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We reexamine the possibility of employing the viscosity over entropy density ratio as a diagnostic tool

to identify a phase transition in hadron physics to the strongly coupled quark-gluon plasma and other

circumstances where direct measurement of the order parameter or the free energy may be difficult. It has

been conjectured that the minimum of �=s does indeed occur at the phase transition. We now make a

careful assessment in a controlled theoretical framework, the linear sigma model at large N, and indeed

find that the minimum of �=s occurs near the second-order phase transition of the model due to the rapid

variation of the order parameter (here the � vacuum expectation value) at a temperature slightly smaller

than the critical one.
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I. INTRODUCTION

The viscosity over entropy density ratio�=s has recently
received much attention due to the conjectured universal
bound [1] �=s � 1

4� for fluids describable by any quantum

field theory. No experimental exception to this rule has
been found to date, and many have been examined, such as
ordinary gases and liquids like argon [2], undoped gra-
phene [3], fermions near the unitarity limit [4,5], and more
interesting for our purposes, the hadron phases formed
after relativistic heavy ion collisions [6–9]. The existence
of this bound can be inferred from dimensional arguments
for a quantum fluid alone [10], but the 1=4� numerical
factor has only been obtained in the context of conformal
field theories with a gravity dual. In [11,12] some possible
violations to this bound are proposed.

Important insight came from [6] as it was further con-
jectured that the minimum of �=s for several ordinary
fluids, but also for hadron matter, coincides with the phase
transition. We [2,13] and others [14,15] have gathered
further empirical and theoretical evidence in favor of this
concept.

Its use is quite evident for the experimental program of
the Facility for Antiproton and Ion Research (FAIR) [for
example, the compressed baryonic matter (CBM) experi-
ment] or the Relativistic Heavy Ion Collider if run at a
lower energy. The idea is simply to use the minimum of
�=s that might be accessible by studying the momentum
distribution of final state pions and other particles, through
elliptic flow [7,16], for example, as a diagnostic to locate
the phase transition and possibly the critical point in QCD.

For small baryon chemical potential, and based on lat-
tice QCD calculations, one expects a crossover. Therefore
the ratio �=swould show a soft minimum when the quark-
gluon plasma is about to appear. Our theoretical estimate of
�=s in this case is shown in Fig. 1, an update of that in [2].
The hadron side (mainly containing pions but also kaons,�
mesons and their dynamical, elastic low-energy resonances

in minor concentration) is calculated by means of the
Boltzmann-Uehling-Uhlenbeck (BUU) [18] transport
equation and using chiral perturbation theory for the low-
energy interactions with the inverse amplitude method for
the meson amplitude unitarization. We have not included a
finite nucleon density in our work, but this has been
estimated independently in Ref. [19].
For the quark-gluon plasma side we took the perturba-

tive estimate of [6,17] for massless quarks withNf ¼ 2 and

Nf ¼ 3. In [2] we showed that the corrections in this side
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FIG. 1 (color online). The phase transition between a hadron
phase (left curves) and a strongly coupled quark-gluon plasma
(QGP) (right curves) points out to a minimum or a discontinuity
depending on the order of the transition. At �B � 0 a soft
minimum is expected as hinted in our prediction for �=s
in the hadron side with the incorporation of the inverse
amplitude method (IAM). The QGP estimations are based
on the calculations in [6,17], implementing the formulas �=s ¼
5:119=½g4 lnð2:414g�1Þ� for Nf ¼ 3 and �=s ¼
5:328=½g4 lnð2:558g�1Þ� for Nf ¼ 2, with g as a function of

temperature given in [6]. Finally, the calculation of Demir and
Bass with a microscopic transport model is also given [9].
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due to the finite quark masses are very small by using some
results in [20].

In this contribution we are going to sharpen the state-
ment somewhat and show quite clearly that the minimum
of �=s occurs not exactly at the phase transition, but
somewhat before, where the condensate has rapid
variation.

Computation of transport coefficients in a pion gas
requires knowledge of the ��-scattering amplitude.
Although in our recent work [2] we have employed chiral
perturbation theory and unitarized chiral perturbation the-
ory, that is the correct low-energy limit of quantum chro-
modynamics, the phase transition is not accessible from it,
and one needs to resort to a separate theoretical approach
for higher energies (as in Fig. 1). This however would
obscure our purpose of showing the correlation between
the minimum of �=s and the phase transition.

Since some level of modeling is necessary anyway, we
adopt from the start of this article the linear sigma model
(L�M) in the limit of large N, that although less precise to
provide us the scattering amplitudes necessary in the com-
putation of transport coefficients (see Appendix B), it
allows us to control the effective potential and phase
transition. Thus, the different phases of the model can be
obtained—as desired—from the same partition function.

An initial study in this direction is [14]. However, we
feel that we can improve and better motivate the charac-
terization of the phase diagram and the location of the
critical temperature in the system without resorting to
arguments of ‘‘naturalness,’’ through some additional
mathematical effort. In this article we will therefore de-
scribe a more exhaustive and consistent study for both the
phase diagram of the model and the calculation of �=s.

The rest of the paper is organized as follows. First we
present minimum discussion on the L�M effective poten-
tial in Sec. II, but all mathematical detail is relegated to
Appendix A. Section III is a brief indication of how the
viscosity over entropy ratio is obtained in the L�M, with
necessary detail in Appendixes B, C, and D. Our main
point, the connection between the fast-changing conden-
sate and the minimum of �=s, is presented in Sec. IV. We
also comment on the possibility of identifying the critical
exponent of the viscosity near the critical end point in the
phase diagram in Sec. V, and expose the behavior of �=s in
helium-4 at low temperature. Finally, Sec. VI summarizes
our main results and looks ahead to what interesting future
work there might be. Appendixes E and F provide addi-
tional technical aspects supporting our results, such as why
the minimum of �=s remains below Tc, and the applica-
bility of the transport equation.

II. EFFECTIVE POTENTIAL AND PHASE
TRANSITION

In this section we will obtain the phase diagram in order
to characterize the phase transition temperature of the

L�M at large N. The physics of the L�M at large N has
been extensively described at zero temperature in [21–23]
(for both zero and nonzero pion mass), at finite temperature
in [24] and the transport coefficients in [25,26], for
instance.
The well-known renormalizable Lagrangian density for

an N þ 1 multiplet � is

L ½�; @��� ¼ 1
2@��

T@��þ ��2ð�T�Þ � �ð�T�Þ2;
(1)

where ��2 [not to be confused with the renormalization
scale�, to be introduced in Eq. (A13)] is positive (opposite
in sign to a scalar field mass term) and � > 0. With this
choice of parameters the L�M presents spontaneous sym-
metry breaking from SOðN þ 1Þ to SOðNÞ. The field �
acquires a vacuum expectation value (VEV) where the field
configuration of minimum energy verifies (at tree level)

�T� ¼ ��2

2�
¼ f2� ¼ NF2: (2)

