UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE FARMACIA Departamento de Parasitología CARACTERIZACIÓN PARASITOLÓGICA E INMUNOLÓGICA DE LA LEISHMANIASIS VISCERAL EN EL ESTADO DE AMHARA, ETIOPÍA MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Endalamaw Gadisa Belachew Bajo la dirección de la doctora Israel Cruz Mata Francisco Javier Moreno Nuncio Madrid, 2012 ©Endalamaw Gadisa Belachew, 2012     1   Universidad Complutense de Madrid Facultad de Farmacia Departamento de Parasitología Caracterización parasitológica e inmunológica de la leishmaniasis visceral en el Estado de Amhara, Etiopía. Tesis doctoral Endalamaw Gadisa Belachew Madrid 2012     2     3 El presente trabajo de investigación ha sido realizado en el Centro Nacional de Microbiología - Instituto de Salud Carlos III (Majadahonda, España) y en el Armauer Hansen Research Institute (Addis Ababa, Etiopia) bajo la dirección de los Drs. Israel Cruz Mata y Fco. Javier Moreno Nuncio     4     5 AGRADECIMIENTOS Me gustaría aprovechar esta oportunidad para expresar mi más profunda gratitud a todas las personas, que de una u otra forma, han colaborado en la elaboración de esta tesis. En primer lugar, quiero dar las gracias de todo corazón a mis directores, Dr. Israel Cruz y Dr. Javier Moreno, por hacerme ver los errores y orientarme hacia adelante a pesar de todos los altibajos. Esta tesis no hubiera posible sin vosotros, os estoy muy agradecido. A la Dra. Carmen Cañavate, por acogerme en su laboratorio y por su colaboración para sacar adelante este trabajo. Carmen, llevaré tus palabras en mi corazón “tienes que reflexionar Endalamaw”. Querida Carmen, te estoy agradecidísimo. Al Dr. Jorge Alvar, que me brindó esta oportunidad desde el principio, y generosamente me ha ayudado en realizarla. Apreciado Jorge tu generosidad es ejemplar, ha sido una bendición. A la Dra. Estefanía Custodio y al Dr. Luis Sordo, fue una gran oportunidad conoceros. Vuestros conocimientos multidisciplinarios me han ayudado para llevar a cabo el proyecto, especialmente en el manejo de datos, muchísimas gracias amigos. Al Dr. Abraham Aseffa por su ayuda continua, por su cariño y porque sus consejos fueron mi bastón. Querido Abraham, te estoy agradecidísimo. A los amigos de Majadahonda, del grupo de Leishmania/Parasitología: Amigos, no voy a nombraros a todos, sois todos muy simpáticos y tenéis una mente abierta. Mucho os agradezco sobre todo por aceptarme como soy y tratarme cariñosamente. Una vez más, muchísimas gracias a todos vosotros. A mis amigos de Armauer Hansen Research Institute por sus ayudas material, intelectual y moral. Amigos sois especiales y muchísimas gracias. A todos los miembros del laboratorio regional de Amhara, por crear un ambiente agradable durante mi estancia en el laboratorio. Muchísimas gracias Amigos. A todos los niños de Libo Kemkem y Fogera que han participado en la realización de esta tesis. Quiero daros las gracias desde lo más profundo de mi corazón: Chiquillos os debo mucho.     6 A todos encuestadores quien trabajado conmigo y Zelalem Abraham: por su amistad durante el trabajo de terreno, debo dar mi agradecimiento especial a Zelalem. Queridos amigos, vuestra contribución es insustituible, os estoy muy agradecido. A mis padres y hermanos quien de una u otro forma están en esta tesis. Queridos, hemos compartido tiempos inolvidables dúrate la realización de esta tesis; en feliz o tristeza; Gracias queridos. Por último, quiero agradecer de una manera muy especial a mi mujer, por su apoyo, cariño, ánimo y consejos. Querida mía, sin ti esta Tesis no hubiera sido posible, muchísimas gracias. Y por encima de todo, agradezco a Dios y Santa María porque están conmigo dando luz a cada paso de mi vida. Gracias Dios, Amen      7 RESUMEN La leishmaniasis visceral (LV) o kala-azar es una enfermedad infecciosa que resulta fatal sin diagnóstico y tratamiento adecuado. Está causada por parásitos pertenecientes al complejo Leishmania donovani y es transmitida por dípteros hematófagos, concretamente hembras de diversas especies del género Phlebotomus en el Viejo Mundo y del género Lutzomyia en el Nuevo Mondo. Se estima que la incidencia mundial de LV es de 500 000 casos, de los cuales el 90% ocurre en diferentes países que se encuentran en tres grandes focos: el subcontinente indio (Bangladesh, India y Nepal), y el cuerno de África (Sudan y Etiopía), donde se considera que la transmisión es principalmente antroponótica, y América (Brasil), donde se considera una zoonosis, con el perro como principal reservorio. Cada año mueren entre 50 000 y 60 000 personas debido a la LV, cuya tasa de mortalidad, entre las enfermedades parasitarias, sólo es superada por la malaria. En los últimos años, se ha documentado la (re)emergencia de la LV en numerosos países. El número de casos en las zonas endémicas ha aumentado y además están apareciendo nuevos focos en regiones donde previamente no se había detectado la enfermedad. Entre los factores responsables destacan: los cambios medioambientales, la inmunodepresión, el movimiento en masa de población no inmune a áreas endémicas y la resistencia a los antimoniales pentavalentes. En Etiopía se calcula que la incidencia de LV es 4 500 a 5 000 casos. Este país ostenta el mayor porcentaje de coinfección Leishmania/VIH; entre los años 1998- 2007 la proporción de casos de LV asociados a infección por VIH aumentó del 18,5 al al 41%. Recientemente, el norte del país ha sufrido un brote de LV que costó la vida de centenares de personas. El 90% de los afectados tenía entre 8 y 45 años de edad y más del 20% sufrían malnutrición. Estos hechos demuestran que la LV está convirtiéndose en una preocupación creciente para la salud pública de Etiopía, siendo prioritario un mayor conocimiento de su epidemiología en este país para poder diseñar un programa de vigilancia y control adecuado. En ausencia de inmunodepresión, sólo un pequeño porcentaje de los infectados desarrolla la enfermedad, mientras que la mayoría permanecen asintomáticos. Dado que los portadores asintomáticos podrían actuar como reservorios, el conocer la prevalencia de infección en este grupo contribuiría a una mejor comprensión de la dinámica de la transmisión, y por tanto sería de gran utilidad a la hora de desarrollar estrategias de control.     8 Actualmente se considera necesario el diseño de un programa de control eficaz de la LV en Etiopía, que utilice herramientas que permitan determinar adecuadamente la exposición al parasito (para poder estimar la prevalencia e incidencia), y que identifique factores de riesgo asociados a infección y enfermedad. En este último caso merecen especial atención aquellos que afectan a la respuesta inmune. Para contribuir a esta iniciativa UBS-Optimus Foundation financió el proyecto Visceral leishmaniasis and malnutrition in Amhara State, Ethiopia, que contempla la caracterización nutricional, inmunológica y parasitaria de la población infantil del Estado de Amhara, área en la que se registró el brote de LV arriba mencionado. Y es dentro del marco de este proyecto en el que se plantea el presente trabajo, cuyos objetivos, asociados a distintos artículos científicos, se detallan a continuación: 1- Evaluación de herramientas diagnósticas para la detección de la infección asintomática por Leishmania (Artículo 1). 2- Determinar la prevalencia post brote de LV activa e infección asintomática para establecer si aún existe transmisión activa (Artículo 2). 3- Identificar factores de riesgo asociados a la infección (Artículo 3). 4- Estudiar la influencia de la malnutrición en la inmunidad adaptiva y su posible asociación a la susceptibilidad a infección y/o enfermedad (Artículo 4). La población de estudio de este trabajo ha estado formada por los niños de 4 a 15 años de edad de los distritos de Libo Kemkem y Fogera (Estado de Amhara, Etiopía). Los datos presentados se han obtenido a través de un estudio por conglomerados multi-etapas y del registro del centro de tratamiento de LV de Addis Zemen (Estado de Amhara). Los datos sociodemográficos, antropométricos, clínicos y las muestras biológicas utilizadas en el estudio fueron obtenidos por profesionales de la salud debidamente entrenados para realizar este. La población de estudio utilizada para evaluar la utilidad de las herramientas diagnósticas en la detección de infección asintomática, se seleccionó de sub-distritos con una alta prevalencia (≥ 8 casos) después del brote de LV ocurrido en 2004-2005, según el registro del centro de tratamiento de LV de Addis Zemen (datos de 2008) (Población 1). Se evaluaron dos aproximaciones serológicas (test de aglutinación directa-DAT, y tira inmuno-cromatográfica rápida basada en el antígeno recombinante rK39-rK39-ICT) y una determinación de la respuesta de hipersensibilidad retardada     9 (test de la leishmanina-LST). Para ello se encuestaron 605 niños sin LV previa y se detectó infección asintomática en 61 de ellos (10.1%). Se encontraron, además, durante este estudio, tres casos activos de LV. Por tanto se pudo confirmar que existe transmisión activa de Leishmania en los sub-distritos estudiados. Además se comprobó que el uso combinado de DAT y LST es la mejor opción para detectar la infección asintomática. Para determinar la prevalencia en el área de estudio se muestrearon todos los sub-distritos en los que había habido, de acuerdo al registro del centro de tratamiento de LV de Addis Zemen, al menos un caso de LV durante el brote (Población 2). De un total de 386 niños encuestados, sólo se encontró un caso activo de LV. Mientras que la prevalencia de infección asintomática fue del 1.02%. Se observó que la prevalencia aumentaba con la edad y que, además, era mayor entre el sexo masculino. La baja prevalencia observada (tanto de casos activos como de infección asintomática) indica que las condiciones que originaron el brote ya no persisten, y que actualmente se da una situación de baja transmisión. No obstante, la ausencia de datos sobre las causas que originaron el brote hace necesario mantener un sistema de vigilancia para poder predecir un nuevo brote o incremento de los casos. La identificación de factores de riesgo asociados con la infección se realizó estudiando la Población 1. Se analizaron los datos sociodemográficos y nutricionales de la población infantil estudiada con respecto a la infección asintomática por Leishmania. Se realizaron análisis multi-variante y uni-variante. Los factores mostraron una asociación positiva con la infección: mayor edad, sexo masculino, malnutrición aguda, el hábito de dormir fuera de la casa, el cuidado de ganado, número creciente de miembros en la familia, historia previa de LV en algún miembro de la familia, casa con techo de paja y casa con grietas en las paredes. Como factores protectores se encontraron: posesión de un mayor número de cabezas de ganado y gallinas por familia. En conclusión, estos resultados indican que factores modificables como las condiciones de la vivienda, la malnutrición y los hábitos personales influyen en la transmisión de LV, subrayando la necesidad de educación y movilización social para mitigar el problema. Por otra parte, la protección asociada al aumento del número de cabezas de ganado que posee una familia podría estar indicando bien un mayor grado de riqueza (con una influencia positiva en la salud y otros elementos físicos del hogar), o un comportamiento zoofílico del vector, de manera que el ganado hiciese de barrera a la transmisión; no obstante cualquiera de estas explicaciones neceistaría de un estudio más detallado.     