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Abstract 

Abnormal development of the ocular anterior segment may lead to a spectrum of clinical 

phenotypes ranging from primary congenital glaucoma (PCG) to variable anterior segment 

dysgenesis (ASD). The main objective of this study was to identify the genetic alterations 

underlying recessive congenital glaucoma with ASD (CG-ASD). Next-generation DNA 

sequencing identified rare biallelic CPAMD8 variants in four patients with CG-ASD and in 

one case with PCG. CPAMD8 is a gene of unknown function and recently associated with 

ASD. Bioinformatic and in vitro functional evaluation of the variants using quantitative 

reverse transcription PCR and minigene analysis supported a loss-of-function pathogenic 

mechanism. Optical and electron microscopy of the trabeculectomy specimen from one of 

the CG-ASD cases revealed an abnormal anterior chamber angle, with altered extracellular 

matrix, and apoptotic trabecular meshwork cells. The CPAMD8 protein was 

immunodetected in adult human ocular fluids and anterior segment tissues involved in 

glaucoma and ASD (i.e., aqueous humor, non-pigmented ciliary epithelium and iris muscles), 

as well as in periocular mesenchyme-like cells of zebrafish embryos. CRISPR/Cas9 disruption 

of this gene in F0 zebrafish embryos (96 hpf) resulted in varying degrees of gross 

developmental abnormalities, including microphthalmia, pharyngeal maldevelopment, and 

pericardial and periocular edemas. Optical and electron microscopy examination of these 

embryos showed iridocorneal angle hypoplasia (characterized by altered iris stroma cells, 

reduced anterior chamber, and collagen disorganized corneal stroma extracellular matrix), 

recapitulating some patients’ features. Our data support the notion that CPAMD8 loss-of-

function underlies a spectrum of recessive CG-ASD phenotypes associated with extracellular 
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matrix disorganization and provide new insights into the normal and disease roles of this 

gene. 

Keywords 

Congenital glaucoma; anterior segment dysgenesis; CPAMD8, zebrafish. 
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Introduction 

Primary congenital glaucoma (PCG) and anterior segment dysgenesis (ASD) are related and 

heterogeneous diseases that may severely impair visual function. They result from diverse 

developmental abnormalities of the ocular anterior segment structures, which include the 

Schlemm’s canal (SC), trabecular meshwork (TM), ciliary body (CB), iris and cornea (Kupfer 

and Kaiser-Kupfer 1978, 1979). PCG is caused by a malformation restricted to the TM and/or 

SC, i.e., trabeculodysgenesis or gonyodysgenesis (Gould and John 2002), which results in 

elevated intraocular pressure (IOP) and in the classical triad of epiphora, blepharospasm 

and photophobia (Papadopoulos et al. 2013). Ocular enlargement and curvilinear breaks in 

the Descemet’s membrane (Haab striae) may also be present in some patients. Typical PCG 

is usually diagnosed in the neonatal or infantile period. On the other hand, ASD 

malformation and its associated clinical features are highly variable and may include 

underdevelopment of the iris (iris hypoplasia), altered corneal diameter, corneal opacity 

(leukoma) and vascularization, posterior embryotoxon (thickened and displaced Schwalbe's 

line), displacement of the pupil (corectopia), the existence of more than one pupillary 

opening (polycoria), an abnormal iridocorneal angle, anterior synechiae between the iris 

and posterior corneal surface, displacement of the lens (ectopia lentis), and adhesion 

between the cornea and the lens or the pupillary border (Peters’ anomaly) (Sowden 2007). 

The specific combination of posterior embryotoxon, iris hypoplasia, corectopia/polycoria, 

and/or anterior synechiae is recognized as a separate diagnostic entity called Axenfeld-

Rieger anomaly, which combines with systemic anomalies in the Axenfeld-Rieger syndrome 
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(Reis and Semina 2011). In addition, ASD is generally associated with an approximate 50% 

risk for glaucoma (Reis and Semina 2011). 

Both PCG and ASD are believed to be caused by defective patterning, migration and/or 

differentiation of periocular mesenchyme cells, which derive mainly from the neural crest 

but also from paraxial mesoderm (Creuzet et al. 2005). Moreover, PCG and ASD may be 

caused by the same genes (Gould and John 2002). In this line, mutations in CYP1B1 mainly 

produce PCG but have also been detected in some patients with Peters’ (Vincent et al. 2006; 

Vincent et al. 2001) and Rieger’s anomalies (Chavarria-Soley et al. 2006). A common feature 

of many ASD diseases is disturbance of the extracellular matrix (ECM) composition and 

abundance, although the specific underlying alterations remain mostly unidentified. ECM 

signaling has been postulated as being one relevant component of the networks involved 

in anterior segment development (Gould et al. 2004). Functional disruption of this complex 

developmental regulation may occur at different points in different patients, leading to 

genetic and clinical variability and to the overlapping phenotypic features observed in 

different ASD subtypes. This scenario presents challenges in terms of the correct diagnosis 

and classification of patients. 

Unlike other ASDs, which are frequently dominant, PCG is generally transmitted in an 

autosomal-recessive fashion, but incomplete penetrance and variable expressivity are 

present in all these dysgenesis (Sarfarazi and Stoilov 2000). The first identified and most 

prevalent cause of recessive PCG is CYP1B1 loss-of-function (LoF) (Sarfarazi and Stoilov 

2000; Stoilov et al. 1997), which is present in 18%-48% of non-consanguineous European 

patients (Campos-Mollo et al. 2009; Colomb et al. 2003; López-Garrido et al. 2013; 
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Weisschuh et al. 2009). Additional genes reported to play a role in this pathology are LTBP2 

(Ali et al. 2009), MYOC (Kaur et al. 2005), FOXC1 (Medina-Trillo et al. 2016; Medina-Trillo et 

al. 2015), TEK (Souma et al. 2016) and GPATCH3 (Ferre-Fernández et al. 2017), illustrating 

the genetic heterogeneity of this disease. 

The principal known genes that cause different types of typical dominant ASD are FOXC1 

(Nishimura et al. 1998) and PITX2 (Semina et al. 1996), which are mainly involved in 

Axenfeld-Rieger alterations. In addition, PAX6 is linked to Peters’ anomaly (Hanson et al. 

1994) and aniridia (Jordan et al. 1992). Cases of recessive ASD transmission have also been 

described (Reis and Semina 2011). Recently, in three families, rare CPAMD8 variants have 

been identified as the cause of an atypical form of autosomal recessive ASD characterized 

by bilateral iris hypoplasia, ectopia lentis, corectopia, ectropion uveae, and cataracts (ASD8, 

OMIM # 617319) (Cheong et al. 2016). 

In this study we investigate the genetic alterations underlying glaucoma with ASD (CG-ASD) 

and isolated PCG in a group of unrelated patients who have no family history of the disease 

and who have variable clinical features. We found that these patients carry rare biallelic 

CPAMD8 LoF variants associated with ECM alterations. In addition, we show that this gene 

plays a role in ocular ECM formation and in early ocular development, providing new 

insights into the molecular pathways involved in anterior segment morphogenesis and 

associated diseases. 
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Methods 

Subjects 

Patients were recruited at San Carlos Clinic Hospital and University Hospital Fundación 

Jimenez Diaz, Madrid, Spain. Four patients diagnosed with CG-ASD and 50 PCG patients 

selected from a cohort composed of 150 unrelated cases (López-Garrido et al. 2013) with 

no family history of the disease and no CYP1B1, FOXC1, FOXC2 or MYOC pathogenic variants 

were selected for genetic studies. The clinical features of this PCG cohort have previously 

been reported (Campos-Mollo et al. 2009; López-Garrido et al. 2013). Glaucoma specialists 

carried out the clinical examination of all patients, which included slit-lamp biomicroscopy, 

gonioscopy, biometry, IOP measurement, and ophthalmoscopy. PCG diagnosis was 

performed as previously described (López-Garrido et al. 2013). The human study and 

informed consent procedures were approved by the Ethics Committee for Human Research 

of the University Hospital Fundación Jiménez Díaz and Hospital Clínico San Carlos (approval 

number 13/388-E). The research followed the tenets of the Declaration of Helsinki. 

Informed written consents were obtained prior to participants’ inclusion in the study. 

Human tissue samples 

A human eye from a 45-year-old Caucasian female donor (cadaver) with no reported ocular 

pathology was obtained within 24 hours after enucleation from the USA National Disease 

Research Interchange. Tears collected from one healthy 32-year-old female volunteer, a 

member of the research group, were used for Western blot analysis. Tissue processing is 

described in the Suppl. Methods. 
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Animals 

Wild-type AB zebrafish (Danio rerio) were maintained at 28° C with a 14 h on/10 h off light 

cycle and were fed a standard diet according to established protocols (Westerfield 2000). 

Detailed embryo management protocols are available in the Suppl. Methods. All animal 

husbandry and experiments were approved and conducted in accordance with the 

guidelines set forth by the Institutional Animal Research Committee of the University of 

Castilla-La Mancha (approval number PR-2015-04-10). 

Next generation sequencing 

Genomic DNA was extracted from the subjects’ peripheral blood, using the QIAamp DNA 

Blood Mini Kit (Quiagen) and processed for targeted NGS using a custom gene panel 

composed of coding and non-coding exons and 25pb of intronic boundaries of 82 genes 

involved in glaucoma, ASD, and ocular development. The gene panel also included full 

intronic sequences and 22 putative regulatory regions of CYP1B1 and LRP2 genes. The panel 

was developed using the SureSelect QXT capture technology (Agilent Technologies). 

