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1/f noise and very high spectral rigidity

A. Relaﬁo,1 J. Retamosa,1 E. Faleiro,2 R. A. Molina,3 and A. P. Zuker"

1Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, 28010 Madrid, Spain

2Deparl‘amem‘o de Fisica Aplicada, EUIT Industrial, Universidad Politécnica de Madrid, 28012 Madrid, Spain
3Max-Planck-institut fiir Physik Komplexer Systeme, Nothnitzer Strasse 38, D-01187, Dresden, Germany

4IReS, Bdtiment 27, IN2P3-CNRS/Université Louis Pasteur, Boite Postale 28, F-67037 Strasbourg Cedex 2, France

(Received 9 August 2005; published 7 February 2006)

It was recently pointed out that the spectral fluctuations of quantum systems are formally analogous to
discrete time series, and therefore their structure can be characterized by the power spectrum of the signal.
Moreover, it is found that the power spectrum of chaotic spectra displays a 1/f behavior, while that of regular
systems follows a 1/f> law. This analogy provides a link between the concepts of spectral rigidity and
antipersistence. Trying to get a deeper understanding of this relationship, we have studied the correlation
structure of spectra with high spectral rigidity. Using an appropriate family of random Hamiltonians, we
increase the spectral rigidity up to hindering completely the spectral fluctuations. Analyzing the long range
correlation structure a neat power law 1/f has been found for all the spectra, along the whole process.
Therefore, 1/f noise is the characteristic fingerprint of a transition that, preserving the scale-free correlation

structure, hinders completely the fluctuations of the spectrum.
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INTRODUCTION

The statistical study of energy level fluctuations is one of
the most important tools for understanding quantum chaos.
Among the relevant results of the statistical theory of spec-
tral fluctuations, we note that the level fluctuations of quan-
tum systems whose classical analogues are fully integrable
are well described by Poisson statistics, i.e., the successive
energy levels are not correlated [1]; on the other hand, the
fluctuation properties of generic quantum systems which in
the classical limit are fully chaotic coincide with those of the
classic random matrix ensemble (RME) [2]. As a conse-
quence of these results, generic quantum systems (with or
without a clear classical analogs) are usually said to be inte-
grable or chaotic depending whether the statistical properties
of their spectra coincide with those of a noncorrelated se-
quence or those of the RME. A complete review of these
features and later developments can be found in [3,4].

Recently, a new approach to energy level fluctuations,
based on traditional methods of time series analysis, has
been proposed. Considering the sequence of energy levels as
a discrete time series, it has been shown that chaotic quan-
tum systems, characterized by rigid spectra, exhibit 1/f
noise; whereas integrable quantum systems, with very low
spectral rigidity, exhibit 1/f> noise [5,6]. On the other hand,
as is well known, time series with 1/f noise have maximum
antipersistence, whereas time series with 1/ f2 noise are
nonantipersistent. Thus, the formal analogy between time se-
ries and energy level spectra provides a link between spectral
rigidity and antipersistence.

This result raised the natural question of what happens in
intermediate situations between fully regular and fully cha-
otic motion. The transition between these two types of mo-
tion was studied using the Robnik quantum billiard. As the
billiard border changes, the transition takes place very
smoothly. It was found that the long range correlations of the
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spectrum are characterized by a 1/f* noise through the
whole transition, with e smoothly changing from a=2 in the
regular regime to a=1 in the chaotic one. Similar behavior
has been found in other intermediate systems [7]. Thus, the
quantum chaos framework provides us with a mechanism
that starting from a nonantipersistent time series (1/f2 noise)
leads to a fully antipersistent time series (1/f noise) by in-
creasing the spectral rigidity of the spectrum. Since the rea-
sons why 1/f fluctuations are so ubiquitous are not well
understood yet, this result may become very important. Ac-
tually, there is a close relationship between quantum chaos
and other systems through random matrix theory—as com-
plex zeros of the Riemann function [8] or the traffic flow
[9]—and therefore these results might be applied to a broad
set of systems.

