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We study static, spherically symmetric black holes supported by the Euler-Heisenberg theory of
electrodynamics and coupled to two different modified theories of gravity. Such theories are the quadratic
fðRÞ model and Eddington-inspired Born-Infeld gravity, both formulated in metric-affine spaces, where
the metric and affine connection are independent fields. We find exact solutions of the corresponding field
equations in both cases, characterized by mass, charge, the Euler-Heisenberg coupling parameter, and
the modified gravity one. For each such family of solutions, we characterize its horizon structure and the
modifications in the innermost region, finding that some subclasses are geodesically complete. The
singularity regularization is achieved under two different mechanisms: either the boundary of the manifold
is pushed to an infinite affine distance, not being able to be reached in finite time by any geodesic, or the
presence of a wormhole structure allows for the smooth extension of all geodesics overcoming the
maximum of the potential barrier.
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I. INTRODUCTION

Black holes are one of the most fascinating objects in
Nature. Originally obtained as exact solutions of Einstein’s
field equations, their properties were poorly understood for
decades until becoming nowadays a full-fledged member of
the family of astronomical objects. From a mathematical
point of view, they can be formed from a regular distri-
bution of matter in such a way that a trapped surface is
developed [1]. From an astrophysical viewpoint, the
gravitational collapse out of fuel-exhausted main-sequence
stars (≳25 M⊙) provides the physical mechanism for such
a generation [2]. Moreover, no matter the properties and/or
symmetries of the original configuration, the outside metric
to the end-state of such a collapse will be always the Kerr-
Newman solution, described solely by three parameters:
mass, charge, and angular momentum [3]. Over the years,
we have accumulated plenty of evidence on the reliability
of the simpler Kerr solution (since charge can be typically
neglected in astrophysical environments [4]) to describe
such objects, as follows from observations of the X-ray
radiation emitted from the inner part of their accretion disks
[5,6], from gravitational wave emission out of binary
mergers [7,8] and from the imaging of the neighborhood
(i.e., the shadow) of the central supermassive object of the
M87 galaxy [9].

Given the remarkable agreement between the theoretical
predictions and the astronomical observations regarding
black holes, it is worth taking seriously another key feature
of their theoretical description, namely, the existence of
space-time singularities deep inside them [10]. Indeed, as
long as General Relativity (GR) holds, the theorems on
singularities [11,12] (for a pedagogical discussion see, e.g.,
[13]) tell us that the development of a focusing point at a
finite affine time for some set of geodesics in the innermost
region of a black hole (r ¼ 0 in the case of a spherically
symmetric black hole) is unavoidable provided that stan-
dard energy conditions are satisfied by the matter fields.
Now, since null and timelike geodesics are associated to the
trajectories of light rays and the free-falling of physical
observers, respectively, the incompleteness of any of them
is an utterly unpleasant feature, being linked to the lack of
predictability of our physical theories. Typically, cosmic
censorship arguments are developed [14] in order to cover
such singularities behind an event horizon, so as not to have
observable effects on asymptotic observers. However, it is
distressing that one needs to hide under the carpet such an
abhorrent feature of an otherwise observationally success-
ful object (outside its event horizon). Therefore, several
arguments have been developed in order to overcome this
difficulty without jeopardizing the exterior physics to the
horizon, the jewel of the crown being the hypothesis that
quantum gravity effects should come to rescue when the
growth of curvature approaches the Planck scale [15].
The question on how to incorporate such effects has

received many different answers along the decades. To play
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as conservatively as possible, one way to address them
is via effective modifications of the gravitational action
[16–18], which could be able to provide some hints on the
transition from the classical (GR) regime to the quantum
nonclassical one and, moreover, to yield new phenomenol-
ogy in astrophysical environments [19]. This way one can
still safely use the tools of the differential manifolds
paradigm but modifying/reinterpreting some of its building
blocks. In the present work we shall follow this path, and
adhere to the spirit of the Equivalence Principle, guarantee-
ing the universality of free-fall motion while keeping the
minimal coupling of the matter fields to the gravitational
sector but introducing three major modifications to the
usual GR dynamics. The first one is simply to restore the
metric and the affine connection to their status as inde-
pendent entities (Palatini or metric-affine approach [20]).
Indeed, GR can be consistently formulated as a metric-
affine theory, with the variation of the Einstein-Hilbert
action with respect to the independent connection yielding
the metric-connection compatibility condition. As a con-
sequence, the predictions of this formulation are exactly
the same ones as those of metric-formulated GR, where the
affine connection is imposed ab initio to be given the
Christoffel symbols of the metric [21].
Since the metric-affine formulation of GR does not

introduce any new predictions, the second major modifi-
cation is to consider more general actions, where such a
dynamic of metric-affine gravities strongly departs from
their metric cousins, offering new ways of addressing the
issue with space-time singularities. For the sake of this
paper, we shall consider two well known gravitational
extensions of GR: quadratic fðRÞ gravity [22] and
Eddington-inspired Born-Infeld (EiBI) gravity [23]. The
underlying reason for this choice is that they belong to a
more general class of theories dubbed as Ricci-Based
Gravities (RBGs), which are those built with scalars from
contractions of the metric with the (symmetric part of the)
Ricci tensor. These theories yield second-order, ghost-free
equations compatible with all solar system tests and
gravitational wave observations carried out so far.
Moreover, the new metric-affine dynamics are triggered
in different ways: while in the fðRÞ case it is oblivious to
anything but to the trace of the stress-energy tensor, in the
EiBI case it has access to the full stress-energy tensor.
The third major modification lies in the matter sector,

where we shall use an old acquaintance of the singularity-
regularization attempts: nonlinear electrodynamics
[24–35]. Indeed, given the tracelessness of the stress-
energy tensor of Maxwell electrodynamics, which would
therefore yield the same solutions for fðRÞ theories as the
GR ones, this pick will allow us to compare the predictions
of fðRÞ and EiBI gravity on an equal footing. On more
physical grounds, it is known that way before the scale
where quantum gravity effects are expected to be excited
in the innermost region of black holes, the growth of the

electric field would induce quantum vacuum polarization
effects modifying the classical description of Maxwell
electrodynamics. In an effective approach, such effects
to one loop and in the slowly-varying approximation can be
incorporated by adding a quadratic piece in the electro-
magnetic field invariants to the Maxwell Lagrangian,
yielding the so-called Euler-Heisenberg (EH) electrody-
namics [36,37]. Within GR such a model has some nice
properties, like a finite energy associated to the system of
pointlike charges and the existence of new gravitational
configurations in terms of the structure of horizons
[38–40]. However, space-time singularities still plague
all such configurations, and similar comments apply to
any nonlinear electrodynamics satisfying physically rea-
sonable conditions [41].
The main aim of this work is thus to find static,