Detailed protocols are available in the Suppl. Methods. Bioinformatic analysis was 

performed using standard procedures and custom in-house pipelines for both SNVs analysis 

and read-count based CNVs analysis, as previously reported (Ceroni et al. 2019) and are 

described in detail in the Suppl. Methods. 
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Variant prioritization and validation 

Candidate disease-causing variants were identified through the application of a multistep 

filtering approach. Initially, common variants, defined as those with a minor allele frequency 

higher than 1% in the Exome Aggregation Consortium (ExAC) 

(http://exac.broadinstitute.org/) or gnomAD (https://gnomad.broadinstitute.org/) 

browsers and with a genotype quality lower than 50 reads were filtered out. Next, LoF 

variants (nonsense, indels producing a frameshift and variants affecting canonical splicing 

sites) were selected. If no candidate variants met the later stringent functional criterium, 

we included missense, synonymous and non-canonical splicing variants bioinformatically 

predicted to cause deleterious effects, using the software described below. Finally, to 

identify potential recessive genotypes, we selected variants in compound heterozygosis or 

homozygosis. The detailed variant filtering pipelines followed in this study are summarized 

in Fig. 1A and 3A. The DNA sample for WES was processed as previously described (Ferre-

Fernández et al. 2017). Candidate variants identified by NGS were verified and segregated 

in the corresponding families by Sanger sequencing following PCR amplification using 

conditions and primers indicated Table S1. 

CNV validation 

A CNV affecting the CPAMD8 exon 23 was validated and segregated in the family 

using copy-number quantification by droplet digital PCR (ddPCR). Detailed protocols are 

available in the Suppl. Methods. 
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Quantitative reverse transcription PCR (qRT-PCR) 

Density gradient centrifugation of peripheral whole blood using Ficoll-Paque PLUS 

(GE Healthcare Biosciences) was used to isolate mononuclear cells from CG-ASD-104 family 

members and from two healthy controls who did not carry pathogenic CPAMD8 variants. 

RNA was isolated using the RNeasy Minikit (Qiagen #74104) and treated with RNase-free 

DNase I according to the manufacturer's instructions. Purified RNA was used for cDNA 

synthesis using RevertAid First Strand cDNA Synthesis Kits (Thermo Scientific #K1622). The 

expression of CPAMD8 mRNA relative to PRLP0 mRNA was determined using the 2−ΔΔCt 

method (Livak and Schmittgen 2001). Detailed protocols are available in the Suppl. 

Methods. 

Splicing analysis 

Both wild-type and mutant exon 15 of CPAMD8 and their flanking sequences (390 

bp and 280 bp of introns 14 and 15, respectively) were amplified from the genomic DNA of 

patient CG-ASG-160. Similarly, CPAMD8 wild type and mutant genomic fragments 

encompassing exons 33-34 and the corresponding flanking sequences (final 173 bp of intron 

32 and initial 383 bp of intron 34) were obtained from the ASG-CG-30 proband. Detailed 

amplification protocols are provided in the Suppl. Methods. PCR products were cloned into 

the pTBN1 plasmid (a gift from Franco Pagani, Addgene plasmid #15125). Minigene DNA 

constructs were transfected into HEK-293T cells; the transcripts were analyzed by RT-PCR 

and direct Sanger sequencing. In vivo splicing of CPAMD8 was analysed using cDNA obtained 
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from one of the healthy controls described above. Detailed protocols are available in the 

Suppl. Methods. 

Western blotting and antibodies 

Samples used for Western blot analyses were fractionated by SDS-PAGE using the 

Mini-PROTEAN III Gel Electrophoresis System and transferred onto Hybond ECL 

nitrocellulose membranes (Amersham) for immunodetection as previously described 

(Aroca-Aguilar et al. 2013). CPAMD8 was detected using three commercial rabbit anti-

human CPAMD8 polyclonal primary antibodies (Ab 1: HPA031328, Ab 2: HPA031330, and 

Ab 3: HPA031327; Sigma), diluted to 1:100. Horseradish peroxidase-conjugated antibodies 

against rabbit IgG (#1858415, Pierce) were diluted to 1:1500. Chemiluminescence detection 

was performed as previously described (Aroca-Aguilar et al. 2013). 

Light and transmission electron microscopy (TEM) 

The trabeculectomy and zebrafish samples employed for light and TEM were fixed 

in 2.5% glutaraldehyde/4% paraformaldehyde, postfixed in 1% osmium tetroxide, and 

embedded in araldite. Semi-thin sections (0.5 μm) were stained with Toluidine blue and 

analyzed by light microscopy to select the best areas for TEM analysis or to study their 

histology. After uranyl acetate and lead citrate contrast, sections were photographed using 

a transmission-electron microscope (JEOL JEM 1010). Detailed protocols are available in the 

Suppl. Methods. 
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Fluorescence immunohistochemistry (FIHC) 

Paraffin-embedded human eye sections (3 μm) and zebrafish embryo cryosections (10-14 

μm) were incubated with a rabbit anti-human CPAMD8 1:200 primary antibody 

(HPA031328, Sigma) and Cy2 donkey anti-rabbit 1:1000 secondary antibody (Jackson 

ImmunoResearch). Sections were also counterstained with DAPI and visualized using an 

LSM710 Zeiss confocal microscope. Fluorescence emitted by DAPI, the Cy2-conjugated 

antibody and embryo autofluorescence were registered at 411-464 nm, 490-518 nm and 

553-677 nm respectively. Detailed protocols are available in the Suppl. Methods.

Fluorescent whole mount immunohistochemistry (FWIHC) 

Ninety-six hpf phenylthiourea-treated and fixed embryos were incubated with a rabbit anti-

human CPAMD8 1:200 primary antibody (HPA031328, Sigma) and a Cy2 donkey anti-rabbit 

1:1500 secondary antibody (Jackson ImmunoResearch). Embryos were also counterstained 

with DAPI, mounted in low-melting agarose, and visualized in an LSM710 Zeiss confocal 

microscope. Fluorescence was detected as described earlier. Z-Stack maximum intensity 

projections of embryos were obtained with ZEN software (Zeiss). Detailed protocols are 

available in the Suppl. Methods. 

CRISPR/Cas 9 gene editing 

Deletions of approximately 100 bp were generated either in exon 4 or in exon 25 using the 

crRNAs pairs described in the Suppl. Methods. Cas9/tracrRNA/crRNA complex 

(approximately 3 nl) was injected into the animal pole of one-cell stage embryos (50-250 
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embryos/experiment) using a Femtojet 5247 microinjector (Eppendorf) under a Nikon DS-

Ri2 stereomicroscope. As a negative control, embryos were injected with Cas9/tracrRNA 

and no crRNA. For each crRNA pair and control, at least three independent experiments 

were performed using different zebrafish progenitors in each experiment. Detailed 

protocols are available in the Suppl. Methods. 

In silico analyses 

The different programs used to evaluate the deleterious effect of the different variants, to 

identify protein domains, and to align aa sequences are described in the Suppl. Methdos. 

Novel variants were named using directions from Mutalyzer (https://mutalyzer.nl/), 

according to reference sequences NM_015692.4 and NP_056507.3. 

Statistics 

Statistical comparisons between groups were performed using either the t-test or the one-

way ANOVA. Statistical significance of the difference in the proportion of rare SNVs between 

PCG patients and the gnomAD database was determined by the chi-square test. Statistical 

analysis of the data was performed using the SigmaStat 2.0 software (SPSS Science Inc.). 
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Results 

We investigated by next generation sequencing (NGS) the underlying genetic alterations in 

an atypical group of four glaucoma patients with variable ASD who, in addition, did not 

present with a family history of the disease. Gene variants were screened in three patients 

using an in-house developed gene panel comprising 82 genes related to ASD, glaucoma or 

ocular development. The fourth case was analyzed by trio whole-exome sequencing (WES). 

The variant filtering algorithm aimed to identify rare variants with potential recessive 

genotypes (i.e., a homozygous or compound heterozygous state) and predicted high 

functional impact (frameshift, non-sense, missense and donor/acceptor splicing sites). The 

filtering pipeline revealed biallelic CPAMD8 variants in the first three patients (CG-ASD-160, 

ASD-ANI-0066 and JG-ASD-33, Fig. 1A). CPAMD8 is a gene recently implicated in atypical 

autosomal recessive ASD (Cheong et al. 2016). One allele identified in patient CG-ASD-160 

was a single-nucleotide insertion (c.3686_3687insT) predicted to cause a frameshift and a 

premature termination codon (PTC) in the mutant protein (p.(Arg1231Profs*64)) and it was 

positioned within a conserved alpha-2 macroglobulin (A2M) thiolester-containing domain 

(Fig. 2). The second allele (c.1758+1_1758+4del) deleted the canonical GT dinucleotide 

required for normal splicing. It was predicted in silico to break the donor site (Table 1), 

potentially leading to the retention of intron 15 in the processed mRNA, as well as to a PCT 

at the fifth codon in the mutant open reading frame (ORF). The former variant has not been 

reported in the gnomAD database and the latter has a very low frequency (9.398e-5), with 

no homozygotes described (Table 1). Sanger sequencing confirmed the presence of these 

variants in the patient (Fig. S1) and in five family members, showing an inheritance pattern 
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compatible with recessive transmission (Fig. 1B). The filtering pipeline identified in the 

second patient (CG-ASD-ANI-0066) two close nucleotide substitutions: c.2063C>A and 

c.2070+4A>C (Fig. 1A). Visual inspection of aligned read sequences indicated that both

variants could be in the same chromosome. The former variant was predicted to result in 

the amino acid change p.(Ala688Asp) in the bait region domain of the protein (Fig. 2A), while 

the later affected the intron 17 donor splicing site (Fig. 2B). None of these variants have 

previously been reported in gnomAD. Bioinformatic pathogenic predictions classified the 

first variant as tolerated or probably damaging, whilst two different algorithms predicted 

the second one would break the intron 17 donor site (Table 1), potentially resulting in the 

retention of this intron in the mature mRNA with the subsequent creation of a new ORF 

that leads to creation of a PTC in the mutant mRNA (p.(Glu691Valfs*99)). Segregation 

analysis confirmed the presence in cis of both heterozygous nucleotide substitutions in the 

patient and in her mother, whereas the patient’s sister inherited the wild type allele (Fig. 

