
Test Case Generation of Actor Systems

Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa

DSIC, Complutense University of Madrid, Spain

Abstract. Testing is a vital part of the software development process.
It is even more so in the context of concurrent languages, since due to
undesired task interleavings and to unexpected behaviours of the under-
lying task scheduler, errors can go easily undetected. Test case generation
(TCG) is the process of automatically generating test inputs for interest-
ing coverage criteria, which are then applied to the system under test.
This paper presents a TCG framework for actor systems, which consists
of three main elements, which are the original contributions of this work:
(1) a symbolic execution calculus, which allows symbolically executing
the program (i.e., executing the program for unknown input data), (2)
improved techniques to avoid performing redundant computations dur-
ing symbolic execution, (3) new termination and coverage criteria, which
ensure the termination of symbolic execution and guarantee that the test
cases provide the desired degree of code coverage. Finally, our framework
has been implemented and evaluated within the aPET system.

1 Introduction

Concurrent programs are becoming increasingly important as multicore and net-
worked computing systems are omnipresent. Writing correct concurrent pro-
grams is more difficult than writing sequential ones, because with concurrency
come additional hazards not present in sequential programs such as race con-
ditions, deadlocks, and livelocks. Therefore, software validation techniques urge
especially in the context of concurrent programming. Testing is the most widely-
used methodology for software validation in industry. It typically requires at least
half of the total cost of a software project. Test Case Generation (TCG) is a key
component to automate testing. It consists in generating test inputs for interest-
ing coverage criteria, which are then applied to the system under test. Examples
of coverage criteria for sequential code are: statement coverage, which requires
that each instruction of the code is executed; path coverage, which requires that
each possible path of the execution is tried; etc.

We consider actor systems [2, 14], a model of concurrent programming that
has been gaining popularity and that is being used in many systems (such as
ActorFoundry, Asynchronous Agents, Charm++, E, ABS, Erlang, and Scala).
Actor programs consist of computing entities called actors, each with its own
local state and thread of control, that communicate by exchanging messages
asynchronously. An actor configuration consists of the local state of the actors
and a set of pending tasks. In response to receiving a message, an actor can

update its local state, send messages, or create new actors. At each step in the
computation of an actor system, firstly an actor and secondly a process of its
pending tasks are scheduled.

The aim of this work is to develop a framework for TCG of actor systems.
A standard approach to generating test cases statically is to perform a sym-
bolic execution of the program [6–8,12,17,19,20], where the contents of variables
are expressions rather than concrete values. Symbolic execution produces a sys-
tem of constraints over the input variables and the actor’s fields containing the
conditions to execute the different paths. The conjunction of these constraints
represents the equivalence class of inputs that would take this path. This pro-
duces, by construction, a (possibly infinite) set of test cases, which satisfy the
path-coverage criterion. Briefly, the TCG framework that we propose has three
main components, which are the contributions of this work: (1) in Sec. 3, we
leverage the semantics used for testing in [3] to the more general setting of sym-
bolic execution; (2) in Sec. 4, we extend and improve the techniques to avoid
redundant computation of [3] to eliminate redundancies in symbolic execution
and; (3) in Sec. 5, we propose novel termination and coverage criteria, which
guarantee termination of the process. We have implemented our framework in
aPET [4], a TCG tool for concurrent objects. Our experiments demonstrate the
usefulness, impact and effectiveness of the proposed techniques.

2 The Language

We consider a distributed message-passing programming model in which each
actor represents a processor, which is equipped with a procedure stack and an
unordered buffer of pending tasks. Initially all actors are idle. When an idle
actor’s task buffer is non-empty, some task is removed, and the task is executed
to completion. Each task besides accessing its own actor’s global storage, can post
tasks to the buffers of any actor, including its own. When a task does complete,
its processor becomes idle and chooses a next pending task to execute.

Actors are materialized in the language syntax by means of objects. An actor
sends a message to another actor x by means of an asynchronous method call,
written x ! m(z̄), being z̄ parameters of the message or call. In response to
a received message, an actor then spawns the corresponding method with the
received parameters z̄. The number of actors does not have to be known a priory,
thus in the language actors can be dynamically created using the instruction
new. Tasks from different actors execute in parallel. As in the object-oriented
paradigm, a class C denotes a type of actors and it is defined as a set of fields
F(C) and methods void m(T̄ x̄){s; }. The grammar for an instruction s is:

s ::= s ; s | x = e | while b do s | if b then s else s |
this.f = y | x = this.f | x = new C | x ! m(z̄)

where x, y, z denote variables names and f a field name. For any entity A,
the notation Ā is used as a shorthand for A1, ..., An. We use the special actor
identifier this to denote the current actor. For the sake of generality, the syntax
of expressions e, boolean conditions b and types T is not specified. We assume

2

(mstep) selectA(S) = ac(r,⊥, h,Q), Q 6= ∅, selectT (r) = t , S
r·t
;∗ S′

S
r·t
−→ S′

(setf)
t = tk(t ,m, l, this.f = y; s)

ac(r, t , h,Q ∪ {t}) ; ac(r, t , h[f 7→ l(y)], Q ∪ {tk(t ,m, l, s)})

(getf)
t = tk(t ,m, l, x = this.f ; s)

ac(r, t , h,Q ∪ {t}) ; ac(r, t , h,Q ∪ {tk(t ,m, l[x 7→ h(f)], s)})

(new)
t = tk(t ,m, l, x = new D; s), n = fresh(), h′ = newheap(D), l′ = l[x→ rDn]

ac(r, t , h,Q ∪ {t}) ; ac(r, t , h,Q ∪ {tk(t ,m, l′, s)}) · ac(rDn ,⊥, h′, {})

(asy)
t = tk(t ,m, l, x ! m1(z); s), l(x) = r1, t1 = fresh(), r 6= r1, l1 = newlocals(z̄ ,m1 , l)

ac(r, t , h,Q ∪ {t}) · ac(r1, t
′, h′, Q′) ;

ac(r, t , h,Q ∪ {tk(t ,m, l, s)}) · ac(r1, t
′, h′, Q′ ∪ {tk(t1,m1, l1, bd(m1))})

(return)
t = tk(t ,m, l, ε)

ac(r, t , h,Q ∪ {t}) ; ac(r,⊥, h,Q)

Fig. 1. Summarized Semantics for Distributed and Concurrent Execution

that there are no fields with the same name and different type. As usual in the
actor model [2, 14, 22], we suppose that a method does not return a value, but
rather that its computation modifies the actor state. The language is simple to
explain the contributions of the paper in a clear way, as done in [3, 22].

