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It is a well-known fact that one grating can act as an imaging element for another grating when the first is
illuminated with an extended monochromatic light source. The conditions for image formation in such a sys-
tem are studied when the finite size and position of the broad light source are considered. From the presented
analysis, expressions for the location and the depth of focus of such images can be derived. © 2000 Optical
Society of America [S0740-3232(00)00907-8]
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1. INTRODUCTION
There are several processes for creating images of a grat-
ing by using only gratings as imaging elements. The
best known of these processes is the Talbot effect1,2; self-
images of a grating appear at certain distances from it
when the grating is illuminated with collimated mono-
chromatic light. In this case the wavelike nature of light,
jointly with the periodic structure of the grating, produces
its self-images.

There are other cases in which one grating acts as an
imaging element for another grating. The Lau effect3 is
the best-known example of such a process. In this case
two gratings of the same pitch placed parallel to each
other and separated by a certain distance are illuminated
by using an extended monochromatic source, and a
pseudoimage of the first grating is formed at infinity.
The term pseudoimage is used because the intensity dis-
tribution on the observation plane (in this case located at
infinity) is a set of well-modulated fringes but with a
fringe profile that could be different from that of the first
grating. For example, if the first and second gratings are
Ronchi gratings, a set of triangular fringes appears at in-
finity. The formation of pseudoimages at infinity with
two gratings of the same pitch has also been studied for
partially coherent and coherent illumination.4 Also, a
study of the Lau effect within the theory of partial coher-
ence has been presented by Gori.5

In the case in which the second grating has a slightly
different pitch from that of the first, pseudoimages of the
first grating may appear at a certain number of discrete
distances from the second grating.6,7 The formation of
these pseudoimages is well understood when the source is
considered of infinite extent and placed at infinity or at
the focal plane of a lens. In this case the light incident on
the system is treated as an incoherent sum of planar
wave fronts with different orientations; this approach
substantially simplifies the following analysis. But when
this formalism is used, the depth of focus of the images
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formed is exactly zero, which means that on an observa-
tion plane infinitely close to the theoretical plane of image
formation we would get no fringes at all. This instability
of the pseudoimages is a consequence of considering the
light source to be of infinite extent and placed at infinity,
as will be shown in this work.

We have used a different approach, which allows us to
estimate the depth of focus of the pseudoimages. We
have obtained expressions for the total intensity distribu-
tion on the observation plane that take into account the
limited size of the source, equivalent to those derived by
Olszak and Wronkowski8 with a different method. We
show how it is possible to obtain, from these expressions,
information about the conditions for the formation of
pseudoimages and their focal depth. We have done this
work motivated by the importance that the depth of focus
has for any practical application that tries to take advan-
tage of this grating imaging phenomenon.

In this work an analysis is presented of the process of
pseudoimage formation considering the use of a finite
light source placed at a finite distance from the gratings.
The light incident on the system is treated as the incoher-
ent sum of the spherical waves emerging from each point
on the emitting surface. With this approach it is possible
to derive expressions for the depth of focus of the
pseudoimages that take into account all the relevant pa-
rameters of the optical system.

In Section 2 we derive the general expressions for the
intensity distribution on the observation plane when the
limited size of the light source is considered. In Section 3
we determine the conditions for the existence of
pseudoimages and derive expressions for their focal depth
and stability. In Section 4 we present a complete study
of the particular case when both of the gratings in our
system are Ronchi gratings. This example is useful for
better understanding the conditions for the formation of
the pseudoimages and their properties. We have in-
cluded in Appendix A some calculations that are neces-
sary to obtain the results presented in Section 3.
2000 Optical Society of America
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2. GENERAL ANALYSIS
The optical system for pseudoimage formation is the one
depicted in Fig. 1. It consists of an extended monochro-
matic light source F and two periodic gratings G1 and G2 ,
each of which can have a different pitch. At first, no as-
sumption is made on the amplitude or phase profile of
these gratings, besides the fact that they are periodic.
The distance between the light source and the first grat-
ing is z0 , and the distance between both gratings is z1 .
The size of the light source along the axis perpendicular
to the pitch of the gratings is S, the source size along the
gratings’ lines not being relevant to our discussion.

The goal of this analysis is to obtain the light distribu-
tion on a plane P located at a distance z2 from the second
grating. The method employed in the analysis will be a
series of propagations using the Fresnel approximation
from one element of the system to the next, the effect of
each grating on the incident wave front being introduced
through its complex transmittance.