1B and Fig. S1). Further bioinformatic copy number variation (CNV) analysis using a 

bioinformatic read-depth approach revealed a putative exon-23 deletion, which was further 

validated by droplet digital PCR (ddPCR) (Fig. S3); to the best of our knowledge, it has not 

previously been reported. Segregation by ddPCR assay showed that the unaffected 

proband’s sister inherited the exon 23 deletion in the heterozygous state (Fig. S3). This 

variant was predicted to cause a frameshift at codon 979 introducing a PCT downstream 

from the deletion (p.(Ala979Argfs*49)). Although the father was not available for genetic 

studies, the absence of the CNV in the mother supports the notion that these variants were 

coinherited with the disease in a recessive fashion (Fig. 1B). The third patient (JG-ASD-33) 
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presented with two compound heterozygous CPAMD8 nucleotide substitutions (c.2807C>T 

and c.3991G>T) (Fig. 1A) that were inferred to cause missense variants (p.(Pro936Leu) and 

p.(Ala1331Ser), respectively). The former variant did not disrupt any of the A2M family 

domains, although it affected the amino acid residue Pro936 which shows high evolutionary 

conservation (Fig. S2), and the latter was positioned in the A2M thiolester-containing 

domain (Fig. 2A). The frequency of these variants was very low in gnomAD with no reported 

homozygous genotypes (Table 1). Prediction of pathogenicity with three programs showed 

discrepant results. p.(Ala1331Ser) was classified as probably damaging or damaging by two 

programs, while p.(Pro936Leu) was consider pathogenic by only one (Table 1). In addition, 

five algorithms contained in the Human Splicing Finder software indicated that variant 

p.(Ala1331Ser) had the potential to break an exonic splicing enhancer (ESE), resulting in a 

putative exon skipping with a likely associated severe functional disruption (Table 1). The 

presence of both variants and their segregation with the disease following a recessive 

pattern was confirmed by direct Sanger sequencing (Fig. 1B and Fig. S1). Trio WES in the 

fourth patient (CG-ASD-104) revealed potential pathogenic compound heterozygous 

variants only in CPAMD8 (Fig. 1A). The two variants identified in this gene consisted of a 

novel one-nucleotide deletion (c.2532del) (Table 1) inferred to result in a frameshift close 

to the C-terminal region of the A2M domain (p.(Lys845Argfs*14), Fig. 2A). The second 

alteration was a rare nucleotide substitution (c.2002C>T/rs200025505) with no reported 

homozygotes in gnomAD (Table 1) and predicted to result in a PCT (p.(Arg668*)) at the 

cleavage motif in the bait region (Fig. 2A). The two variants are predicted to be associated 

with a high functional impact because they would lead to NMD-dependent mRNA 
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degradation, resulting in LoF of the gene and the absence of CPAMD8 protein activity in the 

patient. The two variants were confirmed by Sanger sequencing (Fig. S1) and segregated 

with the disease according to a recessive inheritance (Fig. 1B). 

In light of the presence of CPAMD8 variants in CG-ASD patients we used the same gene 

panel and filtering algorithm to investigate the possible role of this gene in PCG. To that 

end, we selected 50 PCG patients from our previously reported cohort (Campos-Mollo et al. 

2009; López-Garrido et al. 2013). The selected subjects were negative for pathogenic 

genotypes in CYP1B1, FOXC1, FOXC2 or MYOC. Potential pathogenic CPAMD8 biallelic 

variants were identified only in patient PCG-30 (Fig. 3A). One allele, p.(Ala617Val), affected 

the A2M bait region domain (Fig. 2A) and the other one, c.4470+10_4470+11insT, flanked 

the donor splicing site of intron 34 (Fig. 2B). Both variants had very low frequencies with no 

reported homozygotes in gnomAD (Table 1). Two out of three bioinformatic tools classified 

p.(Ala617Val) as a moderate or probably damaging missense variant; in addition, this 

variant was predicted to break an ESE. Similarly, the intronic nucleotide insertion 

c.4470+10_4470+11insT also potentially affected intronic and/or ESEs (Table 1). The

variants were confirmed by Sanger sequencing (Fig. 3B and Fig. S1) but DNA samples from 

family members were not available for segregation analysis. In addition, we found that 

seven out of the 50 PCG patients (14%) carried seven different monoallelic rare CPAMD8 

nucleotide substitutions (Table S1), which were further confirmed by Sanger sequencing 

(Fig. S4). These variants are described in Suppl. Results. 
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Clinical features of patients with biallelic CPAMD8 variants 

The four CG-ASD patients who carried biallelic CPAMD8 variants presented variable anterior 

segment alterations. The mildest phenotype was observed in patient CG-ASG-160, who 

presented with subtle corectopia and iridocorneal adhesions (Fig. 4) along with very thick 

corneas and childhood-onset glaucoma (Table 2). This patient had normal zonulas in both 

eyes with no evidence of ectopia lentis. Case JG-ASD-33 was diagnosed with glaucoma in 

her teens in Romania, was subjected to trabeculectomy at the age of 31, developed 

malignant glaucoma in the RE before receiving treatment at San Carlos Clinical Hospital and 

currently suffers from terminal glaucoma in this eye. Eye examination revealed bilateral 

moderate corectopia with multiple iridocorneal adhesions (Fig. 4). In addition, this subject 

presented with posterior embryotoxon (Fig. 4) and a bilateral narrow anterior chamber with 

plateau iris configuration in the left eye (LE) and iatrogenic cataracts (Table 2). Anterior 

segment malformations present in patient CG-ASD-104 included bilateral corectopia, iris 

hypoplasia, posterior embryotoxon and iridocorneal adhesions (Fig. 4). Iris concavity, 

iridodonesis, megalocornea and a deep anterior chamber were additional clinical features 

of this case (Table 2). This patient had been diagnosed with bilateral congenital glaucoma 

at the age of 1, with IOP values before treatment of 20 and 40 mmHg in the RE and LE, 

respectively. In addition, she suffered from band keratopathy in the LE secondary to retinal 

detachment (Fig. 4). Case ASD-ANI-0066 presented with the most severe phenotype 

characterized by bilateral iris atrophy, coloboma, megalocornea, increased corneal 

thickness, bilateral cataracts and bilateral congenital glaucoma diagnosed at birth (Table 2). 

The four CG-ASD patients underwent different types of bilateral glaucoma surgery, which 
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included trabeculectomy, goniotomy and drainage valve implantation (Table 2). Patients JG-

ASD-33 and CG-ASD-ANI-0066 also require ocular drops for adequate IOP control (Table 2). 

The only PCG patient identified with biallelic CPAMD8 variants was diagnosed 1 week after 

birth with IOP values of 25 and 30 mmHg in the RE and LE, respectively, and with bilateral 

optic disc excavation of 0.4 (Table 2). Ocular exploration did not reveal any anterior segment 

abnormality and there were no signs of systemic alterations. This subject required bilateral 

goniotomy to control IOP. No additional lens or systemic alterations were detected in any 

of the five patients. 

Trabecular meshwork alterations associated with CPAMD8 LoF variants 

A trabeculectomy specimen from the RE of patient CG-ASD-104 was used for histological 

analysis. Light microscopy of semithin sections of the anterior chamber angle segment 

revealed the presence of SC and collector channels (CC) with open lumens and abnormal 

ciliary muscle (CM) insertion over a quite compact TM (Fig. 5A). Transmission electron 

microscopy showed the presence of apoptotic cells in the CM, characterized by cell 

shrinkage and nuclear condensation (Fig. 5B). Endothelial cells of both CC (Fig. 5C) and SC 

(Fig. 5D) showed vesicles and caveolae, supporting their functionality. The juxtacanalicular 

tissue (JCT) presented abundant "optically empty spaces", normal proportions of 

extracellular matrix components (collagen and elastic-like fibers) and apoptotic JCT cells 

(Fig. 5D). In the TM, most trabecular cells were absent and the few remaining showed clear 

signs of apoptosis, i.e., condensed chromatin that appears as dark areas in the nucleus of 

apoptotic cells (Fig. 5E and G, white arrowheads) and apoptotic bodies (Fig. 5E-I, white 
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arrows) which arise during the later phase of apoptosis and consist of cell fragments 

composed of intact cell membranes containing cytoplasm with tightly packed organelles 

with or without nuclear fragments (Elmore 2007). Remarkably, the corneoscleral TM (CTM) 

presented compact trabecular beams with variable thicknesses (Fig. 5E and F) and partially 

fused at some points (Fig. 5E and F). In addition, the trabecular beams core showed large 

deposits of coalescent and disorganized fibrillary collagen, abnormal deposits of basement 

membrane and irregularly distributed elastic-like fibers (Fig. 5E and F). The uveal TM (UTM) 

presented intertrabecular spaces (Fig. 5G) with partially fused trabecular beams (Fig. 5G). 