It is our goal in this paper to get a deeper understanding of
the analogy between spectral rigidity and antipersistence. To
this purpose we study how the correlation structure of the
spectrum changes as the spectral rigidity increases: the maxi-
mum level of antipersistence of an energy spectrum is al-
ready reached for RME-like spectral fluctuations, but the
correlation structure at very high spectral rigidity is un-
known. Using the ideas of [10], we introduce a suitable fam-
ily of RMEs to model the transition from standard chaotic
spectra to truly local equidistant spectra, where the spectral
rigidity is so high that fluctuations are completely hindered.
The main result is that as we further increase spectral rigid-
ity, fluctuations vanish without changing the global correla-
tion structure. In other words, 1/f noise is the characteristic
fingerprint of a transition that, preserving the scale-free cor-
relation structure, hinders completely the fluctuations of the
spectrum.

The paper is organized as follows. The next section gives
arapid survey of concepts like antipersistence, spectral rigid-
ity, and level repulsion. Next we introduce the physical
model we use to study the transition from RME-like spectral
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fluctuations to spectra with very high rigidity. Then we ex-
plain how the statistical analysis is performed, stressing the
relevance of the unfolding procedure, and the main results
are presented and discussed. Finally, we give a brief sum-
mary and quote the main conclusions.

ANTIPERSISTENCE, SPECTRAL RIGIDITY, AND LEVEL
REPULSION

A clear relation between concepts like spectral rigidity,
which characterizes quantum chaotic energy level spectra,
and antipersistence, which appears in a broad kind of time
series, emerges from the formal analogy between energy
level spectra and time series.

Rigidity of the energy spectrum means that the deviations
of the energy levels from those of a local uniform spectrum
are generally small, and that the spectrum is organized in
such a way that any deviation of a level from its mean posi-
tion tends to be balanced by neighboring levels. Therefore, it
is unlikely to find long series of consecutive energy levels all
above or below their mean position. On the other hand, an-
tipersistence in time series means that an increasing or de-
creasing trend in the past makes the opposite trend in the
future probable. It appears through the whole scale domain
of the signal and entails self-similarity in the frequency
space. Antipersistent time series have 1/f“ power spectra,
with 1 <a<<2: the smaller the value of «, the greater inten-
sity of the antipersistence.

Spectral rigidity is related to another property of quantum
chaotic systems named level repulsion, i.e., the fact that two
nearby levels repel each other with a certain intensity. The
nearest-neighbor spacing distribution P(s) gives the prob-
ability that the distance between two consecutive levels,
measured in units of the local averaging spacing, lies be-
tween s and s+ds. It is a widely accepted statistic to study
the short range correlations of the spectrum. Usually P(s)
«s# when s<1. This means that the probability of finding
two neighboring levels at a distance s is proportional to s,
provided that s is small enough. Therefore, the exponent 8
measures the repulsion between consecutive levels. For ge-
neric integrable systems B=0 (levels behave as noncorre-
lated random variables). On the other hand, for fully chaotic
systems B is universal and depends only on the symmetries
of the system: S=1 for systems with time-reversal invariance
and rotational symmetry, or broken rotational symmetry, but
integer spin; B=2 for systems with no time-reversal invari-
ance; and B=4 for systems with time-reversal invariance,
broken rotational symmetry and half-integer spin [11]. As B
increases, the spectrum becomes more and more rigid, and
the limit 8— o corresponds to a local equidistant or picket-
fence spectrum. The paradigmatic example of this kind of
spectrum is the harmonic oscillator or a superposition of har-
monic oscillators. These kinds of systems is also integrable,
but nongeneric and the results of Berry and Tabor do not
apply to them. However, it is of practical interest since the
Hamiltonian of many systems in molecular or nuclear phys-
ics can be written as an integrable part, producing a picket-
fence spectrum plus a chaos inducing part.

