±10.)n`

+569.34n2`−0.89n3`−22739.57 log
( µ
R

)]
a4s+. . .

}
,

mPS
Q (µf =R)−mMSRp

Q (R) =R
{

[42.6499−3.6248n`]a
2
s+[1073.49−183.45n` (5.2)

+0.422n2` ]a
3
s+
[
−(1405.±418.)−(11279.±10.)n`

+573.74n2`−0.89n3`−22739.57 log
( µ
R

)]
a4s+. . .

}
.

For a conversion at the common scale µf = R the O(αs) corrections vanish identically

indicating that this is the natural way to carry out the conversion. As pointed out already

in section 4.5.3, the standard convention for the PS mass [99] corresponds to µ/µf = 1,

such that the logarithmic term in the O(α4
s) correction is eliminated. In table 4 we show

numerical results for the PS-MSR mass difference mPS
Q (µf = R)−mMSR

Q (R) for represen-

tative R values for n` = 5 (relevant to the top quark) and n` = 4 (relevant for the bottom

quark) at different orders in αs. The errors come from the variation of the renormalization

scale µ of the strong coupling in the interval [R/2, 2R], and the central values are the

mean of the respective maximal and minimal values obtained in that interval. In figure 4a

mPS
Q (µf = R) −mMSRn

Q (R) is shown at O(α2
s) (green), O(α3

s) (blue) and O(α4
s) (red) for

n` = 5 as a function of R between 20 and 160 GeV. The error bands are again obtained

from variations of µ in the interval [R/2, 2R]. For the top quark case (n` = 5) the PS and

the MSR masses differ by about 20 to 300 MeV for R values between 2 and 160 GeV and

for the bottom quark case (n` = 4) they differ by about 30 to 40 MeV for R values below

5 GeV. So the PS and the MSR masses are quite close numerically.

The conspicuous property of the relation of the standard PS mass to the MSR masses

at the common scale R is that the O(α4
s) correction is very large and far away from the
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R O(α2
s) O(α3

s) O(α4
s)
µ/µf=1 O(α4

s)
µ/µf=1/5

mPS
t (µf = R)−mMSRn

t (R) (n` = 5) [GeV]

2 0.031± 0.016 0.022± 0.004 − 0.027± 0.042 0.017± 0.006

5 0.037± 0.014 0.032± 0.002 0.007± 0.017 0.030± 0.002

10 0.050± 0.016 0.046± 0.002 0.024± 0.013 0.044± 0.002

40 0.110± 0.026 0.105± 0.003 0.081± 0.011 0.103± 0.001

80 0.174± 0.037 0.168± 0.003 0.138± 0.013 0.166± 0.002

160 0.282± 0.054 0.275± 0.005 0.236± 0.015 0.272± 0.002

mPS
t (µf = R)−mMSRp

t (R) (n` = 5) [GeV]

2 0.034± 0.018 0.028± 0.004 − 0.024± 0.043 0.020± 0.007

5 0.040± 0.015 0.037± 0.003 0.012± 0.017 0.034± 0.003

10 0.054± 0.017 0.052± 0.003 0.030± 0.013 0.050± 0.002

40 0.118± 0.028 0.118± 0.004 0.094± 0.011 0.116± 0.002

80 0.186± 0.039 0.188± 0.005 0.158± 0.013 0.186± 0.002

160 0.302± 0.058 0.306± 0.007 0.267± 0.015 0.303± 0.002

mPS
b (µf = R)−mMSRn

b (R) (n` = 4) [GeV]

2 0.044± 0.027 0.034± 0.007 − 0.041± 0.065 0.032± 0.005

3 0.041± 0.021 0.036± 0.005 − 0.003± 0.030 0.036± 0.002

4 0.042± 0.019 0.038± 0.004 0.010± 0.021 0.039± 0.001

mPS
b (µf = R)−mMSRp

b (R) (n` = 4) [GeV]

2 0.047± 0.029 0.040± 0.009 − 0.039± 0.068 0.034± 0.008

3 0.044± 0.022 0.041± 0.007 0.001± 0.031 0.039± 0.003

4 0.045± 0.020 0.043± 0.006 0.014± 0.022 0.043± 0.002

Table 4. Differences between the top mass in the PS and MSR schemes, showing both the natural

and practical MSR mass definitions. Results are given for various scales µf = R and orders in

αs. At O(α4
s) results are shown for two choices of the infrared subtraction scale, µ/µf = 1 and

µ/µf = 1/5.

O(α3
s) uncertainty band such that the O(α4

s) error band from scale variation is three to four

times larger than the O(α3
s) one. For the top quark (n` = 5) for R around 40 to 80 GeV, the

typical range employed in studies of top pair production at threshold [11], the O(α3
s) and

O(α4
s) central values differ by 23 MeV compared to scale variations of ± 4 MeV at O(α3

s)

and ± 12 MeV at O(α4
s). For R = 160 GeV, the O(α3

s) and O(α4
s) central values even

differ by 40 MeV compared to scale variations of about ± 4 MeV at O(α3
s) and ± 15 MeV

at O(α4
s). A similar observation was made earlier in ref. [54]. Given this situation it

is reasonable to use the difference of the O(α3
s) and O(α4

s) central values as the O(α4
s)

uncertainty due to the missing higher order terms rather than the scale variation, leading
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Figure 4. Difference between the natural MSR and PS (µf = R) top quark mass (n` = 5) as a

function of R in GeV at two, three and four loops (the one loop result vanishes). Results are shown

for two different choices of the IR subtraction scale, µ/µf = 1 and µ/µf = 1/5.

to uncertainties of about (20, 25, 30, 40) MeV at R = (10, 40, 80, 160) GeV. In ref. [54] the

O(α4
s) uncertainty in the relation between the MS mass mQ ≡ m

(n`+1)
Q (m

(n`+1)
Q ) and the

PS mass for µf = 20 GeV was quoted as 23 MeV, defined as half the size of the O(α4
s)

correction. This issue is directly related to our observation made in section 4.5.3 that

the O(α4
s) correction in the relation of the pole mass and the PS mass in the standard

scheme [99] (with infrared subtraction scale µ/µf = 1) is much larger than expected from

the O(ΛQCD) renormalon of the pole mass.