Trabecular beams core showed the accumulation of elastic-like fibers and densely packed 

and disorganized fibrillary collagen (Fig. 5G-I) arranged in onion-like layers (Fig. 5G), scarce 

non-fibrillar type VI collagen and thick basement membrane (Fig. 5H and I). 

Functional evaluation of the identified variants 

Fresh blood samples from family CG-ASD-104 were used to investigate the effect of the two 

identified variants on CPAMD8 mRNA levels by qRT-PCR. CPAMD8 transcript levels were 

reduced to approximately 30% of those observed in control subjects who did not carry any 

pathogenic variant in this gene (Fig. 6), demonstrating the functional disruption of CPAMD8 

in this patient. Unexpectedly, the mRNA levels in heterozygous carriers of the pathogenic 

variants were similar to those of controls, indicating the existence of the transcriptional 

adaptation or compensation of this gene to pathogenic mutations triggered by mRNA 

degradation (El-Brolosy et al. 2019). 
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Fresh blood samples were not available from families CG-ASD-160 and PCG-30. Therefore, 

we evaluated in vitro the splicing effect of variants predicted to affect intron processing 

using an assay based on a modified version of the α-globin-fibronectin EDB minigene 

(Cheong et al. 2016; Pagani et al. 2003). To that end, genomic DNA fragments containing 

these variants and their corresponding wild type alleles were cloned from the genomic DNA 

of patients (Fig. 7A and Fig. S5A) and expressed in HEK-293T cells as described in the 

Methods section. PCR analysis of minigene transcripts derived from patient CG-ASD-160 

(c.1758+1_1758+4del) using EDB specific primers p3/p4 showed a 482 bp band (Fig. 7B, 

band 1). By contrast, the wild type minigene version produced a 428 bp amplicon (Fig. 7B, 

band 2). Direct Sanger sequencing revealed that bands 1 and 2 corresponded to an aberrant 

splicing product that retained 54 nucleotides from intron 15 and to the normally spliced 

exon 15, respectively (Fig. 7B and Fig. S6A). This result indicates that elimination of the 

canonical splicing donor signal by variant c.1758+1_1758+4del leads to the activation of an 

intron 15 cryptic splicing donor site, resulting in the partial retention of intron 15 (Fig. 7B). 

Bioinformatic analysis confirmed the presence of a potential splicing donor signal at 

position +58 of the wild type intron (Fig. 7C). Therefore, partial retention of intron 15 

creates a new open reading frame with a PCT in the fifth codon (Fig. 7C, asterisk) that may 

finally lead to NMD-dependent mRNA degradation. Other minor amplicons were also 

observed in the mutant minigene assay, indicating the existence of other secondary 

uncharacterized transcripts (Fig. 7B). Approximately equal-intensity amplicons were 

obtained from control- and patient-derived minigenes, using vector-specific primers p1/p2, 

indicating no significant expression differences between the two DNA constructs (Fig. 7B, 
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band 3). Minigene analysis of the intronic variant identified in patient PCG-30 

(c.4470+10_4470+11insT) did not show any mRNA splicing effect under the experimental 

conditions used but did reveal a previously unidentified alternative transcript, which 

partially retained intron 34 and, thus, might be affected by the identified nucleotide 

insertion (Suppl. Results, S5A and B Fig. and Fig. S6A). The existence of this alternative 

transcript was demonstrated in peripheral human leukocytes of a control subject (Suppl. 

Results, Fig. S5C-E and Fig. S6C). Interestingly, these results show that the nucleotide 

insertion (c.4470+10_4470+11insT) becomes a coding variant (c.4480_4481InsT) in the 

alternative mRNA, resulting in frameshift and the premature translation termination of the 

new open reading frame (p.(Trp1494Leufs*5), Fig. S5E, blue asterisk). Thus, this variant will 

underlie specific NMD-dependent degradation of the new alternative transcript, supporting 

its pathogenicity. Further characterization of the alternative mRNA is required to 

completely understand the effect of this nucleotide insertion. 

No functional assays were available to evaluate the effect of the three missense variants 

identified in the study. 

Presence of CPAMD8 in adult human ocular tissues 

To the best of our knowledge the presence of CPAMD8 protein in adult human ocular tissues 

has not been studied. Western blot analysis of ocular fluids with three different commercial 

antibodies showed the presence of N- and C-terminal CPAMD8 fragments in aqueous 

humor (AH) and vitreous humor (Suppl. Results and Fig. S7). Next, we used one of these 

antibodies (Ab1) to study the distribution of this protein by confocal FIHC in adult human 
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ocular anterior segment tissues. CPAMD8 was detected in different epithelial and muscular 

tissues. In fact, we observed intense cytoplasmatic granular signals in the non-pigmented 

ciliary epithelium (NPCE) (Fig. 8A). Iris muscles (sphincter and dilator) (Fig. 8B) and especially 

longitudinal fibers of the CM (Fig. 8C) were also positively labeled. In addition, CPAMD8 was 

detected in the subcapsular lens epithelium, lens fibers (Fig. 8D), corneal epithelium, 

keratocytes and corneal endothelium (Fig. 8E, F and G, respectively). The specificity of these 

signals was supported by their absence in the corresponding negative controls (Fig. S8). 

Interestingly, the protein was not detected in the trabecular meshwork or SC (Fig. S9). 

Expression of cpamd8 in zebrafish ocular tissues 

To analyze the function of CPAMD8 in vivo and to evaluate its role in congenital glaucoma 

and ASD we used zebrafish as an animal model. DNA sequence homology analysis revealed 

a unique CPAMD8 zebrafish orthologue located on chromosome 22, with well-conserved 

intron-exon and protein domain organization (Fig. S10A and B, respectively). The two 

orthologue proteins also show a high amino acid sequence identity (65.5%). Ocular cpamd8 

expression was analyzed in zebrafish embryos by FWIHC using Ab1 at 96 hours post 

fertilization (hpf). The zebrafish epitope recognized by this antibody is 62% amino acid-

sequence-identical to the corresponding human epitope. Three-dimensional reconstruction 

by confocal laser scanning microscopy revealed specific periocular labeling, localized in the 

optic cup edge with superficial positive mesenchymal-like cells in the dorsoposterior 

quadrant of the eye and irregularly distributed in the periphery of the ocular globe (Fig. 9A). 

Observation of two representative confocal optical sections clearly showed cpamd8-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26 

positive cells irregularly located on the external edge of the optic cup and surrounding the 

ocular globe (Fig. 9B and C). The absence of green signals in the negative control supports 

the labeling specificity (Fig. S11). These results were confirmed by FIHC on frozen tissue 

sections, which also showed cpamd8 positive signals in the developing dorsal and ventral 

iridocorneal angles, in the iris, between the lens and the optic cup surface, and periocularly 

distributed around the ocular globe (Fig. S12, top panels), in positions that may correspond 

to periocular mesenchyme. Again, the absence of green labeling in the negative controls 

indicated the specificity of the detected signals (Fig. S12, bottom panels). 

F0 zebrafish phenotypes resulting from CRISPR/Cas9 cpamd8 inactivation 

To evaluate whether cpamd8 plays a role in early ocular development in zebrafish, we 

inactivated this gene using CRISPR/Cas9 genome editing. We generated two independent 

100 bp-deletions with crRNA pairs targeting exons 4 (cpamd8ex4) and 25 (cpamd8ex25) (Fig. 

S10A, crRNAE4a/crRNAE4b and crRNAE25a/crRNAE25b) as described in the Methods 

section. This approach has been demonstrated to be a rapid and efficient strategy for in 

vivo evaluation of LoF-associated phenotypes (Bhattacharya et al. 2015). The phenotypic 

evaluation was carried out using 50-200 F0 mosaic embryos in each experiment. At 96 hpf, 

approximately 1% of non-injected embryos died and only 3% of tracrRNA-injected embryos 

(negative control) showed lethal phenotypes characterized by generalized edema and 

aberrant morphology and they were classified as non-specific phenotypes (Fig. 10A). Lethal 

phenotypes increased to 15% and 6% in cpamd8ex4- and cpamd8ex25-targeted embryos, 

respectively. We observed a parallel decreased in normal phenotypes from 97% in control 
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embryos to 26% and 60% in cpamd8ex4- and cpamd8ex25-targeted embryos, respectively (Fig. 

10A). In addition, three similar abnormal phenotypes (Ph-1, Ph-2 and Ph-3, Fig. 10A) were 

present in cpamd8ex4- and cpamd8ex25-targeted embryos, which were classified according 

to the increasing degree of microphthalmia, pharyngeal maldevelopment, and pericardial, 

periocular and brain edema (Fig. 10B and C). The proportion of these phenotypes ranged 

from 14% to 25% in cpamd8ex4-targeted embryos and from 7% to 25 % in cpamd8ex25-

targeted embryos (Fig. 10A). Most of these embryos died at 7 dpf. These results indicate 

that the observed developmental alterations are not caused by off-target DNA cleavage. 