Because of the symmetry of the arrangement that we
are going to analyze, the extended light source can be
treated as one dimensional. Each point from the source
emits a wave front that generates a certain field distribu-
tion on the plane where the first grating is located. It
will be considered that all the points from the source are
emitting light incoherently from each other. It will also
be considered that they are all emitting light with identi-
cal angular distributions, so the field distribution on the
plane of the first grating corresponding to the light emit-
ted from a single point can be written as

C~x, xi! 5 f~x 2 xi!, (1)

where xi is the spatial coordinate of a point on the source
plane and x is the spatial coordinate of a point on the
plane where the first grating is located. Here f(x) would
be the field originating from a point located on the origin
of the source coordinate system and propagated to the
plane of the first grating.

The first grating is characterized by its complex trans-
mittance. Since the grating is periodic with period p1 ,
its transmittance can be expressed by its Fourier expan-
sion as

t1~x ! 5 (
n

an exp~inq1x !, (2)

where q1 5 2p/p1 is the spatial frequency of the first
grating.

Fig. 1. Optical system used to obtain pseudoimages of the first
grating G1 on the observation plane P.
The field distribution right behind the first grating that
is due to the light emitted from a single point on the
source plane will be given by

f1~x, xi! 5 t1~x !f~x 2 xi!

5 (
n

an exp~inq1x !f~x 2 xi!. (3)

The Fourier transform of this field distribution will be
necessary for the following calculations. It will be useful
to write this Fourier transform in the following way:

F1~kx , xi! 5 FT@ f1~x, xi!#

5 (
n

an exp@2i~kx 2 nq1!xi#

3 F~kx 2 nq1!, (4)

where F(kx) 5 FT@ f(x)#.
If we use expression (4) and the Fresnel approximation

to study the propagation of the light field along the z axis,
the field distribution right before the second grating will
be given by

f2~x, xi! 5 (
n

anE
2`

`

expF iS kxx 2 kx
2

z1

2k D G
3 exp@2i~kx 2 nq1!xi#F~kx 2 nq1!dkx .

(5)

The second grating, G2 , has a period p2 and a spatial
frequency q2 5 2p/p2 . The field transmittance of this
grating can also be written as a Fourier series:

t2~x ! 5 (
m

bm exp~imq2x !. (6)

When use is made of the previous two expressions, the
field distribution right after the second grating will be

f3~x, xi! 5 f2~x, xi!t2~x !

5 (
n

(
m

anbm exp~imq2x !

3 E
2`

`

expF iS kxx 2 kx
2

z1

2k D G
3 exp@2i~kx 2 nq1!xi#F~kx 2 nq1!dkx .

(7)

The Fourier transform of this expression can be written
after some manipulations as

F3~kx , xi! 5 FT@ f3~x, xi!#

5 (
n

(
m

anbm exp@2i~kx 2 nq1 2 mq2!xi#

3 F~kx 2 nq1 2 mq2!

3 expF2i~kx 2 mq2!2
z1

2kG . (8)

The Fresnel approximation is used again to obtain the
light field propagated to the plane of observation P that is
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located at a distance z2 from the second grating. This
new field distribution will be given by the expression

f4~x, xi! 5 (
n

(
m

anbm exp@i~nq1 1 mq2!x#

3 expF2i~nq1 1 mq2!2
z2

2kGexpS 2in2q1
2

z1

2k D
3 E

2`

`

expH ikxFx 2 ~nq1 1 mq2!

3
z2

k
2 nq1

z1

k G J expS 2ikx
2

z1 1 z2

2k D
3 exp~2ikxxi!F~kx!dkx . (9)

Finally, the intensity distribution on the observation
plane P that is due to the light emitted from a single point
on the source will be

Ii~x, xi! 5 u f4~x, xi!u2

5 (
n

(
n8

(
m

(
m8

anan8
* ,bmbm8

* exp$i@q1~n 2 n8!

1 q2~m 2 m8!#x%expF2i~q1n 1 q2m !2
z2

2kG
3 expS 2iq1

2n2
z1

2k D expF i~q1n8 1 q2m8!2

3
z2

2kGexpS iq1
2n82

z1

2k D
3 E

2`

`

expH ikxFx 2 ~nq1 1 mq2!

3
z2

k
2 nq1

z1

k G J expS 2ikx
2

z1 1 z2

2k D
3 exp~2ikxxi!F~kx!dkx

3 E
2`

`

expH 2ikx8Fx 2 ~n8q1 1 m8q2!

