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Recently we have shown that exclusive QCD photon-induced reactions at low Mandelstam-t are
best described by Regge exchanges in the entire scaling region, and not only for low values of Bjorken-
x. In this paper we explore this crucial Regge behavior in Deeply Virtual Compton Scattering from
the point of view of collinear factorization, with the proton tensor written in terms of Generalized
Parton Distributions, and we reproduce this feature. Thus it appears that in the Bjorken limit, a
large class of hard, low-t exclusive processes are more sensitive to the meson cloud of the proton than
to its fundamental quark structure. These process will then be described most efficiently by process-
dependent Regge Exclusive Amplitudes rather than by universal Generalized Parton Distributions.
We introduce such Regge Exclusive Amplitudes for Deeply Virtual Compton Scattering.
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I. INTRODUCTION

Nowadays it is common to consider deeply virtual
exclusive electroproduction of mesons or photons in
the context of generalized parton distributions (GPD’s)
[1, 2, 3, 4, 5]. In the case of deeply virtual Compton
scattering (DVCS) [6, 7], a single initial quark near its
mass shell becomes highly virtual after it interacts with
the off-shell photon. This virtual quark propagates es-
sentially without interaction with the quark and gluon
spectators until it radiates a real photon. To produce a
final hadron in place of a real photon, the off-shell quark
can radiate a hard gluon that enhances its correlation
with soft quarks and antiquarks around the target, and
hence increases the probability of hadronization into a
single meson.

In the language of QCD factorization [8, 9], exchange
of a single off-shell quark between the interaction point
for the virtual photon and real photon (or meson, in the
case of hard exclusive meson production) corresponds to
application of the operator product expansion to a prod-
uct of electromagnetic currents and/or meson interpolat-
ing fields. In the center of mass frame between the initial
quark and virtual photon, the incoming quark has one
large momentum component and is nearly on its mass
shell. To obtain amplitudes in terms of generalized par-
ton distributions it is necessary to ignore the other, small
momentum components and quark masses.

An alternative approach to exclusive processes involv-
ing strong interactions is based on identifying singulari-
ties of the scattering amplitude close to the physical re-
gion of the relevant kinematical variables. In particu-
lar one expects physical states with quantum numbers
of the t-channel to dominate processes involving two-

to-two particle scattering, ab → cd at low momentum
transfer to the target, t = (pd − pb)

2 < 0 and large
values of s (the square of the center of mass energy)
s = (pa + pb)

2 >> −t. Inclusion of all allowed t-channel
exchanges leads to the Regge-type dependence, of the
scattering amplitude A(s, t)

A(s, t) ∼ sα(t) (1)

on the center of mass energy s where for low momentum
transfer −t <∼ 1 GeV2. In Eq. (1) the intercept α(t) of the
Regge trajectory is a positive number less than one (with
exception of diffractive scattering which in this language
corresponds to the Pomeron exchange). The microscopic
picture of exclusive electroproduction suggested by Regge
phenomenology differs substantially from an explanation
predicated on generalized parton distributions. Qualita-
tively, the Regge picture corresponds to virtual photon
scattering from quarks in the meson cloud around the
bare nucleon, as opposed to the virtual photon scatter-
ing from quarks in the core of the nucleon, as implied by
the connection between GPD’s and the spatial distribu-
tion of valence quarks [10, 11].

A distinguishing feature of the GPD mechanism is am-
plitude scaling in terms of Bjorken variables, i.e. at fixed
momentum transfer and mass of the produced hadron (or
photon) the hadronic part of electroproduction ampli-
tudes [12] is predicted to be a function of −q2 = Q2, the
photon virtuality and xB ≡ Q2/(2ν) where ν = pa · pb is
the energy of the virtual photon in the target rest frame.
Furthermore at fixed Bjorken xB QCD makes specific
predictions for the leading order large-Q2 dependence.
In the Regge case, the amplitude is expected to be a
function of both Q2 and ν.

Recent results on exclusive vector and pseudoscalar
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meson production from JLab [13] and HERMES [14] gen-
erally do not exhibit the Q2 scaling predicted by QCD.
In the case of meson production, the γ∗p → Mp cross-
section is predicted to fall as 1/(Q2)n with n = 3, while
Jlab ω production data and HERMES π+ data taken in
a similar kinematic range give n ∼ 2. Earlier data [15]
on ρ0 production might be consistent with QCD expec-
tations, but these results appear to be softer than the
n = 3 predicted by QCD scaling.

DVCS data from Hall A at Jefferson Laboratory [16]
and HERMES [14] appear to be consistent with the
Q2-independent amplitude predicted by QCD [17], how-
ever the available Q2 window is quite small, from 1.5 −
2.5 GeV2 and within the published experimental errors
one cannot rule out a power-like dependence of the am-
plitude, A ∝ (Q2)α, with α as large as 0.25. Perhaps
even more surprising, ”standard” Regge-exchange mod-
els have proved successful in describing a variety of dif-
ferential cross sections [13, 18], in the kinematical range
where scaling would be expected based on comparisons
with deep inelastic scattering (DIS). As we see it, a fun-
damental question is whether the success of the Regge
picture is accidental. If not, this immediately raises the
question of how one can disentangle scattering off the
meson cloud from effects of nucleon tomography.

It is well known that Regge exchanges also contribute
to DIS structure functions [19], but their contribution is
restricted to very low xB ∼ 0. Once it was realized that
Regge exchange may play a significant role in exclusive
electroproduction, attempts have been made to incorpo-
rate Regge effects using analogies with DIS, i.e to restrict
Regge contributions in exclusive electroproduction reac-
tions to low-xB so that scaling is not otherwise modified
[20, 21, 22, 23]. To the best of our knowledge it has not
been proven that Regge contributions should only con-
tribute to exclusive amplitudes in this domain, and in fact
in Ref. [24] we provide arguments that, in a certain kine-
matic regime, Regge effects should be substantial even at
large xB .

In this paper, we investigate further this issue. In
Ref. [24] we analyzed hard exclusive reactions by examin-
ing the high-energy behavior of t-channel exchange pro-
cesses. Here we will show that utilization of an s-channel
framework, in which one analyzes the “hand-bag” dia-
grams that are used in extracting GPDs, leads to the
same conclusions reached in Ref. [24], i.e. we show that
in the region of high energy and small t, Regge effects
should make sizeable contributions to hard exclusive am-
plitudes.

In this s-channel formalism we are able to explore the
interplay between Regge behavior in the parton-nucleon
amplitude and the hard interaction induced by the vir-
tual photon. We will show that there are crucial differ-
ences between DIS and DVCS hand-bag diagrams which
make Regge components of the soft parton-nucleon am-
plitude much more pronounced for DVCS than for DIS.
We find that the difference between these processes arises
when one attempts a collinear factorization of the quark

propagators occuring in these processes. In the presence
of Regge behavior in the parton-nucleon amplitude, the
DVCS formalism is ill-defined. We then compute the
hand-bag diagram using the full hard quark propagator.
For hard exclusive processes, the divergent terms that
are introduced produce a non-analytic, non-scaling de-
pendence on the photon virtuality.

