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Abstract: Both the prevalence of antibiotic resistance and the increased biofilm-associated 11 
infections are boosting the demand for new advanced and more effective treatment for such 12 
infections. In this sense, nanotechnology offers a ground-breaking platform for addressing this 13 
challenge. This review shows the current progress in the field of antimicrobial inorganic-based 14 
nanomaterials and their activity against bacteria and bacterial biofilm. Herein, nanomaterials 15 
preventing the bacteria adhesion and nanomaterials treating the infection once formed are 16 
presented through a classification based on their functionality. To fight infection, nanoparticles 17 
with inherent antibacterial activity and nanoparticles acting as nanovehicles are described, 18 
emphasizing the design of the carrier nanosystems with targeting properties towards the bacteria 19 
and the biofilm. 20 
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1. Introduction 23 

Currently, antimicrobial resistance (AMR) is pervasive across 22 countries with an estimated 24 
500,000 people infected worldwide [1,2]. The macroeconomist, Peter O’Neill, has alerted all 25 
governments worldwide that deaths due to AMR will outpace cancer by 2050, estimating 10 million 26 
deaths in such date [3]. A consequence of uncontrolled bacterial growth is increased prevalence of 27 
biofilms, which are microorganisms’ communities typically composed of multiple species coated in 28 
a self-produced protective extracellular matrix [4]. Biofilms protect the integral bacteria survive in 29 
hostile surroundings, as their physiology and behaviour are considerably different from their 30 
free-living counterparts (i.e. planktonic). In this way, biofilms confer resistance to antimicrobial 31 
agents and to the immune system causing persistent and chronic infections. Undoubtedly both AMR 32 
and biofilm formation constitute serious clinical problems and currently it is estimated that 60-80% 33 
of chronic persistent infections treated in hospitals today are produced by bacterial biofilms [5]. 34 

Nanotechnology offers potential opportunities in many fields, including infectious processes 35 
[6,7]. The term ‚nano‛, according to the FDA and IUPAC, is referred to any product with properties 36 
or phenomena attributable to its dimensions, when such dimensions are in the nanoscale range of 37 
1-100 nm [8,9]. These nanomaterials have unique properties compared to their bulk chemical 38 
counterparts, such as large surface area to volume ratio and versatility, which could enhance their 39 
influence on a given microorganism and other diseases [10-12]. The advantage of these nanomaterial 40 
formulations over conventional systems is that they can increase treatment efficacy and decrease 41 
side effects through their precise targeting mode of action. In this sense, nanomedicine comprise the 42 
use of nanoparticles as therapeutic agents, drug delivery and diagnosis systems or the use of 43 
nanomaterials for medical devices [10]. In the last decade many billions of dollars have been 44 
invested in the global market of nanomaterials for medicine, with particular interest in the area of 45 
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drug delivery systems. Moreover, as consequence there are some concerns of the potential 46 
toxicology of nanomaterials in human environment being diverse current literature on their possible 47 
adverse health effects [13].  48 

From the moment that nanomaterials were first described as drug delivery systems [14] much 49 
research effort has been made, especially focused for cancer treatment [15,16]. Figure 1 displays how 50 
the scientific research in the field of antimicrobial nanomaterials has grown exponentially over the 51 
last decade with the expectancy of achieving an effective solution against infection. Among the 52 
proposed mechanisms, the main approaches emphasize on two alternatives: i) preventing the 53 
adhesion of bacteria to avoid biofilm formation or ii) destroying the formed biofilm and eliminating 54 
bacteria without generation of AMR [17-30]. 55 

 56 

 57 

Figure 1. Histogram showing the research in nanomaterials for infection treatment from 2002 until 58 
today (June 2019). Database Web of Science (WOS) and keywords ‚nanomaterials‛ and ‚infection‛. 59 