In section 4.5.3 we also found that for the PS top mass in the infrared subtraction

scheme with µ/µf = 1/5 there is much better consistency concerning the O(ΛQCD) sum

rule. Using the PS mass in this modified scheme the O(α4
s) corrections in this relation

to the MSR masses reduce substantially, as can be easily spotted from the corresponding

results in table 4 and in figure 4b: for the modified PS mass the O(α4
s) result for the PS-

MSR mass difference is fully compatible with the O(α3
s) result and leads to scale variations

that are about half the ones at O(α3
s). In this scheme it is therefore reasonable to quote

the scale variations as the remaining perturbative error at O(α4
s). For all R values above

2 GeV and n` = 4 and 5, the error in the O(α4
s) relation of the natural and the practical

MSR masses and the PS mass in the modified scheme with µ/µf = 1/5 for the infrared

scale is only about ± 2− 3 MeV.

One may alternatively make the conversion between the PS mass mPS
Q (µf ) and the MSR

masses mMSR
Q (R) for µf 6= R, where we expand consistently in αs(µ) with a common scale

µ. For the case µf < R we observe in general that the scale dependence of the O(α4
s) con-

version formula for the standard convention for the PS scheme, m
PS,µ/µf=1
Q (µf )−mMSR

Q (R),

decreases compared to the choice µf = R, but the size of the O(α4
s) correction is still many

times larger than the O(α3
s) scale variation. This can be seen for example for the case

(µf , R) = (50, 100) GeV were we obtain for n` = 5 the numerical results m
PS,µ/µf=1
Q (µf )−

mMSRn
Q (R) = (2.612± 0.143, 2.925± 0.042, 2.946± 0.005, 2.922± 0.005) GeV at O(α1,2,3,4

s )
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for the standard PS mass scheme with renormalization scale variation µf < µ < R. This

may be compared to the corresponding results for the modified PS mass scheme, which

read m
PS,µ/µf=1/5
Q (µf )−mMSRn

Q (R) = (2.612± 0.143, 2.925± 0.042, 2.946± 0.005, 2.939±
0.002) GeV and show again a fully consistent behavior between the O(α3

s) and O(α4
s) results

and their scale variations. On the other hand, for the case µf > R we observe in general

that, at each given order, the size of the scale dependence of m
PS,µ/µf=1
Q (µf )−mMSRn

Q (R) is

much smaller than the next correction. This can be seen for example for the case (µf , R) =

(50, 25) GeV were we obtain for n` = 5 the numerical results m
PS,µ/µf=1
Q (µf )−mMSRn

Q (R) =

(− 1.468 ± 0.091,− 1.456 ± 0.005,− 1.478 ± 0.004,− 1.504 ± 0.007) GeV at O(α1,2,3,4
s ) for

the standard PS mass scheme with the renormalization scale variation R < µ < µf . This

may be compared to the corresponding results for the modified PS mass scheme which read

m
PS,µ/µf=1/5
Q (µf )−mMSRn

Q (R) = (− 1.468±0.091,− 1.456±0.005,− 1.478±0.004,− 1.4767±
0.0003) GeV, and yet again show a better behavior. So, also when the conversion between

the standard PS mass and the MSR masses is carried out for µf 6= R, the size of the

O(α4
s) correction and not the usual renormalization scale variation must be taken as an

estimate for the remaining perturbative error. Since the O(α4
s) corrections are typically in

the range 20 – 40 MeV, making the conversion µf 6= R does not lead to any improvement

in the perturbative relation between the standard PS mass and the MSR masses.

We conclude that the conversion of the MSR masses to the PS mass in the standard

scheme of ref. [99] has, even at O(α4
s), perturbative uncertainties due to unknown higher-

order terms of about 20 – 40 MeV and that this behavior is related to the fact that the

O(α4
s) coefficient in the relation of the PS mass to the pole mass in the standard scheme

appears to be unnaturally large in the context of its expected size with respect to the pole

mass O(ΛQCD) renormalon ambiguity. On the other hand, using an infrared subtraction

scheme for the PS mass, where the subtraction scale is much lower, leads to a much

better perturbative behavior and to much smaller uncertainties in its relation to the MSR

masses. This observation is fully consistent with the conclusions from the renormalon sum

rule analysis we carried out for the PS mass in section 4.5.3. Since the MSR masses for

R = mQ are very close or identical to the MS mass mQ(mQ) the conclusions we draw on

the perturbative relation of the standard PS mass to the MSR masses also applies to the

perturbative relation of the standard PS mass to the MS mass. For R = mQ the O(α4
s)

correction is typically at the level of 40 MeV. We note that this issue of the standard

PS mass scheme becomes problematic once a precision in top quarks mass determinations

below 30 – 40 MeV can be reached. Given the projections of top mass determinations of a

future lepton collider, see e.g. [110, 111], this may become a pressing issue, but for current

studies of high-precision top quark mass determinations the standard PS mass scheme is

adequate for most applications.

5.2 1S mass

The 1S mass [26–28] is defined as half of the mass of the heavy quarkonium spin triplet

ground state. In terms of the pole mass the 1S mass is defined as

m1S
Q =mpole

Q +
[
CFα

(n`)
s (µ)mpole

Q

] ∞∑
n=1

n−1∑
k=0

cn,k

(
α
(n`)
s (µ)

4π

)n
logk

(
µ

CFα
(n`)
s (µ)mpole

Q

)
, (5.3)
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where the coefficients cn,k are known up to n = 4 and given for convenience in eq. (C.3).

Because the 1S mass originates from a calculation in the non-relativistic context, there

are a few subtleties when calculating its relation to the MSR masses so that the O(ΛQCD)

renormalon cancels properly.

For the case R ∼ mQ it is essential that terms of order [CFαsmQ]αns are formally

counted as O(αns ) in the conversion. This is because [CFαsmQ] is the inverse Bohr radius,

which is the relevant physical mass scale and should not be counted as an O(αs) correction.