This has the following effect on the hard exclusive am-
plitudes. First, the breakdown of factorization means
that the soft amplitudes are not universal, but are
process-dependent. Second, in the region of small t Regge
effects will make substantial contributions to DVCS and
exclusive meson production. Third, the Q2 behavior of
these hard exclusive processes should be different from
that predicted from scaling arguments.

Our paper is organized as follows. In the following
Section we introduce the framework and consider the
case of collinear factorization. We review both DIS and
DVCS reactions, and we show that the DVCS formalism
is ill-defined in the presence of Regge-like behavior in the
parton-nuclon amplitude. In Section III we compute the
hand-bag diagram with the full hard quark propagator
and show how the divergent would-be collinear factor-
ization forces a non-analytical, non-scaling dependence
on the photon virtuality. We derive the Q2 behavior for
hard exclusive processes and show how it differs from
scaling predictions, and how this Q2 behavior is related
to the leading Regge trajectories. We analyze existing
DVCS and exclusive meson data, and show that their
Q2 behavior is, at least qualitatively, consistent with our
predictions.

II. COLLINEAR FACTORIZATION IN

PRESENCE OF REGGE ASYMPTOTICS

The hadronic tensor that describes electromagnetic
transitions in double diagonal DIS γ∗p → γ∗p or off-
diagonal γ∗p→ γp DVCS reactions, is given by

T µν = i

∫
d4zei

q′+q

2
z〈p′λ′|TJµ(z/2)Jν(−z/2)|pλ〉. (2)

In Eq. (2), q is the four momentum of the virtual pho-
ton, q2 < 0, q′ = q + p − p′ ≡ q − ∆, and q′2 = 0 is the
momentum of the real photon produced in DVCS. In the
case of DIS, q′2 = q2 and ∆ = 0 and the DIS cross sec-
tion is proportional to the discontinuity of T across the
cut in (p + q)2. Even though we will explicitly consider
only the kinematics relevant for either DIS or DVCS the
analysis can easily be extended to the more general case
of arbitrary time-like q′ which is relevant, for example
for meson electroproduction. The currents are given by
Jµ(z) =

∑
q eqJ

µ
q (z), Jµ

q (z) = ψ̄(z)γµψ(z) where ψ is the
quark field operator and eq is the quark charge. Through-
out this paper we will consider a single quark flavor. For
large Q2 the z-integral peaks at z2 ∼ 1/Q2 and using
the leading order operator product expansion of QCD we
replace the product of the two currents by a product of
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two quark field operators and a free propagator between the photon interaction points (z/2,−z/2)

T µν = −e2q

∫
d4zd4k

(2π)4

[
γµ

(
6k +

6q + 6q′

2

)
γν

]

αβ(
q+q′

2 + k
)2

+ iǫ
〈p′λ′|Tψα(z/2)ψβ(−z/2)|pλ〉

[
e−ikz − e+ikz(µ ↔ ν)

]

≡ −ie2q

∫
d4k

(2π)4





[
γµ

(
6k +

6q + 6q′

2

)
γν

]

αβ(
q+q′

2 + k
)2

+ iǫ

−

[
γν

(
−6k +

6q + 6q′

2

)
γµ

]

αβ(
q+q′

2 − k
)2

+ iǫ




Aβα(k,∆, p, λ, λ′).

(3)

Here A is the parton-nucleon scattering amplitude un-
truncated, with respect to the parton legs,

Aβα ≡ Aβα(k,∆, p, λ′, λ)

Aβα = −i

∫
d4ze−ikz〈p′λ′|T ψ̄α(z/2)ψβ(−z/2)|pλ〉.

(4)

As in Refs. [25, 26, 27, 28, 29], we assume that de-
spite its non-physicality, the analytical properties of the
parton-nucleon amplitude display structures in the com-
plex plane similar to conventional hadron scattering am-
plitudes. This is necessary if such amplitudes are to
be of any use at all, i.e. if they are to be connected
to asymptotic properties of QCD [30]. The T -ordered
product could then be replaced by a normal ordered
product corresponding to generalized parton distribu-
tions [32]. For the purpose of our study it will be
more efficient to deal directly with the T -ordered am-
plitudes. The parton-nucleon amplitude is a function
of four variables and the nucleon helicities. The vari-
ables are k2

1 = (∆/2 − k)2, k2
2 = (−∆/2 − k)2 the

(virtual) masses of the incoming and outgoing partons
(∆ = p′ − p = q− q′), s = (p+ k1)

2 = [(p+ p′)/2− k]2 is
the square of the center of mass energy in the s-channel,
u = (p′ − k1)

2 = [(p′ + p)/2 + k]2 is the square of the
center of mass energy in the u-channel. Together with
the four-momentum transfer, t = (p′ − p)2 = ∆2 they
satisfy s+ t+u = k2

1 +k2
2 +2M2 where M is the nucleon

mass.
To obtain DIS scaling relations it is necessary to as-

sume that the parton-nucleon amplitude has cuts for pos-
itive s and u. We will be interested primarily in the im-
plications of the high-s or u behavior at low t where the
amplitude is expected to be helicity conserving. Further-

more to reproduce the scaling limit of DIS and to preserve
current conservation, the dependence on the parton spin
(Dirac) indices must be of the formAβα ∝ 6kβα, or [γ5 6k]βα

The former (latter) contributes respectively to the sym-
metric (antisymmetric) parts of the hadronic tensor T µν .

p p'A
parton N -> parton N

k_ -∆
2

k
2

-_∆-

FIG. 1:

Parton-nucleon scattering amplitude

Finally for fixed-t we arrive at the general representation
of the parton-nucleon amplitude in the form,

A = A+ 6kβα

4
δλ′λ +A−

[γ5 6k]βα

4
τ3
λ′λ , (5)

with the factor of 1/4 introduced for later convenience
and with the amplitudes A± having the Mandelstam rep-
resentation,

A± = (2π)4
∫

dµ2
1dµ

2
2dm

2

(µ2
1 − k2

1 − iǫ)(µ2
2 − k2

2 − iǫ)

[
ρ±s (µ2

1, µ
2
2,m

2, t)

m2 − s− iǫ
±
ρ±u (µ2

1, µ
2
2,m

2, t)

m2 − u− iǫ

]
+ subtractions. (6)
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At asymptotically high energies, the quark and anti-
quark structure functions are becoming identical which
implies that the s and u-channel spectral functions be-
come identical, and so for large m2 ρ±u ∼ ρ±s . These
amplitudes are in principle different in the valence (finite
m2) region. Even though we are primarily interested in
the large-m2 region we will distinguish between the s
and u spectral functions in order to be able to keep track
of quark and antiquark contributions. The dependence
of the spectral density ρ± on µ2