10 Para estudiar el impacto de la malnutrición sobre la inmunidad se realizó un análisis de parámetros hematológicos, poblaciones linfocitarias de sangre periférica, niveles séricos de PGE2 y de citoquinas, así como los niveles de estas últimas en el sobrenadante de cultivos de células mononucleadas de sangre periférica (PBMC) estimuladas con fitohemaglutinina (PHA) en niños de la población de estudio (Población X). Se observó que la malnutrición severa en el sexo masculino se asocia a un valor de hematocrito (HCT), niveles de hemoglobina (HGB) y leucocitos circulantes (WBC) más bajos que en los no malnutridos. Sin embargo, no se observaron diferencias para estos parámetros dentro del sexo femenino. Independientemente del sexo, los individuos con malnutrición severa mostraron una disminución en el número absoluto de leucocitos circulantes y de las sub-poblaciones de linfocitos T (CD4+ y CD8+) y B en comparación con los individuos no malnutridos. El análisis de sobrenadantes de cultivo de PBMC estimuladas con PHA mostró que los no malnutridos tenían una mayor concentración de IL-10, IL-2 e IFN-γ en comparación con los que presentaban malnutrición severa. Por el contrario, los sueros de individuos no malnutridos presentaron títulos más bajos de PGE2 en comparación con los malnutridos. Al integrar el factor infección (determinado por DAT) se observó que la capacidad de las PBMC de producir IL-10 e IFN-γ de manera constitutiva era mayor en los no malnutridos que en los malnutridos, independientemente del estatus de infección. Lo que indica una mejor condición inmunológica en los individuos no malnutridos.     11 INTRODUCCIÓN La leishmaniasis representa un complejo de enfermedades con una importante diversidad clínica y epidemiológica. Está causada por diversas especies de protozoos del género Leishmania que son transmitidos a través de la picadura de hembras de flebótomo, pertenecientes al género Phlebotomus en el Viejo Mundo y al género Lutzomyia en el Nuevo Mundo. Las diferentes formas clínicas dependen del resultado de la interacción entre la especie infectante y la respuesta inmune del huésped; y varían desde distintas manifestaciones tegumentarias (leishmaniasis cutánea, cutáneo-difusa o mucosa) a la leishmaniasis visceral, una afección sistémica que es mortal sin tratamiento. La leishmaniasis se encuentra en el grupo de las Enfermedades Olvidadas, debido a los limitados recursos invertidos en su diagnóstico, tratamiento y control, y a su fuerte relación con la pobreza. (WHO, 2010; Bern et al., 2008). I- EPIDEMIOLOGÍA DE LA LEISHMANIASIS La epidemiología de la leishmaniasis depende de la especie de Leishmania, las características ecológicas de las áreas de transmisión, incluyendo la biología del vector, y la exposición actual y pasada de la población humana al parásito. La leishmaniasis es endémica en 98 países o territorios, con más de 350 millones de personas en riesgo, y una prevalencia (probablemente muy subestimada) de 12 millones. De acuerdo a los datos publicados la incidencia se estima en 2 millones de casos nuevos al año (0.5 millones debidos a la leishmaniasis visceral, y 1.5 millones debidos a las diferentes formas tegumentarias). Genera una pérdida de 2 357 000 años de vida ajustados por discapacidad, lo que sitúa a la leishmaniasis cuarta en cuanto a morbilidad dentro de las enfermedades tropicales y novena en un análisis global de las enfermedades infecciosas. La leishmaniasis visceral (LV) causa unas 50 000 muertes al año, una tasa superada, entre las enfermedades parasitarias, sólo por la malaria (Desjeux, 2004; WHO, 2010). La leishmaniasis presenta una amplia distribución, existiendo transmisión a humanos en 5 continentes. No obstante, la mayor carga de enfermedad se localiza en unos focos concretos. El 90% de los casos de LV ocurre en Bangladesh, Brasil, Etiopía, India, Nepal y Sudán; mientras que en Afganistán, Argelia, Arabia Saudí, Brasil, Irán, Perú y Sudán se da el 90% de los casos de leishmaniasis tegumentaria. Por otra parte, la distribución es dinámica, de manera que varias áreas endémicas muestran una amplia fluctuación en la incidencia a lo largo del tiempo, lo que en     12 ocasiones se atribuye a eventos específicos como el desplazamiento de poblaciones y factores climáticos. Cambios ambientales, climáticos y socioeconómicos podrían expandir el rango geográfico de la transmisión de la leishmaniasis (Alvar, et al., 2006; Chappuis et al., 2007). Un fenómeno de creciente preocupación es la co-infección Leishmania/VIH, que intensifica la carga de enfermedad, causando formas más severas y más difíciles de manejar. Si bien en Europa la incidencia de esta co-infección disminuyó desde finales de los 90, en otras partes del mundo está aumentando lentamente, según la pandemia de VIH se expande a las áreas rurales endémicas de leishmaniasis. Particularmente, en el norte de Etiopía la tasa de VIH en enfermos de leishmaniasis visceral incrementó desde el 19% en los años 1998-9 al 34% en 2006-7. En Brasil, India, Nepal y Sudán la prevalencia aún se mantiene por debajo del 10%, pero se espera que aumente (WHO, 2010). I.1- Ciclo biológico La leishmaniasis está presente en ecosistemas extremadamente diversos, con adaptaciones específicas para cada especie de vector. Además, Leishmania es capaz de infectar una amplia variedad de mamíferos. Desde el punto de vista de la fuente de infección en humanos, la leishmaniasis puede clasificarse en dos amplias categorías: i) leishmaniasis zoonótica, en la que el reservorio de infección lo constituyen animales salvajes o domésticos; y ii) leishmaniasis antroponótica, en la que el reservorio es el hombre. Así, la existencia de la leishmaniasis queda determinada por una serie de condiciones epidemiológicas que permiten el contacto del parásito con el vector y con los huéspedes vertebrados, llevándose a cabo el desarrollo completo y continuo del ciclo biológico de Leishmania (Figura 1) (Marzinovsky y Schurenkowa, 1924; Adler, 1940). Leishmania (Leishman, 1903; Donovan, 1903; Wright, 1903) es un parásito digénico y dimórfico, que realiza parte de de su ciclo vital en el tubo digestivo del flebótomo, donde se encuentra en la forma promastigote (1.5-3 µm x 10-20 µm), presentando un flagelo anterior, y en el huésped vertebrado, parasitando las células fagocíticas del sistema retículo-endotelial en la forma amastigote (2.5 x 6.8 µm), con un flagelo residual. El modo en que se multiplican ambas formas del parásito es por fisión binaria (Bryceson, 1996).     13 Figura 1. Ciclo biológico de Leishmania (www.who.int/tdr/diseases/leish/default.htm) Leishmania es transmitida al huésped mamífero mediante la picadura de una hembra de flebótomo infectada. Las hembras de flebótomos vectores necesitan ingerir sangre para que se produzca el desarrollo completo de sus huevos. La preferencia de los vectores por los diferentes vertebrados varía de acuerdo a la especie y a la disponibilidad de huéspedes. Durante el proceso de alimentación sobre el huésped, el flebótomo introduce, además de los parásitos, su saliva. Esta, junto con los proteofosfoglicanos del parásito se cree que ejercen un papel importante en el establecimiento del parásito en la piel (WHO, 2010). Cuando la hembra del flebótomo toma sangre de un mamífero infectado, que presenta parasitemia, en el caso de la leishmaniasis visceral, o de la propia úlcera en las cutáneas, esta puede ingerir macrófagos infectados con amastigotes de Leishmania. En el interior del aparato digestivo del vector, los amastigotes se transforman en promastigotes; estos se multiplican por fisión binaria y van migrando hacia la porción anterior del aparato digestivo, donde se transformarán en promastigotes metacíclicos, que es la forma infectiva que transmitirá el vector (Molyneux y Killick-Kendrick, 1987). Al inocular los parásitos en la dermis del huésped, aquellos que sobreviven a la acción del complemento se adhieren rápidamente a las células residentes o a las Leishmaniasis Visceral Leishmaniasis Cutánea     14 reclutadas pertenecientes al linaje de monocitos/macrófagos (Moll et al., 1995). La adhesión está mediada por receptores de membrana en las células diana que se unen a factores del complemento adheridos al parásito; posteriormente este penetra al interior celular mediante fagocitosis. Leishmania queda entonces englobada en un fagolisosoma que evoluciona a lo largo de la ruta fagocítica hasta convertirse en una vacuola parasitófora, con unas características finales entre endosoma tardío y lisosoma (Amer y Swanson, 2002; Waller y McConville, 2002). Una vez en la vacuola, y tras 2 a 5 días, los promastigotes se transforman en amastigotes (Antoine et al., 1998; Handman, 1999). Los amastigotes se dividen en el interior de la vacuola parasitófora hasta que la célula no puede acumular más y se rompe liberándolos al exterior, donde son captados por otras células competentes. En el caso de las especies o cepas viscerotrópicas, una vez la infección se ha establecido, los parásitos pueden persistir en el huésped durante toda su vida en las células del sistema retículo-endotelial, en médula ósea o bazo, bien en forma activa, causando enfermedad, o acantonados cursando una infección subclínica, asintomática, con la posibilidad de reactivarse y causar patología si consiguen escapar al control del sistema inmune del huésped. Sin embargo, las especies o cepas dermotrópicas generalmente se mantienen localizadas junto al punto de inoculación, causando la enfermedad cutánea. Cualquier dispersión de las especies dermotrópicas suele ser tardía y sólo hacia porciones de piel adyacentes (produciendo lesiones satélites), o hacia el tejido o nódulos linfáticos próximos. Algunas especies del subgénero Viannia (como L. braziliensis) migran a la mucosa oro-faríngea donde pueden permanecer en estado latente durante años hasta reactivarse y causar lesiones mucosas destructivas (Alvar, 2001). II- LEISHMANIASIS VISCERAL La Leishmaniasis Visceral (LV), también llamada Kala-azar (KA), es endémica en 65 países. Actualmente se reconocen dos especies de Leishmania asociadas a esta enfermedad: Leishmania donovani y Leishmania infantum. La primera se asocia a una transmisión antroponótica y se distribuye en los principales focos del sub- continente indio y el este de África, si bien hay datos que indican que en determinadas áreas de este último foco la transmisión podría ser antropozoonótica. L. infantum se asocia a una transmisión zoonótica, con el perro como principal reservorio, y se distribuye principalmente por toda la cuenca mediterránea, algunas regiones de Oriente Medio y Asia, y por Sudamérica (WHO, 2010) (Figura 2).     