This counting is called the Υ-expansion [26, 27] or the relativistic order counting, and

must also be used when relating the 1S mass to the MS masses in fixed-order perturbation

theory. The resulting formula for the 1S mass as a function of the MSR mass for µ = R

up to O(α4
s) reads [defining parameters MB = CFα

(n`)
s (R)mMSR

Q (R), RB = CFα
(n`)
s (R)R,

as = α
(n`)
s (R)/(4π), L = log(R/MB) which are all functions of R]

m1S
Q −mMSR

Q (R) = [Ra1+MB c1,0]as (5.4)

+[Ra2+RB a1 c1,0+MB(c2,0+c2,1L)]a2s

+
[
Ra3+RB

(
a2 c1,0+a1 (c2,0−c2,1(1−L))

)
+MB

(
c3,0+c3,1L+c3,2L

2
)]
a3s

+

[
R

(
a4−

RB

2mMSR
Q (R)

a21 c2,1

)
+RB

(
a3 c1,0+a2 (c2,0−(1−L)c2,1)

+a1 (c3,0−c3,1+(c3,1−2c3,2)L+c3,2L
2)
)

+MB

(
c4,0+c4,1L+c4,2L

2+c4,3L
3
)]
a4s .

Here an are the coefficients in the MSR scheme. The inverse of eq. (5.4) is given in eq. (C.4).

For the case R ∼ mQαs, which is relevant for non-relativistic applications where αs may

scale with the quark velocity αs ∼ v � 1, the non-relativistic counting R ∼ MB ∼ mQαs
should be used, such that the leading correction in the 1S-MSR mass difference is of order

α2
s. In this case the formula for the 1S mass as a function of the MSR mass for µ = R up

to O(α5
s) reads [MB = CFα

(n`)
s (R)mMSR

Q (R), as = α
(n`)
s (R)/(4π), L = log(R/MB)]

m1S
Q −mMSR

Q (R) =
[
Ra1 +MB c1,0

]
as (5.5)

+
[
Ra2 +MB (c2,0 + c2,1L)

]
a2s

+
[
R (a3 + 4π CF a1 c1,0) +MB(c3,0 + c3,1L+ c3,2L

2)
]
a3s

+
[
R
(
a4 + 4π CF a2 c1,0 + 4π CF a1

[
c2,0 − c2,1(1− L)

])
+MB

(
c4,0 + c4,1L+ c4,2L

2 + c4,3L
3
)]
a4s .

The inverse of eq. (5.5) is given in eq. (C.5). We note that in order to implement a general

renormalization scale µ in eqs. (5.4) as well as (5.5), also the dependence of MB on αs
needs to be accounted for consistently, which leads to quite involved expressions for the

relativistic counting of the Υ-expansion. For the top quark and R ∼ mtαs ∼ 30 GeV the

numerical difference between using the relativistic or the non-relativistic counting is below

10 MeV at the highest order and may be not significant. However, for all other cases the

difference can be more sizable such that a consistent use of the order counting is mandatory

in general.
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R m1S
t [GeV]

O(αs) O(α2
s) O(α3

s) O(α4
s)

160 167.934± 0.968 168.315± 0.151 168.397± 0.019 168.368± 0.021

O(α2
s) O(α3

s) O(α4
s) O(α5

s)

40 168.156± 0.113 168.409± 0.054 168.373± 0.019 168.372± 0.007
(± 0.113) (± 0.054) (± 0.021) (± 0.011)

35 168.197± 0.077 168.421± 0.048 168.365± 0.026 168.371± 0.006
(± 0.078) (± 0.049) (± 0.028) (± 0.011)

30 168.232± 0.037 168.434± 0.046 168.353± 0.036 168.372± 0.008
(± 0.038) (± 0.047) (± 0.038) (± 0.012)

Table 5. Results for the top mass in the 1S mass scheme at different orders using as input the

practical MSR mass mMSRp
t (mMSRp

t ) = 160 GeV. The results at the top of the table show the

1S mass using FOPT conversion in the relativistic order counting of eq. (5.4) with R = 160 GeV.

The conversion still contains large logarithms ln(mQ/MB). The lower three lines show the 1S mass

using R-evolution from 160 GeV to R = (30, 35, 40) GeV and then FOPT in the non-relativistic

order counting of eq. (5.5) with the scale R. The logarithms ln(mQ/MB) are then summed to all

orders, and the uncertainties are about a factor two smaller at the highest order. The uncertainties

shown are explained in detail in the text.

In the top line of table 5 the top quark 1S mass is shown for the practical MSR top

mass mMSRp
t (mMSRp

t ) = mt(mt) = R0 = 160 GeV using directly the relativistic conversion

of eq. (5.4) at O(αs) to O(α4
s), where the quoted uncertainties have been obtained by

renormalization scale variations
√
R0MB/2 < µ < R0 with MB = 23.2 GeV and the

central values are the mean of the respective maximal and minimal values obtained in

the scale variation. In the lower three lines the conversion to the 1S mass is achieved

by first using O(α4
s) R-evolution of mMSRp

t (160 GeV) to R = (30, 35, 40) GeV, which gives

mMSRp
t (R) = (167.181±0.010, 166.854±0.009, 166.535±0.008) GeV, where the uncertainties

are obtained by variations of λ in the interval [0.5, 2] and central values are the mean of

the respective maximal and minimal values. Then the non-relativistic formula of eq. (5.5)

is used to determine the 1S mass at O(α2
s) to O(α5

s). The quoted uncertainties are from

renormalization scale variations R/2 < µ < 2R. To these uncertainties the errors from

the R-evolution calculation just shown above still have to be added quadratically to obtain

the complete conversion uncertainty, which is shown in the parentheses. We see that the

direct relativistic conversion, which does not account for the resummation of logarithms

and renormalon corrections, leads to uncertainties of ± 20 MeV at highest order, compared

to ± (10 – 13) MeV for the conversion that uses R-evolution from 160 GeV down to non-

relativistic scales ∼MB. Given the projections of high precision top mass determinations at

future lepton colliders [110–112], the increased precision obtained by using the resummation

of higher order terms provided by R-evolution could be relevant, but for the conversion of

the MSR mass (and also the MS mass) to the 1S mass the fixed-order expansion is adequate

for most current applications in top quark physics.
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5.3 MS mass

The relation of the MSR masses to the MS mass is conceptually special since the MSR

masses are directly derived from the perturbative series of the pole-MS mass relation. The

concept of the MSR mass addresses the conceptual question of how the MS mass evolves for

scales much smaller than the quark mass. This question simply expresses the situation that

the MS mass mQ(µ) for µ� mQ can be readily computed solving its renormalization group

equation, but does not have any physical significance, because it breaks the power counting

of heavy quark problems involving (non-relativistic) physical scales much smaller than the

mass. This power counting breaking comes from the perturbative series of the pole-MS

mass relation that scales with mQ even for µ � mQ and which spoils the perturbative

series for non-relativistic problems where smaller dynamical scales govern the size of the

perturbative corrections and the scale mQ is integrated out and hence not a dynamical

scale any more.