3
z2

k
2 n8q1

z1

k G J expS ikx8
2

z1 1 z2

2k D
3 exp~ikx8xi!F* ~kx8!dkx8 . (10)

At this point we cannot go further without any assump-
tion for the function f(x) and its Fourier transform. The
paraxial (Fresnel) approximation for a spherical wave is

f~x ! 5 expS ix2
k

2z0
D , (11)

and its Fourier transform (ignoring multiplicative con-
stants) is

F~kx! 5 expS 2ikx
2

z0

2k D . (12)
The substitution of Eq. (12) into Eq. (10) allows us to solve
the integrals, so we finally get

Ii~x, xi! 5 (
n

(
n8

(
m

(
m8

anan8
* bmbm8

*

3 exp$i@q1~n 2 n8! 1 q2~m 2 m8!#x%

3 expF i
z0

zT
~n2 2 n82!q1

2
z1 1 z2

2k G
3 expF i

z0 1 z1

zT
~m2 2 m82!q2

2
z2

2kG
3 expF i

z0

zT
~nm 2 n8m8!q1q2

z2

2kG
3 expH 2i

x 2 xi

zT
@~n 2 n8!q1~z1 1 z2!

1 ~m 2 m8!q2z2#J , (13)

where zT 5 z0 1 z1 1 z2 is the total distance from the
source to the observation plane.

The incoherent light source has a linear size S, and it is
placed at a distance z0 from the first grating. We will
also consider that it is centered on the origin of coordi-
nates. Accordingly, the total intensity distribution on
the observation plane P will be

IS~x ! 5 E
2S/2

S/2

Ii~x, xi!dxi . (14)

Substituting Eq. (13) into Eq. (14), we obtain the fol-
lowing expression for the total intensity on the observa-
tion plane:

IS~x ! 5 (
n

(
n8

(
m

(
m8

anan8
* bmbm8

*

3 expH ixFq1

z0

zT
~n 2 n8!

1 q2

z0 1 z1

zT
~m 2 m8!G J

3 expF i
z0

zT
~n2 2 n82!q1

2
z1 1 z2

2k G
3 expF i

z0 1 z1

zT
~m2 2 m82!q2

2
z2

2kG
3 expF i2

z0

zT
~nm 2 n8m8!q1q2

z2

2kG
3 sincH S

zT
@~n 2 n8!q1~z1 1 z2!

1 ~m 2 m8!q2z2#J , (15)

where the notation sinc(x) 5 sin(x)/x is used.
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It is convenient now to introduce the following dimen-
sionless quantities:

R 5
q2

q1
, Z0 5

q1
2z0

pk
, Z1 5

q1
2z1

pk
,

Z2 5
q1

2z2

pk
, ZT 5

q1
2zT

pk
, (16)

where R is the ratio between the spatial frequencies of the
first and the second grid and Z0 , Z1 , Z2 , and ZT are, re-
spectively, the distances z0 , z1 , z2 , and zT normalized to
half the Talbot distance9 of the first grating.

Using these dimensionless quantities, we can write the
total intensity distribution on the observation plane as

IS~x ! 5 (
n

(
n8

(
m

(
m8

anan8
* bmbm8

*

3 expH ix
q1

Zt
@Z0~n 2 n8! 1 R~Z0 1 Z1!

3 ~m 2 m8!#J expF i
p

2

Z0

ZT
~n2 2 n82!~Z1 1 Z2!G

3 expF i
p

2

Z0 1 Z1

ZT
~m2 2 m82!R2Z2G

3 expF ip
Z0

ZT
~nm 2 n8m8!RZ2G

3 sincH S

ZT
q1@~n 2 n8!~Z1 1 Z2!

1 ~m 2 m8!RZ2#J . (17)

This expression is a general result that provides an ac-
curate value for IS(x). This is the same result as the one
obtained with a different approach by Olszak and
Wronkowski.8 We decided to use a different method for
deriving this last expression because it provides interme-
diate expressions that can be useful for studying other
cases of practical interest. In particular, one could con-
sider the case when the light source is placed in the focal
plane of a collimating lens by substituting expression (11)
with a planar wave front.

We recall that the only assumptions made up to now to
derive expression (17) are the infinite extensions of the
gratings along the x and y directions, the translation sym-
metry along the y axis, and the Fresnel approximation ap-
plied to propagation calculations. In the remainder of
this paper, we study this expression under particular
situations that allow us to simplify it and to extract useful
information from it. The first effort in this direction is
the modification of previous results obtained by Swanson
and Leith.10 Let us make S/z0 and z0 take very large
values in expression (17). The total intensity distribu-
tion can then be approximated by the following expres-
sion:
I~x ! 5 (
n

(
n8

(
m

(
m8

anan8
* bmbm8

* exp$iq1x@~n 2 n8!