Denoting�a (a ¼ 1; . . . ; N) to theN first components of�
and � the N þ 1 component we can choose the VEV in the
direction of the latter. Thus we have h�ai ¼ 0 but h�ðT ¼
0Þi ¼ f�. The pions are the N massless Nambu-Goldstone
bosons; on the other hand, the field� acquires a mass equal
to m2

� ¼ 8�NF2. Taking the limit m2
� ! 1 one can ex-

press � in terms of the pions as � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2� � �a�a

p
. This is

the nonlinear sigma model in which one can eliminate
explicitly the � degree of freedom.
Moreover, we can insert a possible �-mass term that

explicitly breaks the SOðN þ 1Þ symmetry in the direction
of �. This term should be in the form LSB ¼ c�, with c a
dimensionful constant. Expanding � in terms of the pions
and requiring the appropriate form of the pion-mass term
one can deduce that c ¼ m2

�f�. Explicitly,

L SB � m2
�f�� ¼ m2

�f
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �a�a

f2�

s

¼ m2
�f

2
� � 1

2
m2

��
a�a þ � � � : (3)

In the rest of the paper we will assume F is a constant
and denote the pion decay constant or the � VEVat T ¼ 0

as f� (it implicitly depends on N because f� ¼ ffiffiffiffi
N

p
F). At

finite temperature we will employ vðTÞ ¼ h�ðTÞi indis-
tinctly. In particular, note that v2ð0Þ ¼ NF2 ¼ f2�.
The phase diagram can be understood by computing the

effective potential Veff at finite temperature as a function of
the � condensate, to ascertain whether and when the
minimum of the potential corresponds to a symmetry-
breaking phase.
This effective potential is sometimes extracted from the

generating functional of one-particle irreducible, n-point
Green functions, �ð�;G�1Þ (see [27] for details). Here, we
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follow a different (but related) approach. The key formulas
for understanding the procedure are given in Appendix A.

Once computed, the effective potential is a function of
the � field, an auxiliary inverse propagator G�1½0; �� and
the temperature. It reads, in terms of renormalized quanti-
ties,

Veff ¼ 1

2
ð�2 � NF2ÞG�1½0; �� � ðG�1½0; ��Þ2

16

�
�
1

�R

þ N

4�2
log

�2

G�1½0; ��
�
þ NðG�1½0; ��Þ2

8ð4�Þ2

�m2
�f��� N

2
g0ðT;G�1½0; ��Þ: (4)

Assuming a spatially homogeneous � condensate, the
saddle-point approximation for this effective potential
yields the value of h�i, together with a second equation
of motion which is just the constraint necessary to solve for
G�1½0; ��,

dVeff

d�
¼ 0;

dVeff

dðG�1½0; ��Þ ¼ 0; (5)

where the analogy with the Cornwall-Jackiw-Tomboulis

formalism is evident at this point [compare with
Eqs. (1.1a–1.1b) in [27]]. Explicitly these equations read

0¼�G�1½0;���m2
�f�;

0¼ 1

2
ð�2 �NF2Þ�G�1½0;��

8

�
1

�R

� N

4�2
log

eG�1½0;��
�2

�

þN

2
g1ðT;G�1½0;��Þ: (6)

The first one minimizes the potential in terms of �. The
second is the implicit constraint forG�1½0; �� for any value
of Veff , not necessarily at the minimum. When m� ¼ 0 the
first equation in (6) reveals that there exists one phase with
� ¼ 0 and G�1½0; �� � 0 and another phase where
G�1½0; �� ¼ 0 and � � 0. In the latter case, the second
equation yields

�2ðTÞ ¼ NF2 � Ng1ðT; 0Þ; (7)

and finally using the result in (A20) one arrives at

�ðTÞ ¼ �0

�
1� T2

T2
c

�
1=2

; (8)

with �2
0 � f2� and the critical temperature

FIG. 2 (color online). Effective potential in various regimes of the L�M, showing the various phases and the nature of the phase
transitions between them. Top row: massless pions. Bottom row: pion mass fixed at 139 MeV. From left to right, the renormalized �
mass and temperature are varied as indicated in the graph. Each potential has been multiplied by an arbitrary temperature-independent
constant factor, to match their scales for visibility. See the main text for interpretation of the results.
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T2
c � 12F2: (9)

One can also check that the critical exponent for the order
parameter is equal to the one from mean-field theory � ¼
1=2.

The case withm� � 0 is not so easily tractable and must
be solved on a computer by an iterative method, such as
Newton’s method. Convergence is easily achieved.

Eliminating G�1½0; �� this way, one can easily plot the
effective potential as a function of � at fixed temperature
(Fig. 2). Identifying the position of its minimum with the
help of a computer, we can also plot the value of the �
condensate at the minimum as a function of T (see Fig. 3).

In Fig. 2, we obtain the shape of the effective potential as
a function of the relevant parameters, temperature T, re-
normalized mass of the �, MR [MR can be traded for the
renormalized coupling constant �R, through Eq. (B5).] and
the physical mass of the pions m� (analogous to the
coupling of an external field that explicitly breaks the
original symmetry). For typical values of these parameters
see Table I.

Inspection of the top row in Fig. 2 reveals a second-order
phase transition from a potential with a single minimum at
� ¼ 0 at high temperature, to a phase with spontaneously
broken symmetry below the critical temperature, where
h�i � 0.

An imaginary potential ImVeff � 0 arises when the real
part Veff becomes convex, with negative second derivative.
This is a well-understood phenomenon [28] and is related
to the probability of decay per unit volume of the unstable
vacuum.

In the bottom row we consider the effect of a finite pion
mass. Then the potential loses the residual left-right sym-
metry (reflection respect to the � ¼ 0 axis), and the pion
mass is acting as an external magnetic field in an analogous
condensed matter system. The second-order phase transi-
tion becomes then a smooth crossover.

In order to further characterize the phase transition we
now turn to Fig. 3, with the dependence of � taken at the
minimum of Veff , as a function of T. This is nothing but the
order parameter of the system. The two possibilities in this
model are now clear: a second-order phase transition and a

crossover, if we introduce an explicit pion mass. Note that
only the positive VEV is depicted in Fig. 3.
The phase transition in this model is a chiral one, where

the pion acquires a thermal mass above the critical tem-
perature. This continuously matches to zero at the critical
temperature, and we cannot show a first-order phase tran-
sition for any combination of the parameters.1

Combining the knowledge of Veffð�Þ and h�ðTÞi we are
able to determine the critical temperature of the chiral
transition and more generally, the entire phase diagram
of the theory.

III. COMPUTATION OF THE KSS NUMBER: �=s

In this section we quote our computations of �=s for the
L�M at large N. To compute the shear viscosity we
employ two different methods.
The first calculation uses the quantum transport equation

of traditional kinetic theory. Many details for this
Boltzmann formulation are given in our other publications
[29,30] and we omit them here for shortness. In
Appendix C we sketch a few steps for completeness. The
Boltzmann-Uehling-Uhlenbeck is a transport equation for
the distribution function of the gas. This equation is line-
arized and solved perturbatively in an appropriate polyno-
mial basis, in the so-called Chapman-Enskog formalism.
The shear viscosity of the gas is then easy to obtain
projecting the solution.