1 and µ2
2 determines the

dependence of the parton-nucleon scattering amplitude
on parton virtualities. In perturbation theory [25] one

would have ρ ∝ δ(µ2
1 −m2

q)δ(µ
2
2 −m2

q) where mq is the
bare quark mass. For the bound state nucleon, however,
ρ is expected to be softer [26, 29], e.g in order to re-
produce correctly the large Q2 fall-off of the form factors
[33]). The spin structure of A could be more complicated
than given by the two terms in Eq. (5), for example there
could be terms proportional to 6p, 6p′, or 6pγ5 etc. [26]. As
will be clear from the the discussion that follows, how-
ever, it is the terms proportional to 6k that lead to the
Regge behavior of the structure functions and thus will
be considered here. Without loss of generality we can
take

ρ±u,s(µ
2
1, µ

2
2,m

2) → ρ±u.s(m
2, t)(µ2)n dn

d(µ2)n

[
δ(µ2

1 − µ2)δ(µ2
2 − µ2)

]
, (7)

with n ≥ 1, where for simplicity we use a single scale µ
for both partons (inclusion of charge symmetry breaking
effects is an obvious generalization). The most general
spectral density can always be written as a linear combi-
nation of functions of this type ρ =

∑
n cnρn. Henceforth

we will omit the subindex on ρn. As we have already
discussed, for low m2 this amplitude is expected to be
sensitive to poles and cuts associated with low energy
resonances and few-particle production thresholds. For
large m2 it is expected to be dominated by the leading
Regge trajectory,

ρ±u,s(m
2, t) = ρ±u,s,V (m2, t) + ρ±u,s,R(m2, t). (8)

For large m2, the valence part ρ±u,s,V (m2) falls off with

m2 and does not require subtractions, On the contrary
for large m2 the Regge part, ρ±u,s,R(m2) behaves as

ρ±u,s,R(m2, t) → β±

u,s(t)

(
m2

µ2

)α±
u,s(t)

, (9)

where 0 < α±
u,s(t) < 1 for small t and requires one

subtraction in Eq. 6. Here we consider only the quark
contribution, as opposed to gluon exchanges which lead
to diffractive, Pomeron-type contributions with α > 1.
These could also be effectively included but would re-
quire additional subtractions. As we are interested in
the low-t limit, we have approximated the intercepts and
residues by their values in the limit t→ 0.

In the following we will be interested in the role of
the Regge (high energy) component and thus the parton-
nucleon amplitude can be written,

A±(s, u, k2
1, k

2
2) = (2π)4

∫
dm2

{[
ρ±s (m2)

m2 − s− iǫ
−
ρ±s,R(m2)

m2 − iǫ

]
± (s→ u)

}
In

1

(µ2 − k2
1 − iǫ)(µ2 − k2

2 − iǫ)
, (10)

where in Eq. (10), In = (µ2)ndn/d(µ2)n. It should be
noted that as long as s and u channel spectral functions
are identical, subtractions are really only necessary for
A+ while they cancel in A−. We are now in position

to evaluate the two diagrams (direct and crossed) that
contribute to the hadronic tensor W as shown in Fig. 2.

For the symmetric part the leading contribution in the
Bjorken limit is given by
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A

p p′

µ ν

+

A

p p′

µ ν

Tµν
=

q+q′

2 +k

q+q′

2 −k

∆
2 −k −∆

2 −k

−∆
2 −k ∆

2 −k

q q′

q q′

FIG. 2:

u and s channel contributions to the DVCS amplitude

T µν
+ = −δλ′λe

2
q

∫
d4kdm2

i




ρ+
s (m2)

(
p+p′

2 − k
)2

−m2 + iǫ
−

ρ+
s (m2)

−m2 + iǫ
+ (s→ u, k → −k)




× In

[
1[

(∆
2 − k)2 − µ2 + iǫ

] [
(∆

2 + k)2 − µ2 + iǫ
]
]

×




(
k + q+q′

2

)µ

kν + (µ ↔ ν) − gµν
(
k + q+q′

2

)
· k

(
q+q′

2 + k
)2

+ iǫ
−

(
−k + q+q′

2

)µ

kν + (µ ↔ ν) − gµν
(
−k + q+q′

2

)
· k

(
q+q′

2 − k
)2

+ iǫ


 .(11)

Similarly the leading contribution to the antisymmetric
part can be written,



6

T µν
− = −τ3

λ′λe
2
q

∫
d4kdm2

i




ρ−s (m2)
(

p+p′

2 − k
)2

−m2 + iǫ
−

ρ−s (m2)

−m2 + iǫ
− (s→ u, k → −k)




× In

[
−iǫµρνη

[
(∆

2 − k)2 − µ2 + iǫ
] [

(∆
2 + k)2 − µ2 + iǫ

]
]


(
k + q+q′

2

)

ρ
kη

(
q+q′

2 + k
)2

+ iǫ
+

(
−k + q+q′

2

)

ρ
kη

(
q+q′

2 − k
)2

+ iǫ


 . (12)

To obtain an expression in terms of structure functions
or generalized parton amplitudes, one applies a collinear
factorization to the quark propagator in the last square
bracket in Eqs. (11) and (12). We will first consider the
diagonal case, q = q′. In this case T is the analog of the
hadronic amplitude for forward virtual Compton scat-
tering, whose imaginary part is proportional to the DIS
cross-section.

A. The DIS Reaction γ∗p → γ∗p

It is convenient to express all momenta in terms of
light cone components, aµ = (a+, a−, a⊥) with a± =
a0 ± az , a⊥ = (a1, a2) and to choose a frame in which,
p = p′ = (P+,M2/P+, 0⊥), q = q′ = (0, Q2/xBP

+, Q⊥),
with −q2 = −q′2 = Q2 = Q2

⊥
. Since the nucleon mass

M does not play a role in our discussion, for simplicity
we will set it to zero. The hard quark propagators (the
term in the last square bracket in Eqs. (11,12)) become

1
(

q+q′

2 ± k
)2

+ iǫ

→
xB

Q2

1

(−xB ± k+

P+ + iǫ)
(13)

where following the collinear approximation k ∝ P we

have ignored terms of the order |k⊥|/
√
Q2. The leading

contribution to the numerator comes from the terms that
maximally involve the photon momentum; the term in
the last square bracket in Eq. (11) can be written as

[· · · ] = [nµp̃ν + nν p̃µ − gµν(n · p̃)]
(k+/P+)2

(
k+

P+

)2

− xB
2 + iǫ

(14)
where we have introduced the vectors, nµ = (0+, 2, 0⊥)
(n · a = a+) and p̃µ ≡ pµ/P+. In the next step
we combine all of the propagators using the Feynman
parametrization, and we obtain

T µν
+ = −δλ′λe

2
q [nµp̃ν + nν p̃µ − gµν(n · p̃)]

∫
d4k

i

∫
dm2

∫ 1

0

dx




(k+/P+)2
(

k+

P+

)2

− xB
2 + iǫ




×

[
ρ+

s (m2)In

(
2(1 − x)

[(k − xp)2 − xm2 − (1 − x)µ2 + iǫ]
3 −

1

−m2(k2 − µ2 + iǫ)2

)
+ (s→ u, k → −k)

]
.