The results reported in [5] show that the strong rigidity of
chaotic quantum systems with B=1, 2, and 4 extends
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through the whole spectrum in a self-similar way [12], giv-
ing rise to a 1/f noise. On the contrary, regular systems with
no level repulsion, i.e., =0, lead to nonantipersistent 1/ f2
noise. Moreover, it has been shown [7] that some intermedi-
ate (neither integrable, nor fully chaotic) quantum systems
also give rise to antipersistent time series, where a ap-
proaches monotonically to unity as the system approaches
full chaos. Therefore, we can state that the order-to-chaos
transition implies an increase of antipersistence.

TRIDIAGONAL ENSEMBLES

The basic idea is based on the Lanczos tridiagonal reduc-
tion of a Hamiltonian matrix [13]. Although the method can
be applied to Hermitian complex and quaternionic matrices,
we shall only consider real symmetric matrices. Given a
Hamiltonian matrix with elements

Hj=H

i=1,..,N, j=i,...,N, (1)

ijo
defined in a finite Hilbert space of dimension N, the Lanczos
method reduces it to tridiagonal form; therefore, in the new
basis the matrix elements satisfy

hj=0, i=1,...N, l|i—j|>1. (2)
Moreover, the Lanczos tridiagonal reduction leads to a ca-
nonical form for the nonzero matrix elements h;; and h;;, .
They can be separated into smooth and fluctuating parts as
follows:

hji:hij:hij-'-hij? i=1,...,N, ]:l,l+l (3)
The smooth part ~—which can be viewed as an ensemble
average—is given by the four lowest moments of H, and
therefore is closely related to the mean level density of the

system. The fluctuating part I can be defined as the differ-
ence between the actual Hamiltonian and the smooth part,
i.e., h=h-h.

Taking advantage of the canonical tridiagonal form A of
any Hamiltonian H, it is possible to define a new family of
Hamiltonians A(F)

h(F)=h+ Fh, 4)

where the parameter F is introduced to modulate the ampli-
tude of the matrix elements fluctuations. Let us now suppose
that H pertains to a matrix ensemble with joint probability
density P(H); then, we can define a set of tridiagonal matrix
ensembles depending on the single parameter F. We define
the density probability P(h(F)) to be equal to that of the
original matrix H, i.e.,

P(h(F)) = P(h(1)) = P(H). (5)

In what follows we shall call these ensembles random tridi-
agonal matrix ensembles (RTMEs). Using spin Hamiltonian,
nuclear shell-model, and random matrices, all having S=1 at
F=1, it was shown [10] that the short range correlations of
these ensembles are characterized by the universal law
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1

= (6)

B
It appears that the spectral fluctuations are dictated by the
amplitude of the matrix elements fluctuations. The repulsion
parameter 3 changes from B=1 for F=1 to B= for F=0;
therefore the spectral fluctuation evolve from those of a cha-
otic system to those of a picket-fence spectrum.

THE STATISTICAL ANALYSIS

The aim of this work is to study the long-range spectral
correlations through the whole transition from B=1 to the
limit S—cc. With this purpose we introduce an appropriate
RTME that coincides with the Gaussian orthogonal ensemble
(GOE) at F=1. The GOE is the paradigm of a chaotic quan-
tum system with time-reversal invariance and rotational sym-
metry, or broken rotational symmetry, but integer spin.

Unfolding

The first step, previous to any statistical analysis of the
spectral fluctuations, is the unfolding of the energy spectrum.
For any quantum system, the level density p(E) can be sepa-

rated into a smooth part p(E) and a fluctuating part p(E); the
former gives the main trend of the level density, and the later
characterizes the spectral fluctuations. Usually, level fluctua-
tion amplitudes are modulated by the value of the mean level
density p(E); therefore, to compare the fluctuations of differ-
ent systems, the level density smooth behavior must be re-
moved. The unfolding consists in locally mapping the real
spectrum into another with mean level density equal to 1.
The actual energy levels E; are mapped into new dimension-
less levels €,

E;— =N(E), i=1,..N, (7)
where N is the dimension of the spectrum and N(E) is given
by

E
N(E) = dE'p(E'). (8)

Then, the nearest-neighbor spacing sequence, defined by

i=1,..,N-1, )

Si= €41~ €

satisfies (s)=1. When F is not very large, we can obtain the
smooth part of the level density as pP(E)=p*="(E). Thus,
5;=NF=(E,, ) -N"=0(E), and a straightforward calculation
shows that the eigenvalues EEF=O) can be used to obtain the

unfolded spacings

__E,-E
g0 g0

i+1

(10)

Si
To recover the unfolded energy levels €; from the spacing
sequence, we can assume that €,=0.