FIG. 3 (color online). The value of the � condensate as a
function of temperature. Setting m� ¼ 0, the model presents a
clear second-order phase transition (PT) with a discontinuity in
the derivative. For finite pion masses, we have a crossover.

TABLE I. Default parameters used in the computation of �=s
in the L�M (used unless noted otherwise).

Parameter Value

m� 139.57 MeV

f� 93 MeV

N 3

MR0 0.5 GeV

�R M2
R0=ð8f2�Þ � 3:6

�2 1 GeV2a

Tc 2
ffiffiffi
3

p
F ¼ 0:186 GeV

aNothing depends on this scale choice when using (B3) and (B5).

1One can artificially force it by introducing an ad hoc dis-
continuity in m� in the computer code, and we have examined
this case to check that �=s inherits the same discontinuity.
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An alternative method to calculate the shear viscosity is
the Green-Kubo equation. This method, based on the linear
response theory, works better for a field theory that accepts
a diagrammatic expansion. Some details of the Green-
Kubo formalism are reviewed in Appendix D. Con-
sistency of both approaches provides a check of the calcu-
lation through kinetic theory and field theory methods.
Results should be equivalent as has been shown in [31].

A further check is provided in Appendix E, where we
revise the validity of the Boltzmann approximation to out
of equilibrium computations. In essence, this ‘‘molecular
chaos’’ hypothesis needs successive collisions for the same
particle to be uncorrelated, requiring small densities as

compared to the typical scattering cross section, n�3=2 �
1. This we establish in that Appendix for the range of
validity of our study.

The other ingredient needed for �=s is the entropy
density that can also be calculated in two different ways.
Frequently quoted is the free entropy of a degenerate Bose
gas. For vanishing chemical potential one can obtain a
simple formula for the entropy density from the Bose-
Einstein partition function

logZ ¼ �NV
Z dp

ð2�Þ3 logð1� e��EpÞ; (10)

sðTÞ � @

@T

�
T

V
logZ

�
: (11)

For massless pions, this simply reduces to

sðTÞ ¼ 2N

45
�2T3: (12)

An a priori better and more accurate alternative is the
entropy density derived from the effective potential in
Eq. (4). One should then regard Veff as a Helmhotz free
energy obtained from the generating functional (as a par-
tition function).

sðTÞ ¼ �@Veff

@T
¼ N

2

@g0ðT;G�1½0; ��Þ
@T

: (13)

The limit of Eq. (12) for noninteracting massless pions is
recovered upon employing Eq. (A19). We again resort to a
computer for the more complicated general case; our nu-
merical evaluation however shows that the entropy remains
close to the free gas, since at moderate temperatures the
density is small.
Combining the results for � and s we can deduce �=s as

a function of temperature and plot it in Fig. 4. Both formal-
isms are shown (left panel from Boltzmann equation, right
panel from Green-Kubo formula) and one can see the
excellent agreement between them.
The last step in our analysis is to connect the results of

�=s and those for the critical temperature of the L�M.

IV.MINIMUMOF�=sANDVARIATIONOF THE h�i
CONDENSATE

We now establish that the minimum of �=s tracks the
movement of the critical temperature when the model
parameter F is varied. For this we return to the case m� ¼
0 so as to have a second-order phase transition in the L�M.
Recalling Eq. (9) the critical temperature is

Tc ¼ 2
ffiffiffi
3

p
F: (14)

Therefore we need to extract the dependence of �=s on F.

FIG. 4 (color online). Comparison of the viscosity computed with the Boltzmann-Uehling-Uhlenbeck equation (left panel) and the
Green-Kubo formalism (right panel). The result is nicely consistent for a broad range of temperatures and renormalized masses.
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This is done in the right panel of Fig. 5. For ease of
comparison, we show in the left panel how Tc depends
on F. For the studied range of F the critical temperature
(defined as the temperature at which h�i reaches a zero
value), extracted from the computer code, varies exactly
like the analytical Eq. (14), which provides a handy check.

First, we note that �=s presents a nonanalyticity as a
function of T at T ¼ Tc where a very different qualitative
behavior of �=s begins. This is due to the dependence of
�=s on the thermal pion massm�ðTÞ and the� condensate,
both nonanalytical at Tc. Below Tc, the thermal pion mass
is identically zero where Goldstone’s theorem protects the
pion masslessness from radiative corrections. In this phase
the symmetry is still broken and the condensate h�i is
nonzero and described by Eq. (8). Above Tc the symmetry
is restored and h�i vanishes. The ‘‘classical’’ pion massm�

is zero as well. However, the quantum thermal corrections
force a temperature-dependent thermal mass m�ðTÞ that is
obtained from the thermal tadpole in the pion self-energy.
Thus we have

h�ðTÞi ¼
�
�ðTÞ T < Tc;
0 T � Tc;

(15)

m2
�ðTÞ ¼

�
0 T < Tc;
N
3 �RðT2 � T2

c Þ T � Tc;
(16)

that is continuous at Tc but nonanalytic. The behavior of
h�i itself is also continuous as shown in Fig. 3 but with a
discontinuous derivative at Tc. These two quantities influ-
ence both � and s and their nonanaliticity is inherited by
the KSS ratio.

T (GeV)
0 0.1 0.2 0.3

/sη

5

10

15

20

etasobresf0093.dat

T (GeV)
0 0.1 0.2 0.3

2
 (

0)
 >

 
σ

 / 
< 

2
 >

 
σ

<

0

0.5

1

order_Norm_f0093.dat

FIG. 6 (color online). Our key result: the minimum of �=s
occurs just before the critical temperature for the phase transition
in the linear sigma model. This is where the condensate varies
rapidly approaching zero. The phase transition is marked by a
nonanalyticity of the ratio.
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FIG. 5 (color online). We follow the evolution with F of the minimum of �=s and the � VEV that yields the critical temperature at
vanishing condensate. Both increase the same relative amount when varying the coupling constant.
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By varying F, the minimum of �=s moves according to
the F dependence of Tc, providing evidence for our claim
that Tc and the minimum of �=s are related.

In Fig. 6 we zoom in the �=s plot near the critical
temperature. As can be seen, the minimum is not reached
at the critical temperature, but right before Tc. This shows
that the minimum of �=s is controlled by the rapid varia-
tion of the order parameter. To understand this result one
needs to keep in mind the diffusive nature of the transport
in a gas. With increasing temperature, the gas particles
carry transverse momentum between different parts of the
gas more efficiently, and thus increase the shear viscosity.
However their interactions hamper transport. This can be
seen from Eq. (B7). As h�i decreases rapidly, the pion
elastic cross section increases. Since � / 1=��� in kinetic
theory, the viscosity must drop. Eventually growth is re-
gained as the temperature increases.

Although the L�M does not present a first-order phase
transition, within our treatment one can artificially force it
by adding a jump for h�i in the computer code. In this case,
the viscosity over entropy density ratio also turns out to
have a discontinuity in the program (not shown since it is
not a genuine model prediction) with a minimum of �=s at
exactly Tc due to the jump, analogous to the first-order
transition in atomic argon in our prior work [2].