15 Figura 2. Distribución geográfica de la LV (WHO, 2010). II.1- (Re-)emergencia de la leishmaniasis visceral La LV es una enfermedad dinámica y las circunstancias asociadas a su transmisión varían de un modo continuo en función de los cambios asociados al ambiente, y del comportamiento humano. De acuerdo con la OMS los programas de control de la leishmaniasis activos son escasos y la mortalidad y morbilidad asociadas a la leishmaniasis muestran una preocupante tendencia al alza en todo el Mundo (WHO, 2010). En los últimos años, se ha documentado la emergencia de la LV en diversas áreas en las que no se había descrito antes la presencia de la enfermedad, como en la ciudad de Posadas, Argentina (Salomón et al., 2008), el estado de Amhara, noroeste de Etiopía (Alvar et al., 2007), o Bután (Bhattacharya et al., 2010). Así como la re- emergencia en focos que se consideraban controlados en Uzbekistán y Tajikistán (Alam et al., 2009). Y la rampante propagación de la LV urbana en Brasil (Maia- Elkhoury et al., 2008). Entre los factores de riesgo asociados a la re-emergencia de la LV se encuentran aquellos relacionados con el ambiente, que aumentan la exposición al vector y/o estrechan el contacto con los reservorios, pero también están aquellos que,     16 en el huésped, facilitan la evolución de la infección a la enfermedad, y la propagación en la comunidad. II.1.1- Factores ambientales La leishmaniasis se caracteriza por una distribución en microfocos, este tipo de distribución se debe a condiciones micro-ecológicas que afectan al vector, el parásito y al reservorio. En función de la eco-epidemiología de cada foco en particular. Las alteraciones del ambiente, de origen natural o por acción humana, pueden generar un aumento o disminución de la incidencia de la enfermedad. Entre los cambios ambientales que afectan la incidencia se encuentran la urbanización, la domesticación de los ciclos de transmisión y la incursión de asentamientos humanos en entornos forestales (WHO, 2010). II.1.2- Cambio climático La distribución de la leishmaniasis presenta una asociación muy fuerte con el clima, estando muy afectada por factores como la lluvia, la temperatura atmosférica y la humedad. Estos factores tienen efecto en la distribución, supervivencia y tamaño de población de vectores y reservorios. Además, grandes efectos climáticos, como las sequías o inundaciones pueden provocar movimientos masivos de población hacia áreas endémicas, incrementando el número de individuos susceptibles (WHO, 2010). II.1.3- Movimientos de población Los movimientos de población, por causas ambientales o provocadas por la acción del hombre, están detrás del origen de algunas epidemias de LV; bien al poner a una población en contacto con un ciclo de transmisión, o al introducir un número importante de personas infectadas en un área no endémica en la que existe la posibilidad de transmisión vectorial. Un ejemplo dramático fue la epidemia de LV en la provincia de Western Upper Nile, en el sur de Sudán, asociada a la movilización de población a un área de transmisión zoonótica, provocada por la guerra civil que sufrió el país (1984-1994), y generando una epidemia que causó la muerte de 100 000 personas (WHO, 2010; Zijlstra y El-Hassan, 2001).     17 II.1.4- Inmunodepresión La respuesta inmune innata juega un papel crucial en la resistencia del huésped a la infección por Leishmania. Esta respuesta actuaría tanto en el control de la multiplicación del parásito en la fase inicial de la infección, como en la generación de una cascada inmunoreguladora dirigida a ejercer una respuesta específica contra el parásito (Peruhype-Magalhães et al., 2005). En el caso de la LV, hay dos fenómenos que, al alterar esta respuesta inmune, están especialmente relacionados con un mayor riesgo de desarrollo de la enfermedad: la co-infección con VIH y la malnutrición. El desarrollo de la pandemia de VIH/SIDA durante las últimas décadas ha modificado el espectro de la LV, tanto a nivel clínico como epidemiológico. Este fenómeno surge como consecuencia del solapamiento de ambas infecciones, que adquiere mayor importancia en los últimos años como consecuencia de la ruralización del SIDA y la urbanización de la leishmaniasis. En los pacientes co-infectados los dos patógenos ejercen un efecto sinérgico, lo que tiene implicaciones muy importantes en su expresión y propagación. El tiempo de desarrollo de SIDA se ve acelerado y la leishmaniasis puede no tener una presentación clásica. Estos pacientes presentarán una pobre respuesta a la terapia y una elevada tasa de recaídas; así como una elevada parasitemia y una serie de manifestaciones atípicas que dificultarán y retrasarán el diagnóstico. Así, los enfermos co-infectados engrosarían el número de reservorios humanos en áreas donde la transmisión es antroponótica. Pero además, las mismas características podrían ayudar a crear nuevos focos de transmisión antroponótica en áreas donde la LV es zoonótica. Quizás un ejemplo de la magnitud de este problema lo constituye el sur de Europa, que fue el paradigma de la co- infección Leishmania/VIH, encabezando la lista de casos reportados, durante la primera década de la pandemia de VIH/SIDA, y donde se observó que la prevalencia de LV en enfermos de SIDA era entre 100 y 2000 veces mayor que en individuos inmunocompetentes u otros grupos de inmunodeprimidos no VIH+ (Desjeux y Alvar, 2003; Molina et al., 2003; Cruz et al., 2006-a; Alvar et al., 2008). Existen fuertes evidencias que indican un vínculo entre la malnutrición y un déficit de las respuestas immunes innata y adaptativa, de manera que en casos de deficiencia nutricional la LV presentaría formas más severas y letales. Particularmente en niños menores de 5 años la malnutrición juega un papel significativo en la evolución clínica de la LV. Si bien las bases que explican la asociación entre malnutrición y LV no están claras, se sabe que la malnutrición genera inmunodepresión y que esta es un factor de riesgo para el desarrollo de la enfermedad. La lactancia materna se asocia     18 con una mayor posibilidad de permanecer asintomático tras la infección, mientras que un peso bajo al nacer se asocia con una mayor posibilidad de desarrollar la enfermedad tras la infección. Del mismo modo, los niños que presentan bajas medidas antropométricas tienen mayor riesgo de desarrollar LV que los sanos (Maciel et al., 2008; Malafaia, 2009). A nivel epidemiológico se ha descrito el papel de la malnutrición en el desarrollo de epidemias de LV en el este de África; un claro ejemplo es el descrito por Marlet et al. (2003), que describen un brote de LV que afectó a 904 individuos entre mayo del año 2000 y agosto del 2001 en los distritos de Wajir y Mandera en una región fronteriza entre Kenia, Somalia y Etiopía. II.1.5- Fallo terapéutico y resistencia a fármacos La quimioterapia es crítica tanto para el paciente como para reducir el número de reservorios en áreas donde la transmisión es antroponótica. De manera que la monitorización del acceso al tratamiento en las diversas áreas endémicas es una pieza clave a la hora de desarrollar un programa de control, esta estrategia debe incluir también el control de la calidad del fármaco. Un acceso no controlado al mismo puede llevar a un uso incorrecto, tratamiento con dosis sub-óptimas, fallo terapéutico y, a largo plazo, el desarrollo de resistencias. Un fenómeno que ha merecido especial atención ha sido el desarrollo de resistencia al tratamiento con antimoniales pentavalentes (SbV). Estos han sido la primera opción para tratar la LV durante las últimas siete décadas, sin embargo en determinadas áreas de India y Nepal, el fallo terapéutico asociado a los SbV llega al 60%; lo que implica un mayor número de individuos infectados y capaces de actuar como reservorios. Afortunadamente, en los últimos 10 años se ha progresado bastante en la terapéutica de la leishmanaisis, y se cuenta con nuevas opciones como las formulaciones lipídicas de Anfotericina B, la miltefosina y la paromomicina. No obstante continúa siendo necesario fortalecer la farmacovigilancia de los tratamientos antileishmania, y monitorizar la aparición de resistencia a fármacos (Dujardin, 2006; WHO, 2010; Den Boer et al., 2011). II.2- Presentación clínica La mayoría de las infecciones cursan de manera asintomática, si bien el seguimiento a largo plazo indica que una pequeña proporción de estos individuos termina desarrollando una LV clínica.     19 En aquellos en los que se desarrolla la enfermedad tras la infección, el periodo de incubación puede variar de unos pocos días a un año, y el desarrollo generalmente es gradual. Los síntomas más comunes son fiebre, malestar, pérdida de peso y anorexia. Y los signos más frecuentes son esplenomegalia, en ocasiones asociada a hepatomegalia, caquexia y palidez de las membranas mucosas. El oscurecimiento de la piel es un signo encontrado típicamente en India (kala-azar en Hindi significa fiebre negra). A medida que la enfermedad progresa aparecen signos de malnutrición, siendo frecuente la aparición de infecciones concomitantes. Estos síntomas persistirán durante semanas o meses. Sin tratamiento, la mayoría de los casos pueden ser fatales, siendo las co-infecciones bacterianas, hemorragias masivas o anemia (causada por un estado inflamatorio persistente) las principales causas de muerte (Dujardin, 2006; Chappuis et al., 2007; WHO, 2010). Las manifestaciones clínicas de la LV pueden ser diferentes en función de si esta es endémica, esporádica o epidémica (Cascio et al, 2002; WHO, 2010): i) La LV endémica, en general, presenta un curso relativamente crónico. Cuando el agente causal es L. infantum, como en el sur de Europa, el norte de África, Asia central y oriental, y América, el grupo de edad más afectado son niños entre uno y diez años de edad. No obstante, en los últimos años la pandemia de SIDA y el aumento del uso de inmunosupresores han provocado que la mitad de los casos de LV de Europa ocurran en adultos. Cuando el agente causal es L. donovani, como en el este de África e India, la mayor incidencia se da en niños y adultos jóvenes. ii) La LV esporádica suele ocurrir en población no autóctona de cualquier edad que entra en un foco endémico. Estos casos suelen ser agudos, y la enfermedad progresa rápidamente. Estos pacientes son más propensos a desarrollar formas complicadas de la enfermedad, como anemia hemolítica severa, daño renal y hemorragia mucosa. iii) La LV epidémica ocurre generalmente en áreas de transmisión antroponótica, en este caso todos los grupos de edad son susceptibles, excepto aquellos que adquirieron inmunidad durante una epidemia previa. Se observan formas agudas de la enfermedad, y la tasa de mortalidad es generalmente elevada. Se considera que determinados factores de riesgo pueden facilitar la progresión de la enfermedad tras la infección, como son la inmunodepresión (donde juegan un papel importante, en el contexto de la LV, la malnutrición y la infección por     20 VIH), la susceptibilidad genética y la existencia de otras infecciones concomitantes (Dujardin et al., 2006; WHO, 2010). II.3- Respuesta inmune y patogénesis El desarrollo de las diferentes formas clínicas de la leishmaniasis está determinado por la respuesta inmune del huésped y la especie de Leishmania implicada en la infección. En la mayor parte de los casos, la presencia del parásito desencadena una respuesta compleja por parte del huésped, en cuya fase inicial activa la respuesta inmune innata con la participación de células NK y producción de IL-12 que conduce a la respuesta inmune adaptativa gobernada principalmente por células colaboradoras de tipo 1 (Th1), en la que participan células dendríticas presentadoras de antígenos y células efectoras T CD4+ y CD8+ que secretan citoquinas pro-inflamatorias como la IL-12, IFN-γ y TNF-α, que a su vez activan los mecanismos leishmanicidas de los macrófagos infectados como son la producción de óxido nítrico y reactivos intermediarios del oxígeno (Murray et al., 2005). Esta respuesta genera una inmunidad celular sistémica y específica contra el parásito que permite controlar su multiplicación y diseminación, siendo capaz de mantener la infección subclínica y de proteger al individuo frente a futuras infecciones por Leishmania. En otros casos, el parásito es capaz de evadir la respuesta inmune específica del huésped, afectando la capacidad presentadora de las células dendríticas, que evita el desarrollo de una respuesta Th1 específica, y también la capacidad leishmanicida de los macrófagos (MacMahon-Pratt y Alexander, 2004), lo que resulta en una inmunosupresión específica frente a Leishmania que lleva a la multiplicación y diseminación del parásito por diferentes órganos y tejidos y a la aparición de los síntomas clínicos característicos de la leishmaniasis visceral. La infección por L. donovani o L. infantum genera hiperplasia reticuloendotelial, afectando a bazo, higado, mucosa del intestino delgado, medula ósea, ganglios linfáticos y otros tejidos linfoides. Pudiéndose observar atrofia de estos órganos. Esto causa una reducción de la vida media de leucocitos y eritrocitos, provocando granulocitopenia y anemia. Puede alterarse la función hepática, disminuyendo el tiempo de producción de protrombina; esto, junto con la trombocitopenia puede generar hemorragia severa. También se puede observar hipoalbuminemia, que se asocia a la aparición de edema. Son también comunes la hipergammaglobulinemia y la activación policlonal de células B. En la fase avanzada la aparición