Since the perturbative series for the pole-MSR mass relations scale with R, which is

adjustable, but also match to the pole-MS mass series for R = mQ, one can consider the

concept of the MSR mass mMSR
Q (µ) as the most reasonable answer of how the MS mass

concept should be extended to scales µ . mQ. Thus for µ . mQ R-evolution is the proper

concept of the renormalization group running of a heavy quark mass for scales below mQ.

Both the natural and the practical MSR masses differ by the way how the virtual massive

quark Q effects are treated in their matching relation to the MS mass at the scale µ ∼ mQ,

and this matching may be considered in analogy to the flavor-number matching of the

strong coupling schemes α
(n`)
s (µ) and α

(n`+1)
s (µ) when the scale µ crosses mQ. In this

context, the natural MSR mass is conceptually cleaner than the practical MSR mass, since

in the natural MSR mass the virtual massive quark loops are integrated out at the scale

µ = mQ, but this issue is irrelevant for practical applications, where the practical MSR

mass has an advantage due to its simpler matching relation to the MS mass.

The most efficient way to relate the MSR masses mMSRn
Q (R) and mMSRp

Q (R) to the MS

mass mQ(µ) is to (i) evolve the MSR masses from R to mQ using the R-evolution equations

eq. (3.3) with n` active flavors, (ii) employing the regular renormalization group equation

for mQ(µ) to evolve it from µ to mQ with (n` + 1) active flavors,

m
(n`+1)
Q (mQ) = m

(n`+1)
Q (µ) exp

[
−
∞∑
k=0

γ
(n`+1)
m,k

∫ logm2
Q

log µ2
d log µ̄2

(
α
(n`+1)
s (µ̄)

4π

)k+1 ]
, (5.6)

and then (iii) to apply the simple matching relations based on eq. (2.4) or eq. (2.7).

The solution of the R-evolution equation is [47] [tm = − 2π/(β0α
(n`)
s (mQ)),

tR = − 2π/(β0α
(n`)
s (R))]

mMSR
Q (mQ)−mMSR

Q (R) = −
∞∑
n=0

γRn

∫ mQ

R
dR

(
α
(n`)
s (R)

4π

)n+1

(5.7)

= ΛQCD

∞∑
k=0

eiπ(b̂1+k)Sk
[
Γ(− b̂1 − k, tm)− Γ(− b̂1 − k, tR)

]
,
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where ΛQCD and the coefficients γRn , Sk and b̂1 are given in eqs. (A.6), (3.1), (A.15)

and (A.4) and the series may be truncated at the desired order. The R-evolution equation

can be solved numerically or by using the analytic expression in the second line of eq. (5.7).

The matching relations for the MS and the natural MSR mass can be derived from

eq. (2.4) and written in various ways quoted in the following. From mQ ≡ m(n`+1)
Q (m

(n`+1)
Q )

one can determine mMSRn
Q (mQ) using the matching relations [As ≡ α

(n`+1)
s (mQ)/(4π),

as ≡ α(n`)
s (mQ)/(4π)]

mMSRn
Q (m

(n`+1)
Q )−m(n`+1)

Q (m
(n`+1)
Q ) (5.8)

= m
(n`+1)
Q (m

(n`+1)
Q )

{
1.65707A2

s + [110.05 + 1.424n`]A
3
s + [(352.± 31.)

− (111.59± 0.10)n` + 4.40n2` ]A
4
s

}
= m

(n`+1)
Q (m

(n`+1)
Q )

{
1.65707 a2s + [110.05 + 1.424n`] a

3
s + [(344.± 31.)

− (111.59± 0.10)n` + 4.40n2` ] a
4
s

}
,

where the superscript (n` + 1) is a reminder of the active flavors used to run the MS

mass. Given mMSRn
Q ≡ mMSRn,(n`)

Q (m
MSRn,(n`)
Q ) one can determine m

(n`+1)
Q (m

(n`+1)
Q ) by the

relations
[
Ās ≡ α(n`+1)

s (mMSRn
Q )/(4π), ās ≡ α(n`)

s (mMSRn
Q )/(4π)

]
m

(n`+1)
Q (m

(n`+1)
Q )−mMSRn,(n`)

Q (m
MSRn,(n`)
Q ) (5.9)

= m
MSRn,(n`)
Q (m

MSRn,(n`)
Q )

{
−1.65707 Ā2

s − [101.21 + 1.424n`] Ā
3
s

+ [(349.± 31.) + (103.35± 0.10)n` − 4.40n2` ] Ā
4
s

}
= m

MSRn,(n`)
Q (m

MSRn,(n`)
Q )

{
−1.65707 ā2s − [101.21 + 1.424n`] ā

3
s

+ [(357.± 31.) + (103.35± 0.10)n` − 4.40n2` ] ā
4
s

}
,

where the superscript (n`) is a reminder of the active flavors used to run the MSR mass.

We have displayed the matching relations both for the n` and the (n` + 1)-flavor scheme

for the strong coupling. The corresponding matching relations for the strong coupling at

the scales mQ and mMSRn
Q are shown for convenience in eqs. (A.7) and (A.9), respectively.