spherically symmetric solutions corresponding to quadratic
fðRÞ and EiBI gravity coupled to Euler-Heisenberg electro-
dynamics and investigate the existence of nonsingular
black holes in both frameworks. We shall find that both
of them have a branch of solutions (as given by the
combination of the sign of the gravity and matter param-
eters) allowing for the completeness of all null and timelike
geodesics. This restoration of geodesic completeness is
achieved via two different mechanisms: in the first one the
focusing point is pushed out to an infinite affine distance
preventing any set of geodesics to reach it in finite affine
time, while in the second one a defocusing sphere is created
at some finite affine distance represented by a wormhole
throat with a finite area, in such a way that those geodesics
able to overcome the potential barrier can be smoothly
extended through the throat to another asymptotically flat
region of the manifold. Rather than making quantitative
predictions based on the scales where gravity/matter
corrections should presumably appear, our aim is to
qualitatively discuss the singularity-avoidance resolution
mechanisms within these theories and how they fit within
general studies aimed to achieve singularity-avoidance
without breaking basic mathematical requirements or get-
ting into contradictions with observations.
This work is organized as follows: in Sec. II we

introduce the basic framework in terms of metric-affine
gravities and Euler-Heisenberg electrodynamics. In Sec. III
we find spherically symmetric solutions for quadratic
fðRÞ gravity and discuss their properties, with particular
emphasis on the horizon and geodesic structure. A similar
analysis is carried out for EiBI gravity in Sec. IV. Finally
in Sec. V we summarize our findings and further discuss
our results.

II. THEORETICAL FRAMEWORK

A. Ricci-based gravities

For the sake of this work, we shall establish the
theoretical framework for the subclass of metric-affine
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gravities dubbed as Ricci-based gravities (RBGs), defined
by the action

Sm¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
LGðgμν;RμνðΓÞÞþSmðgμν;ψmÞ; ð1Þ

where κ2 is Newton’s constant in suitable units, g is the
determinant of the space-time metric gμν, the Ricci tensor
(assumed to be symmetric) RμνðΓÞ≡ Rα

μανðΓÞ is solely
built out of the (torsion-free [42]) affine connection Γ≡
Γλ
μν and the matter action Sm ¼ R d4x ffiffiffiffiffiffi−gp

Lmðgμν;ψmÞ is
assumed to depend only on the space-time metric and on a
set of matter fields ψm but not on the connection, to ensure
the fulfillment of the equivalence principle. These con-
straints upon the building blocks of the action (1) guarantee
the second-order and ghost-free character of their field
equations [43,44]. Moreover, they imply that RBGs do not
propagate extra degrees of freedom beyond the two polar-
izations of the gravitational field of GR and may pass solar
system tests provided that the modifications to GR occur in
the ultraviolet limit.
From independent variation of the action (1) with respect

to metric and connection, the resulting field equations may
be conveniently written in the Einstein-like representation

Gμ
νðqÞ ¼

κ2

jΩj1=2
�
Tμ

ν − δμν

�
LG þ T

2

��
; ð2Þ

where Gμ
νðqÞ is the Einstein tensor of a new rank-two

tensor qμν satisfying ∇μð ffiffiffiffiffiffi−qp
qαβÞ ¼ 0 (so that Γ is

Levi-Civita of q). This tensor is related to the space-time
metric as

qμν ¼ gμαΩα
ν; ð3Þ

where the explicit shape of the deformation matrix Ωμ
ν

(vertical bars denoting its determinant) depends on the
particular LG chosen, but can be written always (and so
does LG itself) on-shell in terms of the stress-energy tensor
Tμν ≡ 2ffiffiffiffi−gp δSm

δgμν (with T denoting its trace) and possibly the

space-time metric as well. Therefore, the right-hand side of
the field equations (2) can be read off as representing an
effective stress-energy tensor [45].

B. Euler-Heisenberg electrodynamics

Nonlinear electrodynamics (NED) are described by a
Lagrangian density

Lm ¼ φðX; YÞ; ð4Þ

where X ¼ − 1
2
FμνFμν and Y ¼ − 1

2
FμνF�μν are the two

electromagnetic field invariants which can be built out of
the field strength tensor, Fμν ¼ ∂μAν − ∂νAμ, and its dual,
F�μν ¼ 1

2
ϵμναβFαβ. The corresponding field equations are

written as ∇μðφXFμν þ φYF�μνÞ ¼ 0, where φX ≡ ∂φ
∂X and

φY ≡ ∂φ
∂Y. For electrostatic configurations, the only nonzero

component is Ftr ≡ EðrÞ, and the field equations in any
static, spherically symmetric space-time, ds2 ¼ g2tt þ
g2rrdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ, can be written as

Xφ2
X ¼ q2

r4
; ð5Þ

where X ≡ E2 and q is an integration constant identified
as the electric charge for a given configuration. The NED
stress-energy tensor

Tμ
ν ¼ 2ðφXFμ

αFα
ν − φYFμ

αF�α
νÞ − φðX; YÞ; ð6Þ

for electrostatic configurations can be conveniently split
into 2 × 2 blocks as

Tμ
ν ¼

1

8π

� ðφ − 2XφXÞÎ2×2 0̂2×2

0̂2×2 φÎ2×2

�
; ð7Þ

where 0̂2×2 and Î2×2 are the 2 × 2 zero and identity
matrices, respectively. From this expression, the trace reads
T ¼ 1

2π ðφ − XφXÞ, which is nonvanishing as long as φ ≠ X
(Maxwell electrodynamics).
For the sake of this paper, we shall restrict our consid-

erations to the case of Euler-Heisenberg electrodynamics,
which is described by the particular function1

φðXÞ ¼ X þ βX2: ð8Þ

For this theory, the NED field equations (5) for (electro-)
static, spherically symmetric fields read

Eþ 2βE3 ¼ q
r2
: ð9Þ

As can be easily verified from this equation, at r → ∞ this
theory recovers the Coulomb field, E ¼ q=r2, while for
r ¼ 0 we have instead E ¼ ðq=2βÞ1=3r−2=3.
The field equations (5) for EH electrodynamics can be

solved in exact form as

XðrÞ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V3þU2

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V3þU2

p
3

q �
2

; ð10Þ

1When considering the effective limit of quantum electrody-
namics this Lagrangian picks another term in Y, which is
vanishing for the electrostatic configurations of this paper. In
such a limit, β takes the value β ¼ 2α2

45m2
e
[46], where me is the

electron’s mass and α the fine structure constant. However, for the
purposes of this paper we shall take β as a free parameter
assuming only β > 0.
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where U ¼ q
4βr2 and V ¼ 1

6β. To work with dimensionless

variables, let us introduce a new length scale as

r4c ¼ 54πl2βr
2
q; ð11Þ

with l2β ¼ β=κ2 the squared NED length and r2q ¼
κ2q2=ð4πÞ the squared charge radius. This way, Eq. (10)
can be rewritten in terms of the dimensionless coordinate
z ¼ r=rc as

XðzÞ ¼ 1

6βz4=3

h�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z4

p �
1=3 þ

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z4

p �
1=3
i
2
:

ð12Þ

Moreover, we can get rid of cubic roots via the alternative
expression [47]