(15)

Finally we perform the k− and k⊥ integrals using [34]

∫
dk−d2k⊥

2i(k2 + a2 + iǫ)α
= π2 Γ(α− 2)

Γ(α)

δ(k+)

(a2 + iǫ)α−2
(16)

to obtain,

T µν
+ = δλ′λe

2
q [nµp̃ν + nν p̃µ − gµν(n · p̃)]

∫ 1

0

dx
2x

xB
2 − x2 − iǫ

[
fq(x) + f̄q(x)

]
(17)

Here fq(x), f̄q(x) are the quark and antiquark structure
functions, respectively, which are given by
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fq(x) =
π2

2
µ2θ(1 − x)

∫
dm2ρ+

s (m2)In−1
x(1 − x)2

[xm2 + (1 − x)µ2]2
= fV (x) + fR(x)

f̄q(x) =
π2

2
µ2θ(1 − x)

∫
dm2ρ+

u (m2)In−1
x(1 − x)2

[xm2 + (1 − x)µ2]2
= f̄R(x)

(18)

There is no “valence” contribution to the antiquark dis-
tribution. Increasing n produces more powers of (1 − x)
that soften the propagator, form factors, and simulta-
neously the x → 1, end-point behavior of the parton
distribution functions (PDFs), as dictated by the Drell-

Yan-West relation [35]. The valence part of the spectral
function vanishes in the limit of large-m2, which implies
that the valence structure functions are proportional to
x as x → 0. The low-x behavior originating from the
Regge part of the spectral function is given by

fR(x) = (µ2)1−α+
s
xπ2β+

s

2
In−1

∫ ∞

0

dm2(m2)α+
s

(xm2 + µ2)2
→ (µ2)1−α+

s In−1
π2β+

s

2(µ2)1−α+
s

[
πα+

s

sinπα+
s

1

xα+
s

]
≡
γα+

s

xα+
s

(19)

and for the antiquark distribution f̄q(x) one needs to re-
place s → u. As expected the small-x behavior of the
structure function is determined by the leading high-
energy behavior of the parton-nucleon amplitude.

A similar analysis for the antisymmetric part, T µν
− ,

gives

T µν
− = ie2qǫ

µν
03τ

3
λ′λ

∫ 1

0

2xB

xB
2 − x2 − iǫ

[
∆fq(x) + ∆f̄q(x)

]
,

(20)

where

∆fq(x) =
π2

2
µ2θ(1 − x)

∫
dm2ρ−s (m2)In−1

x(1 − x)2

[xm2 + (1 − x)µ2]2
= ∆fV (x) + ∆fR(x)

∆f̄q(x) =
π2

2
µ2θ(1 − x)

∫
dm2ρ−u (m2)In−1

x(1 − x)2

[xm2 + (1 − x)µ2]2
= ∆f̄R(x).

(21)

Since antiquarks are expected to dominate in the sea re-
gion, the valence part ρ−u,V can be neglected in this re-
gion. The low-x behavior of the spin dependent struc-
ture functions is determined by the Regge part and is

proportional to 1/xα−
u or 1/xα−

s for ∆fq(x) or ∆f̄q(x),
respectively. We note that the subtraction terms do not
contribute to the hadronic tensor. This is related to the
small-x behavior of the structure functions, which are
integrable over the low-x region since we assume α < 1.
The hard propagators in the collinear approximation do
not spoil the convergence of the integrals over low-x. It

is important to realize, however, that this need not be
the case in general. For example in the scalar model it
was shown that the full T µν amplitude has a constant
component (independent of Q2 and xB), the so-called
J = 0 pole contribution in the language of Regge phe-
nomenology. This component originates from the seag-
ull coupling of both photons to the quark at the same
space-time point, as required by QED gauge invariance.
This interaction alone leads to a divergent contribution
of the form

∫
0
dxfq(x)/x (as opposed to

∫
0
dxfq(x) found

above) which gets regulated as x → 0 precisely by the
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subtraction term [27, 28, 29]. Thus in the scalar case
the subtraction term is essential for producing a finite
Compton amplitude.

From this discussion it should be clear that the con-
vergence of the low-x integration may be a special rather
than a general feature of these amplitudes. In Sec. II C
we show that convergence arises for DVCS in a different
manner than for DIS.

B. Normalization

The structure functions fq(x) and f̄q(x) represent
probability densities for finding a quark or antiquark of
a particular flavor q in the nucleon and as such need to
be normalized to the net number of quarks of that flavor
in the proton, (e.g. nq = (0, 1, 2) for s, d and u quarks
in the proton, respectively)

∫ 1

0

dx[fq(x) − f̄q(x)] = nq. (22)

Below we verify that this is consistent with the nor-
malization of the vector current which is also sensi-
tive to quark densities. The normalization of the di-
agonal matrix element of the electromagnetic current,
J+(0) = eqψ̄(0)γ+ψ(0), is given by

〈pλ′|eqJ
+
q (0)|pλ〉 = equ(p, λ

′)γ+u(p, λ)F q = 2P+δλ′λeqF
q.

(23)
The factor of 2 on the r.h.s of Eq. (23) comes from the
relativistic normalization of states and F q is the con-
tribution to the proton charge from the particular quark
flavor. In terms of the parton-nucleon amplitudes defined
in Eq. (4), the vector current matrix element is given by

〈pλ′|eqJ
+
q (0)|pλ〉 = −eq

∫
d4k

i(2π)4
Tr[γ+A] = −eq

∫
d4k

i(2π)4
Tr[γ+A+ 6 k

4
]

= eqδλ′λ

∫
d4kdm2

i
k+

[
ρ+

s (m2)

(p− k)
2
−m2 + iǫ

−
ρ+

s (m2)

−m2 + iǫ
− (s→ u, k → −k)

]
In

1

(k2 − µ2 + iǫ)2

= 2P+δλ′λeq

∫ 1

0

dx[fq(x) − f̄q(x)]. (24)

Thus as expected the quark and antiquark structure func-
tions contribute with opposite signs. We also note that
the subtraction terms do not contribute, since for these
terms the integrand is antisymmetric in k+. The nor-
malization of the spin dependent structure functions is
related to the axial current matrix element J+

5 (0) =
ψ̄(0)γ+γ5ψ(0)

〈pλ′|J+
5q(0)|pλ〉 = ū(p, λ′)γ+γ5u(p, λ)g

q
A = 2P+gq

Aτ
3
λ′λ.

(25)
In Eq. (25) gq

A denotes the contribution from a single
quark flavor to the nucleon axial charge, and in terms of

the spin-dependent structure functions should be given
by

gq
A =

∫ 1

0

dx
[
∆fq(x) + ∆f̄q(x)

]
. (26)

Indeed, expressing the axial current matrix element in
terms of the parton-nucleon amplitude we obtain

〈pλ′|J+
5q(0)|pλ〉 = −

∫
d4k

i(2π)4
Tr[γ+γ5A] = −

∫
d4k

i(2π)4
Tr[γ+A−

6k

4
]

= τ3
λ′λ

∫
d4kdm2

i
k+

[
ρ−s (m2)

(p− k)
2
−m2 + iǫ

−
ρ−s (m2)

−m2 + iǫ
− (s→ u, k → −k)

]
In

1

(k2 − µ2 + iǫ)2

= 2P+τ3
λ′λ

∫ 1

0

dx
[
∆fq(x) + ∆f̄q(x)

]
. (27)
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In the following Section we will consider the collinear
approximation for the DVCS amplitude.