Moreover, these phenotypes were not observed in either tracrRNA-injected or uninjected 

embryos, indicating that they were specific. Immunohistochemical analysis of the three 

phenotypes revealed the progressive reduction of cpamd8 protein in periocular tissues, 

which correlated with the severity of ocular alterations, thereby supporting both correct 

cpamd8 inactivation and the specificity of the anti-CPAMD8 antibody (Fig. S13). Cpamd8 

mosaic disruption in the CRISPR/Cas9 injected embryos was confirmed by PCR analysis 

(Suppl. Results and Fig. S14). Next, we examined the structure of ocular tissues involved in 

glaucoma associated with phenotypes Ph-1 to Ph-3. Toluidine-blue-stained head sections 

of 96-hpf embryos confirmed progressive microphthalmia and showed increased spaces 

surrounding the brain and eyes filled with amorphous material, particularly in Ph-1 and Ph-

2 embryos, which indicates the existence of edema (Fig. 11K and M). Ph-2 and Ph-3 embryos 

were also characterized by pharyngeal cartilage underdevelopment (Fig. 11M and Q). 

Moreover, detailed observation of the anterior segment showed progressive iridocorneal 

dorsal and ventral angle hypoplasia (Fig. 11), with a decreased number of iris stroma cells, 
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i.e., iridophores, xantophores and mesenchymal cells (Fig. 11, “Dorsal Angle” and “Ventral

Angle” panels). Corneal epithelium cells presented increased size with apparent cell 

swelling from Ph-1 to Ph-3 (Fig. 11L, P and T). Transmission electron microscopy of dorsal 

and ventral iridocorneal angles demonstrated the presence of the primordial anterior 

chamber space in wild type and wild type-like embryos (Fig. 12B-C and G-H, respectively). 

Phenotypes Ph-1 to Ph-3 presented a reduction in this primordial space (in both the dorsal 

and ventral regions), which, in addition, was increasingly filled with cellular material, 

correlating with phenotype severity (Fig. 12L, M, Q, R, V and W). Irregular iridophore-

reflecting platelets correlated with the severity of the phenotype and were especially 

evident in phenotypes Ph-2 and Ph-3 (Fig. 12Q, V, R, and W). The two-cell-layer corneal 

epithelium was gradually thickened from phenotype Ph-1 to Ph3 (Fig. 12N, S and X). The 

most superficial corneal epithelial cell layer appeared edematous in phenotypes Ph-1 to 

Ph3, with swelling of intracellular organelles (Fig. 12N, S, and X, arrowhead), suggestive of 

apoptosis. The subepithelial cell layer showed an irregular contour (Fig. 12N, S, and X, cse). 

Thickening of the corneal stroma was evident, particularly in Ph-3 embryos (Fig. 12X and Y, 

cs). Collagen fibers in the corneal stroma of wild-type embryos were regularly arranged in 

regular 7-9 layers (Fig. 12E and J). By contrast, we observed abnormal ECM characterized 

by irregular collagen deposition with decreased fibril packing and the loss of collagen layers 

that also correlated with phenotype severity (Fig. 12O, T and Y). Finally, progressive thinning 

of the lens epithelium was also observed (Fig. 12I, N, S, and X). All these data indicate that 

cpamd8 disruption results in early anterior segment maldevelopment, which is 
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characterized mainly by dysgenesis of the iridocorneal angle, the presence of cellular 

material in the anterior chamber, and disrupted collagen deposition in the corneal stroma. 
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Discussion 

The primary purpose of this study was to identify by NGS the genetic alterations underlying 

CG-ASC in sporadic patients with no family history of the disease. This approach led to the 

identification of several potentially pathogenic CPAMD8 genotypes in four patients. This 

gene has recently been identified as playing a role in ASD8, an atypical form of ASD, clinically 

described in three families that, in addition to iris dysgenesis features such as bilateral iris 

hypoplasia, corectopia and ectropion uveae, also presented with bilateral lens alterations 

(i.e., ectopia lentis and cataracts) in the absence of glaucoma and inherited in a recessive 

fashion, in contrast to typical ASD, which is dominant (Alsaif et al. 2019; Cheong et al. 2016). 

Our patients also showed recessive inheritance of the disease, though they differ from 

those of the previous report in terms of the presence of glaucoma and the absence of 

ectopia lentis but cataracts that could be related to CPAMD8 dysfunction were present in 

one patient (CG-ASD-ANI-0066). Biallelic CPAMD8 variants have also been found in 

childhood and juvenile open-angle glaucoma patients (Siggs et al. 2020). Pathogenic 

CPAMD8 variants were also found in one PCG patient. In addition, the remarkably high 

frequency of monoallelic rare CPAMD8 variants (allele frequency <0.1%) in our PCG patients 

is significantly larger than the frequency of rare SNVs of this gene observed in the gnomAD 

database v2.1.1 (14% vs. 1.14%, p<0.0001) and suggests that they may play a role in non-

monogenic glaucoma, acting as modifier or susceptibility factors, although further studies 

are required to clarify the involvement of these variants in the disease. 

Our findings expand the spectrum of phenotypes associated with this gene, supporting that 

functional disruption of CPAMD8 underlies anterior segment alterations ranging from 
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isolated trabeculodysgenesis to varying degrees of iridocorneotrabeculodysgenesis with 

associated lens abnormalities in some cases. This phenotypic variability can be explained by 

different variables, including the effects of modifier genes, residual CPAMD8 protein 

activity, and environmental and/or stochastic factors, and possibly reflects the complexity 

of ocular development. The pathogenicity of the variants identified in this study is 

supported by their rarity in the general population and bioinformatic analysis, but further 

experimental studies are required to firmly establish the deleterious role of some of the 

missense variants. Interestingly, minigene analysis not only confirmed that one of the 

identified variants detected in patient CG-ASD-160 (c.1758+1_1758+4del) altered normal 

CPAMD8 splicing but also revealed an unexpected pathogenic mechanism for the intronic 

variant carried by patient PCG-30 (c.4470+10_4470+11insT), related to the identification of 

a previously uncharacterized alternative transcript. This alternative transcript retains the 

entire intron 33 and the proximal intron 34 flanking sequence. Intron retention is a 

mechanism of gene expression control in eukaryotes and is tightly regulated during 

differentiation and development (Vanichkina et al. 2018). The existence of this alternative 

mRNA implies that although the insertion of one nucleotide identified in patient PCG-30 

does not affect canonical splicing of intron 34, it initiates a frameshift and a PCT in the 

alternative transcript likely leading to its specific NMD-dependent degradation, with 

phenotypic manifestations restricted to those tissues in which the corresponding CPAMD8 

isoform is expressed. To date, three alternative CPAMD8 transcripts, translated into three 

different isoforms (CPAMD8-1a, CPAMD8-1b, and CPAMD8-2), have been described 
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(Cheong et al. 2016; Strausberg et al. 2002). Further studies are required to completely 

characterize this new identified transcript. 

In accordance with our previous studies, the finding of a large proportion (14%) of CG 

patients carrying infrequent heterozygous CPAMD8 variants also provides evidence for the 

role of CPAMD8 in non-monogenic or complex congenital glaucoma, reflecting the notions 

that it participates in the complex genetic regulation of ocular development, and that the 

combination of genetic defects in more than one of these genes may contribute to the 

abnormal development of the anterior segment of the eye (Ferre-Fernández et al. 2017; 

López-Garrido et al. 2013). 

Detailed histologic analysis of the anterior chamber angle of one of the patients (CG-ASD-

104) with LoF CPAMD8 variants revealed the presence of apparently normal SC and CC, but

the abnormal anterior CM insertion indicates an incomplete and arrested separation of 

some angle structures. In addition, the remarkable ECM alterations of the TM are an 

obvious explanation for the reduced AH outflow and IOP elevation in this patient, and 

support the notion that this gene plays a key role in ECM formation in the TM, and likely, in 

other tissues of the ocular anterior segment. CPAMD8 belongs to the A2M/C3 (alpha-2-

macroglobulin/complement 3) protein family (Li et al. 2004), which is composed of large 

multi-domain proteins with a broad spectrum of endopeptidase inhibitor activity (Rehman 

et al. 2013). Though the members of this family are evolutionarily distant, their overall 

architecture is highly conserved and plays multiple functions. A2M, the founding member 

of this family, is a soluble broad-spectrum proteinase inhibitor (Gonias 1992) that binds and 

regulates the biological activity of several hormones, cytokines and growth factors (Rehman 
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et al. 2013). Keeping in mind the structural relatedness of CPAMD8 and A2M proteins, we 

can speculate that CPAMD8 loss-of-function may result in the altered regulation of 

extracellular proteinases involved in ECM remodeling and/or in the defective regulation of 

its putative ligands, which might underlie the TM alterations observed in patient CG-ASD-

104. Further investigations are required to clarify the precise pathogenic mechanisms

underlying CPAMD8-associated phenotypes. 

Patients with CYP1B1-associated PCG show abnormal CM insertion and ECM alterations in 

the TM resembling those observed in this study (Garcia-Anton et al. 2017). Trabecular cell 

death was also a common feature in these two phenotypes, although it is produced by 

necrosis in CYP1B1-defective patients (Zhao et al. 2013) and by apoptosis in CPAMD8-

glaucoma. Endothelial trabecular cells maintain the balance between ECM components, 

such as collagen and elastic fibers (Polansky et al. 1984); therefore, their death may explain 

(at least in part) the ECM alterations observed in our patient. In addition, the CC and, in 

some cases the SC, were absent in CYP1B1-deficient patients. Although only one 

trabeculectomy specimen from patients with CPAMD8 LoF was available, these results 

indicate that CYP1B1 and CPAMD8 are involved in ECM deposition in the anterior segment 

and that their independent disruption results in isolated trabeculodysgenesis or broader 

anterior segment defects. 