XðzÞ ¼ 2

3β
Sinh2

�
1

3
ln

�
1

z2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 þ 1

p
Þ
��

: ð13Þ

In terms of this dimensionless variable the stress-energy
tensor (7) for EH electrodynamics reads

Tμ
ν ¼

1

8π

�
−Xð1þ 3βXÞÎ2×2 0̂2×2

0̂2×2 Xð1þ βXÞÎ2×2

�
; ð14Þ

such that its components are found upon substitution of
(13). Note that upon replacement of Eq. (9) in the t

t
component of the stress-energy tensor (14), one finds that,
in the r → 0 limit, the contribution to the energy of the EH
field behaves as ∼

R
T0
0r

2dr ∼ r1=3 → 0, which implies that
the total energy associated to electrostatic configurations in
EH electrodynamics is finite. On the other hand, from this
form of the stress-energy tensor it can be verified that EH
electrodynamics satisfies the weak energy condition pro-
vided that β > 0, which is the case studied in this work.
Moreover, when coupled to the Einstein-Hilbert action of
GR, the finite character of the electrostatic solutions of this
theory manifests in the fact that, besides configurations
with two or a single (degenerate) horizons and naked
singularities, typical of the Reissner-Nordström solution of
GR, there are also configurations with a single nondegen-
erate horizon (resembling the Schwarzschild black hole).
However, in all cases, a singular behavior is found as
follows from the geodesic incompleteness of all such
solutions (see, however, [48]).

III. QUADRATIC f ðRÞ GRAVITY

A. Derivation of the solution

Our first RBG model to be analyzed is quadratic fðRÞ
gravity, given by the Lagrangian density

LG ¼ fðRÞ ¼ Rþ αR2; ð15Þ

where α is a constant with dimensions of length squared.2

For fðRÞ gravity, the trace of the RBG field equations
provides us with the following relation RfR − 2f ¼ κ2T
(with fR ≡ df=dR), which tells us that the curvature scalar
can be removed in favor of the trace of the stress-energy
tensor. This fact implies that only NEDs with a non-
vanishing trace will yield new dynamics as compared to
GR, being the case of the EH electrodynamics considered
in this paper. Moreover, for the quadratic Lagrangian (15)
the above equation yields R ¼ −κ2T, which is the same
relation as in GR.
The gravitational field equations (2) in fðRÞ gravity boil

down to

Rμ
νðqÞ ¼

1

f2R

�
f
2
δμν þ κ2Tμ

ν

�
; ð16Þ

while the deformation matrix in this case becomes
Ωμ

ν ¼ fRδ
μ
ν . Therefore, from (3) the space-time metric

gμν is conformally related to the Einstein frame metric
qμν as

qμν ¼ fRgμν; ð17Þ

where we recall that fR ≡ fRðTÞ. Let us proceed with the
resolution of the field equations (16). To work as generally
as possible, at this stage we shall not impose constraints
upon the shape of the function φðXÞ. We begin by
considering a static, spherically symmetric line element
for the qμν geometry as

ds2q ¼ −AðxÞe2ψðxÞdt2 þ dx2

AðxÞ þ x2dΩ2; ð18Þ

where ψðxÞ, AðxÞ are the two metric functions, and dΩ2 ¼
dθ2 þ sin2 θdϕ2 is the volume element in the unit two-
spheres. Now, using the symmetry in 2 × 2 blocks of the
stress-energy tensor (7), the combination Rt

t − Rx
x ¼ 0 of

the field equations (16) allows to set ψðxÞ ¼ 0 in (18)
without any loss of generality. Now, defining the usual
mass ansatz

AðxÞ ¼ 1 −
2MðxÞ

x
; ð19Þ

we plug it into the remaining nonvanishing component of
the field equations as

2In an approach of quantization of fields in curved space-times
the Einstein-Hilbert action of GR should pick, on the ultraviolet
limit, additional curvature corrections suppressed by powers of
Planck’s length squared l2P [49,50]. Therefore, one would be
tempted to interpret α as l2P times a constant of size unity, and the
same would apply to EiBI parameter ϵ in Sec. III. However, we
shall refrain ourselves to make such identifications and take α as a
free parameter for the sake of this work.
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Rθ
θ ¼

1

x2
ð1 − A − xAxÞ ¼

2Mx

x2
: ð20Þ

Equaling it to the right-hand side of the field equations (16)
we find that the mass function satisfies

Mx ¼
x2

2f2R

�
f
2
þ κ2φ

8π

�
: ð21Þ

We next need to express this function in terms of the radial
coordinate of the space-time metric gμν, the latter having the
line element

ds2 ¼ −CðxÞdt2 þ dx2

BðxÞ þ r2ðxÞdΩ2; ð22Þ

with C and B new functions to be determined. Equation (17)
tells us that the relation between the radial coordinates on
both frames is given by

x2 ¼ r2fR: ð23Þ

Taking a derivative here with respect to r and inserting the
result in (21) we arrive at

Mr ¼
r2

4f3=2R

�
f þ κ2φ

4π

��
fR þ r

2
fR;r

�
: ð24Þ

Moreover, by using again (17) in the temporal and radial
sectors, we arrive to the solution of the line element (22) as

ds2 ¼ −CðxÞdt2 þ dx2

f2RCðxÞ
þ z2ðxÞdΩ2; ð25Þ

where we have introduced the dimensionless radial function
zðxÞ, which is implicitly defined via Eq. (23),3 while the
function CðxÞ can also be conveniently written in terms of
this radial coordinate function as

CðzÞ ¼ 1

fR

�
1 −

1þ δ1GðzÞ
δ2zf

1=2
R

�
: ð26Þ

In this metric function we have introduced the two main
constants characterizing this problem as

δ1 ¼
r3c

2l2βrS
¼ ð54πÞ3=4

2rS

ffiffiffiffiffi
r3q
lβ

s
ð27Þ

δ2 ¼
rc
rS

; ð28Þ

where rS≡2M0 is Schwarzschild’s radius, while the func-
tion GðzÞ in (26) is obtained in terms of its derivative as

GzðzÞ ¼
z2

f3=2R

�
f̃ þ κ2φ̃

4π

�
ðfR þ zfR;zÞ; ð29Þ

and has contributions from the fðRÞ sector as

f̃ ≡ l2βf ¼ 2

9π
τ4ðzÞ

�
1þ α̃

2
τ4ðzÞ

�
ð30Þ

fR ¼ 1þ α̃τ4ðzÞ; ð31Þ

where α̃≡ 4α=ð9πl2βÞ, and from the NED model as

φ̃≡ l2βφ ¼ τ2ðzÞ
6π

�
1þ 2

3
τðzÞ

�
ð32Þ

τðzÞ ¼ Sinh hðzÞ ð33Þ

hðzÞ ¼ 1

3
ln

�
1

z2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 þ 1

p ��
: ð34Þ

In the last set of equations, we have introduced the EHmodel
in the characterization of the function τðzÞ [which is just the
square root of XðzÞ in Eq. (13) removing the constants]. The
line element (25) with the definitions above is the solution to
the problem of electrostatic solutions in quadratic Palatini
fðRÞ gravity coupled to EH electrodynamics, characterized
by two integration constants: the mass M and the electric
charge q; and two new scales: the gravity parameter α and
the matter parameter β, all of such constants encoded in the
two parameters δ1, δ2. We also point out that this line
element can be alternatively cast in a more Schwarzschild-
like fashion by introducing the change of coordinates
dx̃2 ¼ f−2R dx2, though we shall not take this path in order
not to spoil the simple representation of the function zðxÞ
in Eq. (23).
In the asymptotic limit, z → ∞, one can verify that fR ≈