C. The DVCS Reaction γ∗p → γp

When ∆ 6= 0 it is convenient to choose a frame with
the following momentum coordinates [36] (where again
we ignore the nucleon mass), p = [P+, 0, 0⊥], p′ = [(1 −
ζ)P+,∆2

⊥
/(1 − ζ)P+,∆⊥], q = [0, (Q⊥ − ∆⊥)2/ζP+ +

∆2
⊥
/(1 − ζ)P+, Q⊥], q′ = [ζP+, (Q⊥ − ∆⊥)/ζP+, Q⊥ −

∆⊥]. In the Bjorken limit, at small momentum transfer,
ζ = xB +O(−t/Q2) and −t = ∆2

⊥
/(1− ζ). Since we are

interested in the small-t region we also set ∆⊥ = 0 which
also implies ∆2 = 0 (∆ → [−ζP+, 0, 0⊥]). To facilitate
comparison with standard formulas it is convenient to
shift the integration variable in Eqs. (11), (12) from k to

k̃ ≡ k + ∆/2. In the collinear approximation, the hard

propagators become

1
(

q+q′

2 + k̃ − ∆/2
)2 ±

1
(

q+q′

2 − k̃ + ∆/2
)2

=
1

(q′ + k̃)2 + iε
±

1

(q − k̃)2 + iε

=
xB

Q2

[
1

ek+

P+ + iǫ
±

1

−xB −
ek+

P+ + iǫ

]
. (28)

Next we combine the two soft propagators,

1[
(∆ − k̃)2 − µ2

] [
k̃2 − µ2

] =

∫ 1

0

dr
1

[
(k̃ − r∆)2 − µ2 + iǫ

]2

(29)
and for T µν

+ we obtain,

T µν
+ = −δλ′λe

2
q

1

2
[nµp̃ν + nν p̃µ − gµν(n · p̃)]

∫
d4k̃dm2

i

∫ 1

0

dr

∫ 1

0

dx

[
1

ek+

P+ + iǫ
−

1

−xB −
ek+

P+ + iǫ

](
k̃+

P+
−

∆+

2P+

)

×

[
ρ+

s (m2)In

(
2(1 − x)

[(k̃ − xp′ − (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3
−

1

−m2[(k̃ − r∆)2 − µ2 + iǫ]2

)

+ ρ+
u (m2)In

(
2(1 − x)

[(k̃ + xp− (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3
−

1

−m2[(k̃ − r∆)2 − µ2 + iǫ]2

)]

(30)

and after integrating over k̃− and k̃⊥, we obtain a formal
relation that is reminiscent of the standard leading-twist
DVCS formula in terms of GPD’s. The hadronic tensors,
spectral functions and generalized parton distributions
here all represent the contribution from a single quark

flavor; we have not included the quark flavor indices but
they are implicit. As will be discussed shortly, this ex-
pression for DVCS fails to be convergent in the presence
of Regge behavior.

T µν
+ = −e2qδλ′λ [nµp̃ν + nν p̃µ − gµν(n · p̃)]

[∫ 1

0

dxH+(x, xB)

(
1

x− iǫ
+

1

x− xB + iǫ

)
+
f0(x) + f̄0(x)

x

∫ 1

0

dr
(1 − 2r)2

2r(1 − r)

]
.

(31)

Here f0 and f̄0 are given by Eq. (18) without (1− x)2 in
the numerator. Just as in the symmetric case analyzed
above in the context of DIS, the contribution given by
the quark (antiquark) distribution fq(x) (f̄q(x)) comes
from the s-channel (u-channel) spectral function respec-

tively. The δ-function which arises after k̃− integration

fixes k̃+/P+ in terms of the Feynman parameter-x, and

leads to both positive and negative k̃+/P+.

We immediately note that the last term in Eq. (31),
which originates from the subtractions in the parton-
nucleon amplitude needed for the Regge term, not only
contributes but is in fact singular, since the integral di-
verges for both r → 0 and r → 1 and it has the same
sign at both limits. The generalized parton distribution
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H+ appearing in Eq. (31) is given by

H+(x, xB) = (x− xB/2)

∫ 1

0

dr

∫ 1

0

dy

y

× δ [x− y − (1 − y)rxB ]
[
fq(y) + f̄q(y)

]

(32)

and it is the C−even generalized parton distribution [5].
It can easily be checked that H+ satisfies the correct
normalization conditions

∫ 1

0

dx
H+(x, xB)

1 − xB/2
=

∫ 1

0

dx[fq(x) + f̄q(x)] (33)

and

H+(x, 0) = fq(x) + f̄q(x). (34)

Even though the integrals over x and H+(x, 0) are fi-
nite, H+ is defined by Eq. (32) which is singular. This
can be seen by doing the y integral using the δ function
and then changing variables to z = (x− rxB)/(1 − rxB)
and expressing Eq. (32) in the form

H+(x, xB) =
x− xB/2

xB

[
θ(xB − x)

∫ x

0

dz

z(1 − z)
[fq(z) + f̄q(z)] + θ(x− xB)

∫ x

x−xB
1−xB

dz

z(1 − z)
[fq(z) + f̄q(z)]

]
. (35)

First, there is the singularity of H+ which is of the
same type as in the Regge subtraction term discussed
above. It comes from the lower limit of the integral in
the term proportional to θ(xB − x) in Eq. (35). After
integrating over the first hard propagator (1/[x− iǫ]) in
Eq. (31), the contribution from this singularity to the
hadronic tensor T µν

+ in the region x ∼ 0 is given by

−
1

2

∫

0

dx

x

∫

0

dz

z
[fq(z) + f̄q(z)], (36)

and after integrating over the second hard propagator
1/[x− xB + iǫ], in the vicinity x ∼ xB

− gives,

+
1

2

∫ xB dx

x− xB

∫

0

dz

z
[fq(z) + f̄q(z)] =

= −
1

2

∫ xB dx

xB − x

∫

0

dz

z
[fq(z) + f̄q(z)] (37)

The sum of these two exactly cancels the singularities
from the Regge subtraction term.

There are however, residual singularities in the DVCS
amplitude which originate from the Regge behavior of
H+. Consider the contribution to the x-dependence of
H+ from the upper region of integration of the term pro-
portional to θ(xB − x) in Eq. (35). The low-x Regge
behavior of the quark and antiquark structure functions

is fq(x) ∼ 1/xα+
s and f̄q(x) ∼ 1/xα+

u , so the quark and
antiquark distributions give contributions to H+ of the
general form

H+(x ∼ 0) ∼
1

2α

1

xα
. (38)

The integral over the first hard propagator in Eq. (31)
thus gives a contribution to the DVCS amplitude

∫

0

dxH+(x, xB)
1

x− iǫ
∼ O

(
1

ǫα

)
(39)

which is divergent for 0 < α < 1.