We also analyze, for the first time, the expression of CPAMD8 in adult human ocular tissues 

and fluids by Western blot and immunohistochemistry. The presence of a predicted signal 

peptide in the polypeptide chain of CPAMD8 indicates that this is a secreted protein present 

extracellularly. In accordance with this idea, western immunoblot revealed proteolytic 
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fragments of this protein in both AH and vitreous humor. The electrophoretic size of these 

fragments (approximately 120 and 60-65 kDa) is consistent with a proteolytic processing of 

the protein in the RRRR furin cleavage site located at residues 668-671 (Fig. S8A), releasing 

two fragments with theoretical masses of approximately 133 kDa (N-terminal, 1215-aas) 

and 71 kDa (C-terminal, 642-aas). The difference between experimental and theoretical 

molecular masses may be due to posttranslational modifications such as glycosylation 

and/or to protein conformation. Consistent with this idea, the observed 120 kDa doublet 

may reflect differences in glycosylation of the C-terminal fragment. Interestingly, the full-

length protein (1885 aas and 206.7 kDa predicted molecular mass), was not identified in 

these fluids indicating that it was completely processed. In line with these results, CPAMD8 

fragments derived from posttranslational processing at the RRRR furin cleavage site have 

also been reported in U251 glioma cells (Li et al. 2004). Interestingly, most missense 

mutations detected in this study and in the previous study (Cheong et al. 2016) are located 

in the C-terminal fragment of the protein. Based on this data we can speculate that the C-

terminal portion of CPAMD8 plays a critical role in the function of the protein. Cleavage of 

other related proteins such as C3, C4, and C5, by a furin-type enzyme occurs intracellularly 

at the tetra-arginine linker site as part of the maturation process and results in two chains 

linked by disulfide bridges (Ricklin et al. 2016). Based on this data, we can propose that the 

proteolytic processing of CPAMD8 also occurs intracellularly in the secretory pathway, 

regulating its biological activity, though this hypothesis requires further experimental 

assessment. Previous proteomic studies have detected the presence of CPAMD8 protein in 

the human CB (Goel et al. 2013) and AH (Murthy et al. 2015), and transcriptomic analyses 
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have been identified CPAMD8 transcripts in the NPCE (Janssen et al. 2014). In addition, our 

results also demonstrate the intracellular presence of CPAMD8 protein in different 

epithelial (NPCE and corneal epithelium), endothelial (corneal endothelium), and muscular 

cells (ciliary and iris muscles), as well as in fibroblasts from the anterior segment of the eye. 

The presence of the signal peptide indicates that all these cells synthesize and secrete the 

protein to their surrounding extracellular medium. In fact, one of the most intense signals 

was observed in the NPCE, indicating that the protein detected in the AH is secreted, at 

least partially, by these cells. CPAMD8 was not seen in the adult human TM, which suggests 

that the protein secreted by the NPCE is transported by the AH to the iridocorneal angle 

and to other parts of the ocular anterior segment, where it may play a role in homeostasis 

and the remodeling of the ECM thanks to its putative activity as a proteinase inhibitor. These 

ideas are in accordance with our hypothesis of paracrine release of CB factors capable of 

affecting the physiology of the TM (Coca-Prados and Escribano 2007) as well as with the 

presence, in the AH, of other proteinase inhibitors, including A2M, secreted by the CB (Coca-

Prados et al. 1999; Escribano et al. 1995; Ortego et al. 1997). Altogether, these data indicate 

not only that CPAMD8 is required for normal anterior segment development but also that 

it may participate in the homeostasis of this part of the eye, supporting the notion that its 

functional disruption may underlie the different ASD phenotypes that this study describes. 

A previous report analyzed the spatiotemporal expression of CPAMD8 in the developing 

human eye (9-22 weeks of gestation) by RT-PCR and in situ hybridization, revealing, in 

accordance with our results, that it is expressed in the lens, iris, cornea and distal tips of the 

retinal neuroepithelium that form the iris and CB (Cheong et al. 2016). Similarly, CPAMD8 
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has been identified in the CB epithelium of healthy fetal and adult cattle (Hollmann et al. 

2017). 

To gain insight into the role of CPAMD8 in ocular anterior segment development, congenital 

glaucoma, and ASD, we analyzed the expression of the zebrafish orthologue, cpamd8, in the 

eyes of early embryos (96 hpf). The protein was detected in mesenchyme-like cells of the 

anterior segment, indicating that it may participate in the early morphogenesis of the iris, 

cornea and lens. CRISPR/Cas9 cpamd8 disruption revealed that F0 mosaic embryos 

presented remarkable iridocorneal angle hypoplasia, affecting mainly iris stroma cells, and 

a primordial anterior chamber filled with abnormal cellular material. Similar anterior 

chamber alterations have been described in pitx2-deficient zebrafish embryos (72 hpf), 

probably resulting from the presence of undifferentiated cells, cellular degradation, and/or 

sloughing and aberrant lipid or protein secretion (Hendee et al. 2018). These similarities 

suggest that pitx2 and cpmad8 might participate in related developmental pathways. 

Cpamd8-disrupted F0 embryos also replicated the corneal thickening observed in two 

patients (CG-ASD-160 and CG-ASD-ANI-0066). Interestingly, the abnormal collagen 

deposition observed in the corneal stroma suggests that cpamd8 is required for normal 

organization of the ECM structure and resembles collagen disorganization detected in the 

trabecular meshwork of one of the patients (CG-ASD-104). Moreover, the alteration of the 

lens epithelium in F0 embryos may correlate with cataracts developed by some ASD8 

patients. The phenotypic variability observed in the population of F0 embryos could result 

from different levels of residual cpamd8 activity, and the lethal phenotypes might be 

associated with a complete LoF of this gene. The establishment of a cpamd8 knockout 
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zebrafish line will be required for further cpamd8 functional characterization and to 

determine the role that this gene plays in glaucoma and ASD pathogenesis. Altogether, 

these results suggest that cpamd8 participates in ocular anterior segment development and 

in ECM organization, further supporting the notion that its functional disruption underlies 

a spectrum of CG and ASD phenotypes. 
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Figure titles and legends 

Fig. 1. Variant filtering scheme used for candidate variant identification and pedigree 

analysis of CPAMD8 variants in patients with congenital glaucoma and anterior segment 

dysgenesis. (A) Gene variants were identified by NGS using a gene panel comprising 121 

genes (CG-ASD-160, CG-ASD-ANI-0066 and JG-ASD-33) or by WES (CG-ASD-104) and filtered 

as indicated to identify candidate variants. (B) Candidate variant segregation. The black 

symbol indicates the presence of the disease. Arrows in the pedigrees show the index case. 

+ : wild-type allele. 
1
Frameshift, stop gained, start lost, splicing acceptor, and missense

variants. V1: p.(Arg1231Profs*64); V2: c.1758+1_1758+4del; V3: delex23; V4: 

p.(Ala688Asp)-c.2243+4A>C; V5: p.(Pro936Leu); V6: p.(Ala1331Ser); V7: p.(Lys845fs*13); 

V8: p.(Arg668*). 

Fig. 2. Localization of CPAMD8 variants identified in this study. (A) Scheme of the CPAMD8 

protein domain organization indicating the localization of coding variants (positions are 

referred to sequence NP_056507). Domains are indicated according to the Pfam database 

(https://pfam.xfam.org/). Ab1, Ab2, and Ab3: epitopes recognized by the three antibodies 

used in this study. Red triangle: position of the four Arg residues of the cleavage motif. A2M: 

Alpha-2-macroglobulin domain. A2M_BRD: Alpha-2-macroglobulin bait region domain. 

A2MR: Alpha-macroglobulin receptor binding domain. FA: Farnesoic acid 0-methyl 

transferase domain. MG2: Macroglobulin 2 domain of Alpha2-Macroglobulin. MG3: 

Macroglobulin 3 domain of Alpha2-Macroglobulin. MG4: Macroglobulin 4 domain of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



43 

Alpha2-Macroglobulin. L: low complexity Pfam domain. KAZ: Kazal-type serine protease 

inhibitor domain. SP: signal peptide. TED: A-macroglobulin thioester domain. (B) Genomic 

localization of CPAMD8 variants identified in this study. Positions correspond to reference 

sequence NM_015692. Red: missense variants. Green: synonymous variants. Black: intronic 

variants. 

Fig. 3. Variant filtering scheme used for candidate variant identification and pedigree 

analysis of CPAMD8 variants in a patient with primary congenital glaucoma. (A) Gene 

variants were identified by NGS using a gene panel comprising 121 genes and filtered as 

indicated in the left to identify candidate variants. (B) Pedigree of the family. The black 

symbol indicates the presence of the disease. The arrow in the pedigree shows the index 

case. +: wild-type allele. 
1
Frameshift, stop gained, start lost, splicing acceptor, and missense

variants. V9: p.(Ala617Val), V10: c.4470+10_4470+11insT. 

Fig. 4. Ocular phenotypes associated with CPAMD8 variants identified in patients with 

glaucoma and variable severity of bilateral anterior segment dysgenesis. Phenotype 

severity increases from patient CG-ASG-160 to CG-ASD-104. Patient CG-ASG-160 shows mild 

corectopia (white arrows) and iridocorneal adhesions visible under gonioscopy (white 

arrowheads). Iridectomies are present in the left eye (yellow arrows). Patient JG-ASD-33 

presents moderate corectopia (white arrows), iris hypoplasia, and posterior embryotoxon 

(black arrow), along with numerous irodocorneal sinequiae observed gonioscopically (white 
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arrowheads). Iridectomies were present in both eyes (yellow arrows). Patient CG-ASD-104 

showed one of the most severe phenotypes, characterized by corectopia (white arrows), 

evident iris hypoplasia, iridodonesis, and posterior embryotoxon (black arrow). Corneal 

calcification secondary to retinal detachment was present in the LE. Gonioscopy images 

were not available, but iridocorneal adhesions were also observed. LE: left eye. RE: right 

eye. 