de enfermedades concomitantes es frecuente, especialmente     21 neumonía, disentería y tuberculosis, que son la causa común de muerte en estos enfermos (WHO, 2010). Solo la quimioterapia efectiva es capaz de reducir la carga parasitaría en estos pacientes, lo que a su vez permite el desarrollo de una respuesta inmune tipo Th1 que coopera con el tratamiento en la recuperación completa del paciente con LV y es capaz de mantenerlo inmune frente a futuras infecciones. II.3.1-Leishmaniasis dérmica post kala-azar La leishmaniasis dérmica post-kala-azar (PKDL) es una complicación de la LV; se caracteriza por un sarpullido macular, maculopapular y/o nodular en pacientes que se han recuperado (o se están recuperando) de un episodio de LV. El sarpullido generalmente comienza alrededor de la boca, desde donde se propaga a otras partes del cuerpo en función de la severidad. Se observa principalmente in Sudán e India, ocurriendo tras el tratamiento de LV en el 50% y 5-10% de los casos respectivamente. El intervalo entre el episodio de LV y el PKDL varía de 0 a 6 meses en Sudán y de 2 a 3 años en India. Probablemente los enfermos de PKDL juegan un papel importante como reservorios entre epidemias de LV. El mecanismo exacto por el que se desarrolla el PKDL se desconoce, sin bien existe una creciente evidencia de que la patogénesis está mediada por la respuesta inmune (Zijlstra et al., 2003). Figura 3. Esplenomegalia en paciente de LV (A). Formas nodulares de PKDL facial (B). (Autor: Endalamaw Gadisa) II.4- Control de la leishmaniasis visceral La transmisión de la leishmaniasis se mantiene en un complejo sistema biológico que implica huésped humano, parásito, vector y en algunas ocasiones un reservorio animal. Por tanto, cualquier estrategia de control requiere de un adecuado conocimiento del ciclo biológico en cada contexto epidemiológico. Se requerirá un A  B      22 conocimiento exhaustivo de la dinámica de la enfermedad, y deberán combinarse distintas aproximaciones para romper la cadena de transmisión: diagnóstico, tratamiento y profilaxis, control del vector y del reservorio (si procede). II.4.1- Diagnóstico Las manifestaciones clínicas de la leishmaniasis no son específicas y pueden ser compartidas con las de otras infecciones sistémicas. Además, en función del área geográfica, habrá que prestar especial anterior al diagnóstico diferencial con otras patologías como la malaria o la esquistosomiasis. Por tanto, en la medida de lo posible, se precisa la confirmación mediante alguna prueba de laboratorio. Diagnóstico parasitológico La demostración del parásito tras crecimiento en cultivo, o mediante observación microscópica, de aspirados de médula ósea, bazo o ganglio linfático es la prueba confirmatoria de la infección y aun constituye el método gold standard. La observación microscópica de aspirados de bazo presenta una gran sensibilidad (93- 99%), seguido de la de médula ósea (52-85%). El estudio del aspirado de ganglio linfático presenta una sensibilidad menor (52-65%), si bien en el este de África se ha reportado un buen rendimiento (Siddig et al., 1988; Zijlstra et al., 1992; Sundar y Rai, 2002; WHO, 2010). Una alternativa que permite mejorar la sensibilidad en la detección del parásito es la reacción en cadena de la polimerasa (PCR). Además, la especificidad de la PCR puede adaptarse a necesidades particulares al utilizar como diana regiones hipervariables, variables o conservadas, y/o combinarse con otras técnicas de biología molecular, como la secuenciación, hibridación con sondas o digestión con endonucleasas de restricción. De este modo es posible caracterizar de manera rápida el parásito presente en la muestra en el nivel taxonómico de complejo, especie o incluso aislado individual, solventando los inconvenientes de las técnicas clásicas de identificación y caracterización (Reithinger y Dujardin, 2007). No obstante, una de las mayores aportaciones de la PCR al diagnóstico de la LV es su elevada sensibilidad en muestras de sangre periférica (70-100%), permitiendo realizar el diagnóstico a partir de muestras biológicas obtenidas mediante procedimientos menos invasivos (Antinori et al., 2007). Lamentablemente, su uso aún s emantiene restringido a hospitales de referencia y a centros de investigación (WHO, 2010).     23 Diagnóstico inmunológico El diagnóstico inmunológico, ya sea a través de la evaluación de la respuesta humoral o celular, tiene gran interés en el caso de la LV. Pues es utilizado tanto en el diagnóstico de la enfermedad, como en la detección de infección asintomática o infecciones pasadas, lo que resulta de gran utilidad en estudios epidemiológicos. Los métodos serológicos aprovechan la elevada producción de IgG anti- Leishmania durante la fase activa de la enfermedad. Se utilizan varios formatos, desde enzimoinmunoensayos y tests de aglutinación a inmuno-blots e inmunofluorescencia directa, considerándose esta última el método de referencia en el diagnóstico serológico de la LV. No obstante, no conviene olvidar que estos métodos no son capaces de distinguir entre infecciones activas o pasadas y que, en función del antígeno utilizado, podría obtenerse reacciones cruzadas con otros agentes infecciosos o enfermedades autoinmunes. Por otra parte, estos métodos pueden perder hasta un 50% de sensibilidad en el caso de enfermos coinfectados con el VIH (Cruz et al., 2006-a; Cruz et al., 2006-b). Existen dos métodos serológicos, el test de aglutinación directa (DAT) y una tira inmunocromatográfica rápida (rK39-ICT), que han sido desarrollados para poder ser aplicados sobre el terreno. El primero utiliza promastigotes completos y permite determinar el título de anticuerpos; el segundo utiliza el antígeno recombinante rK39 y es cualitativo. Ambos son baratos y fáciles de usar y han mostrado una sensibilidad (93-94%) y especificidad (95-97%) adecuadas en diversas áreas endémicas (Chappuis et al., 2006). La respuesta inmune mediada por células T juega un papel crucial en el control de la infección por Leishmania (Murray et al., 1989). En infecciones asintomáticas o tras un tratamiento exitoso se desarrolla una respuesta de linfoproliferación específica que puede valorarse in vivo a través de la prueba de la leishmanina o test de Montenegro y ex vivo mediante un ensayo de linfoproliferación en placa. El test de Montenegro se encarga de medir una respuesta de hipersensibilidad retardada tras la inoculación intradérmica de una solución de promastigotes de Leishmania formolados (Weigle et al., 1991). Los ensayos de linfoproliferación, al determinar la capacidad de proliferación linfocitaria frente a antígeno de Leishmania, proporcionan (al igual que el test de Montenegro) información sobre la capacidad del sistema inmune de montar una respuesta celular específica y protectora frente al parásito (Sacks et al., 1987). Los ensayos basados en la determinación de la respuesta celular frente a Leishmania no presentan utilidad a la hora de diagnosticar un episodio de LV, pero sí aportan     24 mucha información sobre la tasa de contacto con el parásito en población de área endémica (Alvar et al., 2007; Gidwani et al., 2009). II.4.2- Tratamiento El tratamiento debe suministrarse sólo a aquellos casos confirmados, y en ocasiones se aportará un suplemento nutricional o de rehidratación. De manera ideal, el tratamiento debe curar al paciente, reducir el riesgo de recaídas y de aparición de PKDL y reducir la transmisión. Durante las últimas siete décadas, los antimoniales pentavalentes han sido el tratamiento de primera opción para la LV, estando en la segunda línea la pentamidina y la anfotericina B deoxicolato. Afortunadamente, en los últimos diez años han aparecido nuevas opciones como las formulaciones lipídicas de anfotericina B, la miltefosina o la paromomicina. Actualmente se recomienda la combinación de fármacos, ya que ofrece varias ventajas: i) acorta el periodo de tratamiento, aumentando la adherencia al mismo, ii) se reduce la dosis, y por tanto disminuyen los efectos tóxicos y el precio, y iii) disminuye la posibilidad de aparición de cepas resistentes, aumentando así la vida útil de los fármacos disponibles (WHO, 2010). II.4.3- Control del reservorio En áreas donde la transmisión es antroponótica, las piezas clave en el control del reservorio serán un programa de detección activa de casos, vigilancia y la disponibilidad de un tratamiento eficaz. En áreas en que la LV es zoonótica (siendo el perro principal reservorio), es preciso determinar la distribución y frecuencia de la infección. Es importante considerar que no todos los perros infectados manifiestan síntomas de la enfermedad; por tanto, deben emplearse herramientas validadas en cada contexto epidemiológico a la hora de determinar la tasa de infección en los reservorios. Idealmente, los perros infectados deberían ser eliminados; si bien esta medida no ha resultado del todo eficaz en áreas donde se ha empleado durante largo tiempo, como en Brasil. Alternativamente, se debe potenciar el uso de insecticidas y/o repelentes, bien en forma de lociones o de collar (WHO, 2010).     25 II.4.4- Control vectorial Un control vectorial efectivo tendrá un gran impacto en la transmisión del parásito, particularmente si se realiza en el hábitat doméstico y peridoméstico. Es de vital importancia conocer la ecoepidemiología de la LV en el área de intervención, así como la especie de vector (o vectores) implicada, su hábitat, rango de vuelo, preferencias alimentarias, lugares de reposo y refugio, así como su estacionalidad. Se puede proceder al control químico mediante el uso de insecticidas residuales de aplicación intradomiciliaria o el de telas mosquiteras impregnadas en insecticida (WHO, 2010). III- LEISHMANIASIS VISCERAL EN ETIOPÍA Se desconoce la carga total de LV en Etiopía, pero se estima una incidencia de aproximadamente 4 000 casos clínicos anuales (Alvar et al., 2008). También se considera emergente, pues se está propagando hacia áreas no endémicas dentro del país. Diferentes estudios epidemiológicos, realizados de forma esporádica, han identificado hasta 40 focos (Fig. 4). En la actualidad hay transmisión de LV en tres diferentes zonas ecológicas: en las tierras bajas del noroeste y suroeste, a menos de 1 500 metros sobre el nivel del mar, y en las tierras altas del la región centro-norte, a más de 1 800 metros sobre el nivel del mar. El gran foco de LV de Humera y Metema se encuentra al noroeste del país, en las tierras bajas en la frontera con Sudán. Es el principal foco de LV de Etiopia, y acumula el 60% de los casos. Estas regiones son semiáridas, y el vector (Phlebotomus orientalis) se encuentra asociado a los suelos arcillosos y a los bosques de acacia. Desde principios de 1990 ha habido pequeños brotes en este foco debido a nuevos proyectos agrícolas a gran escala y a la ruta comercial desde Port-Sudan a Addis Abeba, que atraviesa los grandes focos de LV del sur de Sudan (Mengesha y Abuhoy, 1978; Maru 1979). Este foco tiene la mayor tasa de confección Leishmania/VIH, hasta un 40% de los pacientes con LV está infectado por el VIH (Alvar et al., 2008). El 20% de los casos del país ocurre en la región suroeste, que engloba la sabana del suroeste de Etiopia, el área del lago Abaya, la meseta del río Omo, el área de Aba Roba y el valle de los ríos Segen y Woito (Ayele y Ali, 1984). En esta región los vectores implicados son P. martini y P. celiae que se encuentran en asociación con los nidos de termita (Macrotermes termite) (Gebre-Michael y Lane, 1996). En esta     26 zona, en las regiones de Afder y Liban, ha habido brotes de LV que han afectado regiones fronterizas de Kenia y Somalia (Marlet et al., 2003). Figura 4. Distribución de la leishmaniasis en el Este de África El foco más reciente se encuentra al nordeste del país, en los distritos de Libo Kemkem y Fogera (estado de Amhara), que se encuentran a 1800-2000 metros sobre el nivel del mar. En esta región, las actividades agrícolas han reducido la vegetación natural a grupos acacias dispersas por todo el territorio. Durante la estación de lluvias la mayoría del área queda inundada, durante la estación seca el suelo queda surcado por profundas grietas. Esta área se consideraba libre de LV hasta 2005, cuando Médicos sin Frontera-Grecia (MSF-G) reportó un brote en el distrito de Libo Kemkem (Alvar et al., 2007).     