An actor is a term ac(rCn , t , h,Q) where r stands for reference, n is the actor
identifier, C is the class name, t is the identifier of the active task that holds
the actor’s lock or ⊥ if the actor’s lock is free, h is its local heap and Q is
the set of tasks in the actor. A heap h is a mapping h : F(C) 7→ V, where
V = Z ∪ Ref ∪ {null} and Ref stands for the set of references of the form rCn .
Whenever it is clear from the context, we will omit n and C from actor identifiers
by using only r. A task is a term tk(t ,m, l, s) where t is a unique task identifier,
m is the method name executing in the task, l is a mapping from local variables
to V, and s is the sequence of instructions to be executed. Sometimes we use the
identifier t to refer to entire task and we use ε to denote an empty sequence of
instructions. A state S has the form r0 · r1 · ... · rn, where ri is used to refer to
the whole actor ac(rCi

i , ti, hi, Qi) and ri 6= rj , 1 ≤ i, j ≤ n, i 6= j.
Fig. 1 presents the semantics of the actor model. As actors do not share their

states, the semantics can be presented as a macro-step semantics [21] (defined
by means of the transition “−→”) in which the evaluation of all statements of a
task takes place serially (without interleaving with any other task) until it gets
the end of the method. In this case, we apply rule (mstep) to select an available
task from an actor, namely we apply the function selectA(S) to select non-
deterministically one active actor in the state (i.e., an actor with a non-empty
queue) and selectT (r) to select non-deterministically one task of r’s queue. The
transition ; defines the evaluation within a given actor. We sometimes label
transitions with r·t , the name of the actor r and task t selected in (mstep)
The rules (getf) and (setf) read and write resp. an actor’s field. The notation
h[f 7→ l(y)] (resp. l[x 7→ h(f)]) stands for the result of storing l(y) in the field
f (resp. h(f) in variable x). The remaining sequential instructions are standard

3

void ft(int n) {
if (n > this.mx) {

this ! wk(n,this.mx);
this ! dg(n-this.mx);
} else {

this ! wk(n,n);
this ! rp(1);
}
}

void wk(int n,int h) {
while (h > 0){

this.r = this.r * n;
n = n - 1;
h = h - 1;

}
}

void dg(int n) {
Fact wkr = new Fact(this,this.mx);
wkr ! ft(n);

}
void rp(int x) {

this.r = this.r * x;
if (this.b != null) this.b ! rp(this.r);

}

Fig. 2. Running Example with class Fact(Fact b, int mx) {int r = 1; . . . }

and thus omitted. In (new), an active task t in actor r creates an actor rDn of
class D with a fresh identifier n = fresh(), which is introduced to the state with
a free lock. Here h′=newheap(D) stands for a default initialization on the fields
of class D. (asy) spawns a new task (the initial state is created by newlocals)
with a fresh task identifier t1 = fresh(). We assume r 6=r1, but the case r=r1

is analogous, the new task t1 is added to Q of r. In what follows, a derivation
E is a sequence S0 −→ · · · −→ Sk of macro-steps (applications of (mstep))
starting from an initial state ac(rC0 ,⊥, h, {tk(0,m, l, bd(m))}), where l (resp. h)
maps parameters (resp. fields) to elements in V and bd(m) is the sequence of
instructions in the body of m. The derivation is complete if all actors in Sk are of
the form ac(r,⊥, h, {}). Since the execution is non-deterministic in the selection
of actor and task, multiple derivations are possible from a state.

Example 1. Consider the class Fact in Fig. 2, which contains three fields Fact b,
int mx and int r. Fields b and mx can be initialized in the constructor Fact(Fact
b, int mx) whereas r is always initialized to 1. Let us suppose an actor a is asked
to compute the factorial of n (by means of call a ! ft(n)). Actor a computes
n∗(n−1)∗ . . . ∗(n−a.mx+1) by means of task wk(n, a.mx), and delegates to another
actor the rest of the computation, by means of task dg(n−a.mx). When an actor
is asked to compute the factorial of an n, which is smaller than its mx, then the
call this ! wk(n, n) computes directly the factorial of n and the result is reported to
its caller by means of task rp. The result is then reported back to the initial actor
in a chain of rp tasks using field b, which stores the caller actor. The computed
result of each actor is stored in field r. The program has a bug, which is only
exploited in a concrete sequence of interleavings when at least three actors are
involved. Let us consider two derivations that may arise among others from the
initial state S0=ac(r0,⊥, h0, {tk(0, ft, l0, bd(ft))}), where h0(r)=1, h0(b)=null,
h0(mx) =2 and l0(n)=5, i.e., we want to compute factorial of 5 with this.mx
equals 2. Arrows are labeled with the identifier of the task(s) selected and it is
executed entirely. The contents of the heap and local variables are showed when
it is relevant or updated (we only show the new updates). We use hi, li to denote
the heap of actor ri and the local variables of task ti respectively.

(a) S0
0−→ ac(r0, 0, h0, {tk(1,wk, [n7→5, h7→2], bd(wk)), tk(2, dg, [n7→3], bd(dg))}) (1,2)∗−→

(b) ac(r0,⊥, [r 7→5∗4], {}) · ac(r1,⊥, [r 7→1, b7→r0], {tk(3, ft, [n7→3], bd(ft))}) (3)∗−→

4

(c)
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {}) · ac(r2,⊥, h2, {tk(4, ft, l4, bd(ft))})

h1(r)=3∗2, l4(n)=1, h2(r)=1, h2(b)=r1

}
(4)∗−→

(d) ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(5, rp, [x7→1], bd(rp))}) · ac(r2,⊥, h2, {})
(5)∗−→

(e) ac(r0,⊥, [r = 5∗4∗3∗2], {}) · ac(r1,⊥, h1, {}) · ac(r2,⊥, h2, {})
Note that after executing task 5 we compute the final state (e), where h0 stores
in the field r the value of factorial of 5. Suppose now that, in the above trace,
from (b), we first select method dg but we do not execute method wk, and all
calls to method rp are executed before method wk. Then:

(c)

{
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk))})·
ac(r2,⊥, [b7→r1], {tk(5, ft, [n7→1], bd(ft))})

}
(5)∗−→

(d)

{
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk))})·
ac(r2,⊥, [b7→r1], {tk(6,wk, l6, bd(wk)), tk(7, rp, l7, bd(rp))})

}
(7)∗−→

(e)

{
ac(r0,⊥, h0, {}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk)), tk(8, rp, l8, bd(rp)})·
ac(r2,⊥, h2, {tk(6,wk, l6, bd(wk))})

}
(8)∗−→

(f)

{
ac(r0,⊥, h0, {tk(9, rp, l9, bd(rp))}) · ac(r1,⊥, h1, {tk(4,wk, l4, bd(wk))})·
ac(r2,⊥, h2, {tk(6,wk, l6, bd(wk))})

}
(9)∗−→

(g) ac(r0,⊥, [r 7→5∗4], {}) · ac(r1,⊥, [r 7→3∗2], {}) · ac(r2,⊥, [r 7→1], {})
}

In the last step we have computed h0(r)=5∗4, which is an incorrect result, hence
exploiting the above-mentioned bug. Although the execution at this point is not
finished, none of the pending tasks will modify the value of field r in r0. 2