V. CRITICAL EXPONENT FOR �=s

We have argued [13] that �=s has a tiny critical expo-
nent of about y ’ 0:04 at the critical end point of QCD by
applying the theory of dynamic critical phenomena [32].
This is true only if the dynamical universality class of the
QCD critical point is that of model H, as claimed in [33].
The critical exponent y (sometimes called �) is defined
near the critical temperature as

� / jtj�y; (17)

with t ¼ ðT � TcÞ=Tc being the reduced temperature. The
shear viscosity and the correlation length 	 are related by a
further power law with exponent x�

� / 	x�: (18)

Because 	 / jtj�
 one can relate both dynamical expo-
nents through the static one y ¼ x�
.

The critical exponent x� appears to be too small (near

0.06) to be detected experimentally in a collision of heavy
ions, a rather noisy environment. For this reason we expect
that experiments will bear a residual minimum (as a func-
tion of temperature) in �=s, near the critical end point.

This does not mean that the critical behavior is unob-
servable. On the other hand, once measurements of the
volume viscosity become available, its own critical expo-
nent, near to 3 [34], might well be observable.

Another not-so-small critical exponent to detect is z,
defined as � / 	z, where � is the relaxation time and 	
the correlation length. Near the critical point, 	 diverges

and the previous formula reflects the so-called ‘‘critical
slowing down.’’
It is interesting to note that the hyperscaling expression2

in [32,33] relates the critical exponents for the shear vis-
cosity and heat conductivity x� þ x� ¼ 4� d� �.

Further employing the relation z ¼ 4� �� x� one ob-
tains a relation between dynamical critical exponents:

x� ¼ z� d; (19)

where d is the spatial dimension. For the QCD critical
point, belonging to model H one sees that z * 3 and x�
is nearly zero. An estimate of x� might be obtained with

the assistance of Eq. (19), but needing a very precise
measurement of z through the long-time behavior of the
relaxation process.
It is highly possible that a few modes alone are respon-

sible for this theorized divergent behavior of the viscosity
at the critical end point, while other system modes yield
simply a broad minimum. This separation is sometimes
referred to [35] as ‘‘regular viscosity’’ and ‘‘singular vis-
cosity.’’ In any case, from the L�M side, mean-field theory
(sort of what one recovers in large N) loses all information
about the critical exponent (remember, for example, the 3D
Ising model where the critical exponent for the heat ca-
pacity is � ’ 0:11 and mean-field theory yields zero).
In spite of the presumed critical behavior of shear vis-

cosity in systems belonging to model H (such as, presum-
ably, QCD, but not the L�M here treated), there exist many
systems where � does not diverge at the critical point. The
divergence of �=s is therefore not truly universal at the
critical point; it depends on which universality class the
system belongs to. The presence or absence of this and
other critical exponents is important to help us classify the
universality class and dynamical model of the QCD phase
transition.

The case of helium-4

As an example, we will bring forth the superfluid phase
transition of helium-4 at the � point. Its dynamic universal-
ity class is that of model F, in which the order parameter is
taken to be the macroscopic wave function, c . The quan-
tity n � jc j2 tells about the concentration of quasiparticles
belonging to the condensate. In this universality class [32]
� is not singular at Tc. Without passing by the critical end
point, the behavior of �=s as a function of temperature is
shown in Fig. 7. The data are experimental measurements
for gaseous helium, normal liquid He-I, and superfluid He-
II. We first point out that the KSS bound is always pre-
served, even at T�. Below T� the superfluid is formed by
the condensation of Bogoliubov quasiparticles. The non-
zero value of � and s in He-II can be understood with
Landau’s ‘‘two-fluid’’ model. Both coefficients approach

2We thank Victor Martin Mayor for the observation.
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zero when T descends toward absolute zero, but the be-
havior of �=s at low temperatures is to increase as ob-
served early on [1].

More interesting is that two apparent local minima occur
at both critical temperatures (superfluid T� and vaporiza-
tion Tc). A double minimum would entail that �=s could
have a maximum between T� ¼ 2:177 K and Tc ¼
2:489 K, in the He-I phase. (This phase is not a conven-
tional liquid, the viscosity itself is anomalous and it softly
decreases when temperature decreases.) Because of the
low resolution of the experimental data, clear minima are
not seen; it is interesting to conjecture whether this behav-
ior could be truly universal, i.e., independent of the dy-
namical universality class, with more generality than our
theoretical considerations based on the � model. This is
left for future work.

VI. SUMMARYAND OUTLOOK

In this paper we have been able to obtain the entire phase
diagram as function of ðT;MR;m�Þ of the L�M in the
large-N limit by means of the effective potential of the
theory. We have located the critical temperature where the
chiral phase transition takes place. The temperature depen-
dence of the order parameter, i.e., the condensate h�i has
also been showed.

We have calculated the KSS number, or �=s, for this
model as a function of temperature using both quantum
kinetic theory and the Green-Kubo formalism. Avery good
agreement between them has been obtained for every value
of MR, m�, and other parameters of the model.

Combining both results we have shown that a strong
dependence indeed exists between the minimum of �=s
and the phase transition of the L�M at large N. This
minimum is not achieved exactly at Tc where the phase
transition occurs, but a little before, due to the falling of
h�i toward zero.

We also would like to discuss the generality and reach of
the result. The minimum of �=s near the phase transition
does not depend on any parameter exclusive of the L�M. It
just depends on the falling behavior of h�i from a nonzero
value at T ¼ 0 to zero at Tc. The VEVof the � field can be
understood as the order parameter of the chiral phase
transition, and every other phase transition has an equiva-
lent order parameter (spontaneus magnetization in spin
systems, macroscopic wave function in superfluids and
superconductors, . . .). If this order parameter influences
the transport coefficient, one should expect our conclusion
to be generalized in a straightforward way.
We have scanned the recent literature to see if other fluid

systems that have been considered in connection with the
KSS conjecture have a minimum value of �=s that occurs
at a temperature discernibly smaller than the phase tran-
sition. This behavior is indeed present already in [4], but it
seems to have passed unnoticed. In Fig. 8 we replot the
data given in [4] but add the location of the critical tem-
perature claimed by the same experimental group that
provided the original data. The minimum of �=s for this
cold Fermi gas near the unitary limit occurs slightly before
the critical temperature. We look forward to other ex-
amples where enough precision can be achieved to separate
the phase transition and the minimum of the viscosity.
Meanwhile, one could ask what the situation for Yang-

Mills theory is (as relevant to the quark-gluon plasma). The
perturbative computations by other authors that we have
quoted [17] are not of much use near Tc. Using a non-
perturbative computation, Antonov has shown [36] that a
possible minimum should occur in the range 2Tc–3Tc,
definitely above the phase transition. This could fit our
observation in which a significant change of the order
parameter can mark the minimum of �=s, as has been

FIG. 7 (color online). �=s for the three phases of helium-4 at
low pressure, namely, He-II, He-I, and gaseous helium.