1 R~m 2 m8!#%expF i
p

2
~Z1 1 Z2!~n2 2 n82!G

3 expF i
p

2
Z2R2~m2 2 m82!G

3 exp@ipRZ2~nm 2 n8m8!#

3 d(@~Z1 1 Z2!~n 2 n8! 1 RZ2~m 2 m8!#).

(18)

This is the same expression that is obtained by Swanson
and Leith with a different procedure when the light
source is considered of infinite extent and placed at an in-
finite distance from the first grating.10 In that case the
light incident on the system is treated as an incoherent
superposition of planar wave fronts. It is also shown in
Ref. 6 that, under these assumptions (infinite source, in-
finitely far), from expression (18) it can be derived that
pseudoimages of the gratings are formed when some con-
ditions on R, Z1 , and Z2 are met.

3. FORMATION OF PSEUDOIMAGES
In the case of an infinite source located infinitely far from
the first grating, one of the conditions that must be satis-
fied for the existence of a pseudoimage is

Z1 1 Z2

RZ2
5 Q, (19)

where Q 5 n/m must be a rational number.6 The fulfill-
ment of this equation is a necessary condition to obtain
fringes in the observation plane. In effect, if Eq. (19) is
not satisfied, the delta functions in Eq. (18) are all zero
except when n 2 n8 5 0 and m 2 m8 5 0, in which case
all the arguments of the oscillatory functions vanish and
the intensity on the observation plane becomes constant.

Let us consider now a certain set of values of R, Z1 ,
and Z2 that satisfy Eq. (19). Considering that we can
find irrational numbers R arbitrarily close to any rational
number, there will exist values Z28 , infinitely close to Z2 ,
such that the quotient (Z1 1 Z28)/RZ28 is irrational.
There will also exist values Z18 arbitrarily close to Z1 such
that (Z18 1 Z2)/RZ2 is irrational too. This means that
given a certain set of values of R, Z1 , and Z2 for which
there exists a pseudoimage on the observation plane, if an
infinitesimally small change is given to the value of either
Z1 or Z2 , there will be no pseudoimage at all. Equations
(18) and (19) then imply that the focal depth of the
pseudoimages is exactly zero. Obviously, this cannot be
true; it is a consequence of using the approximation that
the source has infinite extent and that it is placed infi-
nitely far from the gratings.

The rigorous analysis for pseudoimage formation based
on Eq. (17) is rather tedious, so to lighten the present dis-
cussion, we postpone it to Appendix A. From the results
derived in Appendix A, it can be stated that, when the
light source is not considered infinite, the condition for
the existence of a pseudoimage is
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~Z1 1 Z2!nI 1 RZ2mI . 0, (20)

where nI and mI are small integers such that

unIu !
Sq1

pZT
RZ2 , umIu !

Sq1

pZT
~Z1 1 Z2!. (21)

There is an additional condition that limits the range of
values of Z1 and Z2 for which relation (20) will be true
and can be expressed as

unIu

umIu
,

umIu

unIu
! F ZT

Sq1
U 1

~Z1 1 Z2!nI 1 RZ2mI
UG2

. (22)

Under these conditions a pseudoimage will be formed,
which will be called a pseudoimage of order (nI , mI).
The location of the pseudoimages is the same as that pre-
dicted in the case in which an infinite source is consid-
ered. An important difference is that, now, not all of the
pseudoimages that were predicted by Eq. (19) will exist;
the number of images that will exist for given values of S,
q1 , and R will be limited by relations (21). The range of
values of Z1 and Z2 for which the image of order (nI , mI)
will exist will be limited by relations (22).

In the model presented by Swanson and Leith, there
are an infinite number of images infinitely close to one an-
other. In our model, there is a finite number of images,
each with a certain focal depth. The pseudoimages that,
according to Swanson and Leith, should appear for large
values of unIu and umIu will not be observed because they
will be formed too close to pseudoimages corresponding to
lower values of unIu and umIu with a larger modulation and
with a large focal depth.