Numerically, mMSRn
t (mt)−mt(mt) is about 30 MeV for mt(mt) around 160 GeV. The

perturbative uncertainties in this matching relations from missing higher orders are 1 MeV

or lower for all massive quarks. The numerical uncertainties in the O(α4
s) coefficients given

in eqs. (5.8) and (5.9) are quoted from ref. [55] and smaller than 0.01 MeV. Thus the

matching relations can be taken as exact for all foreseeable applications.

The matching relations for the MS and the practical MSR mass simply reads

m
MSRp,(n`)
Q (m

MSRp,(n`)
Q ) = m

(n`+1)
Q (m

(n`+1)
Q ) , (5.10)

to all orders of perturbation theory, where in comparison to eq. (2.7) we have also explicitly

indicated the flavor number of the evolution of the MSR mass and the MS mass.
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Figure 5. Comparison of the scale dependence for the MS and the MSR top quark masses (n` = 5)

as a function of µ and R in GeV.

In figure 5 we show the scale dependence of the MSR masses mMSR
t (R) (red line) and

the MS mass mt(µ) (blue line) for m
(n`+1)
t (m

(n`+1)
t ) = 160 GeV. The difference between

the natural and practical MSR masses is not visible on the scale of this figure. The solid

curves represent the evolution of the masses in regions where they should be used for

physical applications in close analogy to the flavor-number-dependent scale dependence of

the strong coupling, while the dashed lines show their evolution beyond these regions. At

the scale 160 GeV the two mass schemes are matched via eq. (5.8), eq. (5.9) and eq. (5.10).

For R < mt the MSR mass mMSR
t (R) is substantially smaller than the MS mass mt(R)

and approaches the pole mass for R → 0. The MSR mass remains well defined for all

R & ΛQCD, whereas the exact value for the limit mMSR
t (R → 0) is ambiguous due to the

Landau pole in the evolution of the strong coupling in the R-evolution equation (5.7). This

illustrates the ambiguity of the pole mass concept.

6 Conclusions

This paper had two main aims. The first aim was to give a detailed presentation of

the MSR mass, which is an R-dependent short-distance mass designed for high-precision

determinations of heavy quark masses from quantities where the physical scales are smaller

than the quark mass, R < mQ. Since such scale hierarchies can only be really large for

the top quark, the MSR mass concept is most useful in the context of top quark physics,

but it may be useful for bottom and charm quark analyses as well. The MSR mass is

obtained from the results of heavy quark on-shell self-energy diagrams which is not the

case for any earlier low-scale short-distance mass given in the literature. The MSR mass

has therefore a very close relation to the well-known MS mass mQ(µ), and should be

viewed as the generalization of the MS mass concept for renormalization scales below mQ,

where the MS mass is known to be impractical and does not capture the proper physics.

The main feature of the MSR mass is that its renormalization group evolution is linear

and logarithmic in the scale R, compared to the purely logarithmic evolution of the MS
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mass. This linear scale dependence in the renormalization group flow of the MSR mass

is called R-evolution and the MSR mass is well defined for any R & ΛQCD. Formally, in

the limit R → 0, the MSR mass can be evolved to the pole mass. However, taking this

limit is ambiguous as it involves evolving the strong coupling through the Landau pole,

which illustrates the O(ΛQCD) ambiguity of the pole mass scheme. Since there are two

options to treat the corrections coming from virtual heavy quark loops in the heavy quark

self-energy diagrams, we defined two variants of the MSR mass, the natural MSR mass

mMSRn
Q (R), where these effects are integrated out, and the practical MSR mass mMSRp

Q (R),

where they are still included in the mass definition. Both MSR masses can be easily related

to all other short-distance mass schemes available in the literature. We have provided all

necessary formulae such that conversions can be carried out to O(α4
s) and we have discussed

in detail the cases where there are subtleties in the conversion.

The second aim of the paper was to give a detailed presentation of how R-evolution can

be used to derive an analytic expression for the normalization of the high-order asymptotic

behavior of the MSR-pole (or MS-pole) mass perturbative series related to the O(ΛQCD)

renormalon ambiguity contained in the pole mass. This analytic result can be applied to

any perturbative series and be used to probe the known coefficients for the series pattern

related to an O(ΛQCD) renormalon ambiguity. Since using the result does not involve

any numerical comparison of the series coefficients, but is a very simple analytic function

of the coefficients, we call it the O(ΛQCD) renormalon sum rule. Using the sum rule we

reanalyzed the O(ΛQCD) renormalon in the MSR-pole (and MS-pole) perturbative series

and showed that the sum rule results are fully compatible with previous available methods.

We examined the relation between these methods to our sum rule analytically and explained

the reason why one of them has very slow convergence. We also applied the sum rule to

a number of other quantities known to high order and demonstrated its high sensitivity.

These examples included the PS-pole mass relation, the moments of the massive quark

vacuum polarization, the hadronic R-ratio and the QCD β-function.

Acknowledgments

We acknowledge partial support by the FWF Austrian Science Fund under the Doctoral

Program No. W1252-N27 and the Project No. P28535-N27, the U.S. Department of En-

ergy under the Grant No. DE-SC0011090, the Simons Foundation through the Grant

327942, the Spanish MINECO “Ramón y Cajal” program (RYC-2014-16022), MECD

grants FPA2016-78645-P, FPA2014-53375-C2-2-P and FPA2016-75654-C2-2-P, the group

UPARCOS, the IFT “Centro de Excelencia Severo Ochoa” Program under Grant SEV-

2012-0249 and by the Ramanujan Fellowship of SERB, DST. We also thank the Erwin-

Schrödinger International Institute for Mathematics and Physics, the University of Vienna

and Cultural Section of the City of Vienna (MA7) for partial support.

Note added. After this paper was originally posted the comments in ref. [113] appeared.