FIG. 8. The plot from [4] shows that the minimum of �=s for a
trapped cold atomic gas in the unitary limit appears slightly
before the phase transition temperature Tc ¼ 0:29ð2ÞTF. A sim-
ple quadratic fit of the data shows a minimum just below T ¼
0:2TF with a �2=d:o:f ¼ 0:071, whereas if we constrain the
minimum at Tc=TF, the quadratic fit has an almost 6 times larger
�2=d:o:f: ¼ 0:39.
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pointed out by Hidaka and Pisarski [37] in which the
Polyakov loop acts as an order parameter and influences
�=s. The Polyakov loop only reaches a value near 1 at
about 2Tc.
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APPENDIX A: THE EFFECTIVE POTENTIAL FOR
THE LINEAR SIGMA MODEL AT LARGE N

Taking the original Lagrangian in (1) and performing a
Wick rotation (t ! �i�), the Euclidean or imaginary time
Lagrangian is (in the following we denote �2 � �T�)

�LE½�; @��� ¼ 1
2@��

T@��� ��2�2 þ �ð�2Þ2 �LSB;

(A1)

where now the product in the � index is to be understood
as Euclidean. The partition function reads

Z ¼
Z
½d�� expð�SE½��Þ

¼
Z
½d�a�½d�� expð�SE½�a;��Þ: (A2)

We wish to obtain an effective potential for the � field
that allows us to decide under what circumstances one is in
a condensed phase. For this we need to perform the inte-
gration over the dynamical�a variables. Since the action is
quartic in them, we introduce an auxiliary static field �,
with no kinetic term, that splits the quartic pion vertex. To
assist large-N counting, it is convenient to include a factor

of N�1=2 in its definition,

� � �2

ffiffiffiffiffiffi
2�

N

s
: (A3)

The quartic potential is then hidden in the identity

exp

�
��

Z
d4xð�2Þ2

�

¼
Z
½d�� exp

�
1

2

Z
d4xðN�2 � ��2

ffiffiffiffiffiffiffiffiffiffi
8�N

p Þ
�

(A4)

that features a trilinear coupling instead and is therefore
quadratic in the pion fields. This coupling is shown in
Fig. 9. This method has also been used in the L�M at T ¼
0 in [21].

Then, the complete partition function becomes

Z ¼
Z
½d�a�½d��½d�� expð�Seff½�a;�; ��Þ (A5)

with the full (still Euclidean) effective action

Seff½�a;�; �� ¼
Z

d4x

�
1

2
ð@��aÞ2 þ 1

2
ð@��Þ2 � ��2�2

� ��2�2 � 1

2
N�2 þ 1

2
��2

ffiffiffiffiffiffiffiffiffiffi
8�N

p

þ 1

2
��2

ffiffiffiffiffiffiffiffiffiffi
8�N

p �m2
�f��

�
: (A6)

Integrating by parts the �a kinetic term we obtain

Seff½�a;�; �� ¼
Z

d4x

�
1

2
�að�hE � 2 ��2 þ �

ffiffiffiffiffiffiffiffiffiffi
8�N

p Þ�a

þ 1

2
ð@��Þ2 � ��2�2 � 1

2
N�2

þ 1

2
��2

ffiffiffiffiffiffiffiffiffiffi
8�N

p �m2
�f��

�
:

To make contact with the Cornwall-Jackiw-Tomboulis
formalism in [27], it is useful to further trade � by the
amputated two-point function for the �, that can then be
used as the auxiliary variable,

G�1½q; �� � q2 � 2 ��2 þ �
ffiffiffiffiffiffiffiffiffiffi
8�N

p
: (A7)

We may then perform the path integration over the �a

fields to obtain the effective action for the � alone,

Z
½d�a� exp

�
� 1

2

Z
d4x�að�hE þG�1½0; ��Þ�a

�

/
Z

d4x½detð�hE þG�1½0; ��Þ��N=2

¼
Z

d4x exp

�
�N

2
tr logð�hE þG�1½0; ��Þ

�

¼
Z

d4x exp

�
�N

2

Z d4q

ð2�Þ3 logG�1½q; ��
�
: (A8)

Therefore the effective action to be employed in the gen-
erating functional Z ¼ R½d��½d�� expð��eff½�;��Þ is, in-
troducing the finite-temperature imaginary time formalism
with Matsubara frequencies !n ¼ 2�n

� (� ¼ 1=T),R
d4q ! T

P
n

R
d3q:

FIG. 9. Trilinear coupling between � and the auxiliary field �
that replaces the original quartic interaction �4.
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�eff½�;�� ¼
Z

dDx

�
1

2
ð@��Þ2 � N

2
�2 þ 1

2
�2G�1½0; ��

�m2
�f��þ N

2
T

X1
n¼�1

Z d3q

ð2�Þ3

� logG�1½q; ��
�
: (A9)

From Eq. (A9) we read off the effective potential.
Rewriting the �N�2=2 term in terms of G�1½0; ��

N�2

2
¼ ðG�1½0; �� þ 2 ��2Þ2

16�

¼ ðG�1½0; ��Þ2
16�

þ �N2F4 þ NF2G�1½0; ��
2

;

(A10)

we obtain Veffð�;�Þ,

Veffð�;G�1½q; ��Þ ¼ 1

2
ð�2 � NF2ÞG�1½0; ��

� 1

16�
ðG�1½0; ��Þ2 � �N2F4

�m2
�f��þ N

2
T

X1
n¼�1

Z d3q

ð2�Þ3
� logG�1½q; ��: (A11)

As is well known, the thermal loop integrals such as in
Eq. (A11) contain no new divergences aside from those in
the vacuum integral (the term n ¼ 0). In this case

Z
�
d~q logðq2 þM2Þ � T

X
n2Z

Z
d3q logð!2

n þ q2 þM2Þ

¼ M2

2
IM � M4

4ð4�Þ2 � g0ðT;M2Þ;
(A12)

where the zero-frequency term in the Matsubara sum, the
vacuum loop integral, carries the divergence that one can
extract in dimensional regularization with N
 ¼
2

 þ log4�� �,

IM ¼ � M2

ð4�Þ2
�
N
 þ 1þ log

�2

M2

�
(A13)

and g0 is the thermal part of the loop integral. These
g functions are those previously defined in [38]. Another
useful integral (needed in the saddle-point equations) is the
following:

Z
�
d~q

1

q2 þM2
¼ T

X
n2Z

Z
d3q

1

!2
n þ q2 þM2

¼ IM þ g1ðT;M2Þ: (A14)

We need one more thermal g integral since Eq. (6) is solved
by iteration using Newton’s method, which requires a

derivative with respect to G�1½0; ��. The series of
g integrals satisfy the recursion relation

gnþ1 ¼ � dgn
dM2

: (A15)

In terms of the variable y ¼ M=T, the ones we need are

g0ðT;M2Þ ¼ T4

3�2

Z 1

y
dxðx2 � y2Þ3=2 1

ex � 1
; (A16)

g1ðT;M2Þ ¼ T2

2�2

Z 1

y
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
ex � 1

; (A17)

g2ðT;M2Þ ¼ 1

4�2

Z 1

y
dx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p 1

ex � 1
: (A18)

In the limit M � T, or y ! 0, one recovers the standard
results for a massless Bose gas

g0ðT; 0Þ ¼ T4

3�2

Z 1

0
dx

x3

ex � 1
¼ T4

3�2
�ð4Þ�ð4Þ

¼ T4

3�2
6
�4

90
¼ �2T4

45
; (A19)

g1ðT; 0Þ ¼ T2

2�2

Z 1

0

dxx

ex � 1
¼ T2

2�2
�ð2Þ�ð2Þ ¼ T2

2�2

�2

6

¼ T2

12
: (A20)

As the Bose-Einstein factors cut off high momenta, only
the vacuum parts contain divergences, and these can be
reabsorbed in the � mass and the coupling constant that
appear in the classical Lagrangian density. In the next
Appendix we describe the renormalization procedure.