3 Symbolic Execution

The main component of our TCG framework is symbolic execution [12, 17, 19,
20,23], whereby instead of on actual values, programs are executed on symbolic
values, represented as constraint variables. The outcome is a set of equivalence
classes of inputs, each of them consisting of the constraints that characterize a
set of feasible concrete executions of a program that takes the same path and,
optionally constraints, which characterize the output of the execution. For in-
stance, consider method int abs(int x){if (x<0) return -x; else return x;}. The
outcome is the set {〈X<0,Y

.
= − X〉, 〈X≥0,Y

.
=X〉} where Y refers to the return

value. Essentially, there are two elements in the set which will lead to two test in-
puts, the first one captures the execution of the then branch, with the constraint
X<0 on the input and Y=−X on the output. The second element captures the
execution of the else branch. Symbolic execution thus produces a set of test
cases satisfying the path coverage criterion. We use uppercase characters to syn-
tactically distinguish constraint variables from ordinary program variables. In
our simplified language, we consider two types of equality and inequality con-
straints, those that involve integer values and those that involve references (the
latter refer to aliasing conditions between references). The constraint variables
can represent field or variable names. Given an infinite set of constraint variable
names X,Y, F,G, . . . ∈ V, an atomic constraint ϕ is of the form:

ϕ ::= X
.

=n | X .
=Y | X·>Y | X .

=ref
where ref ∈Ref ∗ can be either rCn or sCn , n∈N and C is a class name. Each
element of the form rCn stands for a reference of class C created by using a new

5

(mstep)Φ
selectA(S) = ac(ref ,⊥, ,Q,),Q 6= ∅, selectT (ref) = t ,S2I

ref ·t
;∗Φ S ′2I′

S2I
ref ·t
−→Φ S ′2I′

(setf)Φ
t = tk(t,m, ρ, this.f = y; s), θ′ = θ[f 7→ F], ϕ = {F .

=ρ(y)}
ac(ref , t , θ,Q∪{t}, Φ) ;Φ ac(ref , t , θ′,Q∪{t′}, Φ ∪ ϕ)

(getf)Φ
t = tk(t,m, ρ, x = this.f ; s), ρ1 = ρ[x 7→ X], ϕ = {X .

=θ(f)}
ac(ref , t , θ,Q∪{t}, Φ) ;Φ ac(ref , t , θ,Q∪{tk(t ,m, ρ1, s)}, Φ ∪ ϕ)

(new)Φ

t = tk(t,m, ρ, x = new D; s), n=fresh(), ρ1=ρ[x 7→ X], Φ1=init(D), ϕ={X .
=rD

n }
ac(ref , t , θ,Q∪{t}, Φ) ;Φ

ac(ref , t , θ,Q∪{tk(t,m, ρ1, s)}, Φ ∪ ϕ) · ac(rDn ,⊥, θs, {}, Φ1)

(asy)Φ1

t=tk(t,m, ρ, x ! m1(z̄); s), ρ(x) is object-bounded in Φ
Φ |= ρ(x)

.
=ref ′, t1 =fresh(), fresh(m1 (w̄){s1 ; }),Φ′=Πρ(z̄)Φ∪{ρs(w̄)

.
=ρ(z̄)}

ac(ref , t , θ,Q∪{t}, Φ) · ac(ref
′
, , θ′,Q1 ,Φ1) ;Φ

ac(ref , t , θ,Q∪{t′}, Φ) · ac(ref
′
, , θ′,Q1∪{tk(t1,m1, ρs, s1)}, Φ1 ∪ Φ′)

(asy)Φ2

t=tk(t,m, ρ, x ! m1(z̄); s), class(x)=D, ρ(x) is not object-bounded in Φ
t1=fresh(), fresh(m1(w̄){s1; }), Φ′=Πρ(z̄)Φ∪{ρs(w̄)

.
=ρ(z̄)}

ac(ref , t , θ,Q∪{t}, Φ) · ac(sDn , , θ
′,Q1, Φ1) ;Φ

ac(ref , t , θ,Q∪{t′}, Φ∪{ρ(x)
.

=sDn }) · ac(sDn , , θ
′,Q1∪{tk(t1,m1, ρs, s1)}, Φ1∪Φ′)

(asy)Φ3

t=tk(t,m, ρ, x ! m1(z̄); s), class(x)=D, ρ(x) is not object-bounded in Φ, n=fresh()
t1=fresh(), fresh(m1(w̄){s1; }), Φ′={θs(this)

.
=sDn }∪Πρ(z̄)Φ∪{ρs(w̄)

.
=ρ(z̄)}

ac(ref , t , θ,Q∪{t}, Φ)2I ;Φ ac(ref , t , θ,Q∪{t′}, Φ ∪ {ρ(x)
.

=sDn })·
ac(sDn ,⊥, θs, {tk(t1,m1, ρs, s1)}, Φ′)2I∪{〈sDn , θs〉}

(return)Φ
t = tk(t,m, ρ, ε)

ac(ref , t , θ,Q∪{t}, Φ) ;Φ ac(ref ,⊥, θ,Q, Φ)

Fig. 3. Symbolic Execution Calculus. t′ stands for tk(t,m, ρ, s)

instruction. References of the form sCn refer to actors not created with new but
arising from asynchronous calls in which the calling actor is unknown at the time
of the call. We denote by Φ a conjunction of atomic constraints. We use simply
r (resp. s) instead of rCn (resp. sCn) when the values of C and n are irrelevant.
We use ref to refer either to r or s and sometimes set notations to refer to Φ.

Fig. 3 presents the operational semantics of symbolic execution for the con-
current instructions (the sequential ones are standard). A symbolic state has the
form S2I, where S is a collection of symbolic actors and I is a set of actors
required to know the actors that must be in the initial state to get to the final
state, and thus be able to build the test cases in Sec. 5.2. For simplicity, we
omit I in all rules except for (asy)Φ3 , since it is the only rule that modifies I. A
symbolic actor is represented as ac(ref , t , θ,Q, Φ), where ref ∈Ref ∗ is the actor
identifier, t is the identifier of the active task, Q is the queue of symbolic pending
tasks, Φ is a set of constraints involving the fields of the actor and the variables of
its tasks, and θ : F(C)∪{this} 7→ V is called the field renaming that maps fields
of class C and the this actor to V. In particular, if f is a field of class C, then
θ(f) is the current constraint variable F representing f in Φ. A symbolic task
tk(t ,m, ρ, s) of a method m in a class C contains the sequence of instructions s

6

to be executed together with the current renaming ρ : vars(bd(m)) 7→ V of those
variables in m, where vars(A) stands for the set of variables occurring at any
entity A. The constraints associated to these variables are stored in the actor
in Φ. As for fields, the renaming is required to build correctly the set of atomic
constraints Φ and keep the relation between these constraints and the original
variables of method m. An initial state to symbolically execute m(x̄) on sCn has
the form S02I0, where S0=ac(sC0 ,⊥, θs, {tk(0,m, ρs, bd(m))}, {θs(this)

.
=sC0 }), θs

(resp. ρs) is a starting fresh mapping, i.e., θs(f) (resp. ρs(x)) are mapped to fresh
variables and I0=〈sC0 ,m(x̄), θs, ρs〉.

