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We analyze the effects of intersite energy correlations on the linear optical properties of one-dimensional
disordered Frenkel exciton systems. The absorption linewidth and the factor of radiative rate enhancement are
studied as a function of the correlation length of the disorder. The absorption line width monotonously
approaches the seeding degree of disorder on increasing the correlation length. On the contrary, the factor of
radiative rate enhancement shows a nonmonotonous trend, indicating a complicated scenario of the exciton
localization in correlated systems. The concept of coherently bound molecules is exploited to explain the
numerical results, showing good agreement with theory. Some recent experiments are discussed in the light of
the present theoryS0163-18209)07343-9

[. INTRODUCTION One of the general consequences of the occurrence of
intersite energy correlations outlined in all the studies con-
Theoretical studies of excited states of quasi-onecerning the exciton absorption band is the increase of its
dimensional 1D) self-assembled molecular systems, such adVidth as compared to uncorrelated random systetfis:*it
dipolar coupled molecules ihaggregated? are often based Was found that the absorption line width approaches the
on the well-known Frenkel exciton moddkee Ref. 4 for a  S€€ding degree of disorder on increasing the correlation
. . ; length of the intersite energy disorder. To the best of our
comprehen3|ve reviewThe most remgrkable optlcal prop- knowledge, however, there was no detailed study of the fac-
erties ofJ aggregates are the narrowing of their absorptiong, of radiative rate enhancement, carrying out information
spectra § band™? and the radiative rate enhancenfénds  ahout the coherently bound molecules. In a recent paper de-
compared to the monomers, both originating from the collecyoted to pairwise correlated diagonal disordsite energies
tivization of the local molecular states due to the intermo-appear at random to pairs of nearest-neighbor )sitese
lecular dipolar coupling. The absorption band is narrowed byfound the counterintuitive result that this factor drops upon
about the square root of the so-calledmber of coherently the occurrence of correlations. This means that excitons at
bound molecules N which, roughly speaking, is the num- the bottom of the band become more localized after intro-
ber of molecules covered by the exciton wave funcfidimie  ducing pairwise correlations while the underlying lattice is
same number determines the factor of radiative rate enhanckess disorderedn the sense that only half of the site energies
ment.N* is smaller than the physical length of an aggregateare truly random variables. Stronger localization near the
since Anderson localization takes place in 1D randomband edge upon introducing the correlations in the disorder
system$. It has been realized that diagonal and off-diagonalwas also pointed out in the recent paper by Retsall’
disorder are particularly important in determining the optical In this paper, a detailed study of 1D molecular systems
properties of these systems becalM8estrongly depends on with intersite energy correlations is performed in order to
the degree of disordér® uncover the effects of the short-range to long-range correla-
Since the pioneering work by Knaggheoretical studies tion length crossover on the linear optical response of Fren-
of the optical dynamics of Frenkel excitons in 1D randomkel excitons. We show that the factor of radiative rate en-
systems with intersite correlations have attracted muclhancement drops upon increasing the energy correlation
attention'®~**Until recently, however, it was not possible to length whenever this length is smaller than a gicéarac-
experimentally prove the occurrence of intersite correlationsteristic length. For larger energy correlation lengths the be-
Hence, most theoretical descriptions assumed that disordé@avior of the factor of radiative rate enhancement is the op-
was indeed uncorrelated. Knoester showed that nonlinear oposite and increases on increasing the correlation length. We
tical techniques are appropriate means to determine both th@ovide a simple recipe for estimating this characteristic
degree of disorder and the correlation length of the diagondkength. The absorption band width presents a monotonous
disorder'® This approach was applied to molecular aggre-increase upon rising the energy correlation length and ap-
gates of pseudoisocyanirf®IC) by Durrantet al!® and in  proaches the width of the distribution of seeding disorder
aggregates of the dye 5,6,6'-tetrachloro-1,1-diethyl-3,  when the correlation length exceeds the above mentioned
3’-di(4-sulfobuty-benzimidazolocarbocianind TDBC) by  characteristic length. We also use the concept of coherently
Moll et al,*® which are known to easily fornd aggregates. bound molecules to interpret numerical data. Applying this
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concept in a self-consistent way, we find the scaling of theeigenenergies. The oscillator strength of ftilke eigenstate
factor of radiative rate enhancement and the width of excitomwith componentsaj(”) is given by

absorption line with the energy correlation length and show

that theoretical estimates reasonably fit the results of numeri- )
cal simulations. The remainder of the paper is organized as M=
follows. In Sec. Il, we formulate the model we will be deal-

ing with. Section Il deals with the theoretical estimateswhere the dipole moment of an isolated monomer is taken to
which are then used in Sec. IV for explaining the resutls ofbe unity.