When the conditions given by relations (20)–(22) are
satisfied, the intensity distribution on the observation
plane is

IS . I0 1 (
jÞ0

dj expS ix
Z1

Z2
q1 , jnID

3 sincH j
Sq1

ZT
@~Z1 1 Z2!nI 1 RZ2mI#J . (23)

This equation describes a set of fringes of period pI
5 p1Z2 /(Z1nI), which will have a modulation given
mainly by the first harmonics in its Fourier series; this
modulation will be

M . URe~d1!sincH Sq1

ZT
@~Z1 1 Z2!nI 1 RZ2mI#J U. (24)

The half-width at half-maximum of the sinc( ) term ap-
pearing in relation (24) will be given by

Sq1

ZT
@~Z1 1 Z2!nI 1 RZ2mI# 5

p

2
. (25)

It follows from this last equation and from the previous
discussion that there will be an interval of values of Z1
given by [Z10 2 DZ1 , Z10 1 DZ1] and an interval of val-
ues of Z2 given by [Z20 2 DZ2 , Z20 1 DZ2] for which a
pseudoimage of order (nI , mI) will have a good modula-
tion. The values of Z10 , Z20 , DZ1 , and DZ2 can be de-
rived from the following expressions:
~Z10 1 Z20!nI 1 RZ20mI 5 0, (26)

DZ1 5
p

2

ZT

Sq1

1

nI
, (27)

DZ2 5
p

2

ZT

Sq1

1

nI 1 RmI
, (28)

where we have supposed that ZT remains constant for
small changes of Z1 and Z2 . The depth of focus of the
pseudoimages will be given by DZ2 . The stability of the
pseudoimages with respect to changes in Z1 will be re-
lated to DZ1 . Both quantities will be larger for a smaller
size of the source, S, and for a larger size of the optical
system, ZT . Both quantities will also be larger in a
pseudoimage corresponding to smaller values of nI and
mI .

Aside from this, expression (24) will also be affected by
the behavior of d1 as a function of Z1 . From Appendix A
we know that

d1 5 expS i
p

2
RZ1nImID

3 (
n8

an81nI
an8

* (
m8

bm81mI
bm8

*

3 exp~2ipRZ1nIm8!; (29)

this is a periodic function of Z1 with a period given by

pd 5
2

RnI
. (30)

Summarizing all these conclusions, the modulation of
the fringe distribution will be, as a function of Z2 , a
sinc( ) function centered on Z20 with a half-width of the
central maximum given by DZ2 . And as a function of
Z1 , it will be a sinc( ) function, centered on Z10 with a
half-width of DZ1 , modulated by a periodic function of pe-
riod pd . To obtain a clearly visible pseudoimage, it will
be necessary that Z10 be close to a maximum of uRe(d1)u.
The tolerance of the pseudoimage to changes in Z2 (the
focal depth) will be given by DZ2 . The tolerance of the
pseudoimage to changes in Z1 will be given by DZ1 or
u pdu/4, whichever is smaller.

For a better understanding of the properties of the
pseudoimages, the particular case when the gratings used
in the system are both Ronchi gratings will be studied in
Section 4.

4. PARTICULAR CASE: TWO RONCHI
GRATINGS
We will now consider that the first and second gratings
are both Ronchi gratings; this means that the coefficients
of the Fourier series describing the first and second grat-
ings, an and bn , are

a0 5 b0 5
1

2
, a2n11 5 b2n11 5

1

p

~21 !n

2n 1 1
,

a2n 5 b2n 5 0 ~n Þ 0 !. (31)
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With those particular values of the Fourier expansion
coefficients for both gratings, we will have to distinguish
three different cases depending on the order of each
pseudoimage, given by nI and mI :

• If nI is an even integer, then dj 5 0 for any value of
j. There will not be pseudoimages of order (nI , mI),
where nI is an even integer.

• If nI and mI are both odd integers, then the modu-
lation of the fringes, according to relation (24), will be
given by

M . U 1

p2nImI
cosSp2 RZ1nImID

3 sincH Sq1

ZT
@~Z1 1 Z2!nI 1 RZ2mI#J U. (32)

• If nI is an odd integer and mI is even, then the
modulation of the fringes will be given by

M . U 1

pnI
sincH Sq1

ZT
@~Z1 1 Z2!nI 1 RZ2mI#J

3 (
m8

1

p2~2m 1 18 1 mI!~2m8 1 1 !

3 cos@pRZ1nI~2m8 1 1 2 mI/2!#U . (33)

In any of these cases, the maximum value of the modu-
lation is inversely proportional to unImIu, so the best
pseudoimages will be obtained for small values of nI and
mI .