1þ α̃
81z8 while the function Gz in Eq. (29) boils down to

Gz ≈
1

54πz2
−

1

729πz6
þO

�
α

z10

�
; ð35Þ

which inserted in the metric function (26) and after spelling
out the constants δ1, δ2 yields the result

CðrÞ ≈
r→∞

1 −
rS
r
þ q2

r2
−
βq4

5r6
þO

�
α

z10

�
; ð36Þ

where we have taken units such that κ2 ¼ 8π. The first
three terms in this expression correspond to the Reissner-
Nordström black hole of GR, while the next term is the
correction from EH electrodynamics. The corrections

3In an abuse of notation, here we have introduced an implicit
factor rc inside x as x → xrc, so Eq. (23) reads x2 ¼ z2fR.
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introduced by fðRÞ gravity appear only at order tenth,
which should not come as a surprise, since the new
gravitational dynamics encoded in the theory arise only
in the innermost region of the solution, as we shall see next.

B. Properties of the solution: Radial function

We begin now our analysis of the most relevant features
of these solutions by considering the behavior of the radial
function zðxÞ in (23). From (31) and the positivity every-
where of τðzÞ, one finds that for α̃ < 0 the function fR will
vanish at a certain z ¼ zc with

zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

a2 − 1

r
; ð37Þ

where we have introduced the new constant

a ¼ exp f3ArcSinhðjα̃j−1=4Þg: ð38Þ

Unfortunately, Eq. (23) does not admit a closed expression
for z ¼ zðxÞ in its full domain of definition, but it is easy to
see that at z ¼ zc one has x ¼ 0 and beyond this point the
radial function bounces off to another asymptotically flat
region of space-time (see Fig. 1). Therefore, the area of the
two-spheres S ¼ 4πz2 is bounded from below, and the
space-time consists of two patches of the radial function
z ∈ ½zc;∞Þ or a single one in terms of the radial coordinate
x ∈ ð−∞;þ∞Þ. The natural interpretation for this bounc-
ing behavior and minimum areal function is that of a
wormhole structure [51], with z ¼ zc representing its
throat. The size of the latter grows with jα̃j, while it closes
in the limit jα̃j → 0, corresponding to GR.
In the α̃ > 0 case, things are far less interesting. Indeed,

in such a case fR has not zeros and the radial function zðxÞ
does not yield a bounce, but instead generates two branches
of solutions. As depicted in Fig. 2, there is not a smooth
transition between these two branches, and the area of the

two-spheres can go all the way down to vanishing value.
The corresponding solutions are presumably singular and,
therefore, we shall no longer consider them here.

C. Properties of the solution: Inner behavior
and horizons

From now on we shall focus on characterizing the
properties of the branch α̃ < 0,4 where we have some
hope of finding regular black hole solutions. Since the
deviations as compared to GR solutions are expected to
arise in the innermost region, we need to study the behavior
of the functions fR and GðzÞ there. In this sense, a series
expansion of the former using (31) around z ¼ zc, as
defined in (37), yields the result

fR ≈ f1ðz − zcÞ þOðz − zcÞ2; ð39Þ

where we have introduced the constant

f1ðzcÞ ¼
8 cothhðzcÞ
3zc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z4c þ 1

p ; ð40Þ

with hðzÞ defined in Eq. (34). As for Gz, it turns out to be a
tougher nut to crack given its involved functional depend-
ence, but it behaves at z ¼ zc as

Gz ≈
C1ðzcÞ

ðz − zcÞ3=2
þOðz − zcÞ−1=2; ð41Þ

whereC1ðzÞ > 0 is a cumbersome function of the constants

of the model. Therefore, GðzÞ ≈ −2C1ðzcÞ
ðz−zcÞ1=2 þOðz − zcÞ1=2,

which inserted into the expression for the metric function
(26) yields

FIG. 1. The radial function zðxÞ in Eq. (23) for the case α̃ < 0
and values jα̃j ¼ 0.2 (green), jα̃j ¼ 0.5 (orange), and jα̃j ¼ 1.0
(purple). The wormhole throat is located at x ¼ 0 [z ¼ zc as
defined in Eq. (37)]. As a comparison, we have plotted the GR
case, r2 ¼ x2 (black dashed), for which no such a bounce in the
radial function is present.

FIG. 2. Plot of the dimensionless coordinate z as a function of x
for the case α̃ > 0. Same notation as in Fig. 1.

4Since β > 0 in order for the weak energy condition on EH
electrodynamics to be satisfied, then this branch implies that the
gravity coupling constant in the action (15) must satisfy α < 0.
Note in this sense that no physical constraint forbids the curvature
corrections to become positive/negative in the ultraviolet limit.
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CðzÞ ≈ C̃1ðzcÞδ1
δ2ðz − zcÞ2

þOðz − zcÞ−3=2; ð42Þ

where the new constant C̃1ðzÞ > 0 contains all the con-
tributions in zc. Therefore, we see that the metric function
CðzÞ diverges always at z ¼ zc, as a consequence of the
poles present in the fR factor and also in the GðzÞ function.
Moreover, due to the positivity of C̃1ðzÞ; δ1 and δ2 in this
expression, one finds that this divergence goes always to
þ∞ which, together with the asymptotically flat character
of the solutions, as given by (36), provides the structure of
horizons for these solutions. Indeed, as depicted in Fig. 3,
this structure resembles the one of the Reissner-Nordström
solution of GR, namely, two-horizon black holes, extreme
black holes (with a single degenerated horizon), and naked
configurations. However, a systematic classification of the
values of fjα̃j; δ1; δ2g yielding any such configurations are
hard to find and require instead direct inspection case-by-
case. We also see that the single horizon black holes of the
EH electrodynamics in GR have been lost, due to the
modifications on the geometry caused by the presence of
the wormhole throat at a finite distance zc.