Similarly, as x → xB
+ the term in Eq. (35) for H+

proportional to θ(x − xB), by virtue of the Regge form
for fq(z) and/or f̄q(z) ∝ 1/zα, is dominated by the lower
limit of the integral over z, leading to

H+(x ∼ xB
+) ∼

1

2α

(1 − xB)α

(x− xB)α
(40)

Using the form of H+ from Eq. (40) in Eq. (31), and
integrating over the second hard propagator, (1/[x−xB+
iǫ]), gives a contribution to the DVCS amplitude of the
form

∫

xB

dx
H+(x, xB)

x − xB + iǫ
∼ (1 − xB)αO

(
1

ǫα

)
. (41)

These residual singularities must originate from the
collinear approximation since after Regge subtraction
there is no reason to expect that the expression for T µν

+

in Eq. (11) will be singular. In other words, to properly
regularize those singularities it will be necessary to retain
the full momentum dependence of the hard propagators.

We note that the problem arises from the Regge contri-
bution to the soft part of the handbag diagram. The va-
lence spectral functions do not require subtraction, thus
their contributions to T µν

+ do not have the singularity

associated with the (f0(x) + f̄0(x))/x term in Eq. (31).
Furthermore valence structure functions vanish at small-
x. As a result, the valence contributions vanish in the
regions H+(x ∼ 0) and H+(x ∼ xB

+), so no singulari-
ties appear of the type given in Eqs. (39) and (41).

A similar analysis of the antisymmetric contribution
yields,
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T µν
− = −ie2qǫ

µν
03τ

3
λ′λ

1

2

∫
d4k̃ dm2

i

∫ 1

0

dr

∫ 1

0

dx

[
1

ek+

P+ + iǫ
+

1

−xB −
ek+

P+ + iǫ

](
k̃+

P+
−

∆+

2P+

)

×

[
ρ+

s (m2)In

(
2(1 − x)

[(k̃ − xp′ − (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3
−

1

−m2[(k̃ − r∆)2 − µ2 + iǫ]2

)

− ρ+
u (m2)In

(
2(1 − x)

[(k̃ + xp− (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3
−

1

−m2[(k̃ − r∆)2 − µ2 + iǫ]2

)]
,

(42)

T µν
− = ie2qǫ

µν
03τ

3
λ′λ

[∫ 1

0

dxH̃+(x, xB)

(
1

x− iǫ
−

1

x− xB + iǫ

)
−

∆f0(x) − ∆f̄0(x)

x

∫ 1

0

dr
(1 − 2r)

2r(1 − r)

]
. (43)

In this case the infinities arising from the r = 0 and
r = 1 points in the last term in Eq. (43) cancel each
other, and the contribution from the Regge subtraction

terms vanishes altogether. The H̃+ parton distribution

appearing in Eq. (43) is given by the same equation as
H+ from Eq. (35) with the replacements fq → ∆fq and
f̄q → ∆f̄q,

H̃+(x, xB) =
x− xB/2

xB

[
θ(xB − x)

∫ x

0

dz

z(1 − z)
[∆fq(z) + ∆f̄q(z)] + θ(x− xB)

∫ x

x−xB
1−xB

dz

z(1 − z)
[∆fq(z) + ∆f̄q(z)]

]

(44)

In Eq. (44) the Regge parts of ∆fq(z) and ∆f̄q(z) be-

have at small z like 1/zα−
s and 1/zα−

u , respectively. The
singularity of the first integral over z (for x < xB) does
not contribute to the DVCS amplitude. This is because
after multiplying by the sum of the two hard propagators
the contribution of this singularity to T µν

− in Eq. (43) be-
comes proportional to
∫ xB

0

(
x−

xB

2

)( 1

x− iǫ
−

1

x− xB + iǫ

)
dx = 0. (45)

There are nevertheless the same left-over singularities in
the DVCS amplitude as in the case of T µν

+ . These origi-

nate from the behavior of H̃+ near x ∼ 0 (from the upper
limit of the integral in the θ(xB −x) term), and from the
region x ∼ xB

+ (from the lower limit of the integral in
the term proportional to θ(x−xB)). In the region x ∼ 0

one has the generic behavior H̃+ ∼ 1/xα, so the integral
over the first hard propagator is of the form,

∫ xB

0

dx

xα

1

x− iǫ
= O

(
1

ǫα

)
. (46)

In the region x ∼ xB, H̃+(x ∼ xB
+) ∼ (1 − xB)α/(x −

xB)α and the integral over the second hard propagator
becomes

(1−xB)α

∫ 1

xB

dx

(x− xB)α

1

x− xB + iǫ
∼ (1−xB)αO

(
1

ǫα

)
.

(47)
Even though these singular terms contribute to T µν

−

with opposite signs they do not cancel because of the
extra factor (1 − xB)α.

III. DVCS AMPLITUDE WITHOUT

COLLINEAR APPROXIMATION

In the previous section we noticed that the C − even
part of the DVCS amplitude is singular when evaluated
in collinear approximation and expressed in terms of the
H+ or H̃+ GPD’s, provided that the parton-nucleon am-
plitude has a high energy behavior typical of hadronic
amplitudes, commensurate with the Regge type scaling
behavior of the form sα with 0 < α < 1 (we also showed



12

that this problem does not arise for the structure func-
tions). From the discussion above it is also clear that
the singularity in the DVCS amplitude has to do with
the collinear approximation to the denominators of the
hard quark propagator exchanged between photon inter-
action points. Thus in the following we use the collinear

approximation for the numerators and keep the full k-
dependence of the denominators while performing the
d4k integral in Eqs. (11) and (12). Then the Regge part
of the spectral function, that is now finite and dominant
at low t in the DVCS amplitude T µν

+ gives,

T µν
+ = −δλ′λe

2
q

1

2
[nµp̃ν + nν p̃µ − gµν(n · p̃)]

Q2

xB

∫ ∞

0

dξ

∫ 1

0

dx

x

∫ 1

0

dr

∫ 1

0

dz2π2(1 − x)(1 − z)2

{
µ2β+

s

(xµ2)α
+
s

In−1

[(
ξα+

s (1 − x)2[x(1 − xB) + xB

2 − (1 − x)(1 − z)rxB − (1 − x)zxB ]

[ξ + (1 − x)(1 − z)µ2 − (2p · q + q2)xz(1 − x) − z(1 − z)(1 − x)2rq2 − iǫ]3
− (x = 0)

)

−

(
ξα+

s (1 − x)2(x(1 − xB) + xB

2 − (1 − x)(1 − z)rxB)

[ξ + (1 − x)(1 − z)µ2 + (2p · q)xz(1 − x) − z(1 − z)(1 − x)2(1 − r)q2 − iǫ]3
− (x = 0)

)]

+
µ2β+

u

(xµ2)α
+
u

In−1

[(
ξα+

u (1 − x)2(−x+ xB

2 − (1 − x)(1 − z)rxB − (1 − x)zxB)

[ξ + (1 − x)(1 − z)µ2 + (2p · q)xz(1 − x) − z(1 − z)(1 − x)2rq2 − iǫ]3
− (x = 0)

)

−

(
ξα+

u (1 − x)2(−x+ xB

2 − (1 − x)(1 − z)rxB)

[ξ + (1 − x)(1 − z)µ2 − (2p · q + q2)xz(1 − x) − z(1 − z)(1 − x)2(1 − r)q2 − iǫ]3
− (x = 0)

)]}
.