When mI is an odd integer, one of the conditions to get
maximum modulation is

Z1 5
2l

RnImI
~l P N !. (34)

That is, the maximum modulation is obtained when the
distance between the first and the second grating is an
even multiple of the Talbot distance, defined as p1

2/(2l),
but affected by a factor 1/(RnImI). This condition and
the one stated in Eq. (26) completely define the location of
the pseudoimages for odd values of nI and mI .

When mi is an even integer, the periodic dependency of
the modulation with Z1 is given by the rather complicated
expression

U 1

pnI
(
m8

1

p2~2m 1 18 1 mI!~2m8 1 1 !

3 cos@pRZ1nI~2m8 1 1 2 mI/2!#U . (35)

It is difficult to determine from this expression that value
of Z1 for which the modulation reaches its highest value.

In Fig. 2 we show three different maps of the modula-
tion of the pseudoimages as a function of Z1 (horizontal
axis) and Z2 (vertical axis). Figure 2(a) shows the modu-
lation of images of order (1, 21), Fig. 2(b) shows the
modulation of images of order (1, 22), and Fig. 2(c) shows
the modulation of images of order (1, 23). In the three
Fig. 2. Maps of the modulation of the pseudoimages as a func-
tion of Z1 (horizontal axis) and Z2 (vertical axis): (a) images
of order (1, 21), (b) images of order (1, 22), (c) images of order
(1, 23).
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cases, we have used the values R 5 1.1, Sq1 5 20p, and
Z0 5 1. These maps were calculated by using expres-
sions (32) and (33).

The maxima for the modulation are located in each
case along the lines defined by (Z1 1 Z2)nI 1 RZ2mI
5 0 (it is important to note the different scales on the
vertical axes for each figure), and the values of this
maxima are proportional in each case to 1/unImIu. The
periodic dependency of the modulation on Z1 can be
clearly seen along the horizontal direction. It is clear as
well that the areas of good modulation get wider for
higher values of Z1 1 Z2 (that is, higher values of ZT)
and for smaller values of 1/unImIu.

5. CONCLUSIONS
In this work we have studied the process of pseudoimage
formation when two gratings of different pitch are illumi-
nated by using an extended monochromatic light source.
The aim of this paper is to show the effect of the limited
size of the light source on the existence and the properties
of such pseudoimages.

First, we have derived general expressions for the in-
tensity distribution that would be obtained on an obser-
vation plane located at an arbitrary distance from the sec-
ond grating. Those expressions take into account the
limited size of the light source.

From the expressions previously obtained, we have de-
rived the conditions on the relevant parameters of the
system (size of the light source, distances between the dif-
ferent elements in the system, and relationship between
periods of the gratings) that must be satisfied to get well-
modulated pseudoimages. We have proved that the
number of images that it is possible to obtain depends on
the size of the light source and the total length of the op-
tical system. We have also proved that the depth of focus
of the existing pseudoimages is inversely proportional to
the size of the source and directly proportional to the total
length of the optical system. We have shown as well that
there is a periodic dependency of the modulation of the
pseudoimages on the distance between gratings, just as
there is in a standard moiré setting that uses collimated
light. As an example, we have studied in more detail a
particular case for two Ronchi gratings.

APPENDIX A
To study the conditions for the formation of pseudoimages
when we are considering the limited size of the source, it
is convenient to write expression (17) in a simplified man-
ner as

IS~x ! 5 (
n,m

exp@iq1~an 1 bm !x#sinc~An 1 Bm !cnm ,

(A1)

where

a 5 Z0 /ZT , (A2)

b 5 R~Z0 1 Z1!/ZT , (A3)

A 5 Sq1~Z1 1 Z2!/ZT , (A4)
B 5 Sq1RZ2 /ZT , (A5)

cnm 5 expF i
p

2

Z0

ZT
~Z1 1 Z2!n2G

3 expS i
p

2

Z0 1 Z1

ZT
R2Z2m2D expS ip

Z0

ZT
RZ2nm D

3 (
n8,m8

an81nan8
* bm81mbm8

*

3 expF2ip
Z0

ZT
~Z1 1 Z2!nn8G

3 expS 2ip
Z0 1 Z1

ZT
R2Z2mm8D

3 expF2ip
Z0

ZT
RZ2~nm8 2 n8m !G , (A6)

which, in terms of the parameters defined above, can be
written as

cnm 5 expS i
p

2

AZ0

Sq1
n2D expF i

p

2
RZ2~bm2 1 2anm !G

3 (
n8,m8

an81nan8
* ,bm81mbm8

*

3 expS 2ip
AZ0

Sq1
nn8D

3 exp$2ipRZ2@bmm8 1 a~nm8 2 n8m !#.%

(A7)