27 IV- BIBLIOGRAFÍA - Adler S. (1940). Attempts to transmit visceral leishmaniasis to man: Remarks on the histopathology of leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene; 33: 419-26. - Alam M Z, Kovalenko D A, Kuhls K, Nasyrova R M, Ponomareva V I, Fatullaeva A A, Razakov S A, Schnur L F, Schönian G (2009). Identification of the agent causing visceral leishmaniasis in Uzbeki and Tajiki foci by analysing parasite DNA extracted from patients’ Giemsa-stained tissue preparations. Parasitology; 136: 981-6. - Alvar J (2001). Las leishmaniasis: de la biología al control. Laboratorios Intervet S. A., Salamanca, España, 2ª Ed. - Alvar J, Yactayo S, Bern C (2006). Leishmaniasis and poverty. TRENDS in Parasitology; 22: 552-7. - Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, Kassa A, Orfanos G, Parreño F, Babaniyi O, Gudeta N, Cañavate C, Bern C (2007). Kala-azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic assessment. American Journal of Tropical Medicine and Hygiene; 77: 275-82. - Alvar J, Aparicio P, Aseffa A, Den Boer M, Cañavate C, Dedet J-P, Gradoni L, Ter Horst R, López-Vélez R, Moreno J (2008). The relationship between leishmaniasis and AIDS: the second 10 years. Clinical Microbiology Reviews; 21: 334-59. - Amer A O y Swanson M S (2002). A phagosome of one´s own: a microbial guide to life in the macrophague. Current Opinion on Microbiology; 5: 56-61. - Antinori S, Calattini S, Longhi E, Bestetti G, Piolini R, Magni C, Orlando G, Gramiccia M, Acquaviva V, Foschi A, Corvasce S, Colomba C, Titone L, Parravicini C, Cascio A, Corbellino M (2007). Clinical use of polymerase chain reaction performed on peripheral blood and bone marrow samples for the diagnosis and monitoring of visceral leishmaniasis in HIV-infected and HIV-uninfected patients: a single-center, 8-year experience in Italy and review of the literature. Clinical Infectious Diseases; 44: - Antoine J C, Prina E, Lang T, Courret N (1998). The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophagues. TRENDS in Microbiology; 6: 392-401. - Ayele T, Ali A (1984). The distribution of visceral leishmaniasis in Ethiopia. American Journal of Tropical Medicine and Hygiene; 33: 548-52.     28 - Bhattacharya SK, Rinzin N, Chusak P, Dash AP, Chowdhury R, Tobgay T, Narain JP (2010). Occurrence & significance of kala-azar in Bhutan. Indian Journal of Medical Research; 132: 337-8. - Bern C, Maguire J H, Alvar J (2008). Complexities of assessing the disease burden attributable to leishmaniasis. PLOS Neglected Tropical Diseases; 2: e313. - Bryceson A D M (1996). Leishmaniasis. En : Manson´s Tropical Diseases. Cook G C. Ed 20 Ed. WB Saunders Company Ltd. London. 1213-5. - Cascio A, Colomba C, Antinori S, Orobello M, Paterson D, Titone L (2002). Pediatric visceral leishmaniasis in western Sicily, Italy: a retrospective analysis of 111 cases. European Journal of Clinical Microbiology and Infectious Diseases; 21:277-82. - Chappuis F, Rijal S, Soto A, Menten J, Boelaert M (2006). A meta-analysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis. British Medical Journal; 333: 723. - Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling R W, Alvar J, Boelaert M (2007). Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?. Nature Reviews Microbiology; 5: S7-16. - Cruz I, Nieto J, Moreno J, Cañavate C, Desjeux P, Alvar J (2006-a). Leishmania/HIV co-infections in the second decade. Indian Journal of Medical Research; 123: 357-88. - Cruz I, Chicharro C, Nieto J, Bailo B, Cañavate C, Figueras M C, Alvar J (2006-b). Comparison of new diagnostic tools for management of pediatric Mediterranean visceral leishmaniasis. Journal of Clinical Microbiology; 44: 2343-7. - Den Boer M, Argaw D, Jannin J, Alvar J (2011). Leishmaniasis impact and treatment access. Clinical Microbiology and Infection; 17: 1471-7. - Desjeux P, Alvar J (2003). Leishmania/HIV co-infections: epidemiology in Europe. Annals of Tropical Medicine and Parasitology; 97(S1): S3–S15. - Desjeux P (2004). Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology & Infectious Diseases; 27: 305-18. - Donovan C (1903). On the possibility of the occurrence of trypanosomiasis in India. British Medical Journal; ii: 79. - Dujardin J C (2006). Risk factors in the spread of leishmaniases: towards integrated monitoring?. TRENDS in Parasitology; 22: 4-6.     29 - Gebre-Michael T, Lane RP (1996). The roles of Phlebotomus martini and P.celiae (Diptera: Phlebotominae) as vectors of visceral leishmaniasis in the Aba Roba focus, southern Ethiopia. Medical Veterinary Entomology; 10: 53-62. - Gidwani K, Rai M, Chakravarty J, Boelaert M, Sundar S (2009). Evaluation of leishmanin skin test in Indian visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene; 80: 566-7. - Handman E (1999). Cell biology of Leishmania. Advances in Parasitology; 44: 1-39. - Leishman W B (1903). On the possibility of the occurrence of trypanosomiasis in India. British Medical Journal; 1: 1252-4. - Maia-Elkhoury A N S, Alves W A, De Sousa-Gomes M L, De Sena J M, Luna E A (2008). Visceral leishmaniasis in Brazil: trends and challenges. Cadernos de Saúde Pública, Rio de Janeiro; 24: 2941-7. - Maciel B L L, Lacerda H G, Queiroz J W, Galvão J, Pontes N N, Dimenstein R, McGowan S E, Pedrosa L F C, Jerônimo S M B (2008). Association of nutritional status with the response to infection with Leishmania chagasi. American Journal of Tropical Medicine and Hygiene; 79: 591-8. - Malafaia G (2009). Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunology; 31: 587-96. - Marlet M V L, Sang D K, Ritmeijer K, Muga R O, Onsongo J, Davidson R N (2003). Emergence or re-emergence of visceral leishmaniasis in areas of Somalia, northeastern Kenya, and south-eastern Ethiopia in 2000-01. Transactions of the Royal Society of Tropical Medicine and Hygiene; 97: 515-8. - Maru M (1979). Clinical and laboratory features and treatment of visceral leishmaniasis in hospitalized patients in Northwestern Ethiopia. American Journal of Tropical Medicine and Hygiene; 28: 15-8. - Mengesha B, Abuhoy M (1978). Kala-azar among labour migrants in Metema- Humera region of Ethiopia. Tropical Geographical Medicine; 30: 199-206. - Marzinowsky E I, Schurenkowa A. (1924). Oriental sore and immunity against it. Transactions of the Royal Society of Tropical Medicine and Hygiene; 18: 67-9.     30 - McMahon-Pratt D, Alexander J (2004). Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral diseases? Immunology Reviews; 201: 206-24. - Molina R, Gradoni L, Alavar J (2003). HIV and the transmission of Leishmania. Annals of Tropical Medicine and Parasitology; 97(S1): S29–S45. - Moll H, Flohé S y Röllinghoff M (1995). Dendritic cells in Leishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T-cell immune response. European Journal of Immunology; 25: 693-9. - Molyneux D H y Killick-Kendrick R (1987). En: The Leishmaniasis in Biology and Medicine. Vol. I. Peters, W. y Killick-Kendrick, R. (ed.). Academic Press: London. 121- 76. - Murray H W, Oca M J, Granger A M, Schreiber R D (1989). Requirement for T cells and effect of lymphokines in successful chemotherapy for an intracellular infection. Experimental visceral leishmaniasis. Journal of Clinical Investigation; 83: 1253-7. - Murray H W, Berman J D, Davies C R, Saravia N G (2005). Advances in leishmaniasis. Lancet; 366: 1561. - Peruhype-Magalhães V, Martins-Filho O A, Prata A, Silva L de A, Rabello A, Teixeira-Carvalho A, Figueiredo R M, Guimarães-Carvalho S F, Ferrari T C, Correa- Oliveira R (2005). Immune response in human visceral leishmaniasis: analysis of the correlation between innate immunity cytokine profile and disease outcome. Scandinavian Journal of Immunology; 62: 487-95. - Reithinger R, Dujardin J C (2007). Molecular diagnosis of leishmaniasis: current status and future applications. Journal of Clinical Microbiology; 45: 21-5. - Sacks D L, Lal S L, Shrivastava S N, Blackwell J, Neva F A (1987). An analysis of T cell responsiveness in Indian kala-azar. Journal of Immunology; 138: 908-13. - Salomón OD, Sinagra A, Nevot MC, Barberian G, Paulin P, Estevez JO, Riarte A, Estevez J (2008). First visceral leishmaniasis focus in Argentina. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro; 103: 109-11. - Siddig M, Ghalib H, Shillington D C, Petersen E A (1988). Visceral leishmaniasis in the Sudan: comparative parasitological methods of diagnosis. Transactions of the Royal Society of Tropical Medicine and Hygiene; 82: 66-8.     31 - Sundar S, Rai M (2002). Laboratory Diagnosis of Visceral Leishmaniasis. Clinical and Diagnostic Laboratory Immunology; 9: 951-8. - Waller R F y McConville M J (2002). Developmental changes in lysosome morphology and function Leishmania parasites. International Journal of Parasitology; 32: 1435-45. - Weigle K A, Valderrama L, Arias A L, Santrich C, Saravia N G (1991). Leishmanin skin test standardization and evaluation of safety, dose, storage, longevity of reaction and sensitization. American Journal of Tropical Medicine and Hygiene; 44: 260-71. - World Health Organization (2010). Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22-26 March 2010. WHO Technical Report Series; no. 949. - Wright J H (1903). Protozoa in a case of tropical ulcer (“Delhi sore”). Journal of Medical Research; 10: 472-82. - Zijlstra E E, Ali M S, El-Hassan A M, El-Toum I A, Satti M, et al. (1992) Kala-azar: a comparative study of parasitological methods and the direct agglutination test in diagnosis. Transactions of the Royal Society of Tropical Medicine and Hygiene; 86: 505-7. - Zijlstra E E, El-Hassan A M (2001). Leishmaniasis in Sudan. 3. Visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene; 95(S1): S1/27-S1/58. - Zijlstra E E, Musa A M, Khalil E A G, El Hassan I M, El-Hassan A M (2003). Post- kala-azar dermal leishmaniasis. Lancet Infectious Diseases; 3: 87-98.     32     33 V- EL PROYECTO Visceral Leishmaniasis and Malnutrition in Amhara State, Ethiopia DE LA FUNDACIÓN UBS-Optimus El brote de LV en los distritos Libo Kemkem y Fogera resultó en la muerte de centenares de personas y puso en riesgo a más de 420 000 habitantes, por ello la OMS aconsejó su estudio y control. En respuesta a ello, el Centro Colaborador de la OMS para Leishmaniasis del Centro Nacional de Microbiología y el Centro Nacional de Medicina Tropical (ambos pertenecientes al Instituto de Salud Carlos III), y en colaboración con el Armauer Hansen Research Institute de Etiopía propusieron a la Fundación UBS-Optimus un proyecto para estudiar la leishmaniasis visceral desde un punto de vista nutricional inmunológico y parasitológico. Teniendo en cuenta que se trata de una región con una elevada tasas de malnutrición, y que la relación malnutrición-leishmaniasis visceral ha quedado ya demostrada; este proyecto pretende establecer el papel de la malnutrición en la epidemiología de la leishmaniasis visceral en este nuevo foco e identificar los factores socio-económicos están asociados a ella. De este modo se plantearán nuevas estrategias a la hora de prevenir la enfermedad. Es en el marco de este proyecto donde se desarrolla el trabajo de la presente Tesis Doctoral. Para mostrar mejor las características físicas del entorno, las condiciones de la población y las circunstancias en las que se ha realizado el trabajo, se ha incluido una galería de imágenes (ANEXO I) con fotos realizadas a lo largo del estudio que documentan sus diferentes fases y que pueden ayudar a comprender mejor el trabajo realizado.     