D. Properties of the solution: Geodesic behavior
and regularity

To gain deeper knowledge on the innermost geometry of
these solutions let us study their geodesic structure. For any
spherically symmetric space-timewith line element (22) the
geodesic equation may be written as [52]

C
B

�
dx
du

�
2

¼ E2 − VðxÞ; ð43Þ

where we have introduced the effective potential

VðxÞ ¼ CðxÞ
�
−kþ L2

r2ðxÞ
�
: ð44Þ

Here, u is the affine parameter (the proper time for a
timelike observer), k ¼ −1, 0 for timelike and null geo-
desics, respectively, while E and L are the total energy and
angular momentum per unit of mass for timelike observers,
respectively. For spherically symmetric space-times in
Palatini fðRÞ gravity, from (25) the geodesic equation (43)
takes the form

1

f2R

�
dx
du

�
2

¼ E2 − VðxÞ: ð45Þ

It is convenient to rewrite the above equation in terms of the
dimensionless radial function zðxÞ by using Eq. (23) and its
derivatives. This allows to write the following form of the
geodesic equation:

dũ
dz

¼ �
1þ zfR;z

2fR

f1=2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − CðzÞ

�
−kþ L2

r2cz2ðxÞ
�r ; ð46Þ

where we have rescaled the affine time parameter as
ũ ¼ u=rc, and the þð−Þ sign come from taking the
square-root in (45) and correspond to ingoing (outgoing)
geodesics, that is, trajectories of particles getting to (leav-
ing) the wormhole throat z ¼ zc. For radial null geodesics
(k ¼ 0 and L ¼ 0), the above differential equation becomes

E
dũ
dz

¼ �
1þ zfR;z

2fR

f1=2R

: ð47Þ

At large distances, z ≫ 1, where fR → 1, this equation can
be integrated as Eũ ≃�z, which is the expected GR
behavior, in agreement with the fact that in this limit the
fðRÞ-EH solution boils down to the Reissner-Nordström
one. However, departures are expected as the wormhole
throat z ¼ zc is approached. Indeed, using the expansion of
fR in Eq. (39) we can easily integrate this expression
around z ¼ zc as

Eλ̃ðzÞ≈ ∓
ffiffiffiffiffiffiffiffi
8=3

p
zc

f1ðzcÞ
1ffiffiffiffiffiffiffiffiffiffiffiffi

z − zc
p : ð48Þ

From this expression it is readily seen that the affine
parameter λ̃ðzÞ diverges to �∞ as the wormhole throat
z ¼ zc is approached (see Fig. 4). This implies that null

1 2 3 4 5
z

–1.0

–0.5

0.5

1.0

C(z)

FIG. 3. Numerical integration of the metric function CðzÞ in
Eq. (26) for the branch α̃ < 0 and the choices of jα̃j ¼ 5; δ2 ¼
1=2 and three values of δ1 ¼ 50 (purple), δ1 ≈ 85 (blue), and
δ1 ¼ 120 (red), corresponding to black holes with two horizons,
extreme black holes, and naked configurations, respectively. All
solutions are asymptotically flat, CðzÞ ≈

z→∞
1. The vertical dotted

line represents the wormhole throat z ¼ zc, to which all curves
converge.

NONSINGULAR BLACK HOLES IN NONLINEAR GRAVITY … PHYS. REV. D 102, 024005 (2020)

024005-7



radial geodesics require an infinite affine time to get to (or
to depart from) the wormhole throat which, consequently,
lies on the future (or past) boundary of the space-time.5

This way, as opposed to the Reissner-Nordström space-
time where null radial geodesics get to r ¼ 0 in finite affine
time without any possibility to further extension beyond
this point, they are complete in the geometry explored in
this section. We point out that this mechanism for the
removal of geodesic incompleteness via the displacement
of any potentially pathological region to the boundary of
the space-time has been discussed in detail in Refs. [53,54]
on very general grounds, and explicitly implemented in
other settings within Palatini theories of gravity [55–57].
For null geodesics with L ≠ 0 and for timelike geo-

desics, the fact that CðxÞ diverges to þ∞ at z ¼ zc implies
that any such geodesics approaching the wormhole throat
will see an infinitely repulsive potential barrier, as given by
(44), and will bounce off at a certain radius given by the
vanishing of the denominator of (46), thus not being able to
get to the wormhole throat. Consequently, these geodesics
are complete in pretty much the same way as in their
Reissner-Nordström counterparts. The bottom line of this
discussion is the null and timelike geodesic completeness
of the full spectrum of solutions (in terms of mass and
charge) of quadratic fðRÞ gravity with EH electrody-
namics in the α̃ < 0 branch. Regarding the behavior of
curvature at the wormhole throat, a quick computation
revels the existence of curvature divergences there of
size K ≡ Kα

βγδKα
βγδ ∼ 1=ðz − zcÞ2, which are nonetheless

much weaker than in their GR counterparts K ∼ 1=r8. One
could wonder what is the meaning of such divergences,
since neither geodesics can reach such a region nor

information can come out of it to affect asymptotic
observers.6

IV. EiBI GRAVITY

A. Derivation of the solution

The action of EiBI gravity can be written as (for a review
of this theory see [58])

SEiBI ¼
1

κ2ϵ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ ϵRμνj

q
− λ

ffiffiffiffiffiffi
−g

p �
; ð49Þ

where ϵ is a parameter with dimensions of length squared.7

In its weak-field limit, jRμνj ≪ ϵ−1, the theory reduces to
GR with an effective cosmological constant, Λeff ¼ λ−1

κ2ε
,

while higher order curvature corrections are suppressed by
powers of ϵ. For EiBI gravity, the Einstein-frame metric
appearing in (3) is given by qμν ¼ gμν þ ϵRμν, while the
deformation matrixΩμ

ν can be determined via the algebraic
expression

jΩ̂j1=2ðΩμ
νÞ−1 ¼ λδμν − ϵκ2Tμ

ν: ð50Þ

This relation shows that the deformation matrix inherits
also in this case the structure in 2 × 2 blocks of the stress-
energy tensor defined in Eq. (7). Thus, we are allowed to
write an ansatz for Ωμ

ν as

Ωμ
ν ¼

�
ΩþÎ2×2 0̂2×2

0̂2×2 Ω−Î2×2

�
; ð51Þ

where the components of the matrix can be found by
substituting them into Eq. (50) and solving the correspond-
ing equations as

Ωþ ¼ λ − ϵκ2Tθ
θ ¼ λ −

ϵκ2

8π
φ; ð52Þ

Ω− ¼ λ − ϵκ2Tt
t ¼ λ −

ϵκ2

8π
ðφ − 2XφXÞ: ð53Þ

The gravitational field equations in this case are written as

Rμ
νðqÞ ¼

1

ϵ

 Ωþ−1
Ωþ

Î2×2 0̂2×2

0̂2×2
Ω−−1
Ω−

Î2×2

!
: ð54Þ

FIG. 4. The affine parameter E · ũðzÞ versus the dimensionless
radial coordinate z for ingoing (blue) and outgoing (orange) null
radial geodesics. The vertical dashed purple line corresponds
to the wormhole throat, z ¼ zc, while the black dashed lines
correspond to null radial geodesics in GR.

5In some sense this means that we have half a wormhole, in
that the region x > 0 (x < 0) is not accessible to observers living
in the region x < 0 (x > 0).

6There is the issue, though, about whether the presence of
unbound curvature in such a region might spoil the well-behaved
Cauchy development of past null infinity, which would require
further research beyond the one carried out in this work.