The different rules of the symbolic semantics in Fig. 3 extend those in Fig. 1
with constraint handling as follows. As notation, ρ1=ρ[x 7→X] maps in ρ variable
x to the fresh variable X. Rule (setf)Φ updates the field mapping θ with the fresh
variable F , and stores the new constraint F

.
=ρ(y) in Φ. Since a field is modified,

the mapping θ in the actor must be updated. However, in rule (getf)Φ, the field
f is read and thus, it is not required to update θ but ρ. Rule (new)Φ adds the
constraint X

.
=rDn to Φ and updates ρ. The function Φ1=init(D) initializes Φ1

with the corresponding initialization of the fields in D and the this actor, i.e.,
θs(this)

.
=rDn ∈Φ1 and if a field f in D is initialized to a value v, then θs(f)

.
=v will

be in Φ1. Rule (return)Φ allows us to apply rule (mstep)Φ. A main aspect is the
treatment of asynchronous calls x ! m1(z̄), which distinguishes three cases:
1. (asy)Φ1 : Object x exists in the store. This condition is checked by seeing if
x is bounded in Φ. Formally we say that x is object-bounded in Φ if ρ(x) ∈
vars(Φ) and Φ |= ρ(x)

.
=ref ′, for some actor ref ′. In this case, the task m1

is introduced in the queue of actor ref ′. Here fresh(m1(w̄){s1; }) is a fresh
renaming of the variables in m1. We use Πρ(z̄)Φ to denote the projection of Φ
on the variables ρ(z̄), i.e., the constraints in Φ involving the input parameters
z̄. Note that the constraint Φ′ is added to Φ1 in actor ref ′ in order to store
the relation between the formal and actual parameters of method m1.

2. (asy)Φ2 : Object x is compatible with objects in the state but ρ(x) is not
bounded in Φ. If ρ(x) is not bounded in Φ, this means either that ρ(x) 6∈
vars(Φ), or that Φ 6|= ρ(x)

.
=ref ′. Then we need to consider all possible alias-

ings with actors of compatible type that are in S whose actor identifiers have
not been created using new, i.e., those whose actor identifier has the form
sD. For example, for the instructions y = new D; x ! m1(z̄) and assuming
that x is not bounded, it is incorrect to bound variable x to y, as x must be
a different reference. Then if S contains some actor of class D not created
with new, then we can assume that ρ(x) and such actor are aliased, and
thus store the call in the queue of sDn and ρ(x)

.
=sDn in Φ. Function class(x)

returns the class of actor x.
3. (asy)Φ3 : Actor x corresponds to an actor not yet created. Then, a new actor

is created, forcing ρ(x) to be equals to it. Importantly, this situation requires
that an actor of class D be in the initial state. Hence, a new identifier sDn
corresponding to an actor not created with new, must be introduced in the
set I in order to be able to reconstruct the initial state at the end of the
computation. Note that rules (asy)Φ2 and (asy)Φ3 are both applicable under
the same conditions what generates non-determinism in symbolic execution.

7

s0.wk

W0 .=r1,T1 .=r1,N1 .=N0
2,R1 .=1,B1 .=s0,M1 .=M0

N0
1
.

=N0,H0
1
.

=M0,N0
2
.

=N0−M0

s0.dg s0.rps0.wk

Tree11

N0·>M0 ¬(N0·>M0)

N0
1
.

=N0,H0
1
.

=N0,X0 .=1

(0) s0:{ft(n0)}

(6) s0:{wk(n0
1, h0

1), rp(x0)}(1) s0:{wk(n0
1, h0

1), dg(n0
2)}

Tree12

¬(N1·>M1)Tree2

r1.fts0.wk

Tree4Tree3

r1.wks0.wk

N1
1
.

=N1,H1
1
.

=M1,N1
2
.

=N1−M1

W1 .=r2,T2 .=r2,N2 .=N1
2,R2 .=1,B2 .=r1,M2 .=M1

(3) s0:{wk(n0
1, h0

1)}, r1:{wk(n1
1, h1

1), dg(n1
2)} (5) s0:{wk(n0

1, h0
1)}, r1:{wk(n1

1, h1
1), rp(x1)}

N1
1
.

=N1,H1
1
.

=N1,X1 .=1

Tree9

Tree1 (2) s0:{wk(n0
1, h0

1)}, r1:{ft(n1)}

(4) s0:{wk(n0
1, h0

1)}, r1:{wk(n1
1, h1

1)}, r2:{ft(n2)}

r1.dg
r1.wk

Tree6 Tree7Tree5

r1.wks0.wk r2.ft

r1.rp

Tree10

s0.wk

Tree8

N1·>M1

Fig. 4. Symbolic Execution for the Running Example

Example 2. Fig. 4 shows an excerpt of the symbolic execution tree of method
ft. We write Treei, 1 ≤ i ≤ 12, to denote partial execution trees, which are
not shown due to space limitations. The nodes contain the actor identifiers and
their queues of tasks in braces. A superscript in a variable corresponds to the
identifier of the actor to which it belongs, e.g., R2 refers to field r of actor s2.
Subscripts are used to generate fresh variables consecutively. The initial field re-
naming in the root node is θ0

s = {this7→T0, r 7→R0,mx 7→M0, b7→B0}, the constraint
attached to s0 is Φ0 = {T0 .=s0} and the initial renaming for local variables in
ft(n0) is ρ0

s = {n0 7→N0}. The left branch from node (0) corresponds to the if
instruction for the call ft(n0). The condition n0>this.mx produces the constraint
ρ0

s (n0)·>θ0
s (mx), i.e., N0·>M0. Since Φ0 |= θ0

s (this)
.

=s0 holds, rule (asy)Φ1 can be
applied to both asynchronous calls (the applications of (asy)Φ2 and (asy)Φ3 will
be illustrated in the tree in Fig. 5). For the call this ! wk(n0, this.mx), we generate
wk(n0

1, h
0
1) as fresh renaming for the method, together with the initial renaming

ρ0
1={n0

1 7→ N0
1, h

0
1 7→ H0

1}. Hence, the constraints N0
1
.

=N0 and H0
1
.

=M0 are added
to the constraints for s0. Similarly, the constraint N0

2
.