34     35 VI- OBJETIVOS 1- Evaluación de herramientas diagnósticas para la detección de la infección asintomática por Leishmania (Artículo 1). 2- Determinar la prevalencia post brote de LV activa e infección asintomática para establecer si aún existe transmisión activa (Artículo 2). 3- Identificar factores de riesgo asociados a la infección (Artículo 3). 4- Estudiar la influencia de la malnutrición en la inmunidad adaptiva y su posible asociación a la susceptibilidad a infección y/o enfermedad (Artículo 4).     36     37 VII- ARTÍCULOS CIENTÍFICOS For Peer Review Usefulness of rK39-immunocromatrographic test, direct agglutination test, and leishmanin skin test to detect asymptomatic Leishmania infection in children from a new visceral leishmaniasis focus in Amhara State (Ethiopia) Journal: American Journal of Tropical Medicine & Hygiene Manuscript ID: AJTMH-11-0196 Manuscript Type: Original Research Paper Date Submitted by the Author: 04-Apr-2011 Complete List of Authors: Gadisa, Endalamaw; AHRI/ALERT, Armauer Hansen Research Institute Custodio, Estefanía; Instituto de Salud Carlos III, Centro Nacional de Medicina Tropical Cañavate, Carmen; Centro Nacional de Microbiología, Instituto de Salud Carlos III, WHO Collaborating Centre for Leishmaniasis, Servicio de Parasitología Sordo, Luis; Instituto de Salud Carlos III, Centro Nacional de Epidemiología Abebe, Zelalem; Amhara Regional State Research Laboratory, Health Centre Nieto, Javier; Centro Nacional de Microbiología, Instituto de Salud Carlos III, WHO Collaborating Centre for Leishmaniasis, Servicio de Parasitología Chicharro, Carmen; Centro Nacional de Microbiología, Instituto de Salud Carlos III, WHO Collaborating Centre for Leishmaniasis, Servicio de Parasitología Aseffa, Abraham; AHRI/ALERT, Armauer Hansen Research Institute Yamuah, Lawrence; AHRI/ALERT, Armauer Hansen Research Institute Engers, Howard; AHRI/ALERT, Armauer Hansen Research Institute Moreno, Javier; Centro Nacional de Microbiología, Instituto de Salud Carlos III, WHO Collaborating Centre for Leishmaniasis, Servicio de Parasitología Cruz, Israel; Centro Nacional de Microbiología, Instituto de Salud Carlos III, WHO Collaborating Centre for Leishmaniasis, Servicio de Parasitología Key Words: Leishmaniasis, Parasitology, Protozoan Infections, Surveillance, Vector-borne diseases, Infectious Diseases, Epidemiology, Diagnostics American Journal of Tropical Medicine & Hygiene For Peer Review Page 1 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 1 LRH: GADISA AND OTHERS RRH: ASYMPTOMATIC LEISHMANIA INFECTION IN ETHIOPIA Usefulness of rK39-immunochromatographic test, direct agglutination test, and leishmanin skin test to detect asymptomatic Leishmania infection in children from a new visceral leishmaniasis focus in Amhara State (Ethiopia) Endalamaw Gadisa, Estefanía Custodio, Carmen Cañavate, Luis Sordo, Zelalem Abebe, Javier Nieto, Carmen Chicharro, Abraham Aseffa, Lawrence Yamuah, Howard Engers, Javier Moreno, Israel Cruz* Armauer Hansen Research Institute, Addis Ababa, Ethiopia; Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain; WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain; Amhara Regional State Laboratory, Bahir Dar, Ethiopia *Corresponding author: Israel Cruz, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220, Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: cruzi@isciii.es ABSTRACT In areas where visceral leishmaniasis is anthroponotic, asymptomatic infected patients may play a role in transmission. Additionally, the number of asymptomatic patients in an endemic area will also provide information on transmission dynamics. Libo Kemkem and Fogera Page 2 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 2 districts (Amhara Region, Ethiopia) are now considered newly established visceral leishmaniasis endemic areas. In selected villages from these districts we have conducted a study to assess the usefulness of different approaches to estimate asymptomatic infection rate. Out of 639 participants rK39 immunochromatographic test was able to detect asymptomatic infection in 2% (13/639), direct agglutination test in 7.7% (49/639), and leishmanin skin test in 5.8% (37/623); the combined use of serological methods and leishmanin skin test allowed detecting asymptomatic infection in 12.8% (82/639). We conclude that the best option to detect asymptomatic infection is the combined use of both direct agglutination test and leishmanin skin test. INTRODUCTION Visceral leishmaniasis (VL) is a vector borne disease caused by members of the Leishmania (Leishmania) donovani complex, is endemic in 65 countries and, among them, Bangladesh, India, Nepal, Brazil, Sudan, and Ethiopia account for approximately 90% of the cases. The estimated annual incidence is 500 000 clinical cases with 59 000 associated deaths.1,2 Poor populations are particularly affected by VL, which is considered as one of the ´most neglected diseases´.3 In addition, VL is currently spreading and (re-)emerging in different areas of the world with increasing public health concern.4 In full-blown disease, VL is fatal if left untreated; and even with treatment the case fatality rate ranges from 4 to 10%.5,6 In stable endemic areas clinical disease appears only in a fraction of those infected, while another fraction will not develop the disease and remain asymptomatic.7 The prevalence of asymptomatic infection is quite different between and within different endemic countries, and the number of asymptomatic usually exceeds the number of symptomatic infections, though this ratio can vary from 0.4 : 1 to 50 : 1.2 Visualization of parasite amastigotes by microscopic examination of bone marrow, spleen or lymph node aspirates has been the Gold Standard method of VL diagnosis for many Page 3 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 3 years. However, as this procedure is based on an invasive sampling, its use for asymptomatic infection surveillance is not justified. Even more, in poor remote endemic areas the expertise and facilities required for these procedures may not be within reach. Thus procedures based on less invasive sampling, such as serology or leishmanin skin test (LST) seem to be more suitable for this purpose. Although the detection of anti-Leishmania antibodies does not discriminate between current or past infection, serological methods have been used to assess asymptomatic infection in different VL endemic areas. These have been based either on the direct agglutination test (DAT), rK39-immunochromatographic test (rK39-ICT), enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescent antibody test (IFAT) or Western blot (WB).8,9,10,11,12 The LST is a useful method to detect cell-mediated immunity against Leishmania, this test becomes positive after subclinical infection and, in this case, persists for much longer than anti- Leishmania antibodies; LST turns also positive within weeks-months after successful therapy against VL, indicating a healing or protective response.13,14 This makes LST a valuable tool to detect exposure to Leishmania parasites in epidemiological surveys, and its usefulness to detect asymptomatic infection has been shown by different authors in different endemic areas.11,15,16 In general LST would detect a higher proportion of asymptomatic infection than serology. However (given that serology and LST are based on different types of immune responses), in the absence of a Gold Standard, the combination of these two approaches would give a more realistic picture of the asymptomatic infection rate in a given endemic area.17,18 In areas where VL transmission is anthroponotic asymptomatic individuals may have a role as reservoirs, and even in areas where VL is zoonotic it is speculated that these individuals could also contribute to transmission.7,19 Thus the assessment of the prevalence and distribution of asymptomatic cases would contribute to a better understanding of VL transmission, helping in control efforts. Page 4 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 4 In Ethiopia, VL is an endemic disease of increasing public health concern. It is estimated that thirty percent of the VL patients in Ethiopia are malnourished, while HIV co- infection affects 40% in the northwest of the country; both conditions are known to facilitate the spread of VL.20,21 In addition to the classical foci in the northwest along the border with Sudan (Humera and Metema) and those in the south (Lake Abaya region, Omo river, and Aba Roba plains), the disease has recently spread to previously non-endemic areas, such as Libo Kemkem and Fogera districts (Amhara State) where a VL outbreak occurred in 2004--2005.15 Thus VL is currently a priority in the public health agenda of the Amhara State Health Bureau; and there is a need to generate epidemiological data on VL in Amhara State. To support VL control, facilities for treatment, mobile teams for surveillance, community mobilization, and active case detection strategies have been established. In order to contribute to this initiative the UBS-Optimus Foundation granted the project entitled Visceral leishmaniasis and malnutrition in Amhara State, Ethiopia, which among its specific objectives aims to characterize nutritional, immunological, and parasitological aspects in the child population from this area; and it is in the frame of this project that we have explored the usefulness of rK39-ICT, DAT, and LST to detect asymptomatic Leishmania infection in children from different sub-districts of Libo Kemkem and Fogera. Furthermore, the detection of asymptomatic infection in children will give information about the status of VL transmission in this highland focus; additionally this will contribute to assess the magnitude of asymptomatic infection, which can help in early detection and treatment, thus contributing to decrease transmission as well as disease morbidity and mortality. The information obtained with this kind of studies can also be interesting in a scenario where HIV spreads to Leishmania endemic areas, helping to foresee new VL cases among asymptomatic individuals as a consequence of a reactivation of previous Leishmania infections after acquired HIV.22 MATERIALS AND METHODS Page 5 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 5 Study site, the study was conducted during May--July 2009 in the districts (weredas) of Libo Kemkem and Fogera (Amhara State, Ethiopia) (Figures 1 and 2). These are adjacent districts most affected by the outbreak of VL occurred in 2004-2005.15 According to year 2009 census, the population was 198 374 (male 100 951 and female 97 423) and 226 595 (male 115 693 and female 110 902) for Libo Kemkem and Fogera respectively. The districts are located in a black cotton clay soil flat plain (1800--2000 meters above sea level). Human activities related to intensive cultivation of teff, maize, beans, oilseeds, rice and cotton, have reduced the natural vegetation to scattered clumps of acacia trees. Most of the area is flooded during the rainy season (July--September) and dried up during the dry season (November--May), resulting in deep cracks in the soil surface, which could turn into breeding sites for the putative vector Phlebotomus orientalis.23,24 Study population, population sampling was carried out by multi-staged cluster survey. Primary sampling units were sub-districts (kebeles) with high incidence of VL according to the 2008 register of the Addis Zemen VL Treatment Center: Agita, Bura, and Yifag from Libo Kemkem district and Dibasifatra and Rib Gebriel from Fogera district. Secondary sampling units were randomly selected villages (gotts) in each of the selected sub-districts. Third sampling units were randomly selected households in each of the villages. All children with a reported age between 4 and 15 yr living in the household at the time of the survey were eligible for the study, as long as they were asymptomatic and had no past