APPENDIX B: � � � AMPLITUDE IN THE L�M AT
LARGE N

In a nutshell, transport in a gas is a diffusive effect, so
that in kinetic theory transport coefficients are proportional
to the mean free path, or inversely proportional to the total
collision cross section. Thus we need the scattering ampli-
tude in the L�M in the large-N limit.
This �� � scattering amplitude at tree level is simply

the one shown in Fig. 10.
Combining both diagrams,

A0ðsÞ ¼ s

v2

1

1� s
M2

; (B1)

where v is the VEV of the � field that depends on the
temperature vðTÞ ¼ h�ðTÞi and M2 ¼ m2

� ¼ 8�v2 is the
spontaneously generated mass of the longitudinal mode h.
This exchanged boson h is the physical quantum over the
vacuum, � ¼ vþ h. In (B1) we explicitly see that A0

is Oð1=NÞ. In the large-N limit (with NF2 fixed) the
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s-channel iteration of the tree level diagram is also of order
1=N (recall that every pion loop carries a factor N), and
must be resummed. The situation is depicted in Fig. 11.

The one-loop integral is IðsÞ ¼ 1
16�2 ½N
 þ 2þ

logð��2=sÞ�, where the log is to be understood as complex
and the integration has been regulated with the procedure
of dimensional regularization. In this scheme one introdu-
ces a scale � in the definition of the renormalized mass
MRð�Þ in order to absorb the infinity in IðsÞ.

Defining MR as the value of the renormalized mass at
some predetermined energy �0

M2
R � M2

Rð�0Þ; (B2)

we can express the mass at an arbitrary renormalization
scale �

M2
Rð�Þ ¼ M2

R

1� M2
R

32�2F2 logð�2

�2
0

Þ
: (B3)

Not only is the � mass renormalized but also the coupling
constant, �. The dressed coupling constant is defined as

1

�Rð�Þ � 1

�
þ N

4�2

�
2þ log4�� �þ 2




�
: (B4)

Both renormalized parameters are related (like their bare
counterparts) through

M2
Rð�Þ ¼ 8�Rð�Þv2: (B5)

The resummed amplitude in Fig. 11 becomes

Aðs; t; uÞ ¼ AðsÞ ¼ A0ðsÞ
1� NIðsÞ

2 A0ðsÞ

¼ s

v2

1

1� s
M2

RðsÞ þ
sN

32�2v2 logð�s
�2Þ : (B6)

The Mandelstam variable is positive s > 0, so that
choosing the branch cut of the logarithm along the positive
s axis, in order that logð�sÞ ¼ logsþ i�, we arrive at

AðsÞ ¼ s

v2

1� s
M2

RðsÞ þ
sN

32�2v2 logð s
�2Þ � i sN

32�v2

½1� s
M2

RðsÞ
þ sN

32�2v2 logð s
�2Þ�2 þ ð sN

32�v2Þ2 : (B7)

The squared scattering amplitude is simply

jAðsÞj2 ¼ s2

v4
GðsÞ; (B8)

in terms of the loop function

GðsÞ ¼ 1

½1� s
M2

RðsÞ
þ sN

32�2v2 logð s
�2Þ�2 þ ð sN

32�v2Þ2 : (B9)

If we consider the partial amplitudes projected on the
isospin channels we see that only T0 dominates at order
1=N:

T0 ¼ NAðsÞ þ AðtÞ þ AðuÞ ¼ NAðsÞ þO
�
1

N

�
; (B10)

T1 ¼ AðtÞ � AðuÞ ¼ O
�
1

N

�
; (B11)

T2 ¼ AðtÞ þ AðuÞ ¼ O
�
1

N

�
: (B12)

It is also useful to construct the isospin-spin partial waves.
They are defined as

tIJðsÞ ¼ 1

64�

Z 1

�1
dðcos�ÞTIðs; cos�ÞPJðcos�Þ; (B13)

where PJ are the Legendre polynomials. For moderate
energies (jpj< 1 GeV) we only keep the lowest partial
wave in each isospin channel, namely, IJ ¼ 00, 11, 20. In
the limit N ! 1 their N dependence is

t00ðsÞ ¼ NAðsÞ
32�

þO
�
1

N

�
; (B14)

t11ðsÞ ¼ O
�
1

N

�
; (B15)

FIG. 10. Tree level �� � amplitude at Oð1=NÞ:

FIG. 11. Resummed amplitude for �� � scattering at Oð1=NÞ:
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t20ðsÞ ¼ O
�
1

N

�
; (B16)

so t00ðsÞ dominates the amplitude [note in true two-flavor
QCD at N ¼ 3, t11ðsÞ is also very strong due to the �
resonance].

For the case in which the pion mass is to be considered
the amplitude AðsÞ must be modified. The extended dis-
cussion of this case can be found in [22]. The partial wave
is expressed as

t00ðsÞ ¼ N

32�
½A0ðsÞ þ AmðsÞ�; (B17)

where the amplitudes are, respectively,

A0ðsÞ ¼ 1

v2

s

1� sN
M2

Rð�Þ � s
32�2v2 Tðs;�Þ ; (B18)

AmðsÞ ¼ �m2
�

v2

1þ 2s
M2

Rð�Þ � sN
16�2v2 logðm2

�

�2 Þ
½1� s

M2
Rð�Þ � sN

32�2v2 Tðs;�Þ�2 ;

Tðs;�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

s
log

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
�

s

q
þ 1

��������

þ i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

s
� log

�
m2

�

�2

�
: (B19)

When m� ¼ 0, the amplitude AmðsÞ vanishes and
Tðs;�Þ ! logð��2=sÞ and the ðIJÞ ¼ ð00Þ partial ampli-
tude reduces to

jt00j2ðsÞ ¼ s2N2

ð32�v2Þ2
1

½1� s
M2

R

þ sN
32�2v2 logð s

�2Þ�2 þ ð sN
32�v2Þ2

¼ s2N2

ð32�v2Þ2 GðsÞ; (B20)

with GðsÞ defined in (B9). The same result could be ob-
tained from jt00j2 in (B14).