=N0−M0 originates from
using dg(n0

2) as renaming for dg(n−this.mx). The right branch of node (0) is as-
sociated to the else of method ft. In this case, the renaming ρ0

1 associated to
task s0.wk maps n0

1 (resp. h0
1) to N0

1 (resp. H0
1). Similarly, the initial renaming ρ0

2

for task s0.rp maps x0 to X0. Since in (1) we have two tasks, a new branching
is required to try the two reorderings. The branch s0.dg executes the call to dg
and thus, after applying rules (new)Φ and (asy)Φ1 , a new actor r1 appears in
(2) with a corresponding call to ft in its queue. The constraint W0 .=r1 is added
to the constraints of actor s0, where W0 is the fresh renaming for variable wkr.

8

From (2), if we execute r1.ft, branches (3) and (5) are generated. From (3) the
execution of r1.dg creates a new actor r2 (node (4)) as in (2). 2

4 Less Redundant Exploration in Symbolic Execution

Already in the context of dynamic execution, a näıve exploration of the search
space to reach all possible system configurations does not scale. The problem
is exacerbated in the context of symbolic execution due to the additional non-
determinism introduced by the use of constraint variables instead of concrete
values. There has been intensive work to avoid the exploration of redundant
states, which lead to the same configuration. Partial-order reduction (POR)
[9,11] is a general theory that helps mitigate the problem by exploring the subset
of all possible interleavings, which lead to a different configuration. Concrete
algorithms have been proposed in [3, 10,22] for dynamic testing.

In this section, we adapt to the context of symbolic execution and improve
the notion of temporal stability of an actor introduced in [3] to avoid redun-
dant exploration. This notion states that, at a given state, if we first select a
temporarily stable actor, i.e., an actor to which no other actors will post tasks,
unless it executes, it is guaranteed that it is not necessary to try executions in
which the other actors in the state execute before this one, thus, avoiding such
redundant explorations. Note that a temporarily stable actor at a state, might
become non-stable in a subsequent state if tasks are added to it after it executes
again, hence the temporal nature of the property. This notion is of general ap-
plicability and can be used within the algorithms of [10,22]. The original notion
of [3] is here extended to consider symbolic states and strengthened to allow the
case in which an actor receives a task, which is independent of those in the queue
of the actor. As it is well-known in concurrent programming [5], tasks t and t ′

are independent if t does not write in the shared locations that t ′ accesses, and
viceversa. We say that t is independent of Q, denoted as indep(t ,Q), if t and t ′

are independent for all t ′ ∈ Q.

Definition 1 (temporarily stable actor). ac(ref , t , θ,Q, Φ) is temporarily

stable in S0 iff, for any E starting from S0 and for any subtrace S0
∗−→Φ Sn ∈ E

in which the actor ref is not selected, we have ac(ref , t , θ,Q′, Φ) ∈ Sn and for
all t′ ∈ Q′−Q it holds that indep(t ′,Q).

Our goal is to define sufficient conditions that ensure actors stability and
can be computed during symbolic execution. To this end, given a method m1

of class C1, we define Ch(C1:m1) as the set of all chains of method calls of the
form C1:m1→C2:m2→· · ·→Ck:mk, with k≥2, s.t. Ci:mi 6= Cj :mj , 2≤i≤k−1,
i 6= j and there exists a call within bd(Ci:mi) to method Ci+1:mi+1, 1≤i<k. This
captures all paths C2:m2 → Ck−1:mk−1, without cycles, that go from C1:m1 to
Ck:mk. The set Ch(C1:m1) can be computed statically for all methods.

Theorem 1 (sufficient conditions for temporal stability). ac(ref Cn , , ,
Q,)∈S, is temporarily stable in S, if for every ac(ref C1 , , , Q1,) ∈S, ref Cn 6=
ref C1 and for every tk(,m1, ,)∈Q1, one of the following conditions holds:

9

1. There is no chain C1:m1 → · · · → Cn:mn ∈ Ch(C1:m1); or
2. For all chains C1:m1→· · ·→Cn:mn∈Ch(C1:m1), mn is independent of Q; or
3. For all chains C1:m1 → · · · → Cn:mn∈Ch(C1:m1), for all ac(ref Ci , , θ,Q2,

Φ) ∈ S, 1≤i≤n−1, and for all tk(, , ρ,) ∈ Q2, it holds that Φ∪θ(f)
.
=rCn

is unsatisfiable, for all f∈F(Ci) and Φ∪ρ(x)
.
=rCn is unsatisfiable, for all x

occurring in vars(Φ)−F(Ci).

Intuitively, the theorem above ensures that no ref C1 can modify the queue of
ref Cn . This is because (1) there is no transitive call from m1 to any method of
class Cn, or (2) if there is, the call is independent of those in ref Cn , or (3) there
are transitive (non-independent) calls from m1 to some method of class Cn, but
no reference to actor ref Cn can be found.

Example 3. Node (2) has two actors and the initial mapping for r1 contains
θ1

s (b)=B1. Points 1 and 2 of Th. 1 does not hold, since from ft (in the queue of
r1) there exists a call to rp and rp and wk are not independent. Besides, B1 .=s0

occurs as constraint in (2) and thus Point 3 of Th. 1 neither holds. Hence, actor
s0 is not temporarily stable. However, actor r1 is temporarily stable in (2), since
task wk in the queue of s0 does not call any method of class Fact. This means
that Tree2 in Fig. 4 is redundant and hence not expanded. A similar reasoning
allows us to conclude that trees Tree3, Tree5, Tree6 and Tree8 are redundant.
To illustrate the need of condition 2, consider a state with two actors r0, r1, with
task dg resp. ft in the queue of r0 resp. r1 and no associated constraints. Then,
for both actors neither condition 1 nor 3 in Th. 1 hold. However, since method
dg is independent of the remaining methods of class Fact, condition 2 holds and
both actors are temporarily stable. Finally note that, as explained in [3], Tree1

and Tree4 are detected redundant, since tasks wk and dg are independent. 2

5 Generation of Test Cases

An important problem for the generation of test cases for a given method (with-
out knowledge on the input values) is that the execution tree to be traversed by
symbolically executing the method is in general infinite. Hence, it is required to
fix a coverage and termination criterion (CTC) to guarantee that the number
of paths traversed remains finite, while at the same time an interesting set of
test-cases is generated.

5.1 Coverage and Termination Criteria for Actor Systems

Given a task executing on an actor, we can ensure its local termination by using
existing CTC developed in the sequential setting. For instance, we can use the
loop-count criteria [15], which limits the number of times we iterate on loops (and
the number of recursive calls) to a threshold kl . Other existing criteria defined
for sequential programs would be valid as well. Unfortunately, the application of
these CTC criteria to all tasks of a state does not guarantee termination of the
whole TCG process. There are two factors that threaten termination: (1) we can

10

B0 .
=s1B0 .