An example of the first approach is the design of antibiofouling surfaces made by altering their 60 
chemical and/or physical properties to make them highly unfavorable for the bacteria attachment 61 
and subsequent biofilm formation [31-35]. In this sense, the main requirement of this kind of 62 
surfaces in biomedical applications, particularly in bone tissue regeneration, is that at the same time 63 
the surface inhibits bacterial adhesion it also allows cell adhesion, which leads to integration of the 64 
bone implant or regeneration of the bone tissue [33,36]. Regarding the second approach, 65 
nanoparticles are successfully used to combat infection [10,20,21,25]. These nanomaterials have been 66 
used from two flanks, i.e., those nanoparticles that intrinsically possess antimicrobial effect [37] or 67 
those that are nanocarriers of antibiotics so a localized high concentration of the drug can be released 68 
at the site of infection [38]. The purpose of this review is to summarize recently published work on 69 
nanomaterials and their therapeutic potential for combating bacterial infection. Herein, we focus on 70 
inorganic-based nanomaterials, which show advantages compared to their organic counterparts, 71 
including their high thermal, chemical and mechanical stabilities under physiological conditions and 72 
good biocompatibility. We provide a new viewpoint by dividing antibacterial nanomaterials into 73 
two categories: materials to prevent the bacteria adhesion by the design of non-fouling surfaces and 74 
materials to extinguish the infection because they bear antibacterial properties or nanoparticles 75 
serving as vehicles for antimicrobial moieties. The activity of various inorganic-based nanomaterials 76 
against planktonic bacteria and biofilms will be discussed as well as their mechanism of action and 77 
potential toxicity. Figure 2 represents the challenge of this review manuscript.  78 
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Figure 2. Two common infection-fighting strategies based on the design of nanostructured materials. 81 
The strategy to inhibit bacterial adhesion via surface modification is shown on the left. The use of 82 
nanosystems to destroy the formed biofilm using nanoparticles with intrinsic antimicrobial 83 
properties nanoparticles acting as nanocarriers of different of antimicrobial agents is shown on the 84 
right. 85 

2. Preventing the bacterial adhesion 86 

Implant-related infection encompasses a complex biological process, which encloses an initial 87 
step of bacteria adhesion and subsequent biofilm formation. Bacterial adhesion is divided into two 88 
stages. The first one is reversible and it is characterized by non-specific interactions between the 89 
bacteria wall and implant surface, while the second step involves specific and nonspecific 90 
interactions mediated by proteins, which guide the adhesion to an irreversible state. In fact, once the 91 
biofilm is formed, bacterial eradication becomes insurmountable, being a difficult task to treat due to 92 
biofilm impermeability to antimicrobial agents and immune system. Up to date, no treatment can 93 
guarantee the rapid and complete destruction of the biofilm, which constitutes a global challenge 94 
due to medical devices cannot yet actively resist to bacterial adhesion, colonization and biofilm 95 
formation. By consensus, inhibition of bacterial adhesion on the surface of an implant is one of the 96 
key strategies to prevent infection [39]. Different research groups work on the design of surfaces that 97 
inhibit the biofilm formation, which can be achieved by repelling bacterial adhesion or by killing 98 
approaching bacteria via direct impregnation with antibiotics, immobilization of bactericidal agents 99 
or coating with antimicrobial moieties as copper, silver, NO-releasing materials and titanium oxide 100 
films. 101 

As it has been mentioned, for bone implant-devices, the osseointegration is decisive to achieve 102 
their long-term survival time. Thus, the efforts are addressed to the design of surfaces that inhibit the 103 
adhesion of bacteria at the same time that allow the adhesion of eukaryotic cells for an adequate 104 
osseointegration [40]. Within this surface design, chemical and structural modification are relatively 105 
simple methodologies that can be performed without altering the properties of the implant itself 106 
[32]. Between the different strategies, our research group has focused on both chemical modification 107 
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providing zwitterionic nature to the biomaterial surfaces and textural modification by tailoring the 108 
nanostructure surface. 109 