numerical simulations. Some recent experiments are dis- The factor of radiative rate enhancement is defined
cussed in light of the present theory in Sec. V. Section Vithrough the average oscillator strength per state at eriergy
summarizes the paper. (Ref. 9,18

N 2
> a§”>> : (5)

n=1

I(E)

II. MODEL OF DISORDERED SYSTEM ZV(E): 7
Ha p(E)’

(6)

We consideN>1 optically active, two-level molecules
forming a regular 1D lattice with spacing unity. To build up
our correlated disordered lattice with intersite energy corre- < N >

where

lation lengthN,, we createS=N/N. consecutive segments p(E)= E > S(E-E;) 7)
with equal transition energies; within each segment. The N\ =1

set{eg}s_, are statistically independent Gaussian variablesg the normalized density of states. We take fpdy(E)} as

with probability distribution a measure for the enhancement of the exciton radiativé rate
12 9 or, in other words, for the number of coherently bound mol-
1 _ & 1 eculesN*.” In what follows, the above magnitudes will be
Ple)=| —]| ex 2, (1) . . . .
20 determined both analytically and numerically as a function
of the correlation lengtiN, .

mo

and (ese ) =0?5sy, Where brackets denote the average

over the joint energy distribution Il THEORETICAL ESTIMATES

S . .
Having presented our model, we now describe the method
P({esh) = 51:[1 p(es), (2 we have used to estimate the factor of radiative rate enhance-
mentN* and the linear absorption band widgh. To this
and o is the seeding degree of disorder. end, we rewrite the Hamiltonia(8) in the excitonic repre-
For our present purposes, we will neglect all thermal desentation using the eigenfunctions of the unperturbed Hamil-
grees of freedonfelectron-phonon coupling and local lattice tonian(with e,=0 fors=1, ... ,S). For the sake of simplic-

distortiong and assume that disorder originates from a statidty, we assume here periodic boundary conditions. The Bloch
offset of the on-site energidgiagonal disordgr The effec- plane waves are then the exact eigenfunctions of(Bjgin
tive tight-binding Hamiltonian for the 1D Frenkel-exciton the absence of disorder:

problem in the random lattice with correlated disorder can be N

then written as follows: 1K) 1 iKn| ) ®
=— > enn),
s Ng =
H=§l Esnzl In+Nc(s—1))(n+Nc(s—1)| whereK = 27k/N belongs to the first Brillouin zone @k

<N). In theK representation, the HamiltonidB) reads

N
+n%;l Jnml (. @ H:; ExK)(K|+ 2 Axe [KXK'], (99
KK/

where|v) is the state vector of the th_ molecule andl,, whereEy is the unperturbed exciton energy
=J|n—m are the hopping integrals, which are assumed to be

negative, as it takes place fdaggregates, and not subjected N .

to disorder. Ex=>, J,ekn (9b)
We are interested in the absorption line shape and its n=1

width as well as in the factor of enhancement of the excitorand A, is the intermode scattering matrix

radiative rate relative to the monomer spontaneous emission

rate. The absorption line shape is calculated as 13 Ne ,
AKK’:N 2 ESE e|(K—K )[n+NC(s—l)]. (gC)
1 N s=1 n=1
_ 2 . .
I(E)_N<,§=:1 M 5(E_Ej)>- 4 The role of Axks is twofold. The off-diagonal elements

Ak (K#K") mix the exciton states. If the typical fluctua-
Here we assume that the system size is much smaller thaion of Acx, does not exceed the energy difference between
the optical wavelength. The indgxuns over all eigenstates the state andK’ (the so called perturbative limithen the
of the Hamiltonian(3) and E; denotes their corresponding energy shifts of the corresponding states, given by the diag-
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onal elements\yx, is the main effect of the disorder and N,
result in inhomogeneous broadening of exciton levels for an T1=0\ (12
ensemble of chains. The typical fluctuation &fx has a

direct relationship with the inhomogeneous width of the eX'ThiS result holds whenever the std€e=0 does not become
citon state|K). _ _ _ mixed with the nearest onfK,), where K;=2x/N. The
For nonperturbative magnitudes of the disorder, off-mixing is governed by the off-diagonal elementt .