(48)

Here following Ref. [29] we changed the m2 variable
to ξ, with m2 → ξ/x. The large m2 contribution to the
integral corresponds to small-x thus we ignore x in all
terms of the form (1−x), and terms proportional to x in
the numerator, and we extend the x integral to infinity.
We change the x variable so as to bring each denominator
to the same form as in the subtraction terms (those with
(x = 0)). In particular for the term written explicitly in
the second line of Eq. (48) we replace x→ x′ given by,

x = x′
ξ + (1 − z)µ2 − z(1 − z)rq2

z(2p · q + q2)
, (49)

in the third line,

x = x′
ξ + (1 − z)µ2 − z(1 − z)(1 − r)q2

2p · qz
, (50)

in the fourth line

x = x′
ξ + (1 − z)µ2 − z(1 − z)rq2

2p · qz
, (51)

and in the fifth line

x = x′
ξ + (1 − z)µ2 − z(1 − z)(1 − r)q2

z(2p · q + q2)
. (52)

We note that since q2 < 0 and 2p · q + q2 > 0 these
transformations are non-singular. After this change of
variables we obtain,
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T µν
+ = −δλ′λe

2
q

1

2
[nµp̃ν + nν p̃µ − gµν(n · p̃)]Q2

∫ ∞

0

dξ

∫ ∞

0

dx′

x′

∫ 1

0

dr

∫ 1

0

dz2π2(1 − z)2

{
µ2β+

s

(x′µ2)α
+
s

In−1

[
[
(2p · q + q2)z

]α+
s

ξα+
s [ 12 − (1 − z)r − z]

[ξ + (1 − z)µ2 + z(1 − z)rQ2]3+α
+
s

(
1

(1 − x′ − iǫ)3
− 1

)

− [(2p · q)z]α
+
s

ξα+
s [ 12 − (1 − z)r]

[ξ + (1 − z)µ2 + z(1 − z)(1 − r)Q2]3+α
+
s

(
1

(1 + x′ − iǫ)3
− 1

)]

+
µ2β+

u

(x′µ2)α
+
u

In−1

[
[(2p · q)z]

α+
u

ξα+
u (1

2 − (1 − z)r − z)

[ξ + (1 − z)µ2 + z(1 − z)rQ2]3+α
+
u

(
1

(1 + x′ − iǫ)3
− 1

)

−
[
(2p · q + q2)z

]α+
u

ξα+
u (1

2 − (1 − z)r)

[ξ + (1 − z)µ2 + z(1 − z)(1 − r)Q2]3+α
+
u

(
1

(1 − x′ − iǫ)3
− 1

)]}

(53)

The ξ integral in Eq. (53) can be performed analytically
yielding,

T µν
+ = −δλ′λe

2
q

1

2
[nµp̃ν + nν p̃µ − gµν(n · p̃)]Q2

∫ ∞

0

dx′
∫ 1

0

dr

∫ 1

0

dz2π2

{
zα+

s β+
s (µ2)1−α+

s

(1 + α+
s )(2 + α+

s )
In−1

1
2 − (1 − z)r − z

[µ2 + zrQ2]2
1

x′1+α
+
s

[[
2p · q + q2

]α+
s

(
1

(1 − x′ − iǫ)3
− 1

)
+ [2p · q]

α+
s

(
1

(1 + x′ − iǫ)3
− 1

)]

+
zα+

u β+
u (µ2)1−α+

u

(1 + α+
u )(2 + α+

u )
In−1

1
2 − (1 − z)r − z

[µ2 + zrQ2]2
1

x′1+α
+
u

[
[2p · q]

α+
u

(
1

(1 + x′ − iǫ)3
− 1

)
+
[
2p · q + q2

]α+
u

(
1

(1 − x′ − iǫ)3
− 1

)]}

(54)

The crucial ingredient which leads to the difference be-
tween the DVCS amplitude given in Eq. (54) and the DIS
case studied in [29] is the presence of the r factor in the
zrQ2 terms in the denominators. In the absence of this
factor, the integral over z would be dominated by the re-
gion z ∼ µ2/Q2. In that case the factors of zα(2p·q+q2)α

and zα(2p·q)α would become Q2 independent; this would
produce aQ2-independent expression for T µν

+ as expected

from scaling. This additional r-dependence is of the same
type as found in Ref. [24]. In that paper, Regge behavior
was introduced by utilizing a t-channel approach, and not
through the s or u-channel formalism as employed here.
The factor of r in zrQ2 makes r peak around µ2/Q2, and
this produces an overall (Q2)α dependence for the DVCS
amplitude. In particular we can write the symmetric ten-
sor T µν

+ in the form

T µν
+ = −δλ′λe

2
q [nµp̃ν + nν p̃µ − gµν(n · p̃)]

[(
Q2

xBµ2

)α+
s

F+
s (xB) +

(
Q2

xBµ2

)α+
u

F+
u (xB)

]
(55)

where in Eq. (55) we have introduced the quantities
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F+
s,u(xB) ≡

π2

2

(1 − α+
s,u)Γ(α+

s,u)

(1 + α+
s,u)Γ(3 + α+

s,u)
β+

s,u

[
µ2In−1

1

µ2

] [
ξ+
α

+
s,u

+ (1 − xB)α+
s,uξ−

α
+
s,u

]
(56)

and in Eq. (56) we define

ξ±α ≡

∫ ∞

0

dx′

x′1+α

[
1

(1 ± x′ − iǫ)3
− 1

]
. (57)

We call the functions F (xB) introduced in Eq. (56) the
”Regge Exclusive Amplitudes,” since they contain the
information from the coupling of the relevant Regge
trajectories to a particular exclusive process, in this
case DVCS. Unfortunately, the loss of factorization in
this process makes this and analogous functions non-
universal, unlike the generalized parton distributions or

GPDs. However the Regge Exclusive Amplitudes do con-
vey information regarding the exponents α of the relevant
Regge trajectories that are indeed universal. These am-
plitudes also allow a comparison between hard exclusive
processes and high-energy total cross-sections. Alterna-
tively one can directly employ the t−channel formulation
of the hard process in terms of a single (or a few) Regge
trajectories.