2.1. Chemical modifications to create zwitterionic surfaces  110 

The zwitterionization consists in a simple method based on covalent grafting of different 111 
moieties resulting in surfaces with equal number of positive and negative charges, therefore 112 
maintaining overall electrical neutrality. It results in highly hydrophobic surfaces because a closely 113 
bound water layer forms a physical and energetic obstacle that inhibits the bacterial adhesion. These 114 
surfaces, which preparation has currently emerged as a groundbreaking strategy, are characterized 115 
by high resistance to nonspecific protein adsorption, bacterial adhesion and biofilm formation. 116 
Although there is great controversy in specifying the term zwitterion since by IUPAC definition 117 
"zwitterionic surfaces are a subclass of polyampholites that have an equal number of non-ionizable 118 
positive and negative charges in the same group of pendants", there are numerous strategies to 119 
confer zwitterionic-like behavior to material surfaces [41]. In general, the efforts have been focused 120 
in the covalent grafting to the surfaces of zwitterionic polymers or poly(sulfobetaine) and 121 
poly(carboxybetaine) derivatives containing mixed positively and negatively charged moieties 122 
within the same chain [42-45]. Another strategy would be the direct functionalization with 123 
low-molecular weight moieties bearing the same number of negative and positive charges. In this 124 
case some amino acids can be used due their biocompatibility but it cannot be rigorously considered 125 
as zwitterions due to the presence of ionizable groups, providing a non-permanent or pH dependent 126 
zwitterion-like action at the isoelectric point [46,47]. However, this could be taken as an advantage 127 
since the infectious process (the environment) is enclosed in certain conditions of acidity compared 128 
to normal physiological conditions. Thus, the lysine amino acid has been successfully used as 129 
functional moiety to create zwitterionic surfaces on mesoporous bioactive glasses. The 130 
functionalized materials successfully presented bacterial antiadhesive properties for Staphylococcus 131 
aureus (S. aureus) and in vitro cytocompatibility behavior in MC3T3-E1 preosteoblast cells [48]. 132 
Another important strategy which has been developed is the design of zwitterionic-like surfaces on 133 
nanobiomaterials by simultaneous direct grafting of two organosilanes positively and negatively 134 
charged, respectively. In this case, it is possible to tailor the zwitterionic-like features by adjusting 135 
the molar ratio of the different reactants. In this sense, zwitterionic silica-based mesoporous 136 
bioceramics of SBA-15 type containing -NH3+/COO groups have been reported [49,50]. The 137 
zwitterionic nature was conferred by the co-condensation method using 138 
3-aminopropyltriethoxysilane and carboxyethyl silanetriol sodium salt silanes, as -NH3+ and COO- 139 
sources respectively, during the SBA-15 synthesis. The zwitterionic nature was achieved at pH 140 
values around 5.5 as determined through ζ potential studies of the isoelectric point. In this case, its 141 
behavior against bacteria was determined in severe inflammation conditions, i.e., pH equal to 5.5. 142 
The capability of inhibit the bacterial adhesion was tested by using Escherichia coli (E. coli) as 143 
Gram-negative bacteria showing a reduced bacterial adhesion (around 93%) with respect to bare 144 
pure silica SBA-15 material. Furthermore, human Saos-2 osteoblasts culture was used in order to 145 
determine the biocompatibility at physiological pH, showing an adequate behavior in these 146 
eukaryotic cells. Moreover, by taking advantage of the mesoporous structure, a zwitterionic SBA-15 147 
type bioceramic with dual antibacterial ability has been prepared. In this case, in addition to having 148 
created the zwitterionic surface, the pores have been loaded with a broad-spectrum antibiotic to 149 
completely eradicate the biofilm. In this particular case, zwitterionic SBA-15 material was designed 150 
by the co-condensation route using an alkoxysilane containing primary and secondary amine 151 
groups, N-(2-am-inoethyl)-3-aminopropyl-trimethoxysilane. Thus, the zwitterionic features are 152 
created from -NH3+ /-SiO- and =NH2+/-SiO zwitterionic pairs present on the material surface, 153 
showing a 99.9% of inhibition of S. aureus after 90 minutes of incubation. At the same time, the 154 
presence of cephalexin inside of the mesopores lead to a sustained and controlled release for 15 days 155 
of incubation, which would help to eradicate the planktonic bacteria from the surroundings [51]. 156 

Additionally, metals widely used in clinic, such as Ti6Al4V alloy, also have been subjected to 157 
the zwitterionization process [52]. Previously, the metal surface is coated with nanocrystalline 158 
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apatite layer to stimulate its bioactivity and to create an easier functionalizable surface. In this case 159 
the zwitterionic nature is conferred by the post-grafting route using the silanes 160 
3-aminopropyltriethoxysilane and carboxyethyl silanetriol sodium salt as –NH3+ and –COO sources 161 
respectively, in anhydrous conditions [53]. The in vitro bacteria test against S. aureus displayed a 162 
notable inhibition of bacterial adhesion and no biofilm formation. At the same time, these metal 163 
zwitterionic surfaces allowed a good osteoblast colonization and proliferation in preosteoblast 164 
MC3T3-E1 culture. 165 

Finally, up to date these zwitterionic surfaces on biomaterials have not been clinically tested 166 
and just in vitro test have been reported. A more in-depth study including in vivo assays should be 167 
reported to move these surfaces to the clinic. 168 