dlggonal elgments of the scattering .matmk."’(KiK ). . Hence, one should compawg o with the energy difference
mix the exciton states, resulting in their localization on chain i 1 . _
—E,. The perturbative approach is still applicable pro-

segments of a typical size smaller than the chain length anEKl _ . )
subsequently affecting the exciton optical response. Reca¥lided oy o<Ex,—E, and fails otherwise. Thus, the equality
that, for a perfect circular chain, only the st3t€=0) is ok,0=Ek, —Eo determines a value of (for fixed both
coupled to the light and carries the entire exciton oscillator5in lengthN and energy correlation lengtN,) which
strength, which is theiN times larger than that for an iso- geparates the ranges of perturbative and nonperturbative

lated molecule. Being mixed with othé@monradiative states magnitudes of disorder. Takingy in the nearest-neighbor
(K#0), the radiative state loses a part of the OSCi"atorapproximation
strength due to its spreading over the nonradiative ones.
Thus, the number of coherently bound moleculds<N Ex=—2J cogK)=—2J+JK?, (13)
arises as the enhancement factor of the oscillator strength of
the localized exciton statésAccordingly, the inhomoge- where—J (J>0) is the nearest-neighbor coupling aNds
neous width of the optical exciton line will also be subjectedassumed to be large, one gets
to renormalization sinc®&l should be replaced by* .’
47%)
A. Perturbative treatment o= (N3Nc)1/2’ (14)

Assuming the perturbative limila quantitative condition ) ) )
of its validity will be given below, let us gain insight into which determines the crossover between the perturbative and
the magnitude of the typical fluctuation of the scattering ma"onperturbative limits.
trix Agk:. To this end, one should calculate its second mo-
ment using the joint distributiof2) of the seeding fluctua- B. Nonperturbative limit
tions (being expressed trough linear combinations of
Gaussian variables; with Z€ro mean, thedy: are also  gcyjies of the chain contribute to the optical spectra of the
.Gau55|an.var|abzles W'tMKK’g_O)_' The magnitude of our h51e ensemble, but only a portion of them being a function
interest will beai ., =(|Axk:|). Itis an easy task to arrive  of the degree of disorder/J.” The reason is the localization

At nonperturbative magnitudes of disorder, not all mol-

at of the excitonic states arising from disorder. Therefore, the
number of coherently bound moleculd$ (averaged num-

2 o? sirf[(K—K'")N/2] ber of molecules covered by optically active localized exci-

Tk NN, Si[(K—K')/2] (100 ton states should replace the number of molecules in the

systemN. In Ref. 19, a simple rule for estimating* was
In the limits K,K’ <1 and K —K')N <1, which are of ma- form_ula.ted wher)ever the disorder_ is unco_rrelated. It exploits
jor importance from the viewpoint of optical properties, Eq_the fmdmgs thati) the lowest localized exciton states_can be
(10) reduces to classified in several groups of stat@svo or sometimes
three, each one localized on a certain chain segment of a
typical sizeN*, (ii) each segment does not overlap with the
UﬁK’:UZ&' (12) others® (see also Refs. 20, 21 and Sec. IV for more details
N and, what is most important, the states of each group have
the energy structure similar to that for a homogeneous chain
This expression generalizes the result we obtained previousbyf size N*, i.e., approximately given by Eq13) with N
for pairwise correlated disordeNQ=2)13 to the case of an replaced byN*.
arbitrary energy correlation lengti; . As follows from Eq. The rule proposed in Ref. 19 for estimatiitf consists
(1), the motional narrowing effectN* scaling is weak-  simply of applying the perturbative criterid@4) to a typical
ened here by the factdd. and is determined now by the |ocalization segment, i.e., substitutidgjby N* in Eq. (14)
chain lengthN counted in units of the energy correlation gnd considering now* as an unknown parameter. As was
length N or, in other words, by the number of correlation shown in Refs. 19, 20, this approach works surprisingly well
segmentsS=N/N.. The motional narrowing effect com- in fitting the numerical data concerning the optical response
pletely disappears &,=N. Similar conclusions were drawn of 1D Frenkel excitons. In doing so, one arrives at the fol-
in Refs. 7,9-11. lowing estimate of the number of coherently bound mol-
As it was already mentioned above, the sféte=0) car-  ecules
ries the entire oscillator strength of the system so that the