7The size of this parameter in both its positive/negative
branches has been the subject of many studies in the literature;
see [59] for details on astrophysical constraints.
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Considering the line element in (18) and following the
same steps done in the previous section, besides taking into
account the relation (3) between metrics, which implies the
following relation between radial coordinates:

x2 ¼ z2Ω−ðzÞ; ð55Þ

together with Eq. (50) leads to the expression for the mass
function

Mr ¼
r2

2ϵ
ðΩ− − 1ÞΩ−

1=2

�
1þ rΩ−;r

2Ω1=2
−

�
: ð56Þ

Moreover, following a similar procedure and notation as in
the fðRÞ gravity case, we find the line element for the gμν
metric as

ds2 ¼ −CðxÞdt2 þ dx2

Ω2þCðxÞ
þ z2ðxÞdΩ2; ð57Þ

where the metric function now satisfies

CðzÞ ¼ 1

Ωþ

�
1 −

1þ δ1GðzÞ
δ2zΩ1=2

−

�
: ð58Þ

Here, we have introduced the following definitions: the
metric is parametrized in terms of two constants defined as

δ1 ¼
r3c
rSϵ

¼ 3

2

�
3

2π

�
1=4 1

l2ϵrS

ffiffiffiffiffi
r3q
lβ

s
; ð59Þ

δ2 ¼
rc
rS

; ð60Þ

where we have redefined the EiBI parameter as l2ϵ ¼
ϵ=ð12πl2βÞ, which is the analog of α̃ in the fðRÞ case.
These two parameters encode the two integration constants,
rS and r2q, and the two gravity and model parameters, l2ϵ and
l2β, likewise in the fðRÞ case. As for the GðzÞ function, it is
obtained via

GzðzÞ ¼ z2ðΩ− − 1ÞΩ1=2
−

�
1þ zΩ−; z

2Ω−

�
; ð61Þ

and the contributions on the Ω� functions read

Ωþ ¼ λ − l2ϵτ2ðzÞ
�
1þ 2τ2ðzÞ

3

�
; ð62Þ

Ω− ¼ λþ l2ϵτ2ðzÞð1þ 2τ2ðzÞÞ; ð63Þ

where we recall that τðzÞ is defined in Eq. (33). The line
element written in (57) is the electrostatic solution of EiBI
gravity coupled to EH electrodynamics. Like in the fðRÞ

case, one could transform the line element (57) into a
Schwarzschild-like form via the change of coordinates
dx̃2 ¼ dx2

Ω2
þ
, but again we shall not follow that path in order

not to spoil the simple representation (55) of the radial
function. From now on, we will consider asymptotically
flat solutions, λ ¼ 1.
Let us now first analyze the asymptotic limit of the

functions in the line element (57). For z → ∞, one has
z2 ≈ x2, and the deformation metric components behave as

Ω� ≈ 1 ∓ l2ϵ
9z4

þO
�
1

z

�
8

: ð64Þ

Here, the gravitational sector contributes to the line element
in a lower power of z in comparison to the fðRÞ case
because Ω− has a power in τðzÞ. As a consequence, the
gravitational corrections appear earlier in the metric com-
ponent CðzÞ. Expanding the function Gz in (61) we get

Gz ≈
l2ϵ
9z2

−
ϵð9l2ϵ þ 4Þ
486z6

þO
�
1

z

�
10

: ð65Þ

Replacing the above expressions into the metric component
(58) and reverting back to the original variables leads to

CðrÞ ≈
r→∞

1 −
rS
r
þ q2

r2
þ ϵrSq2

2r5
−
ðβ þ 4ϵÞq4

5r6
þO

�
1

r

�
10

:

ð66Þ

The first three terms in this expression correspond to the
Reissner-Nordström solution, as expected. The fourth one
introduces a sort of interaction between mass and charge
fueled by the EiBI gravity dynamics, while the last two
terms are pure corrections in EH electrodynamics [obvi-
ously identical to the one written in Eq. (36)] and in EiBI
gravity, respectively.

B. Properties of the solution: Radial function

As in the fðRÞ case, we now look for the minimum of
the radial function zðxÞ via the relation (55). Using the
expression (63) it is clear that the zeros of Ω− will only
occur in the branch l2ϵ < 0 and, therefore, we shall restrict
our attention to this branch from now on. The values of zðxÞ
for which the zeros of Ω− are attained can actually be
written in an identical form as Eq. (37), but now with

a ¼ exp

8>><
>>:3ArcSinh

0
B@1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl2ϵ j þ 8

jl2ϵ j

s
− 1

vuut
1
CA
9>>=
>>;: ð67Þ

As it is depicted in Fig. 5, at this point the radial function
zðxÞ takes its minimum value and bounces off, again
representing a wormhole structure with z ¼ zc the location
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of its throat. For completeness, we have also plotted in
Fig. 6 the behavior of zðxÞ in the branch l2ϵ > 0, where
no wormhole is present and the space-time splits into
two disconnected pieces in the x > 0 and x < 0 regions.
Therefore, these two structures are similar to those found in
the fðRÞ case above, but their effects in the geometry of the
corresponding space-times yield large differences, as we
shall see next.

C. Properties of the solution:
Inner behavior and horizons

To study the behavior of the metric functions on the
innermost region and, in particular, at the wormhole throat,
we begin by expanding the relevant functions around
z ≈ zc. For the Ω� functions in (52) and (53) with the
expression (14) we find

Ωþ ≈ ωþðzcÞ þOðz − zcÞ; ð68Þ

Ω− ≈ ω−ðzcÞðz − zcÞ þOðz − zcÞ2; ð69Þ

where we have introduced the constants

ωþðzcÞ ¼
2

3
ðsech 2 hðzcÞ þ 2Þ; ð70Þ

ω−ðzcÞ ¼
4

3

ðtanh 2 hðzcÞ þ coth hðzcÞÞ
zc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z4c þ 1

p ; ð71Þ

and we recall that hðzcÞ is defined in Eq. (34). The
expansion of the function Gz in Eq. (61) becomes

Gz ≈
C2ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p þOðz − zcÞ1=2; ð72Þ

where the constant C2 ¼ z3cω1=2
− =2. Upon integration, this

yields the result

GðzÞ ≈ −
1

δc
þ 2C2

ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p þOðz − zcÞ3=2; ð73Þ

where δcðzcÞ > 0 is a constant needed to match the inner
and asymptotic expansions of GðzÞ, and whose explicit
dependence on its argument is very cumbersome, though
for our analysis only its positivity is relevant. Plugging the
expansions (68), (69), and (73) in the expression (58), we
arrive at the behavior of the metric components:

gtt ≈ −
3ð1þ 2τ2cÞðδ1=δc − 1Þ

2zcδ2ð3þ 4τ2cÞω1=2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p

þ 3ðδ2 − δ1z2cÞ
2δ2ð2þ sinh 2hðzcÞÞ

þOðz − zcÞ1=2; ð74Þ

grr ≈
3zcδ2ω1=2

− cosh 2hðzcÞ
2ðδ1=δc − 1Þð3þ 2τcÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p þOðz − zcÞ; ð75Þ

where τc ≡ τðzcÞ.
From these expressions we can proceed to classify the

spectrum of solutions in terms of their horizon structure
(see Fig. 7). Indeed, a glance at the expansion (74) shows
that such a classification can be performed according to the
ratio δ1=δc, since it controls the sign of the divergence
of the metric function CðzÞ at z ¼ zc. Thus, if δ1=δc < 1
then CðzcÞ → −∞, and the corresponding solutions are
Schwarzschild-like black holes with a single horizon. On
the contrary, when δ1=δc > 1, then CðzcÞ → þ∞ and one
finds configurations with the same structure as the one of
the Reissner-Nordström solution of GR: black holes with
two horizons, extreme black holes, or naked configurations,
depending on the value of the constant δ2. Moreover,
special configurations are found when δ1 ¼ δc since in
such a case, replacing first this constraint in the metric
functions of the line element (57) and expanding in series
of zc makes the first term in Eq. (74) to go away and only
the finite contribution at z ¼ zc remains. Consequently,
the corresponding configurations are Minkowski-like sol-
utions with either a single nondegenerate horizon or none,