2.2. Textural modifications to tailor the nanostructure surface 169 

It is well known that both nanotopography and nanostructure of the surface play a crucial role 170 
in bacterial adhesion and biofilm formation [54,55]. Consequently, different approaches have been 171 
investigated to achieve artificial antibacterial surfaces based on the fabrication of different 172 
nanopatterns as nanotubes, nanoparticles and nanopillars. In this sense, a TiO2 nanotubes coating 173 
has been performed onto titanium surfaces through the anodization route. Their antibacterial degree 174 
is strongly associated with the nanotube size, crystallinity (rutile or anatase phase) and contact angle 175 
[56-59]. Another example is the use of magnetron sputtering (MS-GLAD) on the surface of titanium 176 
alloys which produces nanostructure coatings in a large area with a variety of morphologies [60]. 177 
Recently, a nanopattering coating onto Ti6Al4V substrates has been reported. The coating is formed 178 
by almost vertically aligned nanocolumns with lengths of 250-350 nm and diameters of 40-60 nm, 179 
separated from center to center by 100-200 nm [61]. These dense and highly packed nanotopography 180 
confers a superhydrophobic behavior with a contact angle of 102 (from 56 for the uncoated 181 
Ti6Al4V substrate). The antibacterial properties against different strains of S. aureus showed a 182 
decrease of the 70% in bacterial adhesion after 90 min of incubation. As the most important result of 183 
this study, it is demonstrated for the first time that these nanosurfaces inhibit the formation of 184 
biofilm after 24 hours of incubation, i.e., no protective cover (characteristic of biofilm) is formed, and 185 
only certain isolated bacteria appear on the surface of the biofilm. In this sense, the 186 
mucopolysaccharide coverage characteristic of bacterial biofilm was not detected when stained by 187 
calcofluor. Simultaneously, in vitro biocompatibility assays with HOS cell line culture were 188 
performed. Osteoblast-like cells showed similar behaviour in both surfaces (nanopattering coated 189 
and bare Ti alloy) with well-spreading of osteoblasts and adequate cell colonization, good adhesion 190 
and appropriated cell proliferation and differentiation. 191 

3. Nanomaterials with unique features as potential weapons to fight infections 192 

At it has been commented in the introduction section, currently, cancer is the main area of 193 
nanoparticle applications although research is also being carried out in other therapeutic areas such 194 
as osteoporosis, cardiovascular diseases, Alzheimer's disease and infection [10,12,16,62]. In 195 
particular, the use of nanoparticles for infection treatment is motivated because the conventional 196 
antimicrobials fail due to AMR and the impenetrable biofilm formation as well as the absence of 197 
novel drugs under expansion [15]. Furthermore, many bacteria are located intracellularly in an 198 
active or latent state, making it difficult for antibiotics to access them. 199 

Nanoparticles offer numerous advantages to overcome these problems. In this sense 200 
nanoparticles act against bacteria through mechanisms which differ from the standard mechanisms 201 
of action of antibiotics, making them extremely useful against bacterial infection avoiding the 202 
dreaded AMR. The antibacterial mechanisms of nanoparticles are related to oxidative stress, metal 203 
ion release, and non-oxidative mechanisms and generally trigger the formation of reactive oxygen 204 
species (ROS), enzymatic inhibition, protein deactivation, DNA damage or changes in gene 205 
expression as well as bacteria wall disruption [63-65]. Furthermore, the multiple modes of action of 206 
nanoparticles significantly reduce the possibility of bacteria to gain resistances [66-69]. 207 
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The production of ROS or oxygen free radicals, such as hydrogen peroxide (H2O2) or 208 
superoxide anions O2-, is indirectly induced by metal nanoparticles themselves. The excessive 209 
production of ROS by nanoparticles leads to a disturbed redox homeostasis and severe oxidative 210 
stress damaging cellular components, affecting membrane lipids and altering the structure of DNA 211 
and proteins [70-73]. Moreover, metal based nanoparticles gradually release metal ions that reach 212 
the intracellular compartment and interact with amino (–NH), mercapto (–SH), and carboxyl (–213 
COOH) functional groups of proteins and nucleic acids [64,74,75]. As a result, several toxic effects 214 
can be produced such as protein coagulation, alteration in proteins related to electron transfer chain 215 
or deregulation of bacterial metabolic processes though impeded enzymatic activity. ROS 216 
production is also catalysed by metallic ions leading to bacterial lipids and DNA damage. 217 
Interaction of the nanoparticles with the bacteria wall and membrane lead to non-oxidative 218 
mechanisms [76]. Bacteria largely based upon the structure of their cell wall and membrane which 219 
are defensive barriers against environmental aggressions. Thus, damage of the cell wall leads to 220 
disrupted intracellular homeostasis and compromised bacterial function which causes mortality 221 
[64]. 222 

Gram-positive bacteria possess a rigid cell wall composed of a thin layer of peptidoglycans 223 
comprising carbohydrate polymers cross-linked through peptide residues [77]. Conversely, 224 
Gram-negative bacteria contain a thinner, more rigid peptidoglycan layer with much shorter 225 
cross-links, surrounded by a lipid membrane with lipopolysaccharides (LPS) forming a barrier 226 
presented on the surface [78]. The bacteria membrane components provide different adsorption 227 
pathways for the nanoparticles [79]. The negative charge on the surface of the bacteria wall can 228 
provide electrostatic interaction with positively charged nanoparticles that can accumulate 229 
disturbing metabolic processes or causing perforation and even membrane leakage [80]. Silver or 230 
gold nanoparticles specifically interact with sulphur-containing constituents within the cell 231 
membrane impeding cell wall synthesis [81-83]. 232 