From Eq. (B14), the large-N scattering amplitude j �Tj2 is
given by the s channel, j �Tj2 ’ jAðsÞj2. The averaged cross
section in the c.m. frame follows

d ��

d�
¼ 1

2

j �Tj2
64�2s

; (B21)

or

��ðsÞ ¼ s

32�v4
GðsÞ (B22)

is the total cross section averaged over the final states.
On the other hand, the total cross section can be defined

in terms of the isospin-spin projected scattering amplitudes
as

�tot ¼ 32�

3s

X
I

X
J

ð2J þ 1Þð2Iþ 1ÞjtIJðsÞj2; (B23)

and the integrated total cross section, when only ðIJÞ ¼
ð00Þ is considered, is

�totðsÞ ’ 32�

3s

s2N2

ð32�v2Þ2 GðsÞ ¼
sN2

96�v4
GðsÞ: (B24)

Note that the Kubo formalism calls for the total cross
section summed over isospins, while in Boltzmann’s col-
lision term the initial flavors are averaged, so there is a
flavor factor between them

�tot

��
¼ N2

3
: (B25)

To compare with experimental�� � data atN ¼ 3, the
scalar phase shift �00 corresponding to Eq. (B20) is plotted
in Fig. 12, and reasonable agreement is seen. As discussed
in [22] data are well reproduced by taking MR ! 1, the
only remaining parameters being F and �. This renormal-
ization scale is conventionally taken to be the � mass, � ’
775 MeV, where one naturally expects [because we have
neglected the contribution of the ðIJÞ ¼ ð11Þ channel] that
the L�M ceases to be valid for N ¼ 3.
An interesting point is to examine the breaking of scale

invariance even at the critical temperature. This can be
followed from Eqs. (B20) and (B23). All one needs to do is
note that limT!Tc

vðTÞ ¼ 0 as the condensate vanishes,

remembering also the relation of MR and v through
Eq. (B5). Then the cross section fails to scale as � / 1=s
(conformality) due to the renormalization scale that brings

FIG. 12 (color online). The scalar phase shift in the large-
mass, large-N limit of the L�M compared with the experimental
data of [41–43]. The massless-pion curve (dashed red curve)
corresponds to the amplitude given in Eq. (B18) and the massive-
pion curve is obtained when adding Eqs. (B18) and (B19).
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in the usual logarithm of s=�2. This is simply a conse-
quence of scale invariance being anomalous.

APPENDIX C: COMPUTATION OF THE SHEAR
VISCOSITY IN KINETIC THEORY

One approach to calculate the transport coefficients is
based on kinetic theory by solving a transport equation

dfðx; v; tÞ
dt

¼ C½fðx; v; tÞ� (C1)

that is an integro-differential equation for the one-particle
distribution function fðx; v; tÞ. This distribution function
depends on time because we deal with a nonequilibrium
gas. The explicit equation for our boson gas is called the
BUU equation and reads

@f

@t
þ p

EðpÞ rf ¼
Z

d ��dp1vrel

�
f0f01

�
1þ ð2�Þ3

N
f

�

�
�
1þ ð2�Þ3

N
f1

�
� ff1

�
1þ ð2�Þ3

N
f0
�

�
�
1þ ð2�Þ3

N
f01
��

: (C2)

The first step is a linearization of Eq. (C2). Slightly out
of equilibrium,

f ’ f0 þ �f ¼ f0

�
1þ �

T

�
; (C3)

where f0 is the Bose-Einstein distribution function solu-
tion to the transport equation with vanishing collision term.
Following the Chapman-Enskog expansion, the perturba-
tion function �must be proportional to the gradients of the
hydrodynamical fields out of equilibrium. For the viscosity
these are nothing but the velocity fields. Following the lines
of [29] one can parametrize �f as

f ¼ f0

�
1þ gðpÞ

T
�ij

~Vij

�
; (C4)

where�ij � pipj � 1
3�ijp

2 and ~Vij represents the gradient

of the spatial velocity field, Vi:

~V ij ¼ 1
2ð@iVj þ @jViÞ � 1

3@kV
k�ij: (C5)

The scalar function gðpÞ depends only on moduli of
momenta and is expanded in a convenient polynomial basis

gðxÞ ¼ X1
s¼0

BsP
sðx; y; zÞ; (C6)

where x � p2=m2
�, y � m�=T, and z is the fugacity of the

boson gas.
This polynomial functions are used as variational ansatz

to systematically solve the linearized equation.
The microscopic expression for the viscosity in terms of

gðpÞ becomes

� ¼ � 1

10T

Z dp

EðpÞ f0pipj�
ijgðpÞ; (C7)

where gðpÞ should be determined by solving the BUU
equation.
Taking only the first term in the expansion (C6) and

inserting it into the viscosity we obtain

� ¼ � 2�

15T

Nm6
�

ð2�Þ3 A
0
5=2ðy; zÞB0; (C8)

with the function

A0
5=2ðy; zÞ ¼

Z 1

0
dx

x5=2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ðz�1eyð
ffiffiffiffiffiffiffi
1þx

p �1Þ � 1Þ ; (C9)

and B0 ¼ C�=A
�
11, where

C� ¼ 4�m6
�N

3ð2�Þ3 A0
5=2ðy; zÞ (C10)

and the collision integral

A�
11 ¼

N2

z2ð2�Þ6
Z

d ��vreldpdp1e
�ðE�2m�Þ

� f0f01f
0
0f

0
01ð1� ze�ðE�m�ÞÞ

�
�ik�jl � 1

3
�ij�kl

�

� pipj½p0kp0lð1� e��ðE0��ÞÞ
� pkplð1� e��ðE��ÞÞ þ p0k

1 p
0l
1 ð1� e��ðE0

1��ÞÞ
� pk

1p
l
1ð1� e��ðE1��ÞÞ�: (C11)

This collision integral requires intense computational
work. Once the kinematics are analyzed and conserved
quantities employed, the collision term turns into a com-
plicated five-dimensional integral, handled with a
Monte Carlo integration routine. The calculation has al-
ready been described in [29].

APPENDIX D: SHEAR VISCOSITY IN THE
GREEN-KUBO FORMALISM

In this Appendix we briefly review the computation of
the shear viscosity in the Green-Kubo formalism, based
largely on the works of [39,40]. The Green-Kubo formulas
for transport coefficients are based on the linear response
theory. If the response of a system to an external perturba-
tion is considered to be linear in the perturbing field, the
transport coefficient associated with a conserved quantity
can be expressed as an expected value at equilibrium of the
commutator of the corresponding (perturbed) Noether
current.
For the shear viscosity,

� ¼ 1

20
lim
!!0þ

lim
jpj!0þ

1

!