We have added appendix B to make a comparison of our sum rule with the method and
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A QCD β-function and coefficients

For the QCD β-function in the MS scheme we use the convention

dαs(R)

d logR
= β(αs(R)) = − 2αs(R)

∞∑
n=0

βn

(
αs(R)

4π

)n+1

, (A.1)

where β0 = 11−2/3n` with n` being the number of dynamical flavors. The coefficients are

known up to β4 from refs. [80, 114–119]. The equation can be used to write [αi ≡ αs(Ri),
t = − 2π/(β0αs(R))]

log
R1

R0
=

∫ α1

α0

dα

β(α)
=

∫ t0

t1

dt b̂(t) = G(t0)−G(t1) , (A.2)

where

b̂(t) = 1 +
∞∑
k=1

b̂k
tk
, G(t) = t+ b̂1 log(− t)−

∞∑
k=2

b̂k
(k − 1) tk−1

, (A.3)

and the first four coefficients relevant for renormalon sum rule applications up to O(α4
s) are

b̂1 =
β1
2β20

, b̂3 =
1

8β60
(β31 − 2β0 β1β2 + β20 β3), (A.4)

b̂2 =
1

4β40
(β21 − β0 β2) , b̂4 =

1

16β80
(β41 − 3β0 β

2
1 β2 + β20 β

2
2 + 2β20 β1 β3 − β30 β4) .

One can show the following recursion relation for the b̂k coefficients (b̂0 ≡ 1):

b̂n+1 = 2
n∑
i=0

b̂n−i βi+1

(−2β0)i+2
, (A.5)

which can be used for an automated computation. From eq. (A.2) one can also derive the

known relation

ΛQCD = Ri eG(ti) , (A.6)

that gives ΛNkLL
QCD if the series in G(ti) is truncated after the k-th term.

The matching relations for the strong coupling in the n` and the (n`+1)-flavor schemes

at the scale mQ ≡ m(n`+1)
Q (m

(n`+1)
Q ) read

α(n`)
s (mQ) = α(n`+1)

s (mQ)

[
1 + 0.152778

(
α
(n`+1)
s (mQ)

π

)2
(A.7)

+ (0.972057− 0.08465n`)

(
α
(n`+1)
s (mQ)

π

)3
+ . . .

]
,

α(n`+1)
s (mQ) = α(n`)

s (mQ)

[
1− 0.152778

(
α
(n`)
s (mQ)

π

)2
(A.8)

− (0.972057− 0.08465n`)

(
α
(n`)
s (mQ)

π

)3
+ . . .

]
.
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The matching relations for the strong coupling in the n` and the (n` + 1) flavor schemes

at the scale mMSRn
Q ≡ mMSRn,(n`)

Q (m
MSRn,(n`)
Q ) read

α(n`)
s (mMSRn

Q ) = α(n`+1)
s (mMSRn

Q )

[
1 + 0.152778

(
α
(n`+1)
s (mMSRn

Q )

π

)2
(A.9)

+ (0.93753− 0.08465n`)

(
α
(n`+1)
s (mMSRn

Q )

π

)3
+ . . .

]
,

α(n`+1)
s (mMSRn

Q ) = α(n`)
s (mMSRn

Q )

[
1− 0.152778

(
α
(n`)
s (mMSRn

Q )

π

)2
(A.10)

− (0.93753− 0.08465n`)

(
α
(n`)
s (mMSRn

Q )

π

)3
+ . . .

]
.

The R-anomalous dimension coefficients γRn take the following numerical values for the

natural MSR mass:

γRn0 =
16

3
, (A.11)

γRn1 = 96.1039− 9.55076n` ,

γRn2 = 1595.75− 269.953n` − 2.65945n2` ,

γRn3 = (12319.± 417.)− (9103.± 10.)n` + 610.264n2` − 6.515n3` ,

whereas for the practical MSR mass the coefficients are:

γRp0 =
16

3
, (A.12)

γRp1 = 97.761− 9.55076n` ,

γRp2 = 1632.89− 264.11n` − 2.65945n2` ,

γRp3 = (4724.± 418.)− (8784.± 10.)n` + 620.362n2` − 6.515n3` .

The uncertainties appearing in the coefficients γRn,Rp3 are from numerical errors in the

results of ref. [55]. They amount to an uncertainty in the solutions of the R-evolution

equation of 1 MeV or less for all relevant cases and are smaller than the uncertainty due

to missing higher orders. Therefore they can be neglected for all practical purposes.

The coefficients g` defined by the series
∑∞

`=0 g` (−t)−` ≡ eG(t) e−t (−t)−b̂1 relevant for

the renormalon sum rule up to O(α4
s) read

g0 = 1 , g1 = b̂2 , g2 =
1

2
(b̂22 − b̂3) , g3 =

1

6
(b̂32 − 3 b̂2 b̂3 + 2 b̂4) . (A.13)

One can proof the following recursion relation for g`:

gn+1 =
1

1 + n

n∑
i=0

(−1)i b̂i+2 gn−i , (A.14)

suitable for automated computation. The coefficients g` agree with the coefficients s` given

in refs. [73, 77].
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The coefficients Sk defined from the series
∑∞

k=0 Sk(−t)−k ≡ −tγR(t) b̂(t)e−G(t)et(−t)b̂1
relevant up to O(α4

s) read [γ̃Rk = γRk /(2β0)
k+1]

S0 = γ̃R0 =
a1
2β0

, (A.15)

S1 = γ̃R1 − (b̂1 + b̂2) γ̃
R
0 =

a2
4β20
− a1

2β0
(1 + b̂1 + b̂2) ,

S2 = γ̃R2 − (b̂1 + b̂2) γ̃
R
1 +

[
(1 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
γ̃R0

=
a3

8β30
− a2

4β20
(2 + b̂1 + b̂2) +

a1
2β0

[
(2 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
,

S3 = γ̃R3 − (b̂1 + b̂2) γ̃
R
2 +

[
(1 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
γ̃R1

−
[(

1 +
1

2
b̂1 +

1

6
b̂2

)
b̂22 +

(
1 +

1

2
b̂1 +

1

2
b̂2

)
b̂3 +

1

3
b̂4

]
γ̃R0

=
a4

16β40
− a3

8β30
(3 + b̂1 + b̂2) +

a2
4β20

[
(3 + b̂1) b̂2 +

1

2
(b̂22 + b̂3)

]
− 1

2

a1
2β0

[(
3 + b̂1 +

1

3
b̂2

)
b̂22 +

(
3 + b̂1 + b̂2

)
b̂3 +

2

3
b̂4

]
.