3.1. Nanoparticles with inherent antibacterial properties 233 

The intrinsic antibacterial properties of some metals, metallic oxides and metallic salts have 234 
been known for centuries, therefore being used to treat bacterial and fungal infections prior to the 235 
discovery of penicillin by Sir Alexander Fleming [84,85]. Although their medicinal utility was 236 
diminished with the antibiotic era, the actual emergence of AMR has led to the recovery of these 237 
earliest antimicrobial agents. Among metal and metal oxide nanoparticles, silver nanoparticles are 238 
probably the most promising of all the inorganic nanoparticles as a treatment for bacterial infections. 239 
Nevertheless, besides Ag other metal nanoparticles such as Au, and metal oxide nanoparticles such 240 
as zinc oxide, copper oxide, iron oxide and titanium dioxide, among others, are being intensively 241 
studied for antimicrobial treatment [85,86]. Some recent examples of this metal based nanoparticles 242 
NPs are described in this section. 243 

3.1.1. Silver nanoparticles 244 

Although silver nanoparticles (AgNPs) are the most intensely considered metal nanomaterial 245 
for antimicrobial treatment [87], the understanding of their precise mechanism of action upon 246 
microbes remains incomplete. Multiple mechanisms may be involved [88], such as direct interaction 247 
of AgNPs with the bacterial membrane inhibiting cell wall synthesis or causing pits leading to cell 248 
lysis [89-91]. Moreover, silver oxidation in the biological media releases Ag+ ions continuously [92] 249 
which are bonded to thiol-containing proteins impairing their functions and also producing 250 
enhanced ROS generation [93-96]. While many attempts have been made to clarify the mode of 251 
action, the reported studies continue demonstrating their bactericidal efficacy. Hence, due to the 252 
potentiality of the AgNPs as bactericidal agents in clinical applications, another key point where 253 
many research efforts are being devoted is the synthetic methodology to prepare silver 254 
nanoparticles. Besides the traditional techniques based on the chemical reduction process, where a 255 
reducing agent for the Ag+ ion is used in the presence of stabilizers in a suitable solvent, new 256 
alternative approaches based on green chemistry are booming. The eco-friendly techniques 257 
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incorporate the use of plants, biological or microbial agents as reducing and capping agents. Silver 258 
nanoparticles obtained by green biogenic synthesis offer a novel and potential alternative to 259 
chemically prepared nanoparticles [97]. 260 

Currently, AgNPs can be seen as an alternative treatment for some clinical situations due to 261 
their antimicrobial activity and also wound healing effects. For example, AgNPs have been in vivo 262 
evaluated as a post-surgical treatment for Caseous lymphadenitis in small ruminants. The etiological 263 
agent of this disease is Corynebacterium pseudotuberculosis, a Gram-positive and facultative 264 
intracellular bacterium. In the experiment twenty-nine goats and sheep with clinical signs of Caseous 265 
lymphadenitis were surgically operated to excise the caseous lesions that were treated with an 266 
ointment formulation based on AgNPs mixed with natural waxes and oils in the experimental 267 
group, or with the conventional treatment with 10% iodine in the control group. It could be 268 
concluded that post-surgical treatment of Caseous lymphadenitis using the AgNPs-based ointment led 269 
to faster healing, decreased wound contamination, and presented no apparent toxic effects [98]. 270 
Another field of clinical development of the AgNPs is related to orthopaedic implants. As above 271 
commented, for the treatment or prevention of implant-related infections, materials that exhibit 272 
antibacterial properties at the same time that promote osteogenesis are required. AgNPs coatings of 273 
implants must have into account the dose-dependent cytotoxicity of silver and its negative impact 274 
on bone implants. In view of this remark, a bioinspired hybrid coating containing polydopamine, 275 
hydroxyapatite, AgNPs, and chitosan has been prepared on the surface of titanium implants. The 276 
double chelating effect of polydopamine and chitosan significantly reduces silver ion release from 277 
the AgNPs in the hybrid coating. The coating exhibits excellent anti-biofilm efficiency of 91.7%, 278 
89.5%, and 92.0% for S. aureus, S. epidermidis, and E. coli, respectively. In addition, the coating can 279 
significantly stimulate osteogenic differentiation of MC3T3-E1 cells and promotes bone-implant 280 
osseointegration in vivo. Therefore, the hybrid coating exhibits antibacterial properties as well as 281 
allow bone-implant osseointegration, thereby providing insights into the design of multifunctional 282 
implants for long-term orthopedic applications [99]. 283 