=s0

s0:{}
s1:{rp(x1)}

s0:{rp(x0
1)}

s0:{rp(x0
2)}

(1)

s0:{rp(x0)}

(2)

(asy)Φ2
(asy)Φ3

¬(B0 .
=null)B0 .

=null
¬(B1 .

=null)

B0 .
=s1

s2:{rp(x2
1)}

(asy)Φ2
(asy)Φ3

s0:{}, s1:{}s0:{rp(x0
1)}, s1:{} s0:{}, s1:{rp(x1

1)}

(3)

s0:{}, s1:{rp(x1
1)} s0:{}, s1:{rp(x1

2)}

(4) (5)

B1 .
=null

B1 .
=s0 B1 .

=s2
(asy)Φ2

B1 .
=s1

(2) s0:{}, s1:{rp(x1)}

Fig. 5. Task-level and Object-number CTC Criteria

switch from one task to another an infinite number of times, (2) we can create
an unbounded number of actors. The following example shows the first factor,
a program for which the loop-k criterion does not guarantee termination unless
we limit the number of task switches per actor.

Example 4. The execution tree for rp(x) in showed in two fragments in Fig. 5
(the right part corresponds to the execution from node (2) in the left part). The
branch marked with (1) is infinite due to the task rp is continuously introduced
and extracted from the queue of s0. By limiting the number of task switches
per actor it is possible to prune branch (1) and to continue the execution by
exploring the branch corresponding to B0 .=s1. 2

In our symbolic semantics, we can easily track the number of task switches
per actor ref by counting the number of applications of rule (mstep)Φ on ref .

Definition 2 (task-level CTC). Let k ∈ N+. A symbolic execution E ≡ S02I0

−→∗Φ Sn2In satisfies the task-level CTC iff for all actor ref ∈Sn, it holds that
ref has been selected at most k times in E by rule (mstep)Φ.

Even by limiting the number of task switches per actor, a second factor for non-
termination arises when we create an unbounded number of actors for which,
the number of task switches does not exceed the limit allowed. New actors arise
when applying either (new)Φ or (asy)Φ3 in Fig. 3. Next example illustrates it.

Example 5. Using the task-level CTC, the branch marked with (2) in Fig. 5
can be explored. Such branch comes from the application of rule (asy)Φ3 , which
generates a new actor s1 when executing the asynchronous call this.b ! rp(this.r).
The continuation of the branch is detailed in Fig. 5 (right). Branch (3) will be
pruned by using the task-level CTC because field b in actor s0 points to s1

(B0 .=s1) and viceversa, such field points to s0 in actor s1 (B1 .=s0). Similarly,
branch (4) is pruned by the task-level criteria, since the field b in actor s1 points
to s1 (B1 .=s1). Branch (5) behaves differently to the others, since the application
of rule (asy)Φ3 generates a new actor in each execution step and thus the number
of new actors grows infinitely. By annotating the instruction this.b ! rp(this.r) in
method rp with a counter initialized to 0, it is possible to count the number of
times that such instruction is executed. When such counter exceeds a fixed limit,
the branch can be pruned. 2

11

The idea of the next CTC is to limit the application of the instructions, which
introduce new actors (new and (asy)Φ3) to a threshold ko. Such ko cannot be
global, since the key is not to limit the total number of created actors but instead
the number of actors created at the same program point. Thus, we consider that
program points at which actors are introduced in the state are annotated with a
counter co initialized to 0. In particular, each new and asynchronous call have the
form 〈x = new C, co〉, and 〈x = y ! m(z̄), co〉 respectively. When a task executes
a new or (asy)Φ3 instruction, the counter co associated to such instruction in the
program is increased by one.

Definition 3 (actor-number CTC). Let ko ∈ N+. A symbolic execution E for
an annotated program P satisfies the actor-number CTC iff for all instructions
〈 , co〉 in P it holds that co ≤ ko.

5.2 Test Cases for Actor Systems

The generation of test cases for a method m(x̄) using the above CTC is as
follows. We start the symbolic execution of m(x̄) using the rules in Fig. 3 such
that each derivation is expanded until (a) it is complete (i.e., all actors are idle
and have empty queues) or (b) one of the CTC in Sec. 5.1 is not satisfied. In case
(a), we produce a test case associated to the complete derivation, which defines
the initial and final states of such execution. In the context of actor systems, the
state is given by the constraints gathered along symbolic execution on the fields
of the different actors, denoted as fields(ref ,Φ, θ), where ref is the reference of
the actor, Φ are the constraints for its field values and θ is the renaming relating
constraint variables in Φ with fields. Besides, in the initial state we want to
obtain also the constraints gathered for the arguments x̄ of the method m(x̄).
We use the notation args(m(x̄), Φ, ρ) to denote the constraints Φ imposed on
x̄, together with the initial renaming ρ, which keeps the association between
x̄ and Φ. Due to the non-determinism in symbolic execution, the execution of
m(x̄) produces a symbolic tree such that a test case is obtained from each of its
complete derivations (or branches). The following definition presents the notion
of test case associated to a given complete derivation.

Definition 4 (test case). Let E ≡ S02I0
∗−→Φ Sn2In be a complete symbolic

execution such that S02I0 is an initial state, where I0 = {〈sC0 ,m(x̄), θs, ρs〉}.
The test case for E is defined as the tuple 〈AI ,AO〉, where:

AI = {args(m(x̄),ΦI , ρs) | ac(sC0 , , , , Φ) ∈ Sn, ΦI = Πρs(x̄)Φ}∪
{fields(sC0 , ΦI , θs) | ac(sC0 , , , , Φ) ∈ Sn, ΦI = Πθs(F(C))Φ}∪
{fields(sDk , ΦI , θ

′
s) | ac(sDk , , , , Φ) ∈ Sn, 〈sDk , θ′s〉 ∈ In, ΦI = Πθ′s (F(D))Φ}

AO = {fields(ref Dk , ΦO, θ) | ac(ref Dk , , θ, , Φ) ∈ Sn, ΦO = Πθ(F(C))Φ}

In the above definition, we can observe that the test cases are given in terms of
the constraints in Φ. An essential aspect is that the renamings ρs and θs allow
us to establish the relation between the names for fields and variables in the
program and their corresponding constraint ones in order to generate a correct
test case. In particular, the initial state of the test case AI contains two types of

12

information: (1) in args we store the information about the constraints gathered
for the method arguments x̄ that is obtained by projecting the constraints Φ on
the original names for the input arguments that were stored in ρs, (2) in fields
the constraints for the actor fields that are obtained by projecting Φ on the
initial names for the actor fields that are stored in θs. The final state contains
the constraints for the fields gathered in the final state of the computation and
applying the renamings that have been computed in θ until the last state.