history of VL. Data collection, information on age, gender, residence, and clinical assessment was obtained for all participants by trained medical personnel (nurses and health officers) using pretested questionnaires and protocols. Asymptomatic case definition, asymptomatic individuals were defined by a positive result in rK39-ICT, DAT or LST, and the absence of VL signs and symptoms (fever for > 2 weeks, in combination with either enlargement of spleen and/or liver, or weight loss). Page 6 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 6 Sample collection and storage, peripheral blood was collected in Na2-EDTA tubes (SIGMA, UK) and immediately one drop was used for rK39-ICT and two drops were spotted on Whatman 3MM filter paper (Whatman International Ltd., England), filter papers were left to air dry and placed individually in sealed plastic bags. The plastic bags containing filter papers were kept in a chilled ice-box and sent on the same day to the Amhara State Regional Laboratory, where they were stored at 4 ºC for further DAT analysis. Ethical considerations, the study was approved by the ethical review boards of Instituto de Salud Carlos III, Armauer Hansen Research Institute, and the Ethiopian National Ethical Review Committee. Support letters were obtained from the Amhara State and the different districts´ Health Bureaus. Parents/guardians gave written informed consent prior to the enrolment of their children in the study, and for children above 11 yr of age verbal assents were also obtained in addition to the consent of their parents /guardians. Detection of anti-Leishmania antibodies, rK39-ICT (Kalazar Detect® Rapid Test, InBios International Inc., USA) was performed using one drop of blood and 3 drops of chasing buffer following the manufacturers’ instructions. DAT with freeze-dried antigen (ITMA- DAT/VL, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium) was initially performed with the screening method according to the manufacturer’s protocol. Blood samples giving a titer ≥ 1:3200 were considered positive. Leishmanin skin test, LST was performed using L. major antigen (Leishmanin batch 123-2; Pasteur Institute, Iran). One hundred µL of the antigen were intradermally inoculated on the volar surface of the forearm with a 1 mL sterile syringe and disposable needle. The test was read 48 hr later by the ballpoint pen method. An induration with an average of two perpendiculars ≥ 5 mm was considered as positive. Data analysis, infection prevalence was calculated using rK39-ICT, DAT, and LST results. The differences in infection prevalence between age group, sex, and location were Page 7 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 7 compared by the Fisher’s exact and χ 2 tests. A p value < 0.05 was considered statistically significant. Data analysis was performed using SPSS version 16.0 (SPSS Inc., Chicago, Illinois, USA,) and STATA version 10 (Stata Corp., College Station, TX, USA). RESULTS A total of 639 asymptomatic participants were included in the study: 331 were boys (51.8%) and 308 girls (48.2%), being the boy : girl ratio close to 1 : 1 in the two districts studied. The mean age of the participants was 8.9 yr (SD: 3.2), without differences between both sexes. They were grouped according to their age in 3 different groups: group 1 (< 5 yr) consisted in 78/639 individuals (12.2%), group 2 (5--9 yr) in 310/639 (48.5%), and group 3 (10--15 yr) in 251/639 (39.3%). Anti-Leishmania antibodies were detected in 13 out of 639 children (2.0%) by rK39- ICT and in 49/639 (7.7%) by DAT. Sixteen out of the 639 children (2.5%) initially tested by LST were lost for reading. This test returned a positive result in 37 out of 623 (5.9%). Globally, 57 out of 639 children (8.9%) were found to be seropositive (rK39-ICT and/or DAT positive), and 82 out of 639 children (12.8%) were considered as infected (positive by rK39-ICT and/or DAT and/or LST). For the group of 623 children tested by the three methods we observed that 44/56 seropositive children had a negative LST result. While 25 out of 37 LST positive children were seronegative. A detailed description of the performance of these three methods in the group of 623 children is given in Table 1. The mean age in those with asymptomatic infection was 10.0 yr (SD: 2.9). Analysis by age group revealed a positive association between asymptomatic infection and age, children between 10--15 yr being the group with a higher asymptomatic infection rate (18.7%; p = 0.005). This finding was common to all test employed. Page 8 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 8 A strong association was also found with regard to gender, with infection in boys being higher than in girls (17.2% vs 8.1%; p = 0.001), differences in asymptomatic infection rate by age group and gender is provided in Table 2. The highest prevalence of asymptomatic infection was found in the selected villages from Bura (27.9%) and the lowest in those from Agita (3.6%). A detailed description of the results obtained by the three methods employed by gender, age and location is given in Table 3. DISCUSSION The present work reveals the presence of asymptomatic Leishmania infection among 4- 15 yr old children from the districts of Libo Kemkem and Fogera, in the new VL focus of Amhara State, Northwestern Ethiopia. The observed overall asymptomatic infection rate was 12.8% (82/639); determined by the combination of serological methods, which detected 57/639 seropositive individuals (8.9%), and LST, detecting 37/623 (5.9%) positive individuals. As proposed initially the combination of serology and LST allowed a wider detection of asymptomatic infection. The discordances observed between serology and LST were expected. Both LST and serology have been used to assess exposure to Leishmania, irrespective of disease presentation, and are frequently used in epidemiological studies in Leishmania endemic areas.9,25,26 Nevertheless, comparison of LST positivity and seroprevalence rates is complicated due to the different type of immune response detected by each test. LST measures a delayed type hipersensitivity reaction to Leishmania and relies on an in vivo cellular immune response to Leishmania antigens, while seropositivity is the result of a significant level of Leishmania- specific antibodies in the peripheral blood, which is based on a humoral immune response. The two differentiated groups of LST-positive/seronegative and LST-negative/seropositive children observed in our study are in agreement with the lack of association between LST and serology. Page 9 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 9 LST positivity appears later after infection and seems to be a sign of protective immunity against VL, while seropositivity is considered a marker of more recent infection and has been related to disease progression.27,28 However, a recent sero-epidemiologic study in Bihar (India) observed low disease conversion rate in asymptomatic DAT positive individuals. 29 Different studies in VL endemic areas have shown that LST detects a higher Leishmania infection rate in asymptomatic individuals than serological approaches. 8,11,26,30,31,32 In contrast our study shows that the infection rate obtained with serology is higher than that obtained with LST, 8.9% vs 5.9% using DAT and rK39-ICT and 7.6% vs 5.9% using DAT alone. Given that VL has recently been reported in our study area this finding can be associated to the longer time needed for the development of a LST positive response compared to sero- conversion. If we consider that LST positive conversion is the result of a repeated exposure to natural infection this would also explain why LST positivity is higher in the older age group. We have observed a high discordance between DAT and rK39-ICT in our work (Table 1). Eight individuals with a positive rK39-ICT result were negative by DAT, while 54 DAT positive individuals presented a negative rK39-ICT result; and only 4 individuals presented a positive result by both serological methods. Although Ritmeijer and others reported a lower sensitivity of rK39-ICT in Sudan, a meta-analysis on the performance of DAT and rK39-ICT for active VL diagnosis concluded that both tests have a similar level of sensitivity.33,34 Additionally a recent study in Libo Kemkem evaluating the performance of DAT and two different rK39-ICT brands indicated that either approach is suitable for VL diagnosis in this area of Ethiopia.35 However our study population is asymptomatic and higher positivity rates have been reported for DAT vs rK39-ICT when these methods are used to assess asymptomatic infection in other VL endemic areas.7 Given that performance of a serologic test can depend on the stage of the disease/infection, the lower performance of rK39-ICT can be explained by its ability to detect antibody response against only a single antigen (rK39), while DAT relies on Page 10 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 10 the detection of antibodies against a wide range of Leishmania antigens (the whole freeze-dried promastigote).36 Another explanation can be based on the nature of the tests. As proposed by Ter Horst and others, antibodies detected by rK39-ICT could be less able to react in a rapid reaction than in the overnight incubation used for DAT.37 Although DAT has shown better performance to detect asymptomatic infection in our study population, the presence of 8 individuals with a positive rK39-ICT result but negative for DAT merits attention. A possible explanation for this could be the different volume of blood tested by each method. While in our study rK39-ICT was performed on one drop of blood, DAT was performed on a 5 mm disk punched out from a spot of two drops of blood on a filter paper, which can be considered a lower amount of blood. Additionally, it was observed by Zijlstra and others that an rK39-based test (though in ELISA format) could detect asymptomatic infection earlier than DAT.38 The increase of asymptomatic infection rate with age was consistent with an endemic focus of VL, with a marked increase for the age group of 5--9 yr onwards. In addition, the presence of asymptomatic infection in individuals aged less than 5 yr is also consistent with the presence of active transmission, in spite of the low VL incidence situation reached after the outbreak.6 The present study indicates the appropriateness of combining serology (particularly DAT) and LST to obtain a consistent picture of the asymptomatic infection rate in a VL endemic area. This work also indicates that after the 2004--2005 VL outbreak active transmission is still happening in the villages studied, and also that L. donovani transmission can potentially be established in Ethiopian highlands (1800--2000 meters above sea level) which are commonly considered free of VL. Acknowledgments Page 11 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 11 We would like to thank: the study participants for volunteering, the data collectors for the field work, the AHRI/ALERT and the Fundación Española para la Cooperación Internacional, Salud y Política Social for logistic and technical support, the Amhara State Regional Laboratory for allowing us to use their laboratory facility and for creating conducive environment during the field work. We would also like to thank Dr. Jorge Alvar (WHO/CDS/NTD/IDM) and the American Journal of Tropical Medicine and Hygiene for their permit to adapt the figures published on Alvar and others [Am. J. Trop. Med. Hyg., 77(2), 2007, pp. 275–282] to obtain figures 1 and 2 in this manuscript. Financial support We also gratefully acknowledge the financial support by the UBS-Optimus Foundation (Switzerland), through the project Visceral leishmaniasis and malnutrition in Amhara State, Ethiopia, and the Spanish Ministry of Science and Innovation and the Instituto de Salud Carlos III through the Network of