3.1.2. Gold nanoparticles 284 

Metallic gold is stable against oxidation in biological medium, which makes it non-toxic and a 285 
biocompatible metal. However, gold nanoparticles (AuNPs) indeed exhibit antimicrobial effect via 286 
different mechanisms [64,69]. AuNPs and Au nanoclusters possess catalytic activity analogous to 287 
various enzymes such as peroxidase, glucose-oxidase and/or superoxide dismutase [100]. This 288 
enzyme-like activity led to an increased generation of ROS affecting bacteria through oxidative 289 
stress mechanism [101,102]. In addition, AuNPs can be irreversibly bound onto the thiol groups 290 
present on different proteins, for example in nicotinamide adenine dinucleotide (NADH) 291 
dehydrogenase, in this case affecting the reduction-oxidation balance within the bacterial 292 
respiratory chain and thus generating oxidative stress [103]. But perhaps one of the most recent and 293 
interesting applications of gold nanomaterials as bactericidal agents takes place when the physical 294 
properties of gold are exploited at the nanoscale. In this sense, AuNPs possess excellent 295 
photothermal properties since their plasmon resonance makes them to absorb light in the near 296 
infrared (NIR) window and in turn generates heat that can be used for ablation of bacteria or 297 
disruption of biofilms [104]. Recently, a non-antibiotics based nanoformulation containing Au 298 
nanorods has shown a remarkable antibacterial efficacy in treating drug-resistant pneumonia when 299 
applied in combination with NIR photothermal treatment. The 50-100 nm long gold nanorods are 300 
decorated with glycomimetic polymers to specifically block bacterial lectins which are essential for 301 
bacterial biofilm development. This novel formulation shows the most efficient bacteria inhabitation 302 
and killing against Pseudomonas aeruginosa infection, through lectin blocking and the NIR 303 
light-induced photothermal effect of gold nanorods [105]. 304 

3.1.3. Metal oxide nanoparticles 305 

Metal oxide nanomaterials such as zinc oxide (ZnO), iron oxide (Fe3O4), copper oxide (CuO), 306 
magnesium oxide (MgO) and titanium dioxide (TiO2) nanoparticles are known to possess 307 
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antimicrobial activity over a range of Gram-positive and Gram-negative bacteria, including resistant 308 
bacterial strains [86,106]. Their antibacterial activity is usually related to generation of ROS 309 
attributed to their intrinsic photocatalytic activity or to the release of the metallic ions [107,108]. 310 

Recently, amine functionalized ZnO nanocrystals have been designed as a highly biocompatible 311 
and osteoinductive nanoantibiotic agent for bone tissue engineering. The ZnO nanocrystals of 20 nm 312 
in diameter have been prepared with a novel, fast and reproducible microwave-assisted synthesis. 313 
After chemical functionalization by anchoring aminopropyl groups onto the ZnO, surface the 314 
ZnO-NH2 nanocrystals were tested in terms of biocompatibility, promotion of cell proliferation and 315 
differentiation towards preosteoblast cells, and also in terms of antimicrobial activity against 316 
Gram-positive and Gram-negative bacteria, such as E. coli and S. aureus, respectively (see Figure 3). 317 
The in vitro results suggest that ZnO-NH2 nanocrystals are a promising candidate to solve infectious 318 
diseases in bone implants and at the same time promote bone tissue proliferation [109]. 319 

 320 

 321 

Figure 3. Biocompatibility and antimicrobial effect of ZnO nanoparticles prepared by 322 
microwave-assisted synthesis. A TEM image corresponding to the ZnO nanoparticles round-shaped 323 
of 20 nm in diameter is shown in the center. (Left) Confocal images corresponding to preosteoblast 324 
cultured up to 70% of confluence after incubation for 4 days with ZnO nanoparticles at different 325 
concentrations, showing a good biocompatibility. (Right) Antimicrobial effect against E. coli and S. 326 
aureus in planktonic stage incubated for 24 h in the presence of different concentrations of ZnO 327 
nanoparticles. The reduction of colony forming units (CFU) is represented (p < 0.05, significant 328 
differences compared to control denoted by an asterisk (*)). The arrows denote an absolute 100% of 329 
efficacy. 330 