Finally a similar analysis for the antisymmetric ampli-
tude yields a form

T µν
− = ie2qǫ

µν
03τ

3
λ′λ

[(
Q2

xBµ2

)α−
s

F−

s (xB) +

(
Q2

xBµ2

)α−
u

F−

u (xB)

]
(58)

where the relevant Regge Exclusive Amplitudes are de-
fined as

F−

s,u(xB) ≡
π2

2

(1 − α−
s,u)Γ(α−

s,u)

(1 + α−
s,u)Γ(3 + α−

s,u)
β−

s,u

[
µ2In−1

1

µ2

] [
ξ+
α

−
s,u

− (1 − xB)α−
s,uξ−

α
+
s,u

]
. (59)

We note the familiar structure. The finite constants ξ±α
encode the integration over the hard propagators from
the collinear approximation, and contribute with a rela-
tive factor of ±(1− xB)α to the symmetric and antisym-
metric DVCS amplitudes, respectively. This is the same
factor that arises from the singularities of the collinear
approximation. The regularization of the collinear ap-
proximation leads to an increase of the hard exclusive
amplitude by a factor of (Q2/xBµ

2)α relative to the DIS
amplitude. This is the same enhancement factor that
was found in Ref. [24]. In the more general case, when
the nucleon and/or quark masses are kept finite or more
than one scale appears in the parton-nucleon amplitude,
the single quantity µ would be replaced by some com-
bination of quantities. The functions F+

s,(u) describe the

quark (antiquark) helicity averaged contribution to the
DVCS amplitude. Similarly, the functions F−

s,(u) describe

the quark (antiquark) helicity-dependent contribution to

the DVCS amplitude.

As was discussed in Section I, we have carried out a
preliminary study of photon-induced exclusive processes.
We have shown that Regge amplitudes should make sig-
nificant contributions at large values of xB, and not just
at small xB . A major result of our formalism is the pre-
diction of scaling violation in these hard exclusive pro-
cesses. At intermediate energies the Bethe-Heitler (BH)
amplitude is generally substantially larger than DVCS,
so DVCS amplitudes must be extracted via their inter-
ference with the BH term. A group at Hall A in Jef-
ferson Laboratory [16] has recently performed a test of
QCD scaling in spin-dependent ~ep scattering. They mea-
sured the beam-spin azimuthal asymmetry [4, 5], which is
proportional to interference between BH and DVCS am-
plitudes. After removing the Q2-dependence associated
with the BH term, they extracted twist-2 and twist-3
Compton form factors which by QCD scaling should be
Q2 independent. In Fig. 3 we plot the twist-2 Comp-
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FIG. 3: (color online) Comparison with DVCS results from
Jefferson Lab [16]. The data points represent the twist-2
Compton form factor extracted from beam-spin asymmetry
measurements in ~ep scattering, vs. Q2. The data have been
averaged over t. The dotted curve is a (Q2)α fit with α = 0.15.

ton form factor CI(F) vs. Q2; this term has been av-
eraged over t. Although the data show very little Q2

dependence, they correspond to a limited range of Q2

and are also in good agreement with our predicted be-
havior (Q2)α. In Fig. 3 the dotted line corresponds to
(Q2)α with α = 0.15. Because the data points were av-
eraged over t it is not obvious what value of α to choose,
but over this range of Q2 our predicted behavior is in
agreement with the Hall A points.

In Fig. 4 we compare our predictions with the data on
exclusive meson electroproduction. Scaling arguments
predict that the reduced π+ cross section should fall off
at fixed xB as 1/Q2. We predict a behavior (Q2)2α−1

with 0 < α < 1. Fitting π+ data from HERMES [14]
in the range 0.26 < xB < 0.8 gives α = 0.13 ± 0.1.
Similarly for ω electroproduction cross section from the
CLAS collaboration at Jefferson Lab [13] we find α =
0.6 ± 0.4 for the range 0.52 < xB < 0.58.

We see that for both DVCS and exclusive meson elec-
troproduction, not only are the data consistent with scal-
ing violations, but the additional Q2 dependence is softer
than predicted by scaling and in agreement with our pre-
dicted factor of (Q2)α with 0 < α < 1. At this point it is
difficult to compare the Regge exponents α obtained from
the fit with total cross-section data, since the electropro-
duction data was taken at different values of t. However
we find this trend encouraging, and we believe that it
warrants further phenomenological studies. QCD scaling
predicts that agreement with scaling should become pro-
gressively better with increasing Q2. However we have
shown that scaling violations should persist regardless of
the size of Q2.
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FIG. 4: (color online) A simple fit to electroproduction data
for mesons, π+ results from HERMES (squares, [14]), and
ω (circles, [13]) results from the CLAS Collaboration at Jef-
ferson Lab. In the case of π+ production the cross section
reduced by the photon flux is plotted (in arbitrary units).

IV. SUMMARY AND OUTLOOK

Our formalism in this paper started with the generic
hadronic tensor for DVCS reactions. This was then ex-
pressed in terms of a parton-proton Green’s function
whose Regge behavior has been examined in the liter-
ature. We have shown how this makes the standard
factorization formula ill-defined due to a collinear diver-
gence brought about by this Regge behavior; this was
demonstrated in Eq. (31). Appropriate regularization of
this divergence, as given in Eq. (55), shows that the as-
sumption of xB-scaling of DVCS breaks down. Note that
the general analysis of these reactions in terms of GPDs
assumes xB-scaling. In our analysis, DVCS and simi-
lar hard exclusive processes are then characterized by
a new set of process-dependent Regge Exclusive Ampli-
tudes F (xB) that are derived in Eqs. (56) and (59). Un-
like GPD’s, these Regge Exclusive Amplitudes are non-
universal. One experimental signature of this approach
is our demonstration that the Q2 dependence of hard ex-
clusive amplitudes should differ from scaling predictions,
and that one should observe a behavior (Q2)α ∝ sα

γ∗p

characteristic of hadronic Regge amplitudes. A prelim-
inary examination of experimental data on DVCS and
hard meson production suggests that the data is consis-
tent with the Regge non-scaling (Q2)α behavior predicted
here.

We argue that the QCD factorization theorems for ex-
clusive processes [8, 9] should not be applicable to hard
exclusive processes, at least not in the region of small t.
This is due to the lack of convergence of the residues of
the poles in the k− plane that appear in their deriva-
tions. This is a generic feature due to Regge behavior.
Thus it appears that the QCD factorization theorems
for photon-proton exclusive processes necessitate, in ad-
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dition to a hard scale Q2, a sizeable momentum trans-
fer t. This occurs because the Regge nature of hadron-
hadron amplitudes [37] forces a corresponding behavior
on the parton-nucleon scattering amplitude,which gener-
ates divergences in the Generalized Parton Distribution
functions at low t. As t (or tmin) increases the inter-
cept of Regge trajectories become negative, and standard
collinear factorization then becomes applicable. Thus it
appears that momentum transfer will become a crucial
parameter in these reactions. At small t we predict size-
able effects due to scattering off the meson-cloud of the
proton, while at large t the dominant effect will become
scattering from the quarks in the ”bare” nucleon. The
extension of our results to large t and the detailed in-
terplay with the J = 0 fixed pole will be examined in a
future publication [38].
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