Statistics

The statistical theory of quantum spectra provides several
types of statistics that have been found useful to characterize
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level fluctuations. Their behavior for integrable or chaotic
systems is well known from the appropriate theoretical mod-
els [11]. Among all of them we consider the following.

(i) The nearest-neighbor spacing distribution (NNSD)
P(s) provides information on the short range correlations
among the energy levels of the system. The Poisson distri-
bution P(s, 8=0)=exp(—s) is characteristic of integrable sys-
tems. On the other hand, the Wigner surmise P(s,p)
=agsPexp(~bys?) is almost exact for chaotic systems with
B=1, 2, and 4 [11]. Izrailev’s generalization [14]

P(s,,B):Aﬁsﬁexp{—ﬂf—fsz—(Bﬂ—TT'B)S}, (11)

where A and B are constants determined by normalization,
seems to be appropriate to extrapolate between =0 and the
limit 8— 0. Indeed, this expression reproduces correctly the
Poisson distribution when =0 and constitutes a good ap-
proximation to the Wigner surmise when 8=1, 2, and 4, and
it has been shown [15] that Eq. (11) provides a good descrip-
tion of the NNSD of the Coulomb gas for 0= S8=<4. More-
over, regardless of the value of 3, its asymptotic behavior for
large s agrees with that obtained from thermodynamic con-
siderations based on Dyson’s Coulomb gas [16].

(ii) In order to characterize correlations of different
length, we use the &, statistic

5,,=E(s,-—<s>)= w1 —€—-n, n=1,...,N-1,
i=1

(12)

which represents the deviation of the excitation energy of the
(n+1)th unfolded level from its average value n. In spite
of some peculiarities, the function &, has a formal simi-
larity with a time series [5]. Using numerical techniques
borrowed from the time series analysis, we can study the
long range correlations of the spectra of the A(F) Hamil-
tonians. One of these methods is the calculation of the
power spectrum of the &, series, given by

P]f=|3k2’ (13)

where Sk is the Fourier transform of J,,

" 1 2ikn

&= =2 S.ex (— ) (14)
k \W - p

As shown in [6], RMEs exhibit 1/f noise, i.e., P{ follows a

power law

P B=1,2.4, (15)

N
T 2Bk
when k<N and N> 1. Thus, chaotic quantum systems, char-
acterized by different space-time symmetries and different
level repulsions, exhibit the same long range structure of the
fluctuations: in all cases the functional dependence of P{ is
the same and without any privileged scale.
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F=1.0 F=0.5

F=0.3 F=0.1

FIG. 1. Short sequences of consecutive energy levels corre-
sponding to four selected tridiagonal matrices A(F) with F=1, 0.5,
0.3, and 0.1. In all cases, the average spacing is (s)=1.

RESULTS AND DISCUSSION

Figure 1 displays short sequences of consecutive unfolded
levels corresponding to selected i(F) matrices of dimension
N=1000 with F=1, 0.5, 0.3, and 0.1. Although the four spec-
tra have the same average spacing (s)=1, their global appear-
ance is different. At F=1 there are three pairs of almost
degenerate levels. At F=0.5 we can still distinguish two
pairs of levels lying rather closely, but as F increases the
degeneracy disappears gradually and finally the spectrum be-
comes essentially equidistant at F'=0.1. This example shows
qualitatively the correlation between F' and B given by Eq.
(6).