Antimicrobial activity of iron oxide nanoparticles (IONPs) based nanosystems against different 331 
microorganisms has been already recently reviewed. One of the main mechanisms of action by 332 
which systems based on IONPs generate bacteria toxicity is ROS generation through the Fenton 333 
reaction [110]. However, by taking advantage of the magnetic properties of IONPs, alternative 334 
physical antibacterial strategies can be proposed to fight against AMRs. For example, multiple drug 335 
resistant S. aureus and uropathogenic E. coli have been trapped into positively charged magnetic 336 
core-shell nanoparticles by electrostatic interaction. All the trapped bacteria could be completely 337 
killed within 30 minutes when exposed to a radiofrequency current owing to the loss of membrane 338 
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potential and dysfunction of membrane-associated complexes. This physical treatment kills 339 
pathogenic bacteria and blocks biofilm formation without leading to antibiotic resistance [111]. 340 
Another research work used IONPs loaded with nisin, a known bacteriocin which is commonly 341 
inefficient against Gram-negative bacteria. The IONPs were activated by high pulsed electric and 342 
electromagnetic fields to induce additional permeabilization and local magnetic hyperthermia. The 343 
results on the assays on the Gram-positive Bacillus subtilis and Gram-negative E. coli showed that the 344 
high pulsed magnetic fields increase the antimicrobial efficiency of nisin loaded on the IONPs 345 
similar to electroporation or magnetic hyperthermia methods, resulting in a synergistic treatment 346 
[112]. 347 

3.2. Nanomaterials as nanocarriers: Mesoporous silica nanoparticles 348 

An alternative strategy to fight infection with nanoparticles is to use them as vehicles to deliver 349 
antimicrobial agents such as antibiotics or other bactericide nanoparticles. Nanocarriers of 350 
antimicrobial agents should be able to shield the active compound from degradation and to enhance 351 
the potency of the active compound or improve its bioavailability for treatment. The nanocarrier 352 
may enable controlled and sustained release of the loaded antimicrobial drugs, which is useful for 353 
maintaining an optimum level of drug concentration in the bloodstream for a period of time. They 354 
also may offer the possibility to simultaneously deliver several antibiotics or to act in a combined 355 
therapy if using other stimuli responsive nanoparticles in the same nanosystem. Moreover, the 356 
nanocarriers may also provide a platform for surface modification that allows specific targeting to 357 
the site of infection or only once an infection has occurred. 358 

Among the different materials which can compose these nanocarriers, mesoporous silica 359 
nanoparticles (MSNs) constitute one of the most promising due to their interesting properties of 360 
advanced inorganic nanoplatforms as drug delivery systems. The main strengths of MSNs are high 361 
loading capacity, biocompatibility, ease of production and high degree of tunability regarding size, 362 
morphology and pore diameter. Furthermore, MSNs can be easily synthesized in a large scale 363 
showing a great variety of morphologies and surface functionalities using different strategies [10]. 364 
Figure 4 shows a schematic representation of the versatility and functionality of MSNs regarding 365 
their biomedical applications. Initially these nanocarriers have shown high interest in cancer 366 
treatment due to the wide versatility in their functionalization, being able to design smart 367 
nanomaterials with stimulus responsive components [10, 113], possessing also cancer cell targeting 368 
capability [114] and penetrability towards the deepest areas of solid tumors [115]. Recently, this 369 
technology has been also successfully applied to osteoporosis treatment in an animal model [12]. 370 

 371 
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 372 

Figure 4. Schematic representation of the versatility and functionality of MSNs. TEM image 373 
corresponding to a MSN of 150 nm in diameter showing the mesoporous arrangement in the 2D 374 
hexagonal structure (p6mm plain group). On the image, cartoons represent the drug loading 375 
capability, active targeting and stimuli-responsive possibilities of MSNs. 376 

In this sense, effective new alternatives for the management of bone infection can be achieved 377 
through the development of antibiotic nanocarriers able to penetrate bacterial biofilm, thus 378 
enhancing antimicrobial effectiveness. An example of this kind of nanosystem, also denoted as 379 
‚nanoantibiotic‛, it consists in MSNs loaded with levofloxacin (LEVO) as antimicrobial agent 380 
externally functionalized with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as targeting agent. 381 
This amine functionalization provides MSNs of positive charges, which improves the affinity 382 
towards the negatively charged bacteria wall and biofilm. After physicochemical characterization, 383 
‚in vial‛ LEVO release profiles and the in vitro antimicrobial effectiveness of the different released 384 
doses were investigated. The efficacy of this nanoantibiotic against a S. aureus biofilm was also 385 
determined, showing the practically total destruction of the biofilm due to the high penetration 386 
ability of the developed nanosystem. These findings open up promising expectations in the field of 387 
bone infection treatment [116]. 388 