The relation between the Sk coefficients and the R-anomalous dimension can be compactly

written as follows:

Sk = γ̃Rk − (1− δk,0) (b̂1 + b̂2) γ̃
R
k−1 +

k−2∑
n=0

γ̃Rn

[
g̃k−n + (−1)k−nb̂k−n (A.16)

+

k−n−1∑
`=1

(−1)k−n−` g̃` b̂k−n−`

]
,

g̃n+1 = − 1

1 + n

n∑
i=0

(−1)i b̂i+2 g̃n−i , g̃0 = 1 . (A.17)

In addition one can use eq. (4.19) to write a recursion relation for the Sk coefficients, which

are then expressed in terms of ai :

Sk =
ak+1

(2β0)k+1
−

k−1∑
n=0

Sn

k−n∑
`=0

g` (1 + b̂1 + n)k−`−n , (A.18)

where (b)n = b (b + 1) · · · (b + n − 1) = Γ(b + n)/Γ(b) is the Pochhammer symbol. This

formula can be used for an automated implementation of Sk once the g` coefficients have

been computed. We note that in order to determine the coefficients Sk, one needs all terms

up to k loops in the R-evolution equation, and the (k + 1)-loop QCD β-function.

B Alternative derivation of the O(ΛQCD) renormalon sum rule

In section 4.1 we have shown how to directly derive the sum rule formula for N1/2 displayed

in eq. (4.8) from the computation of the Borel transform of eq. (4.7) starting from the

solution of the R-evolution equation given in eq. (4.1). There is an interesting alternative

way to determine the sum rule formula which starts from the Borel function Bαs(R)(u)
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given in eq. (4.7) without knowing the expression for N1/2. This expression is equivalent

to the Borel transform of the original series −R
∑∞

i=1 ai [αs(R)/(4π)]i which has the form:

Bαs(R)(u) = −R
∞∑
i=1

ai
ui−1

Γ(i)
β−i0 , (B.1)

in the fixed-order expansion in powers of the Borel variable u.

Consider now the modified Borel function (β0/4πR)(1 − 2u)1+b̂1Bαs(R)(u). Inserting

eq. (4.7) for Bαs(R)(u) one obtains:

β0
4πR

(1− 2u)1+b̂1Bαs(R)(u) = −N1/2

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)` (B.2)

+
β0
2π

(1− 2u)1+b̂1
∞∑
`=0

g` Q`(u) ,

where the role of analytic and non-analytic terms is just reversed compared to eq. (4.7).

Truncating the series in ` at order n (which corresponds to including the coefficients ai, Sk,

g` up to i = n+ 1, k = n and ` = n, respectively), one can see that expanding eq. (B.2) in

powers of u up to order n and taking the limit u→ 1/2 one singles out N1/2 on the r.h.s.:

−N (n)
1/2 +

β0
2π

n∑
k=0

k∑
m=0

n∑
i=k−m+1

i∑
`=0

(−1)m g` Si−` (B.3)

× Γ(2 + b̂1)

Γ(m+ 1) Γ(2 + b̂1 −m)

Γ(1 + b̂1 + k −m− `)
Γ(1 + b̂1 + i− `)Γ(k −m+ 1)

,

where N
(n)
1/2 refers to the (n+1)-loop approximation for N1/2. Applying the same procedure

to the Borel transform of eq. (B.1) and solving for N
(n)
1/2 one obtains:

N
(n)
1/2 =

1

4π

n∑
k=0

k∑
m=0

(−1)m

(2β0)k−m
Γ(2 + b̂1)ak−m+1

Γ(k −m+ 1)Γ(m+ 1)Γ(2 + b̂1 −m)
(B.4)

+
β0
2π

n∑
k=0

k∑
m=0

n∑
i=k−m+1

i∑
`=0

(−1)m g` Si−`

× Γ(2 + b̂1)

Γ(m+ 1)Γ(2 + b̂1 −m)

Γ(1 + b̂1 + k −m− `)
Γ(1 + b̂1 + i− `)Γ(k −m+ 1)

.

Although lengthier, it can be checked that this formula agrees exactly with the sum rule

of eq. (4.8) at (n+ 1)-loop order (i.e. when truncated with k ≤ n as shown).

In ref. [29] (see also ref. [68]), a version of the above considerations to determine the

normalization of the non-analytic terms in eq. (4.7), which we refer to as the Borel method,

was proposed. They made the additional assumption that the analytic terms on the r.h.s. of

eq. (4.7) can be neglected because they quickly tend to zero when multiplied by (1−2u)1+b̂1

in the limit u→ 1/2. Therefore they did not include the terms related to the polynomials

Q`. This leads to a formula for the normalization that only contains the first term on the
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Figure 6. Comparison of N
(n)
1/2 and N

(n)
m for n` = 5. Results are shown as a function of λ including

contributions from one to four loops.

r.h.s. of eq. (B.4), which they called Nm. After a bit of algebra, the double sum of this

term can be recast into a single summation, yielding:6

N (n)
m =

1

4π

n∑
m=0

(−b̂1)n−m am+1

(2β0)mm! (n−m)!
. (B.6)

However, the contribution from the second term on the r.h.s. of eq. (B.4) is actually not

negligible because it involves the expansion of the (1 − 2u)1+b̂1 and setting u = 1/2 after-

wards. In particular, the β-function coefficients βn>1 contained in the g` are essential for

the cancellation of the λ-dependence with n beyond 2-loop order, i.e. for n > 1.