In order to make more quantitative this result we have
calculated P(s) for RTMEs with the same values of F as in
the previous example. To compute P(s), we generate 30 tridi-
agonal matrices of dimension N=1000, diagonalize each ma-
trix and calculate the spacings between consecutive levels,
and finally we collect together all the spacings. Figure 2
shows the behavior of P(s) as F increases together with the
results of a least-squares fit to Eq. (11). It can be clearly seen
how P(s) evolves from a wide and smooth function at F'=1
to a very picked distribution at F'=0.1. This result is consis-
tent with the expected picket fence spectrum with P(s)
=d&(s—1) in the F=0 limit. The values of B provided by the
least-squares fit are shown in Table I. They are in reasonable
agreement with the predictions of Eq. (6); moreover, using
these values, the four P(s,) curves predicted by Eq. (11)
describe perfectly the behavior of the actual P(s) distribu-
tion. Therefore, Eq. (11) provides a good description of the
short range correlations of the 4(F) Hamiltonians; only for
large values of level repulsion is B underestimated, as hap-
pens in the Dyson’s Coulomb gas [15].

However, in this paper we aim at characterizing not only
the short range correlations, but the spectral fluctuations of
tridiagonal ensembles at all scales. More precisely, the ques-
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FIG. 2. Numerical values of the NNSD of four RTMEs with
F=1 (open circles), 0.5 (filled circles), 0.3 (triangles), and 0.1
(filled triangles), compared to the results of a least-squares fit to Eq.
(11) (solid lines). The numerical P(s) values are calculated by col-
lecting the spacings of 30 matrices of dimension N=1000.

tion we are interested in is whether the long range correlation
structure (that defines the global appearance of a signal) re-
mains invariant through the whole transition from F=1 to
F—0. To answer this question we calculate the power spec-
trum of the J, statistic. Since we already know that the av-
erage power spectrum of three classical RMEs follows a
power law (P{)oc 1/k, it is worth studying whether RTMEs
exhibit the same behavior and if the degree of level repulsion
modifies the statistical properties of the whole spectrum or
not.

The evolution of the §, function can be followed in Fig. 3.
Here, we display in different panels the behavior of this sta-
tistic for selected matrices with F=1, 0.5, 0.3, and 0.1. Note
that the axis scales are the same in the four panels. We have
also added lower left subpanels where, using the natural
scale of each signal, we show small parts of the &, series. It
is clearly seen that, except for the amplitude of the fluctua-
tions, the correlation structure seems very similar in the four
cases; thus, these plots suggest that the correlation structure
of §, is not dramatically affected by }.

To establish the validity of this preliminary result, we cal-
culate the average power spectrum of J, as a function of F
and show the result in a doubly logarithmic plot. A twofold
average procedure is carried out to reduce the enhancement
of the fluctuations caused by these type of plots. First, we
generate 30 tridiagonal matrices of dimension N=1000, the
power spectrum of each matrix is calculated using Eq. (15)
and then the ensemble average is performed. Afterwards, the
logarithmic frequency axis is divided into equal bins and the
power spectrum components are averaged in each bin. The

TABLE I. Dependence of the level repulsion parameter 5 on the
ensemble parameter F.

F 1.0 0.5 0.3 0.1
B 1.0+0.1 3.9+0.1 10.3+0.2 90«1
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FIG. 3. Comparison of the §, statistic for tridiagonal matrices
h(F) with F=1, 0.5, 0.3, and 0.1.

behavior of (P{) for ensembles characterized by F=1, 0.5,
0.3, and 0.1 is displayed in Fig. 4. Although the amplitude of
the fluctuations decreases with F, it is clearly seen that the
long range correlation structure is not affected by the in-
crease of the level repulsion: (P,‘f) shows a neat 1/f behavior
in all the cases and only the multiplicative factor N/(27*3)
of the power spectrum decreases as the repulsion parameter
increases. This figure also shows the comparison of the cal-
culated values with the theoretical predictions of Eq. (15)
assumed to be valid for all 8. Using the values of 8 quoted in
Table I, the agreement between theory and numerics is ex-
cellent.