Fig. 5. Anterior chamber angle dysgenesis in CPAMD8-associated CG. Trabeculectomy from 

the right eye of patient CG-ASD-104. (A) Light microscopy of the anterior chamber angle 

segment. Abnormal insertion of the CM; compact TM; open lumens of SC and CC. Squares: 

areas magnified in panels B, C, and D. (B-I) Transmission electron microscopy. (B) Aberrant 

CM position over the TM. Apoptotic CM cell (white arrowhead). (C) CC with open lumen and 

vacuoles in endothelial cells (black arrow). (D) Vacuoles (black arrow) and vesicles (black 

arrowhead) in an endothelial cell of the SC. JCT cells (J), elastic-like fibers (e), fibrillary 

collagen (c), optically empty spaces (*) and apoptotic bodies (white arrow) in the JCT. (E) 

CTM with apoptotic trabecular cells (white arrowheads) and apoptotic bodies (white arrow). 

Abundant fibrillary collagen (c) and elastic-like fibers (e). Intertrabecular spaces (black 

double arrow) alternate with fused trabecular beams (black arrowhead). (F) Trabecular 

beams filled with densely packed and disorganized fibrillary collagen (c), elastic-like fibers 

(e) and thick basement membrane (bm). Trabecular beams (white double arrow) present

variable thickness and partial fusions (black arrowhead). (G) UTM with intertrabecular 

spaces (white double arrow), fused trabecular beams (black arrowhead), apoptotic 
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trabecular cells (white arrowhead) and apoptotic bodies (white arrow). In cross-sectioned 

trabecular beams (inset in G) elastic material (e) and fibrillary collagen (c) are arranged in 

onion-like layers. (H and I) UTM trabecular beam with apoptotic cell debris (white arrow), 

abundant densely packed and disorganized fibrillary collagen (c), thickened basement 

membrane (bm), scarce collagen VI (CVI), and elastic-like fibers (e). CC: collector channel. 

CM: ciliary muscle. CTM: corneoscleral trabecular meshwork. EC: endothelial cell. JCT: 

juxtacanalicular tissue. SC: Schlemm's canal. TM: trabecular meshwork. UTM: uveal 

trabecular meshwork. Scale bars: 50 μm in A; 5 μm in B and G; 2 μm in C and E; 1 μm in D, F 

and inset in G; 0.2 μm in H and 0.5 μm in I. 

Fig. 6. Reduced CPAMD8 mRNA levels in the CG-ASD-104 patient. The mRNA levels were 

measured by qRT-PCR using RNA purified from peripheral blood leukocytes as described in 

the Methods section. The results are expressed as a relative expression to control 1 (normal 

subject with no pathogenic CPAMD8 variants). Controls 1 and 2 are unrelated healthy 

subjects. +: wild-type allele. V7: p.(Lys845fs*13). V8: p.(Arg668*). Asterisks indicate 

statistical significance compared to the control: p < 0.001 (***). Statistical significance was 

calculated by ANOVA. 

Fig. 7. Functional analysis of the c.1758+1_1758+4del CPAMD8 variant identified in patient 

CG-ASD-160. (A) Scheme of the cDNA construct used for in vitro mRNA splicing assay using 

the pTBN1 vector (blue region). Wild type and mutant (c.1758+1_1758+4del) CPAMD8 
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genomic fragments are indicated in yellow. Vertical black arrows: restriction endonuclease 

sites used for cloning. (B) Agarose electrophoresis analysis of wild type (WT) and mutant 

(MUT) transcripts generated by RT-PCR using primers p3-p4 (left panel). Transfection 

efficiency was assessed by PCR amplification using minigene vector primers p1-p2 (band 3). 

The different amplicons were analysed by Sanger sequencing (Fig. S6A) and the inferred 

organization is shown on the right. (C) Prediction of a potential splicing donor signal (GTGC) 

by the Human Splicing Finder (HSF) software. HSF scores for wild type and mutant alleles 

are indicated in green and red, respectively. Note that HSF values for the canonical and 

alternative splicing sites are similar (78 and 75, respectively). Strong sites present values 

higher than 80. Green arrowhead: canonical splicing cleavage site. Red arrowhead: position 

of the c.1758+1_1758+4del variant. Red asterisk: position of a PCT in the fifth codon of the 

mutant reading frame. Nucleotides of the canonical splicing signal (GTAG), which are 

deleted in the mutant allele, are indicated. 

Fig. 8. Localization of CPAMD8 protein in adult human ocular anterior segment tissues. For 

fluorescent immunohistochemistry, histological sections (3 µm) were incubated with either 

a rabbit anti-human CPAMD8 primary antibody (HPA031328; Sigma) and a Cy2-conjugate 

donkey anti-rabbit secondary antibody (green signal) (1:200) (A–G) or with only a secondary 

antibody as a negative control (1:1000) (Fig. S8). Confocal wide-field micrographs of ciliary 

processes (A), iris (B), pars plana/ciliary muscle (C), lens epithelium (D), detailed images of 

the corneal epithelium (E), corneal stroma and keratocytes (F), and corneal endothelium 

(G). Scale bars correspond to 50 μm in panels A, D, E, F, G, and to 100 μm in panels B and C. 
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Red signals correspond to tissue autofluorescence. BM: Bowman’s membrane. CEN: corneal 

endothelium. CEP: corneal epithelium. CM: ciliary muscle. CS: corneal stroma. DM: 

Descemet’s membrane. IDM: iris dilator muscle. IPE: iris pigment epithelium. IS: iris stroma. 

ISM: iris sphincter muscle. K: keratocyte. LC: lens capsule. LCM: longitudinal fibers of the 

ciliary muscle. LF: lens fibers. NPCE: non-pigmented epithelium. PCE: pigmented epithelium. 

S: stroma. SCLE: subcapsular lens epithelium. 

Fig. 9. Fluorescent whole-mount immunohistochemical detection of cpamd8 in the 

embryonic zebrafish eye (96hpf). The embryos were incubated with either rabbit anti-

human CPAMD8 primary antibody (HPA031328; Sigma) (1:200) and Cy2-conjugated donkey 

anti-rabbit secondary antibody (1:1500) (A-C) or only a secondary antibody as a negative 

control (D-F). (A) Three-dimensional reconstruction from z-stack scanned confocal 

microscopy images (144 μm) of the eye. (B and C) Optical sections 2 and 9, from the exterior 

ocular surface, were selected from z-stack images to show the precise localization of the 

green signal between the optic cup surface and lens (arrow) and in the periocular 

mesenchyme surrounding the ocular globe (arrowhead). Red: tissue autofluorescence. 

Discontinuous line: Cpamd8 positive signals in the dorsoposterior quadrant of the eye. The 

cross indicates the position of the embryonic axes (D: dorsal; P: posterior; V: ventral; A: 

anterior). The image is representative of the result observed in 10 embryos. INL: inner 

nuclear layer; IPL: inner plexiform layer; L: lens; ONL: outer nuclear layer; OPL: outer 

plexiform layer; R: retina. 
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Fig. 10. Analysis of F0 zebrafish phenotypes resulting from CRISPR/Cas9 cpamd8 

inactivation (96-hpf). Zebrafish embryos were microinjected with CRISPR/Cas9 

ribonucleoprotein complexes targeting cpamd8 exon 4 (cpamd8ex4) or exon 25 (cpamd8ex25). 

Embryos microinjected with Cas9/tracrRNA ribonucleoprotein complexes and no crRNA 

were used as controls (tracrRNA). Untreated wild type embryos were also used as an 

additional control (WT). Treated embryos (F0) were classified into four phenotypes (WT-like, 

Ph-1, Ph-2, and Ph-3) according to increasing severity. (A) Proportion of F0 zebrafish 

phenotypes. Values correspond to the mean +-SEM of triplicate experiments with 50 to 250 

embryos per experiment. Phenotypes resulting from targeting of cpamd8 exon 4 (B) or exon 

25 (C). Lateral and ventral brightfield micrographs show similar abnormal phenotypes 

resulting from the targeting of the two exons, including microphthalmia (blue arrowheads), 

jaw maldevelopment (red arrowheads), and pericardial and periocular edemas (black and 

white arrowheads, respectively). Scale bars represent 200 m. 

Fig. 11. Histological analysis of F0 zebrafish phenotypes resulting from CRISPR/Cas9 

cpamd8 inactivation (96-hpf). (A, E, I, M and Q) Semi-thin (500 nm) transverse head 

sections were stained with Toluidine blue. WT: wild type. WT-L: wild type-like. Ph-1: 

phenotype 1. Ph2: phenotype 2. Ph3: phenotype 3. Progressive microphthalmia and 

enlarged intracranial and periocular spaces filled with amorphous material (black arrows), 

correlate with the severity of phenotypes. Underdevelopment of pharyngeal cartilages, 

ceratohyal (arrowhead), and the palatoquadrate (red arrows) are also present in phenotypes 

Ph-2 and Ph-3. Scale bar: 100 µm. The squares and rectangles indicate the areas of the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



49 

images magnified in the indicated panels. (B and C) The development of wild type 

iridocorneal dorsal and ventral angles shows normal pigment cell stratification in the iris 

with xantophores and idridophores in the stroma. (D) The cornea epithelium, 

subepithelium, stroma, and endothelium in contact with the anterior lens epithelium are 

observed in wild type embryos. Progressive anterior angle chamber reduction and 

hypoplasia of dorsal (F, J, N and R) and ventral (G, K, O, and S) iris stroma, affecting 

iridophores and xantophores, correlates with increasing phenotype severity (Ph-1 to Ph-3). 