We will suppose that the system is arranged in such a
way that the conditions

S

ZT
@

p1

Z1 1 Z2
,

S

ZT
@

p2

Z2
(A8)

are satisfied. As shown in Fig. 3, there is a geometrical
meaning to these inequalities. On every point of the ob-
servation plane, there should be light arriving from a
large number of periods of the first grating and from a
possibly different large number of periods of the second
grating. This would mean that the light distribution on
the observation plane depends on the periodic structure of
each grating and not only on the structure of each single
period of the gratings. If we apply the conditions stated
in relations (A8) to the definitions of the parameters A
and B, we deduce that the absolute value of both A and B
should be much greater than p. This can be stated as fol-
lows:

uAu .
p

e1
, uBu .

p

e2
, e1 ,e2 ! 1; (A9)

that is, for any integers n, m Þ 0,

usinc~nA !u ,
e1

np
' 0, usinc~mB !u ,

e2

mp
' 0,

(A10)
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and henceforth the terms with n 5 0 or m 5 0 in the
double summation (A1) are negligible except for that with
n 5 m 5 0. This fact allows us to write expression (A1)
as

IS~x ! . I0 1 (
n,mÞ0

exp~iaxn !

3 exp~ibxm !sinc~An 1 Bm !cnm , (A11)

where I0 5 c00 is a constant-intensity background and
the double summation is extended only to those values of
n and m different from zero.

We will also suppose that the absolute value of the co-
efficients cnm decreases at least as 1/nm when n and m
increase. That is to say,

ucnmu < K/unmu, (A12)

where K is a constant and n and m are different from
zero. It is easy to show that when the coefficients an and
bm have alternating sign and their absolute values de-
crease at least as 1/n and 1/m, respectively, then condi-
tion (A12) is satisfied. These last conditions on an and
bm are fulfilled in the case of Ronchi gratings and in most
grating profiles with practical interest.

Let us suppose that there exists a set of values for the
parameters A, B, a, and b that allows for the formation of
a pseudoimage, in which case there will be a periodic dis-
tribution of irradiance on the observation plane. We will
call qI the fundamental frequency of this pseudoimage.
Because of the functional form of expression (A1), there
must exist two unique numbers nI and mI such that the
fundamental frequency can be expressed as

qI 5 q1~anI 1 bmI!. (A13)

According to this, the irradiance distribution on the ob-
servation plane can be written as

I~x ! 5 I0 1 (
j

cjni , jmI
sinc@ j~AnI 1 BmI!#

3 exp~ijqIx ! 1 I2~x !, (A14)

Fig. 3. Angle subtended on any point of the observation plane
by the light source, a single period of the first grating, and a
single period of the second grating. The first of these angles
must be much greater than the other two in order to obtain
clearly visible self-images.
where the term I2(x) comprises all the terms for which
(n, m) Þ j(nI , mI). We will demonstrate now that I2(x)
is negligible when the parameters A, B, a and b take val-
ues that allow for the formation of a pseudoimage, and we
will also find what these values and their tolerances are.

First, to have I2(x) negligible with respect to the Fou-
rier series, at least the first terms of this series should
have significant values. This implies that

sinc@ j~AnI 1 BmI!# . 1, (A15)

where j is any integer smaller than a certain nL , such
that nL @ 1. We could also write this last equation as
the condition

uAnI 1 BmIu ,
p

2nL
, nL @ 1; (A16)

this will be the first of the conditions for the existence of a
pseudoimage.

Now we must study the terms of I2(x) and see the con-
ditions under which they are negligible. There are dif-
ferent cases that we will treat separately:

1. unu < umu

We can write n 5 r1nI and m 5 r1mI 1 r2 , where the
numbers r1 and r2 are rational and r2 , which is given by

r2 5
mnI 2 nmI

nI
, (A17)

will always be different from zero for any term that be-
longs to I2 .

a. r1 , nL

In this case

uAn 1 Bmu 5 ur1~AnI 1 BmI! 1 r2Bu

. ir2Bu 2 ur1~AnI 1 BmI!i . (A18)

From Eq. (A17) we derive

ur2Bu . UB

nI
U (A19)

If we suppose that uB/nIu . ur1(AnI 1 BmI)u, we now ob-
tain

uAn 1 Bmu . UB

nI
U 2 ur1~AnI 1 BmI!u. (A20)