optical absorption spectrum presents an isolated Gaussian 1 (42323

peak centered around the eigenendtgy o and it is charac- N* =—1/( ) (15
. i i N3\ o

terized by its standard deviation c
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According to Ref. 7, the standard deviation of the exciton
absorption spectrunr; can be estimated by E(L2), again H= Zab ; (o Ex)la,K)}(K,a]
replacingN by N*, that gives us o

+ (Hab)kk'|a,K)(K",b]. (19a
KK’

(16)

o 1/3
4772J)

01=N§/30'(
Here, Ex is given by Eq.(13) and the interaction Hamil-

TheN, scaling laws oN* ando; are the main results of the tonian reads
present paper. Note thatscaling ofN* and o, was previ- 0
ously reported in Refs. 9, 19 and 9, 18, 19, 22-24, respec- _ + . S
tively. We stress that the number of coherently bound mol- (Hap)kw =(=1)" lNc+1 sin(K)sin(K"). (190
ecules drops while the standard deviation of the exciton ) ) o o
absorption spectrum rises upon increasing the intersite erl.N€ interaction Hamiltonian 7{,)kk- couples excitonic
ergy correlations, meaning stronger scattering of the excitof’0des belonging to different segments and thus leads to their
in a more correlated system. This somewhat unexpected réPreading over both segments. Recall that, from the view-
sult stems from the fact that motional narrowing effect isPoint of the optical response, mixing of the lowest modes
partially suppressed as intersite energy correlations occurdith K;=Kj=m/(Nc+1) is of major importance. We aim

yielding a smaller reduction of the seeding disorder as comto elucidate for which segment si2¢ this coupling can be
pared to the case of uncorrelated disorder. considered as a perturbation. Remembering that the typical

energy mismatch between the segments-is and taking

C. Short- to long-range correlations crossover |(Hab)K1K£| =0, one arrives at the following estimate of the

. . . jze we are looking for:
The concepts presented in the previous subsection as wé\

as the scaling law§l5) and (16) are valid within the range
N.<N*. However, both number#&J. andN*, will approach NE+1=
each other as the correlation lendth rises and, starting
from a certain value oR; we will obtainN*~N.. We now  where the conditioN.>1 was used.
provide arguments how to estimate the magnitudéofat Summarizing, the typical energy separation of two adja-
such a crossover. As soon & and N approach each cent segments starts to dominate over their coupliniyat
other, there is no reason for the reduction of disorder due te. N* s that the segments can be considered as decoupled of
the motional narrowing since the energy of any segment 0gach other. As a consequence, the localization length of the

size N is fixed, i.e., does not fluctuate. Thus, the typical|owest exciton mode will be the same that the energy corre-
energy mismatch between two adjacent segments is of thgtign lengthN,.

order of o. On the other hand, the fact thit ~N, means
that the coupling between adjacent segments is of the order
or smaller than their energy separation From this it fol-
lows that the condition we are looking for is precisely that In order to calculate the quantities of interest defined by
under which two adjacent segments of sMg start to be Egs. (4)—(7) we replaceds(E—E;) by the Heaviside step
decoupled from each other. function (1R)6(|E—E;|—R/2), whereR is the resolution,

In line with this reasoning, let us consider the two taken to be 0.05 in all the calculations. For energy urits,
segments problem, taking for the sake of simplicity the cor-=1 was chosen. The standard deviationwvas also fixed to
responding Hamiltonian in the nearest-neighbor approximape 0.2. The only varied parameter was the energy correlation
tion lengthN,.