Z
d4xeip�xh½�̂ijðxÞ; �̂ijð0Þ�i; (D1)

where �̂ij ¼ T̂ij � gijT̂k
k=3. Coincidence with the trans-

port equation approach occurs at low temperature. In this
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limit, the simplest dominant resummation [39] gives

�ð0Þ ¼ 1

10�2T

Z 1

0
djpj jpj6

E2
p�ðpÞ

nBðEpÞ½1þ nBðEpÞ�;
(D2)

where E2
p ¼ p2 þm2

�, nBðEÞ is the Bose-Einstein occupa-

tion number

nBðEpÞ ¼ 1

e�Ep � 1
; (D3)

and �ðpÞ is the pion width in the thermal bath. The particle
width can be understood as the inverse of the collision time
in the gas and is related to the pion self-energy by

�ðpÞ ¼ � Im�RðEp;pÞ
2Ep

; (D4)

where the retarded self-energy �RðEp;pÞ is given by the

quantum fluctuations in the medium that change the dis-
persion relation of the pion.

In the dilute gas approximation (�Ep 	 1) the thermal

width is given by

�ðpÞ ’ 1

2

Z d3k

ð2�Þ3 �totðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� 4m2

�Þ
p

2EkEp

e�Ek=T; (D5)

where as usual Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

p ! k in the chiral limit,
sðk; pÞ is the Mandelstam variable, and �totðsÞ is the total

pion-pion scattering cross section for the L�M obtained in
(B24).
As in the kinetic theory approach the coefficient of shear

viscosity turns out to be inversely proportional to the cross
section.

APPENDIX E: APPLICABILITY OF THE
TRANSPORT EQUATION

The applicability of transport equations is rooted in
Boltzmann’s approximation of molecular chaos. A rigor-
ous formulation of quantum field theory (multiparticle
quantum mechanics) in a context appropriate to study
statistical mechanics can well start with the Wigner func-
tion, and deduce from it the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy of equations for multiparticle
distribution functions. Decoupling the lowest order equa-
tion for the one-particle distribution function fðx;p; tÞ
from the rest is an approximation of low density; two
successive collisions of the same quantum must be
uncorrelated.
This condition is tantamount to stating that the mean

free path (dependent on density and average cross section)

� / 1

nðTÞ ��
is much smaller than the reach of the interaction that can be
expressed as the scattering length at low energies, or more
generally as the square root of the averaged cross section
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FIG. 13. Left panel: Ratio of NLO to LO terms in a derivative expansion of Eq. (B8). Right panel: Ratio of full to LO squared
scattering amplitude.
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1

nðTÞ �� 	 ffiffiffiffi
��

p
; nðTÞ ��3=2 � 1: (E1)

To satisfy this relation the interaction does not neces-
sarily need to be very weak. As long as the free Bose
density is a reasonable approximation (the system remains
in a gaslike phase, as is the case for the L�M), one can
accept moderately strong interactions. Simple criteria for
the strength of the interaction are to examine the ratio of
the leading order (LO) and next-to-leading order (NLO)
derivative expansions of the squared scattering amplitude
Eq. (B8)

jALOj2 ¼ s2

v4
; (E2)

jANLOj2 ¼ s2

v4

�
1þ 2s

M2
R

� 2sN2

32�2v2
log

�
s

�2

��
; (E3)

or the ratio of the LO squared amplitude to the total square
amplitude. The two inverse ratios are plotted in Fig. 13.
They clearly demonstrate that the interactions are indeed
strong, thus requiring our large N resummation. We have
however seen in Sec. III that the entropy density (and hence
very likely the particle density) is close to the value in a
free Bose gas. In Fig. 14 we then plot the maximum
possible value of the total cross section, reached at the
peak of the sigma resonance

�MðsÞ ¼ s

32�ðv2Þ2
1

½1� s
M2

R

þ Ns
32�2v2 logð s

�2Þ�2 þ ð sN
32�v2Þ2 ;

(E4)

and this particle number density

nðTÞ ¼
Z

4�dpp2 N=ð2�Þ3
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

�ðTÞ
p

� 1
: (E5)

Finally we construct the product nðTÞ ��3=2 and plot it in
Fig. 15. The value of this parameter is seen to be of order
0.1 in our entire temperature range. Its actual value will be
even smaller with an averaged cross section (we are using
its maximum possible value at a given temperature).
Therefore there is no reason to question the validity of
Boltzmann’s equation in the model.
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FIG. 14. Left panel: Typical cross section in the linear sigma model. We have taken an approximate average for Mandelstam s given
by s ’ 10T2 at a typical temperature T [with m�ð0Þ ¼ 0]. Right panel: Particle number density for a free Bose gas in the same
temperature range.
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APPENDIX F: SATURATION OF THE POLE MASS

To further understand why the minimum of �=s occurs
just before the phase transition, we now perform a scaling
analysis. For this, let us note that dimensionally and as a
very rough average (not comparable with the quality cal-
culations presented in the main text) the scaling laws are

�� T

�
; s� T3: (F1)

From the cross section in Fig. 16 one can see that the
maximum of the �� cross section (sigma pole) occurs
somewhat before the phase transition. The trailing tail of
the resonance is well fit (see figure) by a power law

� ¼ A2þk 1

Tk
; (F2)

where A is a constant with ½mass dimension� ¼ 1. Then,
just before the minimum:

�=s� Tk�2: (F3)

The fit gives the value k ¼ 2:527
 0:020 that means that,
for temperatures just above its minimum, �=s� T0:527;
that is, the KSS coefficient begins to grow somewhat
slowly toward the phase transition. The same conclusion
can be reached by analytically examining the scattering
amplitude in Eq. (B8).
Next we examine the connection of this turning of the

cross section with the order parameter, the sigma conden-
sate. In Fig. 17 we plot the cross section that we have just
commented on and the cross section where we have artifi-
cially removed the variation of the order parameter h�ðTÞi,
and fixed it as a constant. As can be seen, the variation of
the order parameter with T makes the resonance narrower
(and only slightly shifted toward smaller energies). This
plotted behavior can be followed analytically from
Eq. (B8). Therefore, the slight rise of �=swith temperature
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FIG. 16 (color online). The trailing tail of the � resonance
occurs just before the phase transition temperature Tc. Because
the cross section drops rapidly, the viscosity raises rapidly (faster
than the entropy density s / T3) and �=s grows slightly before
the phase transition.
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before the phase transition is indeed a direct consequence
of the decrease of the order parameter.

The pole mass position is highly dependent on MR0, a
parameter controlling the propagator at tree level. Both the
maximum of the cross section and the minimum of �=s
move withMR0. Just as in Fig. 5 we plot the dependence of
�=s with MR0 in Fig. 18.

In this figure we show that the exact temperature of the
minimum grows withMR0. From this fact, one could ask if
there exists a value of MR0 for which the minimum of �=s
is located at Tc or above it. However, our analysis stands as

presented; increasing the value of MR0 we observe that the
pole mass in the squared amplitude saturates. The mini-
mum of �=s saturates as well when MR0 ! 1. In Fig. 19
we plot the temperatures at which the maximum of the
cross section is located, and the one at which the minimum
of �=s is reached. Both values tend to a constant always
below Tc when MR0 is arbitrarily increased. We conclude
that the minimum of �=s takes place always below Tc and
never at or above it.
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