The formal analogy between a energy level spectra and a
discrete time series lead to the idea that spectral rigidity is
analogous to antipersistence [5]. Using RMEs, atomic nuclei,
and quantum billiards [5,6] it was shown that the spectral
rigidity of chaotic systems with B=1, 2, or 4 give rise to
spectra that, considered as time series, exhibit 1/f noise and
therefore are completely antipersistent. This work suggests
that this result is also valid for very intense level repulsions,
i.e., for B>4: 1/f noise seems to be the characteristic fin-
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FIG. 4. Average power spectrum P,f for RTMEs with F=1 (open
circles), 0.5 (filled circles), 0.3 (triangles), and 0.1 (filled triangles),
compared to the theoretical predictions of Eq. (15) (solid lines).

PHYSICAL REVIEW E 73, 026204 (2006)

gerprint of a transition where, preserving its scale-free cor-
relation structure, the spectrum evolves from a fluctuating to
a nonfluctuating ordered sequence. Since we have only dealt
with tridiagonal matrix ensembles, it is natural to ask
whether this conclusion is universal or not; in establishing
the validity of our assessment other systems that display a
similar ordered and correlated sequence of facts should be
studied; it will probably be a difficult task. Nevertheless,
RTMEs have several appealing features. When B=1, 2 or 4
their correlation structure is the same as that of all known
chaotic quantum systems in the universal regime of spectral
fluctuations. Moreover, if 0= =<4 the short-range correla-
tions of these spectra are very similar to those of Dyson’s
Coulomb gas (where the distance between neighboring par-
ticles plays the role of energy level spacings), since in both
cases the P(s) distribution is well described by the Izraeliev
distribution. All these results and considerations lead us to
assess that any energy spectrum characterized by an intense
level repulsion (8=1) exhibits 1/f noise, that is, the spec-
trum is analogous to a fully antipersistent time series; the
intensity of the level repulsion, measured by B, does not
modify the correlation structure of the time series, but only
the amplitude of the fluctuations.

SUMMARY AND CONCLUSIONS

Summarizing, we have studied the long range correlation
structure of spectra with very high level repulsion.

It was already known that the antipersistence of the time
series corresponding to the energy spectrum of a quantum
system increases with the level repulsion. The spectra of in-
tegrable systems have 8=0 and exhibit 1/f2 noise; thus they
behave as nonantipersistent series. Chaotic spectra, charac-
terized by B=1, 2, and 4, exhibit 1/f noise and thus, consid-
ered as time series, are fully antipersistent. In order to study
whether this structure is modified when 8>4, we have gen-
erated a family of random matrix ensembles whose members
change through a parameter from standard chaotic Hamilto-
nians with B=1 to Hamiltonians with picket-fence spectra
and B>1. Using the Lanczos method, the members of a
GOE are reduced to tridiagonal form and the amplitude of
the tridiagonal elements is modulated by a multiplicative pa-
rameter F. As F is modified, the level repulsion parameter
charges according to the law B=1/F?; when F=1 we have
B=1, and as f— as F— 0. Therefore it is possible to study
the statistical properties of spectra with any level repulsion
intensity.

The ensemble average power spectrum <P,‘f> has been cal-
culated for representative ensembles with O<F=<1. A neat
power law (P,f)oc 1/k has been found in all the cases. There-
fore, the strong increase of the level repulsion, induced by
the suppression of the matrix elements fluctuations, does not
modify the long range correlations of these spectra. Conse-
quently, 1/f noise arises as the main feature of a transition
that reduces to zero fluctuating part of the spectrum (or more
generally a signal), preserving its scale-free correlation struc-
ture. This is consistent with the idea of antipersistence. Since
an antipersistent time series tends to compensate globally
any increasing or decreasing trend, it is reasonable to think
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that in certain limit this tendency is so strong that hinders
completely the fluctuations of the signal.

Moreover, due to the fact that the family of tridiagonal
Hamiltonian ensembles includes the classic RME, and their
members are very similar to a unidimensional Coulomb gas
at least if 0= =<4, we conjecture that any energy spectrum
characterized by an intense level repulsion exhibits 1/f
noise. It is noteworthy commenting here that the Dyson’s
Coulomb gas can be a good choice to study what happens in
a different system with a very similar phenomenology; more-
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over, the relation between S and the temperature 7 that char-
acterizes this system may enlighten the conclusions obtained
with the tridiagional matrix ensembles.
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