FIG. 5. The dimensionless radial function zðxÞ for the case
l2ϵ < 0. The orange curve represents jl2ϵ j ¼ 0.2, the green
jl2ϵ j ¼ 0.01, and the purple jl2ϵ j ¼ 1. The blue and black curves
represent the case of Maxwell electrodynamics with jl2ϵ j ¼ 0.5
and r2q ¼ 0.5, and of GR, respectively.

FIG. 6. The radial function z for the case l2ϵ > 0. Same notation
as in Fig. 5.
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depending on the value of δ2≷δ1z2c. It should be pointed out
that the Schwarzschild/Reissner-Nordström-like structure
of horizons resemble the original one of the EH electro-
dynamics within GR: while in the latter it is the comparison
between the total mass of the space-time, M, and the total
(finite) energy stored in the electrostatic field the one
playing the role in classifying such a structure, here is the
ratio δ1=δc instead. However, the Minkowski-like configu-
rations are a novel feature of these Palatini space-times,
having no counterpart in the Einstein-EH system.

D. Properties of the solution:
Geodesic behavior and regularity

For EiBI gravity with spherically symmetric solutions of
the kind studied here, the geodesic equation (43) can be
cast, taking into account the line element (57), as

1

Ω2þ

�
dx
du

�
2

¼ E2 − VðxÞ; ð76Þ

with the same notation and conventions as in the fðRÞ case
above. Again, for null radial geodesics it is more useful
to write this equation in terms of the radial function z. To
this end, we take a derivative in Eq. (55), which allows to
cast (76) in such a case as

�Edũ ¼ Ω1=2
−

Ωþ

�
1þ zΩ−;z

2Ω−

�
dz; ð77Þ

where again � refer to ingoing/outgoing geodesics. It
seems not possible to obtain an integration of this equation
to find a closed expression for ũðzðxÞÞ everywhere, but we
can resort to series expansions around the wormhole throat
z ¼ zc. A glance at Eqs. (68) and (69) reveal that Ωþ is
there just a constant that will have no impact in the behavior
of the solutions, while Ω− contains the key factor in
ðz − zcÞ. Thus, a little algebra allows to find the expansion
of (77) at z ¼ zc as

�Edũ ≈
ω1=2
− zc
2ωþ

1ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p : ð78Þ

This can be right away integrated as

�Eðũ − ũ0Þ ≈
ω1=2
− zc
ωþ

ffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p
≈

x
ωþ

þOðx2Þ; ð79Þ

where in the last equation we have made use of the fact that,
using (55) and (69), the radial function can be expanded in
series of x as

z ≈ zc þ
x2

z2cω−
þOðx4Þ: ð80Þ

Since the domain of definition of the radial coordinate x is
the entire real line, nothing prevents the affine parameter in
Eq. (79) to cross the wormhole throat and be indefinitely
extended to the asymptotic infinity x ¼ −∞. This is shown
in Fig. 8, where we numerically integrate the geodesic
equation (77) in full range, showing that any such geodesic
starting from a certain ũ0 at x ¼ þ∞ departs from the GR
behavior as the wormhole throat, x ¼ 0, is approached, and
continues its path to another asymptotically flat region of

1 2 3 4 5
z

–1.0

–0.5

0.5

1.0

C(z)

FIG. 7. The metric function CðzÞ in Eq. (58) for l2ϵ ¼ −1 (for
which δc ≈ 3.260) and the choices of fδ1 ¼ 1; δ2 ¼ 1=3g (blue),
fδ1 ¼ 5; δ2 ¼ 1=3g (violet), fδ1 ¼ 5; δ2 ≈ 0.4675g (green), and
fδ1 ¼ 5; δ2 ¼ 1g (red), corresponding to Schwarzschild-like
black holes with a single horizon, and the three Reissner-
Nordström like configurations: black holes with two horizons,
extreme black holes, and naked solutions, respectively. The two
orange lines starting from a finite value of CðzÞ at z ¼ zc are
Minkowski-like configurations (δ1 ¼ δc) with a single horizon
(δ2 ¼ 0.6) or none (δ2 ¼ 1.5). All solutions are asymptotically
flat, CðzÞ ≈

z→∞
1. The vertical dotted line represents the wormhole

throat z ¼ zc, to which all curves converge.

FIG. 8. The affine parameter E · ũðxÞ versus the radial coor-
dinate x for null radial geodesics. The green curve corresponds
to jl2ϵ j ¼ 0.01, the blue curve to jl2ϵ j ¼ 1, and the orange to
jl2ϵ j ¼ 0.2. The black dashed line corresponds to the GR behavior,
where these geodesics end at x ¼ 0 and are therefore incomplete.
At the wormhole throat the affine parameter obeys (79) and can
be smoothly extended across x ¼ 0.
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space-time, x ¼ −∞. Therefore, null radial geodesics are
complete in this geometry.
For timelike geodesics and for null nonradial geodesics,

one needs to analyze the behavior of the effective potential
according to the expansion of the metric function at z ¼ zc
(x ¼ 0), as follows from Eq. (74). Using the expansion (74)
this reads

Veff ≈ −
a
jxj − bþOðxÞ; ð81Þ

with the constants

a ¼ 3ð1þ 2τ2cÞðδc − δ1Þ
2δ2δcð3þ 4τ2cÞ

�
−kþ L2

r2cz2c

�
; ð82Þ

b ¼ 3ðδ2 − δ1z2cÞ
2δ2ð2þ sinh 2hðzcÞÞ

�
−kþ L2

r2cz2c

�
: ð83Þ

Indeed, likewise the structure of horizons, the fate of any
such geodesic depends on the ratio δ1=δc.
For Schwarzschild-like configurations, δ1 < δc, the

potential (81) is infinitely attractive and, therefore, any
such geodesic crossing the event horizon of these configu-
rations will unavoidably get to the wormhole throat in finite
affine time. At such a point the geodesic equation (76)
behaves as

dũ
dx

¼ jxj1=2
ωþa1=2

þOðx3=2Þ → ũðxÞ ¼ 2xjxj3=2
3ωþa1=2

þOðx5=2Þ:

ð84Þ

As the coordinate x extends over the whole real axis, it is
clear that these geodesics can be naturally extended across
x ¼ 0 and will be therefore complete for any values of the
parameters of the model within the constraint δ1 < δc. It
should be stressed that, despite the geodesically complete
character of these space-times, any extended observer
crossing the wormhole throat will find curvature divergen-
ces of size K ∼ 1=ðz − zcÞ3 there, which are much weaker
than their GR counterparts,K ∼ 1=r8. Therefore, one might
wonder what would be the fate of any such observer
undergoing arbitrarily large tidal forces as it crosses the
wormhole throat. This question has been raised in other
geodesically complete space-times in the literature via the
effects of large tidal forces upon timelike observers
modeled as a congruence of geodesics, and also with the
scattering of waves off the wormhole, finding that no
unavoidable physical pathologies should be present [60].
A similar analysis would be needed for the solutions found
here in order to guarantee their physical consistence, which
nonetheless lies beyond the scope of this work.
For Reissner-Nordström-like configurations, δ1 > δc,

the effective potential (81) flips sign and it is infinitely
repulsive at z ¼ zc. Therefore, any of these geodesics will

bounce at some z > zc and will continue its path within the
x > 0 (or x < 0) region, which is the same behavior as the
one found in the Reissner-Nordström solution of GR.
Finally, for Minkowski-like configurations, δ1 ¼ δc, the

expansions (74) and (75) are not valid, since one needs to
replace first this value of δ1 in the line element (57) before
making the expansion around z ¼ zc, which yields the
result

gtt ≈ −
3
�
1þ z2cδc

δ2

�
2

�
cosh 2hðzcÞ

1þ 2 cosh 2hðzcÞ
�
þOðz − zcÞ;

ð85Þ

grr ≈
3

2
�
1þ z2cδc

δ2

�� cosh 2hðzcÞ
1þ 2 coshð2hðzcÞÞ

�
þOðz − zcÞ:

ð86Þ

This implies that the effective potential takes the same
form (81) with a ¼ 0, going to a constant as Veff ≈ −bþ
cðzcÞx2, where cðzcÞ > 0 is a constant with an involved
dependence on zc. Therefore, any particle with energy E
above the maximum of this potential will be able to get to
the wormhole throat. At that point, its affine parameter will
behave as

λ̃ðxÞ ≈ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ E2

p þOðx3Þ; ð87Þ

and therefore will find no impediment to continue its
trip to the x < 0 region. Moreover, as opposed to the
Schwarzschild-like and Reissner-Nordström-like configu-
rations, in this case curvature scalars are all finite at the
wormhole throat.
In summary, we have shown that all null and timelike

geodesics in these geometries (in the branch l2ϵ < 0) are
complete, no matter the values of mass and charge of the
solutions or the value of the EH scale. The mechanism is,
however, different from the fðRÞ case, in that now the
wormhole throat is accessible to different sets of geodesics,
but all of them can be smoothly extended across the region
x ¼ 0. Therefore, these geometries represent nonsingular
space-times.

V. CONCLUSION AND DISCUSSION

In this work we have considered two families of
gravitational theories extending GR, namely, quadratic
fðRÞ gravity and Eddington-inspired Born-Infeld gravity,
both formulated in metric-affine spaces and coupled to
Euler-Heisenberg electrodynamics. These two gravity the-
ories have been chosen due to the different way the new
dynamics is fed by the matter fields: in the fðRÞ case the
new effects in the gravitational sector are oblivious to
anything but to the trace of the stress-energy tensor, while
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in the EiBI case they are sensible to its full content. The
static, spherically symmetric solutions for both settings
were found starting from the Einstein-like representation of
the field equations. Such solutions suggested that only a
branch of them, corresponding to a certain combination of
the signs of the gravity and matter parameters, may hope to
yield nonsingular solutions. Therefore, we focused on the
characterization of such a branch according to the behavior
of the metric functions on the innermost region of the
geometries, on the horizon structure, and on the complete-
ness of geodesics.
The main conclusion of this analysis is that both settings

do yield null and timelike geodesically complete space-
times for all the spectrum of mass and charge of the
corresponding solutions, provided that the aforementioned
constraint on the signs of the parameters is met. While in
both cases the singularity-regularization is possible thanks
to the presence of a wormhole structure, the mechanisms
for the completeness of geodesics differ. In the fðRÞ gravity
case, which has the same structure of horizons as in the
Reissner-Nordström solution of GR, the central region is
pushed to an infinite affine distance, so null radial geo-
desics would take an infinite time to get there, while for
timelike geodesics or null nonradial geodesics the presence
of an infinitely repulsive potential near the throat prevents
them getting near it. Thus, only half of the wormhole
(which may be covered by two horizons, a single extreme
one, or be naked) is available for travel within the x > 0 and
x < 0 regions.
As opposed to the fðRÞ case, for EiBI gravity the throat

can be reached in finite affine time by some sets of
observers, depending on the ratio δ1=δc, which classifies
the corresponding configurations in terms of horizons
as Schwarzschild-like, Reissner-Nordström-like, or
Minkowski-like. If we focus on Schwarzschild-like con-
figurations, which have a single event horizon, then the
wormhole is a one-way structure, pushing out any observer
departed from (say) x > 0 and crossed the event horizon to
the other asymptotic region in finite affine time. For
Reissner-Nordström-like configurations, no matter their
number of horizons, one finds instead that, like in their
GR counterparts, any timelike observer could only get as
close to the throat as it energy permits (given the existence
of the infinite potential barrier), while null radial geodesics
would only require a finite affine to get to the throat and
cross it. Finally, Minkowski-like configurations (with a
single horizon or none) have a finite maximum of its
effective potential, thus allowing any observer whose

energy is larger than it to cross the wormhole throat.
Though curvature divergences generally appear at the
throat (except in the Minkowski-like configurations, where
curvature scalars are well behaved everywhere), the fact
that they are much weaker than their GR counterparts,
∼ðz − zcÞ−3, together with the lessons from previous
research in the topic showing that extended observers
are not necessarily destroyed in the transit through such
regions [61], raises questions on their true meaning when
both the matter fields and the trajectories of idealized
observers are well behaved.
The results obtained in this work further support the

suitability of some metric-affine theories to get rid of
space-time singularities in a variety of settings with
conservative modifications of the GR framework.
Moreover, these two basic mechanisms for such a singu-
larity avoidance are shared by several other theories, and
in agreement with the results of model-independent
analysis in spherically symmetric space-times [53,54].
There are several challenges following these results, such
as its compatibility with the semiclassical calculations of
Hawking’s radiation and black hole evaporation, the
unsettled issue of topology change raised from the for-
mation of wormholes, or to what extent these results can
be sustained when moving to axially symmetric (rotating)
scenarios. The latter is of special interest should any effect
of metric-affine gravity able to leak to the near-horizon
scale, in order to address any of the opportunities offered
by multimessenger astronomy. Work along these lines is
currently underway.
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