Also, from expression (A16), and taking into account that
r1 , nL , we know that

ur1~AnI 1 BmI!u ,
p

2
, (A21)

so

uAn 1 Bmu . UB

nI
U 2

p

2
. (A22)

With the use of expression (A9), this last equation is
transformed into
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uAn 1 Bmu . U p

e2nI
U 2

p

2
. (A23)

From this equation we can obtain the condition under
which the considered terms will be negligible. In effect,
if

unIu !
1

e2
, (A24)

then uAn 1 Bmu @ p and sinc(An 1 Bm) . 0. Also
when relation (A24) is true, it is also true that uB/nIu
. ur1(AnI 1 BmI)u. We have proved that the condition
given by relation (A24) is enough to make negligible any
of the terms belonging to I2 with unu < umu and r1
, nL .

b. r1 > nL

In this case, and since unu < umu, we can consider that the
following expression will be true:

unmu > n2 5 r1
2nI

2 > nL
2nI

2. (A25)

If the condition

nL
2nI

2 @ unImIu, (A26)

is met, then from expression (A12) it follows that ucnmu
! ucnImI

u and therefore we can consider the term negli-
gible. We have proved that the condition given by

umIu

unIu
! nL

2 (A27)

is enough to make negligible any of the terms belonging to
I2 with unu < umu and r1 > nL .

2. unu > umu

This is the same case as the one just studied if we switch
the roles of n and m and those of A and B. So, following
the same procedure as that above, we obtain the following
conditions:

umIu ! 1/e1 , (A28)

unIu/umIu ! nL
2. (A29)

These two conditions are enough to ensure that the terms
belonging to I2 such that unu > umu will be negligible.

Summarizing these results, we have proved that, in a
general case, the intensity distribution on the observation
plane is close to a periodic distribution with a spatial fre-
quency qI 5 anI 1 bmI if the following conditions are
met:

uAnI 1 BmIu ,
p

2nL
, nL @ 1, (A30)

unIu ! 1/e2 , umIu ! 1/e1 , (A31)

umIu/unIu,unIu/umIu ! nL
2. (A32)

In the work presented by Swanson and Leith,10 the
equivalent condition derived for the formation of the
pseudoimages was
uAnI 1 BmIu 5 0. (A33)

This is equivalent in our scheme to the case when
nL → `; the only conditions for the existence of a
pseudoimage are relations (A31). These expressions de-
termine the total number of images that will be observed
in a system with a given source size and a given total
length. The number of images is not infinite when we
consider the limited size of the source.

Now let us suppose that A 5 A0 and B 5 B0 satisfy
Eq. (A33) and that nI and mI satisfy relations (A31). The
values of A and B close to A0 and B0 can be expressed as

A 5 A0 1 DA, B 5 B0 1 DB. (A34)

In this case we can write

uAnI 1 BmIu 5 uDAnI 1 DBmIu 5
p

2nL
. (A35)

The conditions to keep having a pseudoimage will be
given by relations (A30) and (A32) and will be

uDAnI 1 DBmIu ! p/2, (A36)

uDAnI 1 DBmIu2 !
p2unIu

umIu
, (A37)

respectively. These last two relations indicate the inter-
vals DA and DB around A0 and B0 for which the
pseudoimage will exist. When the finite size of the
source is considered, these intervals are different from
zero and they depend on nI and mI .

Substituting the values of A and B, we could express
the conditions for the existence of a pseudoimage in a gen-
eral case as

~Z1 1 Z2!nI 1 RZ2mI . 0, (A38)

unIu !
Sq1

pZT
RZ2 , umIu !

Sq1

pZT
~Z1 1 Z2!, (A39)

unIu

umIu
,

umIu

unIu
! F ZT

Sq1
U 1

~Z1 1 Z2!nI 1 RZ2mI
UG2

. (A40)

We also obtain for the intensity distribution of the
pseudoimages the expression

IS . I0 1 (
jÞ0

dj expS ix
Z1

Z2
q1 jnID

3 sincH j
Sq1

ZT
@~Z1 1 Z2!nI 1 RZ2mI#J , (A41)

where

dj 5 expS i
p

2
RZ1nImI j2D(

n8

an81jnI
an8

*

3 (
m8

bm81jmI
bm8

* exp~2ipRZ1nIm8j !. (A42)
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Expression (A41) represents a set of fringes of period
pI 5 p1Z2 /(Z1nI).
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