We diagonalized the Hamiltoniaf8) for open chains of

2 772‘] 1/3
: (20

IV. DISCUSSION OF THE NUMERICAL RESULTS

Ne sizeN=SN;, where for a giverlN;, the numbeiSwas cho-
H= a;a ) nzl €,la.n)(n,al sen such thal would be the closest one to 250. The number
' of randomly generated systems was 1000 for each value of
Ne—1 N.. We do not present here the exciton absorption spectra
—3 2 (Janyn+Le|+|an+1)n,al) since they are rather standard ones, showing the characteris-
n=t tic asymmetry and red shift due to disorder discussed in de-
—J(|a,Nc){1b|+|b,1)(N.,al), (17) tail for uncorrelated disorder in Refs. 9, 18, 25 and for the

correlated case in Refs. 7, 11, 13. In Fig. 1, the standard
wherea and b are the segment labels and the second terndeviation of the absorption specira is shown as a function
describes the coupling of the segments. Making use of thef the energy correlation lengtk. . To accurately determine
excitonic transformation the standard deviation; we fitted the low-energy side of the
spectra using Gaussians. One can see from Fig. ldthat
. monotonously increases &% rises and finally approaches
; sin(Kn)|a,K), (18 the value 0.2¢€ o) for the case at hand. The crossover, oc-
curring approximately aN’ =5, is in good agreement with
where K=xk/(N.+1) andk ranges from 1 toN,, one the estimateN? ~4 given by Eq.(20).
passes from Eq.17) to Figure 2 shows the behavior of the factor of radiative rate

12

)=

No+1
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FIG. 1. Standard deviation of the exciton absorption spetira
versus the energy correlation lengih. The degree of seeding
disorder isc=0.2.

enhancement mép2(E)} as a function ofN.. First, it
drops upon increasind. and then it grows foN.>4, also

in full correspondence with our theoretical prediction done in
Sec. lll. Strong fluctuations observed in Fig. 2 result from
the fluctuations in the density of states: the latter appears in
the denominator in the definition of mgé (E)} [see Eq.

(6)]. We do not present in Fig. 2 how the quantity
maxu2(E)} behaves folN.> 15 for several reasons. First,
as soon as the segments of correlated energies start to be
decoupled of each oth¢the case folN.>4, see Fig. &)

and 3c)], the oscillator strength per staje’(E) behaves
monotonously, i.e., has no maximugee Appendix A thus
proving to be an inconvenient measure of the extension of
the optically active exciton states. Second, it is evident that,
for decoupled segments, the localization lentyth is equal

to the energy correlation lengti,. Figure 3 confirms the
last statement. There, we presented typical realizations of the
eight lowest eigenfunctions of the Hamiltonié®) for three
values of the energy correlation lengith=4, 10, and 40.
They demonstrate that the energy segments actually turn out
to be decoupled from each other as the segment size rises.
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. FIG. 3. Typical realizations of the lower exciton eigenmodes for
° ¢ oo three values of the energy correlation len¢@hN.=4, (b) 10, and
11 [ I (c) 40
. .
10 ; . ; Indeed, forN.=4, the typical extension of the eigenfunc-
0 5 10 15 . M L .
N tions N* of the lowest excitonic states is more than (1fe

oscillator strengthg.? of nodeless states carry this informa-

FIG. 2. Factor of the radiative rate enhancement, {axE)}, tion). Note that it sufficiently exceeds the energy correlation
versus the energy correlation length.. The degree of seeding length. For larger valueN.= 10, both magnitudes approach

disorder isc=0.2.

each other, although still keeping the relatifi >N.. In
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addition, in the last case, the eigenfunctions tend to benonotonously increases & for low energy correlation
grouped on different segments of sizeN,.. Finally, for the  |ength and saturates whey>(272J/ )%, namely, when
largest presented value Nf.(=40), the eigenfunctiongy,, , the localization lengtiN* coincides with the energy corre-
oscillator strengthsuﬁ and eigenenergieky within each lation lengthN.. Our results lead us to a better understand-
group follow fairly well the corresponding formulas for an ing of recent experimental results in PIC and TDBC molecu-
isolated segment of sizd, : lar aggregates.

1/2
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Ec=e+Eq, (210 APPENDIX: EVALUATI(S)EGONIIZENL_lraé(E) FOR DECOUPLED
wheree is the site energy of the molecules within each seg-
ment. Note that such a structui@alled hidden in Ref. 1)%f
the exciton low-energy spectrum is also presentNge 4

but scaled in average by the numidé¢t instead ofN, .