(H, L, P, and T). Corneal epithelial swelling and stroma thickening increase with phenotype 

severity (Ph-1 to Ph-3). Ir: iridophores. xa: xantophores. ipe: iris pigmented epithelium. ac: 

anterior chamber. c: cornea. ce: corneal epithelium. cse: corneal subepithelium. cs: corneal 

stroma. cn: corneal endothelium. le: lens. Scale bar in “Eye” panels: 50 μm. Scale bar in 

“Dorsal Angle” and “Ventral Angle” panels: 4 μm. Scale bar in “Cornea” panels: 5 μm. 

Histological analysis of the negative control (Cas9/tracrRNA ribonuclease complex and no 

gRNA) is available in Fig. S15. 

Fig. 12. Electron microscopy of F0 zebrafish ocular anterior segment phenotypes resulting 

from CRISPR/Cas9 cpamd8 inactivation (96-hpf). Thin tissue sections were processed as 

described in the Methods section. (A, F, K, P, and U) Toluidne-blue-stained histological eye 

sections from Fig. 11 are used as a reference to indicate the position of the electron 

micrographs. The squares in the “Eye” and “Cornea” panels indicate the areas of the images 

magnified in the indicated panels. (B and C) Wild type dorsal and ventral iridocorneal angles, 

respectively, showing the early formation of the anterior chamber space and iris structures. 
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(D and E) Wild type cornea and corneal stroma, respectively. Note the dense, regularly 

packed collagen fibrils in the stroma running parallel to each other and that are stacked, 

forming layers or lamellae. No alterations were observed in the iridocorneal angle (G and H) 

or in the cornea (I and J) of wild type-like phenotypes. (L, Q, and V) The primordial dorsal 

anterior chamber is progressively filled with cellular material, which correlates with 

phenotype severity from Ph-1 to Ph-3. (M, R and W) A similar alteration is present in the 

primordial ventral anterior chamber. (N, S, and X) Increasing cytoplasm and organelle 

swelling (black arrowhead) in the corneal epithelium, suggestive of necrosis. (E, J, O, T, and 

Y) Progressive collagen disorganization in the corneal stoma correlating with genotype

severity, and characterized by decreased packing and irregular deposition of collagen fibrils 

with loss of collagen lamellae. Squares in different panels indicate enlarged areas. Ir: 

iridophores. xa: xantophores. ipe: iris pigmented epithelium. ac: anterior chamber. c: 

cornea. ce: corneal epithelium. cse: corneal subepithelium. cs: corneal stroma. cn: corneal 

endothelium. le: lens epithelium. Scale bars represent 50 μm in the “Eye” panels, 4 μm in 

the dorsal angle, ventral angle and cornea photographs; and 0.2 μm in the “stroma” panels. 
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Table 1. Biallelic CPAMD8 variants identified in patients diagnosed with CG-ASD or PCG. 

Family Chromosome position 
(hgv37) 

cDNA 
(NM_015692.4) 

Protein (NP_056507.3) Allele 
frequency/numb
er of 
homozygotes 
(gnomAD) 

aSIFT/bPolyphen/c

EVEP/dDANN 

eHSF 3.0 
predicted 
effects (# of 
algorithms) 

Reference 
number 

CG-ASG-160 19:17025566 
19:17088173 

c.3686_3687insT
c.1758+1_1758+4d
el

p.(Arg1231Profs*64) 
fp.(Val587Serfs*5) 

0 (0) 
9.398e-5 (0) 

-/-/-/- 
-/-/-/- 

- 
DSB (2) 

ss3943621968 
rs577740063 

CG-ASG-ANI-
0066 

19:17085914 
19:17085903 
19:17049179-17049281 

c.2063C>A
c.2070+4A>C
del ex23

p.Ala688Asp
fp.(Glu691Valfs*99)
p.(Ala979Argfs*49)

0 (0) 
0 (0) 
0 (0) 

T (0.33)/PD (1)/-/- 
-/-/-/- 

- 
DSB (2) 
- 

ss3943621972 
ss3943621971 

J-ASD-33 19:17017798 
19:17049243 

c.3991G>T
c.2807C>T

p.(Ala1331Ser) 
p.(Pro936Leu) 

7.657e-5 (0) 
0.0008707 (0) 

T (0.12)/PD 
(0.624)/M/0.983 
T (0.1)/B 
(0.17)/M/0.979 

CSSA (1), ESEB 
(5) 
No effect 

rs754711230 
rs200400599 

CG-ASG-104 19:17058014 
19:17085975 

c.2532del
c.2002C>T

p.(Lys845Argfs*14) 
p.(Arg668*) 

4.02071e-06 (0) 
5.481e-5 (0) 

-/-/-/- 
-/-/-/- 

- 
- 

ss3943621970 
rs200025505 

PCG-30 19:17086870 
19:17014360 

c.1850C>T
c.4470+10_4470+1
1insT

p.(Ala617Val) 
gp.(Trp1494Leufs*5) 

1.635e-5 (0) 
2.031e-5 (0) 

T (0.06)/PD 
(0.686)/M/- 
-/-/MF/- 

ESEB 
ISEB (3), ESEC 
(3) 

rs549230080 
rs754569481 

CSSA: Cryptic Splicing Site Activated. DSB: Donor Site Broken. ESEB: Exonic Splicing Enhancer Broken. ESEC: Exonic Splicing Enhancer Created. ISEB: Intronic Splicing Enhancer 

Broken. -: not apply. aThreshold for SIFT intolerance is 0.05. bPolyphen scores: 0.0-0.15, benign; 0.15-1.0, possibly damaging; 0.85-1.0, damaging. cEVEP: Ensembl Variant 

Effect Predictor: L, low; M, moderate; MF: modifier. dDeleterious annotation of genetic variants using neural networks (DANN) score: 0-1, 1 is given to the variants predicted 

to be the most damaging.; B, benign; D, damaging; PD probably damaging; T, tolerated. eHSF: Human Splicing Finder software (http://www.umd.be/HSF3). fFrameshift 

predicted in the open reading frame (ORF) originated by retention of the corresponding intron. gFrameshift predicted in the ORF of the new alternative transcript identified 

in this study, which retains the proximal intron 34. 

Table 1
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Table 2. Ophthalmological features of patients with biallelic CPAMD8 variants. 

Patient CG-ASD-160 CG-ASD-ANI-0066 JG-ASD-33 CG-ASD-104 PCG-30 

Age at diagnosis/age at last 
ophthalmic revision 

Infantile/36 y Birth/35 y Juvenile/25 y Birth/17 y 1 w/8 y 

Inheritance AR AR AR AR AR (putative) 

BCVA (RE/LE) 0.25/1 0.5/0.5 0.66/1 0.2/LP 0.7/0.5 

Refraction (RE/LE) -12.00/-9.00 -4.25/-4.0 -3.50/+1.50 -6.00/-18.00a NA 

Axial length (mm) (RE/LE) 29.38/26.69 ND 22.67/22.23 26.16/36.79 NA 

AC depth (mm) (RE/LE) 4.16/4.59 NA Narrow/Narrow 5.03/3.26 NA 

Lens thickness (RE/LE) (mm) 5.13/4.87 
(Clear lens) 

NA (B) (CS) 5.13/4.87, iatrogenic 
cataract (B) 

Clear lens/Aphakic NA 

Iris Mild C Coloboma and AS 
(B) 

Moderate C and AS 
(B), PI (B) 

AS, C, ID, IH and 
IC (B) 

Normal 

Central corneal thickness (m) 
(RE/LE) 

665/640 600/600 539/559 NA NA 

Corneal morphology Normal MC (B) PE (B) MC and PE (B) Normal 

Posterior segment Coroidosis, 
miopía 

Normal Normal 

Glaucoma + (B) + (B) + (B) + (B) + (B)

IOP at diagnosis (mm Hg) 
(RE/LE) 

NA NA NA 20/40 25/30 

Last IOP (mm Hg) (RE/LE) 20/18 18/18 20/20 16/16 NA 

C/D ratio at diagnosis (RE/LE) 0.8/0.8 NA NA 0.6/0.6 0.4/0.4 

Last cup/disc ratio (RE/LE) 0.8/0.8 NA 0.9-0.3 0.6/0.9 NA 

Glaucoma surgery (number, 
laterality) 

G (1, B), T (1 
RE/2 LE) 

G (1, B), Cs (1, B) T (1, B) G (3, B); T (1, B); 
AV (1, LE); V (B) 

G (1, B) 

Number of antiglaucoma 
drugs (RE/LE) 

1/1 2/2 0/4 0/0 NA 

aBefore vitrectomy. AC: anterior chamber; AV: Ahmed valve; AS: anterior synequia; B: bilateral; BCVA: best corrected visual acuity; C: corectopia; C/D: cup/disc; 

CS: cataract surgery; G: goniotomy; ID: iridodonesis; IH: iris hypoplasia; IC: iris concavity; IOP: intraocular pressure; LP: light perception; MC: megalocornea; 

NA: no available; NE: no evaluable; PE: posterior embryotoxon; PI: plateau iris; RE: right eye; LE: left eye; T: trabeculectomy; V: vitrectomy; y: year; w: week. 
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