This is shown in figure 6 where we plot N
(n)
1/2 (solid lines) and N

(n)
m (dashed lines)

obtained from the natural MSR mass for n = 0 (cyan), n = 1 (green), n = 2 (blue) and

n = 3 (red) for n` = 5 as a function of λ in the interval [0.5, 2]. We see that the results for

N
(n)
m differ substantially from N

(n)
1/2 showing that the terms neglected in the approach of

ref. [29] are numerically sizable and, in particular, do not decrease with the order n. More-

over, the results for N
(n)
m do not appear to show any reduced λ-dependence beyond 2-loop

order, in contrast to the results for N
(n)
1/2. Interestingly, in ref. [69] it has been shown that

6We note that no analytic formula for N
(n)
m was provided in ref. [29], and that eq. (B.6) correctly

encodes the prescription given there. In formula (7) of ref. [113] the following analytic double series formula

was given:

Nm =
1

ν

∞∑
m,n′=0

Γ(2 + b)(−1)mrn′(ν)

Γ(m+ 1)Γ(n′ + 1)Γ(2 + b−m)

(
2π

β0

)n′

(B.5)

=
1

4π

∞∑
m,n′=0

Γ(2 + b̂1)(−1)man′+1

Γ(m+ 1)Γ(n′ + 1)Γ(2 + b̂1 −m)

1

(2β0)n′ ,

where in the second line we have converted to our conventions for ease of comparison. Eq. (B.5) is not fully

specified because it does not provide a prescription how to systematically truncate the two series in order to

compute Nm at (n+1)-loop order. The sum for (1−2u)1+b̂1 =
∑∞
m=0(2u)mΓ(2+ b̂1)/[Γ(m+1)Γ(2+ b̂1−m)]

converges to zero at u = 1/2, while the other, which is eq. (B.1), is divergent for u = 1/2. To obtain

eq. (B.6) from eq. (B.5) one switches variable from (m,n′) to (k,m) with k = m + n′, and then finally

truncates with respect to the variable k.
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when many more terms of the expansion are known [they accounted for terms up to O(α20
s )

for the quark and gluino QCD static potential], eq. (B.6) does eventually converge to the

right value and shows reduced scale variation. We have numerically confirmed that using

series generated from the Borel function of eq. (4.7) setting (by hand) explicit expressions

for the functions Q`(u), such as Q`(u) = δ`,0. The eventual convergence at very high orders

n can be understood from the fact that the contributions in the asymptotic behavior of

the perturbative coefficients an that arise from the β-function coefficients βn>1 become 1/n

suppressed and eventually become also numerically small, see eqs. (4.16) and (4.19). But in

any case, its very slow convergence renders the Borel method less practical and less precise

for most phenomenological applications, for which only a few terms of the perturbative

expansion are known.

C Other short distance masses

The PS mass [25] is defined by the integral of the momentum space color singlet static

potential between a quark-antiquark pair, each having infinite mass. The relation of the

PS mass to the pole mass has the form

mpole
Q −mPS

Q (µf ) = µf

∞∑
n=1

aPSn

(
α
(n`)
s (µf )

4π

)n
, (C.1)

where the coefficients are known up to O(α4
s) based on refs. [100, 101, 120–124], and have

the form

aPS1 =
16

3
, (C.2)

aPS2 = 172.4444− 13.03704n` ,

aPS3 = 11111.55− 1522.482n` + 41.350n2` ,

aPS4 = 913336.84− 179514.95n` + 10535.70n2` − 172.72n3` + 22739.57 log

(
µ

µf

)
.

In the standard convention for the PS mass defined in ref. [99] the term log(µ/µf ) appearing

in aPS4 is set to zero.

The definition of the 1S mass [26–28] in terms of the pole mass is given in eq. (5.3)

and the coefficients cn,k up to O(α5
s) read [26–28, 124–126]

c1,0 = − 2.09440 , (C.3)

c2,0 = − 135.438 + 10.2393n` ,

c2,1 = − 92.1534 + 5.5851n` ,

c3,0 = − 11324.72 + 1372.745n` − 38.9677n2` ,

c3,1 = − 7766.02 + 1077.92n` − 33.5103n2` ,

c3,2 = − 3041.06 + 368.61n` − 11.1701n2` ,

c4,0 = − 1005116.33 + 176714.27n` − 10088.35n2` + 168.57n3` − 63574.35 log(α(n`)
s (µ)) ,

c4,1 = − 901778.56 + 162559.51n` − 9263.14n2` + 163.15n3` ,

c4,2 = − 303000.33 + 61184.26n` − 3823.90n2` + 74.47n3` ,

c4,3 = − 89204.48 + 16219.00n` − 982.97n2` + 19.86n3` .
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Employing the Υ-expansion (relativistic order counting) the formula for the MSR

masses as a function of the 1S mass up to O(α4
s) reads [M1S

B = CF α
(n`)
s (R)m1S

Q , AR =

CF α
(n`)
s (R), as = α

(n`)
s (R)/(4π), L = log(R/M1S

B )]

mMSR
Q (R)−m1S

Q =−
[
Ra1+M1S

B c1,0
]
as (C.4)

−
[
Ra2−M1S

B

(
AR c

2
1,0−c2,0−c2,1L

)]
a2s

−
[
Ra3+M1S

B

(
A2
R c

3
1,0−AR c1,0

(
2c2,0−c2,1+2c2,1L

)
+c3,0+c3,1L+c3,2L

2
)]
a3s

−
[
Ra4−M1S

B

(
A3
R c

4
1,0−A2

R c
2
1,0

(
3c2,0−

(
5

2
−3L

)
c2,1

)
+AR

(
c2,0
(
c2,0−(1−2L)c2,1

)
−(1−L)c22,1L+c1,0

(
2c3,0

−(1−2L)c3,1−2(1−L)c3,2L
))
−c4,0−c4,1L−c4,2L2−c4,3L3

)]
a4s .

Employing the non-relativistic order counting the formula for the MSR masses as a func-

tion of the 1S mass up to O(α5
s) reads [M1S

B = CF α
(n`)
s (R)m1S

Q , as = α
(n`)
s (R)/(4π),

L = log(R/M1S
B )]

mMSR
Q (R)−m1S

Q = −
[
Ra1 +M1S

B c1,0
]
as (C.5)

−
[
Ra2 +M1S

B

(
c2,0 + c2,1L

)]
a2s

−
[
Ra3 −M1S

B

(
4π CF c

2
1,0 − c3,0 − c3,1L− c3,2L2

)]
a3s

−
[
Ra4 −M1S

B

(
4π CF c1,0

(
2 c2,0 − (1− 2L) c2,1

)
− c4,0 − c4,1L− c4,2L2 − c4,3L3

)]
a4s .
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