Example 6. Let us consider the TCG of method ft(n0) with limits 1, 5 and 2
resp. for the constants k in criteria loop-k, task-level and actor-number. The
following two test cases A1 = 〈AI ,AO〉 and A2=〈AI ,A′O〉, are generated from
two of the derivations in Tree7 of Fig. 4, where:

AI = {args(ft(n0), {N0 .=3}, ρ0
s), fields(sFact

0 , {M0 .=1,B0 .=null}, θ0
s)}

AO = {fields(sFact
0 , {M0

a
.

=1,B0
b
.

=null,R0
c
.

=R0∗3∗2∗1}, θ0
f), fields(sFact

1 , {M1
d
.

=1,
B1

e
.

=sFact
0 ,R1

f
.

=2}, θ1
f), fields(sFact

2 , {M2
g
.

=1,B2
h
.

=sFact
1 ,R2

i
.

=1}, θ2
f)}

being A′O as AO but replacing the first entry for sFact
0 by fields(sFact

0 , {M0
a
.

=1,
B0

b
.

=null,R0
c
.

=R0∗3∗1∗1}, θ0
f). The renamings θ0

s and ρ0
s are defined in Ex. 2 and

the remaining ones are defined as θif (mx)=Mi , θif (b)=Bi , θif (r)=Ri , where 1 ≤ i ≤
2 and “ ” refers to the corresponding subindex. Note that test case A2 reveals
the bug in the program, which is only observable when an intermediate actor
in the chain of involved actors (in this case actor sFact

1), executes task rp before
task wk, hence sending to its caller a partial result. 2

From the constraints in the test cases, it is possible to produce actual values by
relying on standard labeling mechanisms. It is also straightforward to automat-
ically generate xUnit unit tests [4].

Example 7. The following concrete test case is obtained from A1:

TI = {args(ft(n0), {n0 .=3}), fields(sFact
0 , {mx

.
=1, b

.
=null, r

.
=1})}

TO = {fields(sFact
0 , {mx

.
=1, b

.
=null, r

.
=3∗2∗1}),

fields(sFact
1 , {mx

.
=1, b

.
=sFact

0 , r
.

=2}), fields(sFact
2 , {mx

.
=1, b

.
=sFact

1 , r
.

=1})}

In this case, only field r of actor sFact
0 has been labeled (with value 1). 2

6 Implementation and Experimental Evaluation

We have implemented all the techniques presented in the paper within the
tool aPET [4], a test case generator for ABS programs, which is available at
http://costa.ls.fi.upm.es/apet. ABS [16] is a concurrent, object-oriented,
language based on the concurrent objects model, an extension of the actors
model, which includes future variables and synchronization operations. Handling
those features within our techniques does not pose any technical complication.
This section reports on experimental results, which aim at demonstrating the
applicability, effectiveness and impact of the proposed techniques during sym-
bolic execution. The experiments have been performed using as benchmarks: (i)
a set of classical actor programs borrowed from [18,21,22] and rewritten in ABS

13

http://costa.ls.fi.upm.es/apet

Ignoring task indep. info Exploiting task indep. info Reduction

Benchm. Tests Time States L/T/O Tests Time States L/T/O Tests Time

QSort(2, ,1) 236 1934 2688 332/0/1052 236 1934 2688 332/0/1052 1.0x 1.0x
QSort(3, ,1) 1728 39084 44895 4719/0/20524 1728 39084 44895 4719/0/20524 1.0x 1.0x
QSort(2, ,2) 1017 21708 19300 3455/0/7928 1017 21825 19300 3455/0/7928 1.0x 1.0x

PSort(1, ,1) 478 696 1637 2/0/172 239 347 821 2/0/86 2.0x 2.0x
PSort(2, ,1) 3423 >200s 470087 0/0/182550 3425 >200s 470451 1/0/182649 1.0x 1.0x
PSort(1, ,2)13678 19072 43341 2/0/4148 6839 9508 21673 2/0/2074 2.0x 2.0x

RSim(1, ,1) 9 8 25 1/0/2 4 5 14 1/0/2 2.2x 1.6x
RSim(2, ,1) 441 333 1350 1/0/12 14 20 80 1/0/8 31.5x 16.6x
RSim(2, ,2) 4111 3101 11841 1/0/12 59 82 340 1/0/8 69.7x 37.8x

DHT(1,4,1) 35 665 3179 733/1730/8 21 124 555 125/98/8 1.7x 5.4x
DHT(2,4,1) 97 8171 19018 2977/12639/24 55 2864 2332 349/651/24 1.8x 2.9x
DHT(1,5,1) 35 6425 30231 7065/17090/10 21 343 1623 369/226/10 1.7x 18.7x
DHT(1,5,2) 53 21092 98117 23119/57504/0 39 2615 12613 2879/3632/0 1.4x 8.1x

Mail(2,4,2) 161 1033 4540 654/5184/6 58 236 944 157/648/6 2.8x 4.4x
Mail(3,4,2) 400 12321 46760 2100/72090/24 232 1029 4310 291/3994/24 1.7x 12.0x
Mail(2,5,2) 161 4226 13756 654/9216/582 58 641 2096 157/1152/78 2.8x 6.6x
Mail(2,5,3) 161 4495 14908 660/10368/0 58 665 2240 163/1296/0 2.8x 6.8x

Cons(2, ,) 15 10 30 1/0/0 9 7 19 1/0/0 1.7x 1.4x
Cons(3, ,) 159 118 334 1/0/0 33 26 75 1/0/0 4.8x 4.5x
Cons(4, ,) 3039 2562 6639 1/0/0 153 138 351 1/0/0 19.9x 18.6x
Prod(2, ,) 29 30 52 10/0/0 17 16 31 6/0/0 1.7x 1.9x
Prod(3, ,) 398 745 819 100/0/0 82 140 169 21/0/0 4.9x 5.3x
Prod(4, ,) 9155 30268 20679 1636/0/0 465 1393 1041 85/0/0 19.7x 21.7x

Fact(2,4,2) 720 944 2430 59/0/278 270 451 1128 41/0/128 2.7x 2.1x
Fact(3,4,2) 1104 1425 3576 52/0/395 432 665 1664 38/0/171 2.6x 2.1x
Fact(2,3,2) 72 286 720 59/204/98 54 222 564 41/120/80 1.3x 1.3x
Fact(3,4,3) 3416 4704 11938 63/0/896 960 1668 4094 49/0/282 3.6x 2.8x

Table 1. Experimental evaluation (times in ms on an Intel Core i5 at 3.2GHz, 4GB)

from ActorFoundry, and, (ii) some ABS models of typical concurrent systems.
Specifically, QSort is a distributed version of the Quicksort algorithm, PSort is
a modified version of the sorting algorithm used in the dCUTE study [21], RSim
is a server registration simulation, DHT is a distributed hash table, Mail is an
email client-server simulation, Cons resp. Prod is the consume resp. produce
method in the classical producer-consumer protocol, and, Fact is the distributed
factorial in Fig. 2. All sources are available at the above website.