Let us calculateu,, 2(E)=p(E)/1(E), assuming the en-
ergy segments to be decoupled of each other. Under such an
assumption, one can rewrifgE) andl(E) as follows:

S N
V. DISCUSSION OF THE EXPERIMENTAL RESULTS 1 ;
(E =—<Z D, S(E—e EK)> (Ala)

In the recent experimental works by Durragttal® and

by Moll et all® it was reported on the presence of strong
correlations in diagonal disorder in molecular aggregates of 1/5 Ne
PIC and TDBC, respectively. Moreover, it was found in both I(E)= N< Z E
studies that the energy correlation lendthis of the order of

the localization length and even larget® This limit
strongly suggests that almost no motional narrowing effec
has to be detectéd:}?> Nevertheless, the observeldband
width in both cases was definitely motionally narrowed. The
possible ordering of the first solvatation shell in the presenc
of highly ordered aggregate during the freezing process an
the subsequent reduction of the local disorder was given as
possible explanation for th& band narrowing. N (

piS(E—es— EK>>, (Alb)

here Ex=-2Jcogwnk/((N+1)], k=1,2,...N. and
?st}g:l is a stochastic Gaussian energy offset distributed ac-
cording to Eq.(2). Making use of the integral representation
gf the & function 8(x) = (1/27) [~ .dtexp(xt), it is easy to
garry out the average in EqéAla) and (Alb) explicitly to

gprive at
12 2
It seems to be interesting to estimate the critical length p(E)= i E 1 ) ex;{— (E—Ex)
N for the above aggregates on the basis of the experimental N 2mwo? 20° |
data presented in Refs. 15,16. Takilg=600 and o
=13.5 cm! for J aggregates of PI&, one getsN*~9, 1 Ne 1\ (E—Eg)?
which is consistent with the relatiod,=N* found by Dur- I(E)= N, ¢ 2 2) EXF{ 52 |
rant et al'® For J aggregates of TDBC J=850 and o k= 2mwa (A2b)
=67 cm 1), one arrives aN* ~6. Thus, the experimental
estimation of the energy correlation length to be of the  Accounting further for the fact that the lowest exciton state
order of several hundreds molecules obtained in Ref. 16 corfwith Kl—w/[N +1]) carries almost the entire oscillator
tradicts, in our opinion, the magnitude of localization lengthstrength (.2 /EKMK 8/m?, namely,81%) andthus keep-

(A2a)

c k=1

N* ~40 extracted from the spectroscopic data. ing in Eq. (A2b) only the first term, we finally get
VI. SUMMARY AND CONCLUDING REMARKS 2 Ne Ex— EKl( Ex+Ex,
. . . = 1+ ex - .
In summary, we have studied the effects of intersite en- '“a"( )= 8N, z o2 2

ergy correlations on the characteristics of linear absorption (A3)
spectrum corresponding to a weakly localized 1D Frenkel
exciton. We have found that the factor of radiative rate enfrom this it follows thatu,,*(E) monotonously rises from
hancement shows a nonmonotonous behavior upon risinge valuem?/8N, to infinity, "when passing fronE= — to
N,, first decreasing all; *® and then growing linearly. The E=<. As a consequencey 2(E) monotonously decreases
crossover occurs when the typical coupling of segments i§om the value 81/ to zero. It should be pointed out that
smaller than the typical separation between their energy levthe characteristic energy scale of the exponent|als in Eq.
els, being of the order of the width of the seeding GaussiafA3) is determined by the ratioE —Ex )/o* which goes
energy distributioro. The linear trend indicates that the seg- down as the segment si2&. rises. This means that close to
ments become independent one from the other wNgn the band bottom, which is precisely the energy region we are
> (27231 o). The standard deviation of the absorption line interested in, the contribution of the exponentials in @)
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an inconvenient measure for the extension of the optically
active exciton states for the case of larger energy correlation

length, when the energy segments are decoupled one from

may be large. Then, the magnitudes;é(;( E) obtained from
numerical simulations will strongly differ from the
asymptotic value Bl./72. Due to the peculiarity outlined

above, the oscillator strength per statté,(E) appears to be

the other.

*On leave from All-Russian Research Center “Vavilov State Op-*F. Domnguez-Adame and V. A. Malyshev, J. Lumiito be pub-

tical Institute,” Saint Petersburg, Russia.
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