Another important strategy is to provide an effective and novel solution for the treatment of 389 
infection by using nanovehicles loaded with antibiotics capable of penetrating the bacterial wall, 390 
thus increasing the antimicrobial effectiveness. In this case these ‚nanoantibiotics‛ are composed of 391 
MSNs, which act as nanocarriers of LEVO localized inside the mesopores. To provide the 392 
nanosystem of bacterial membrane interaction capability, a polycationic poly(propyleneimine) 393 
dendrimer of third generation (G3) was covalently grafted to the external surface of the 394 
LEVO-loaded MSNs. After physicochemical characterization of this nanoantibiotic, the release 395 
kinetics of LEVO and the antimicrobial efficacy of each released dosage were evaluated. Besides, 396 
internalization studies of the MSNs functionalized with the G3 dendrimer were carried out, showing 397 
a high penetrability throughout Gram-negative bacterial membranes (see Figure 5). This work 398 
evidences that the synergistic combination of polycationic dendrimers as bacterial membrane 399 
permeabilization agents with LEVO-loaded MSNs triggers an efficient antimicrobial effect on 400 
Gram-negative bacterial biofilm. These positive results open up very promising expectations for 401 
their potential application in new infection therapies [117].  402 
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Figure 5. MSN as nanocarrier of antimicrobial agent (levofloxacin) and functionalized with a bacteria 405 
membrane targeting agent (poly(propyleneimine) dendrimer of third generation, G3). In this case the 406 
functionalization of MSNs with G3 macromolecules increase the internalization in bacteria Gram 407 
negative (E. coli), which is dosage dependent as it can be observed in the confocal images. The 408 
synergistic combination of polycationic dendrimers as bacterial membrane permeabilization agents 409 
with LEVO-loaded MSNs triggers an efficient antimicrobial effect on E. coli biofilm. These results 410 
open up very promising prospects for their potential application as new anti-infective therapies. In 411 
the confocal images the red color represents the bacteria membrane and the green colour represents 412 
the labelled-MSN materials.  413 

Finally, the ability of bacteria to form biofilms hinders any conventional treatment for chronic 414 
infections and has serious socio-economic implications. For this purpose, a nanocarrier capable of 415 
overcoming the barrier of the mucopolysaccharide matrix of the biofilm and releasing its 416 
loaded-antibiotic within this matrix would be highly desirable. Herein, we have developed a new 417 
nanosystem based on LEVO-loaded MSNs decorated with the lectin concanavalin A (ConA). The 418 
presence of ConA promotes the internalization of this nanosystem into the biofilm matrix, which 419 
increases the antimicrobial efficacy of the antibiotic hosted within the mesopores (see Figure 6). This 420 
nanodevice is envisioned as a promising alternative to conventional treatments for infection by 421 
improving the antimicrobial efficacy and reducing side effects [118]. 422 
 423 
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Figure 6. MSN as nanocarrier of antimicrobial agent (levofloxacin) and functionalized with a biofilm 425 
targeting agent (Concanavaline A, ConA). In this case the functionalization of MSNs with ConA 426 
favours its internalization in E. coli biofilms affording a synergistic combination with LEVO-loaded 427 
MSNs which triggers an efficient antimicrobial effect on E. coli biofilm. The image represents the 428 
percentage of covered surface by live bacteria (green) and mucopolysaccaride layer (blue) and the 429 
representative confocal images show a complete reduction after incubation with the nanosystems 430 
functionalized with ConA and loaded with levofloxacin (MSNConA@LEVO). 431 

4. Conclusions and futures perspectives 432 

The increased antibiotic resistance and consequently the formation of biofilms have been 433 
converted in a critical problem for the health industry, due to the ineffectiveness of the conventional 434 
antimicrobial therapies. Nanomaterials display a promising technology to solve these issues. This 435 
review tries to give an overview of the different solutions according to two different approaches: to 436 
prevent the infection via the modification of nanomaterial surfaces or to combat the infection by the 437 
accurate design of nanoparticles with inherent antimicrobial features or nanoparticles as carriers of 438 
antimicrobial agents. Both surface zwitterionization and nanostructured coatings are presented as 439 
highly powerful tools for the prevention of bacterial adhesion and biofilm formation. These surfaces 440 
show a good degree of biocompatibility, which is very important when bringing this type of 441 
technology to the clinic. Metal and metal oxide nanoparticles show effective antimicrobial activity 442 
with rapid-time-kill and evading of antibiotic resistance based on their specific properties at the 443 
nanoscale and their multiple mechanisms of action. Mesoporous silica nanoparticles used as 444 
nanocarriers offer extraordinary advantages by being able to functionalize their surface with 445 
targeting agents and considerably increase the activity of the loaded antimicrobial agent. This is 446 
certainly the starting point towards a considerable improvement in conventional treatments, where 447 
the tendency is to combine all the elements in order to effectively abolish the dreaded infections. In 448 
this point, for clinic translation is important to know about their safety and cytotoxicity which has 449 
been addressed, in the most of the cases, only in vitro in different cell cultures. However, in vivo 450 
models should be carried out to better understand the biological effect of the proposed nanosystems, 451 
comprising toxicity, metabolism, biodistribution, clearance and mechanism of action for a good 452 
practice towards the clinical application. 453 
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