Table 1 shows the results of our experimental evaluation. For each bench-
mark, we perform the symbolic execution and TCG of its most relevant method(s)
with different values for k of the criteria in Sec. 5.1 (resp. loop-k, task-level and
actor-number), shown in parenthesis right after the benchmark name. We con-
sider combinations so that we can observe the impact of each criterion in the
overall process. E.g., for QSort, the impact of look-k is observed comparing ex-
ecutions with parameters (2, , 1) and (3, , 1); and the impact of actor-number
comparing executions with parameters (2, , 1) and (2, , 2). An underscore in-
dicates that it does not affect the computation, provided it is above a certain
minimum (typically 1 or 2). Also, for each benchmark and combination, we
perform the TCG both ignoring and exploiting the independency information
among tasks. After the name and criteria parameters, the first (resp. second) set
of columns show the results ignoring (resp. exploiting) task independency infor-

14

mation. For each run, we measure: the number of obtained test cases (column
Tests); the total time taken and number of states generated by the whole explo-
ration (columns Time and States); and the number of explorations, which have
been cut resp. by criteria loop-k, task-level and actor-number (column L/T/O).

A relevant point, which is not shown in the table, is that our sufficient condi-
tion for temporal stability is able to determine a stable actor in all states of all
benchmarks except for some states in benchmark PSort. This demonstrates that
our sufficient condition for stability is very effective also in symbolic execution.
Another important point to observe is the huge pruning of redundant execu-
tions performed when the task independency information is exploited. Last two
columns show the reduction in number of tests and TCG time obtained when
exploiting task independency information. In general, the more complex the pro-
grams and the deeper the exploration, the bigger is the reduction.

7 Related Work and Conclusions

We have presented a novel approach to automate TCG for actor systems, which
ensures completeness of the test cases w.r.t. several interesting criteria. In order
to ensure completeness in a concurrent setting, the symbolic execution tree must
consider all possible task interleavings that could happen in an actual execution.
The coverage criteria prune the tree in several dimensions: (1) limiting the num-
ber of iterations of loops at the level of tasks, (2) limiting the number of task
switches allowed in each concurrency unit and (3) limiting the number of con-
currency units created. Besides, our TCG framework tries to avoid redundant
computations in the exploration of different orderings among tasks. This is done
by leveraging and improving existing techniques to further reduce explorations
in dynamic testing actor systems to the more general setting of static testing.
Most related work is developed in the context of dynamic testing. The stream
of papers devoted to further reduce the search space [1, 10, 18, 22] is compatible
with our work and the TCG framework can use the same algorithms and tech-
niques, as we showed for the actor’s stability of [3]. Dynamic symbolic execution
consists in computing in parallel with symbolic execution a concrete test run.
In [13] a dynamic symbolic execution framework is presented, however, there
is no calculus for symbolic execution. In particular, the difficulties of handling
asynchronous calls and the constraints over the field data are not considered.

Acknowledgments. This work was funded partially by the EU project FP7-
ICT-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-
project.eu), by the Spanish MINECO project TIN2012-38137, and by the CM
project S2013/ICE-3006.

References

1. P. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal Dynamic Partial
Order Reduction. In Proc. POPL’14, pp. 373–384. ACM, 2014.

15

2. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, 1986.

3. E. Albert, P. Arenas, and M. Gómez-Zamalloa. Actor- and Task-Selection Strate-
gies for Pruning Redundant State-Exploration in Testing. In Proc. FORTE’14,
LNCS 8461, pp. 49-65. Springer, 2014.

4. E. Albert, P. Arenas, M. Gómez-Zamalloa, and P. Y.H. Wong. aPET: A Test Case
Generation Tool for Concurrent Objects. In Proc. ESEC/FSE’13, pp. 595–598.
ACM, 2013.

5. G. R. Andrews. Concurrent Programming: Principles and Practice. Benjam-
in/Cummings, 1991.

6. L. A. Clarke. A System to Generate Test Data and Symbolically Execute Pro-
grams. IEEE Transactions on Software Engineering, 2(3):215–222, 1976.

7. F. Degrave, T. Schrijvers, and W. Vanhoof. Towards a Framework for Constraint-
Based Test Case Generation. In Proc. LOPSTR’09, LNCS 6037, pp. 128–142.
Springer, 2010.

8. C. Engel and R. Hähnle. Generating Unit Tests from Formal Proofs. In Proc.
TAP’07, LNCS 4454, pp. 169–188. Springer, 2007.

9. J. Esparza. Model Checking Using Net Unfoldings. SCP, 23(2-3):151–195, 1994.
10. C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Check-

ing Software. In Proc. POPL’05, pp. 110-121. ACM, 2005.
11. P. Godefroid. Using Partial Orders to Improve Automatic Verification Methods.

In Proc. CAV’91, LNCS 531. pp. 176-185. Springer, 1991.
12. A. Gotlieb, B. Botella, and M. Rueher. A CLP Framework for Computing Struc-

tural Test Data. In Proc. CL’00, LNAI 1861, pp. 399–413. Springer, 2000.
13. A. Griesmayer, B. K. Aichernig, E. B. Johnsen, and R. Schlatte. Dynamic Symbolic

Execution of Distributed Concurrent Objects. In Proc. FMOODS/FORTE’09,
LNCS 5522, pp. 225-230. Springer, 2009.

14. P. Haller and M. Odersky. Scala Actors: Unifying Thread-based and Event-based
Programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

15. W.E. Howden. Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering, 3(4):266–278, 1977.

16. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. FMCO’10 (Revised Pa-
pers), LNCS 6957, pp. 142-164. Springer, 2012.

17. J. C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–
394, 1976.

18. S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha. Evaluating Ordering
Heuristics for Dynamic Partial-Order Reduction Techniques. In Proc. FASE’10,
LNCS 6013, pp. 308-322. Springer, 2010.

19. C. Meudec. ATGen: Automatic Test Data Generation using Constraint Logic
Programming and Symbolic Execution. STVR, 11(2):81–96, 2001.

20. R. A. Müller, C. Lembeck, and H. Kuchen. A Symbolic Java Virtual Machine for
Test Case Generation. In Proc. IASTEDSE’04, pp. 365–371. ACTA Press, 2004.

21. K. Sen and G. Agha. Automated Systematic Testing of Open Distributed Pro-
grams. In Proc. FASE’06, LNCS 3922, pp. 339-356. Springer, 2006.

22. S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha.
TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing Ac-
tor Programs. In Proc. FMOODS/FORTE’12, LNCS 7273, pp. 219-234. Springer,
2012.

23. N. Tillmann and J. de Halleux. Pex: White Box Test Generation for .NET. In
Proc. TAP’08, LNCS 4966, pp. 134-153. Springer, 2008.

16

	Test Case Generation of Actor Systems