Tropical Diseases Research (RICET RD06/0021/0009 and RD06/0021/0000). Authors´ addresses Endalamaw Gadisa, Armauer Hansen Research Institute, POB 1005, Jimma Road, ALERT Compound, Addis Ababa, Ethiopia, Telephone: 251-113211375, Fax: 251-113211563, E-mail: endalamawgadisa@yahoo.com. Estefanía Custodio, Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain, Telephone: 34-918222282, Fax: 34-913877756, E-mail: ecustodio@isciii.es. Carmen Cañavate, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220, Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: ccanave@isciii.es. Luis Sordo, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain, Telephone: 34-918222699, Fax: 34- Page 12 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 12 913877815, E-mail: lsordo@isciii.es. Zelalem Abebe, Amhara Regional State Research Laboratory, POB 531, Bahir Dar, Ethiopia, E-mail: gebriyehailu@gmail.com. Javier Nieto, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220, Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: fjnieto@isciii.es. Carmen Chicharro, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220, Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: cchichar@isciii.es. Abraham Aseffa, Armauer Hansen Research Institute, POB 1005, Jimma Road, ALERT Compound, Addis Ababa, Ethiopia, Telephone: 251-113211375, Fax: 251-113211563, E-mail: aseffaa@gmail.com. Lawrence Yamuah, Armauer Hansen Research Institute, POB 1005, Jimma Road, ALERT Compound, Addis Ababa, Ethiopia, Telephone: 251-911608706, E-mail: yamuahlk@ahrialert.org. Howard Engers, Armauer Hansen Research Institute, POB 1005, Jimma Road, ALERT Compound, Addis Ababa, Ethiopia, Telephone: 251-113211375, Fax: 251-113211563, E-mail: engersh@ahrialert.org. Javier Moreno, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220, Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: javier.moreno@isciii.es. Israel Cruz, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220, Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: cruzi@isciii.es. REFERENCES 1. Desjeux P, 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27: 305--318. Page 13 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 13 2. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Bolaert M, 2007. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?. Nat Rev Microbiol 5: 873--882. 3. Yamey G, Torreele E, 2002. The world´s most neglected diseases. BMJ 325: 176--177. 4. Dujardin JC, 2006. Risk factors in the spread of leishmaniases: towards integrated monitoring?. Trends Parasitol 22: 4--6. 5. Berman JD, 1997. Human leishmaniasis: clinical, diagnostic and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24: 684--703. 6. Herrero M, Orfanos G, Argaw D, Muguleta A, Aparicio P, Parreño F, Bernal O, Rubens D, Pedraza J, Lima MA, Flevaud L, Palma PP, Bashaye S, Alvar J, Bern C, 2009. Natural history of a visceral leishmaniasis outbreak in Highland Ethiopia. Am J Trop Med Hyg 81: 373--377. 7. Topno RK, Das VNR, Ranjan A, Pandey K, Singh D, Kumar N, Siddiqui NA, Singh VP, Kesari S, Kumar N, Bimal S, Kumar AJ, Meena C, Kumar R, Das P, 2010. Asymptomatic infection with visceral leishmaniasis in a diseases-endemic area in Bihar, India. Am J Trop Med Hyg 83: 502--506. 8. Costa CHN, Stewart JM, Gomes RBB, Garcez LM, Ramos PKS, Bozza M, Satoskar A, Dissanayake S, Santos RS, Silva MRB, Shaw JJ, David JR, Maguire JH, 2002. Asymptomatic human carriers of Leishmania chagasi. Am J Trop Med Hyg 66: 334-- 337. 9. Schenkel K, Rijal S, Koirala S, Koirala S, Vanlerberghe V, Van der Stuyft P, Gramiccia M, Boelaert M, 2006. Visceral leishmaniasis in southeastern Nepal: A cross-sectional survey on Leishmania donovani infection and its risk factors. Trop Med Int Health 11: 1792--1799. Page 14 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 14 10. Sundar S, Maurya R, Singh RK, Bharti K, Chakravarty J, Parekh A, Rai M, Kumar K, Murray HW, 2006. Rapid, noninvasive diagnosis of visceral leishmaniasis in India: Comparison of two immunochromatographic strip tests for detection of anti-K39 antibody. J Clin Microbiol 44: 251--253. 11. Riera C, Fisa R, López-Chejade P, Serra T, Girona E, Jiménez MT, Muncunill J, Sedeño M, Mascaró M, Udina M, Gállego M, Carrió J, Forteza A, Portús M, 2008. Asymptomatic infection by Leishmania infantum in blood donors from the Balearic Islands (Spain). Transfusion 48: 1383--1389. 12. Romero HD, Silva LA, Silva-Vergara ML, Rodrigues V, Costa RT, Fernandes Guimarães S, Alecrim W, Moraes-Souza H, Prata A, 2009. Comparative study of serologic tests for the diagnosis of asymptomatic visceral leishmaniasis in an endemic area. Am J Trop Med Hyg 81:27--33. 13. Zijlstra EE, El-Hassan AM, Ismael A, Ghalib HW, 1994. Endemic kala-azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 51: 826--836. 14. Khalil EA, Ayed NB, Musa AM, Ibrahim ME, Mukhtar MM, Zijlstra EE, Elhassan IM, Smith PG, Kieny PM, Ghalib HW, Zicker F, Modabber F, Elhassan AM, 2005. Dichotomy of protective cellular immune responses to human visceral leishmaniasis. Clin Exp Immunol 140: 349--353. 15. Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, Kassa A, Orfanos G, Parreño F, Babaniyi O, Gudeta N, Cañavate C, Bern C, 2007. Kala-Azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic asessment. Am J Trop Med Hyg 77: 275--282. 16. Gidwani K, Rai M, Chakravarty J, Bolaert M, Sundar S, 2009. Evaluation of leishmanin skin test in Indian visceral leishmaniasis. Am J Trop Med Hyg 80: 566--567. Page 15 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 15 17. De Gouvêa Viana L, De Assis TSM, Orsini M, da Silva AR, De Souza GF, Caligiorne R, Da Silva ACL, Peruhype-Magalhaes V, Vieira Marciano AP, Martins-Filho OA, Rabello A, 2008. Combined diagnostic methods identify a remarkable proportion of asymptomatic Leishmania (Leishmania) chagasi carriers who present modulated cytokine profiles. Trans R Soc Trop Med Hyg 102: 548--555. 18. Biglino A, Bolla C, Concialdi E, Trisciuoglio A, Romano A, Ferroglio E, 2010. Asymptomatic Leishmania infantum infection in an area of northwestern Italy (Piedmont Region) where such infections are traditionally nonendemic. J Clin Microbiol 48: 131--136. 19. Barao SC, De Fonseca Camargo-Neves VL, Resende MR, Da Silva LJ, 2007. Human asymptomatic infection in visceral leishmaniasis: a seroprevalence study in an urban area of low endemicity. Preliminary results. Am J Trop Med Hyg 77: 1051--1053. 20. Alvar J, Aparicio P, Aseffa A, Den Boer M, Cañavate C, Dedet JP, Gradoni L, Ter Horst R, López-Vélez R, Moreno J, 2008. The relationship between leishmaniasis and AIDS: the second 10 Years. Clin Microbiol Rev 21: 334--359. 21. Burki T, 2009. East African countries struggle with visceral leishmaniasis. Lancet 374: 371--372. 22. Alvar J, Cañavate C, Gutiérrez-Solar B, Jiménez M, Laguna F, López-Vélez R, Molina R, Moreno J, 1997. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 10: 298--312. 23. Elnaiem DA, Connor SJ, Thomson MC, Hassan MM, Hassan HK, Aboud MA, Ashford RW, 1998. Environmental determinants of the distribution of Phlebotomus orientalis in Sudan. Ann Trop Med Parasitol 92: 877--887. Page 16 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 16 24. Gebre-Michael T, Balkew M, Alamirew T, Gudeta N, Reta M, 2007. Preliminary entomological observations in a highland area of Amhara region, northern Ethiopia, with epidemic visceral leishmaniasis. Ann Trop Med Parasitol 101: 367--370. 25. El-Safi SH, Bucheton B, Kheir MM, Musa HA, El-Obaid M, Hammad A, Dessein A, 2002. Epidemiologyof visceral leishmaniasis in Atbara River area, eastern Sudan: the outbreak of Barbar el Fugara village (1996-1997). Microbes Infect 4: 1439--47. 26. Hailu A, Gramiccia M, Kager PA, 2009. Visceral leishmaniasis in Aba Roba, south- western Ethiopia: prevalence and incidence of active and subclinical infections. Ann Trop Med Parasitol 103: 659--70 27. Mahmoodi M, Khamesipour A, Dowlati Y, Rafati S, Momeni A, Emamjomeh M, Hejazi H, Modabber F, 2003. Immune response measured in human volunteers vaccinated with autoclaved Leishmania major vaccine mixed with low dose of BCG. Clin Exp Immunol 134: 303--308. 28. Sinha PK, Bimal S, Pandey K, Singh SK, Ranjan A, Kumar N, Lal CS, Barman SB, Verma RB, Jeyakumar A, Das P, Bhattacharya M, Sur D, Bhattacharya SK, 2008. A community-based, comparative evaluation of direct agglutination and rK39 strip tests in the early detection of subclinical Leishmania donovani infection. Ann Trop Med Parasitol 102: 119--125. 29. Gidwani K, Kumar R, Rai M, Sundar S, 2009. Longitudinal seroepidemiologic study of visceral leishmaniasis in hyperendemic regions of Bihar, India. Am J Trop Med Hyg 80: 345--346. 30. Manson-Bahr PEC, 1961. Immunity in kala-azar. Trans R Soc Trop Med Hyg 55: 550-- 555. Page 17 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 17 31. Evans TG, Teixeira MJ, McAuliffe IT, Vasconcelos I, Vasconcelos AW, Sousa AA, Lima JW, Pearson RD, 1992. Epidemiology of visceral leishmaniasis in Northeast Brazil. J Infect Dis 166: 1124--1132. 32. Riera C, Fisa R, Udina M, Gállego M, Portús M, 2004. Detection of Leishmania infantum cryptic infection in asymptomatic blood donors living in an endemic area (Eivissa, Balearic Islands, Spain) by different diagnostic methods. Trans R Soc Trop Med Hyg 98: 102--110. 33. Ritmeijer K, Melaku Y, Mueller M, Kipngetich S, O'keeffe C, Davidson RN, 2006. Evaluation of a new recombinant K39 rapid diagnostic test for Sudanese visceral leishmaniasis. Am J Trop Med Hyg 74: 76--80. 34. Chappuis F, Rijal S, Soto A, Menten J, Boelaert M, 2006. A meta-analysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis. BMJ 333: 723. 35. Cañavate C, Herrero M, Nieto J, Cruz I, Chicharro C, Aparicio P, Mulugeta A, Argaw D, Blackstock AJ, Alvar J, Bern C, 2011. Evaluation of two rK39 dipstick tests, direct agglutination test, and indirect fluorescent antibody test for diagnosis of visceral leishmaniasis in a new epidemic site in highland Ethiopia. Am J Trop Med Hyg 84: 102- -106. 36. Boelaert M, Rijal S, Regmi S, Singh R, Karki B, Jacquet D, Chappuis F, Campino L, Desjeux P, Le Ray D, Koirala S, Van der Stuyft P, 2004. A comparative study of the effectiveness of diagnostic tests for visceral leishmaniasis. Am J Trop Med Hyg 70: 72-- 77. 37. Ter Horst R, Tefera T, Assefa G, Ebrahim AZ, Davidson RN, Ritmeijer K, 2009. Field Page 18 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 18 evaluation of rK39 test and direct agglutination test for diagnosis of visceral leishmaniasis in a population with high prevalence of human immunodeficiency virus in Ethiopia. Am J Trop Med Hyg 80: 929--934. 38. Zijlstra EE, Daifalla NS, Kager PA, Khalil EA, El-Hassan AM, Reed SG, Ghalib HW, 1998. rK39 enzyme-linked immunosorbent assay for diagnosis of Leishmania donovani infection. Clin Diag Lab Immunol 5: 717--720. Page 19 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 19 Figure 1: Location of the study area Figure 2: Location of the sub-districts on which the study was performed (grey background) Page 20 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 20 Table 1: Detailed description of the performance of rK39-ICT, DAT and LST in the group of 623 children rK39-ICT DAT LST n/N (%) Negative Negative Negative 542/623 (87.0) Negative Negative Positive 25/623 (4.0%) Negative Positive Negative 37/623 (6.0%) Positive Negative Negative 5/623 (0.8%) Positive Positive Negative 2/623 (0.3%) Positive Negative Positive 3/623 (0.5%) Negative Positive Positive 7/623 (1.1%) Positive Positive Positive 2/623 (0.3%) Page 21 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 21 Table 2: Rate of asymptomatic infection by gender and age (N = number of children tested by variable group; n = number of infected children per variable group; % = percentage of infected children by variable group) Rate of asymptomatic infection Age group (yr) Boys [n/N (%)] Girls [n/N (%)] Both sexes [n/N (%)] < 5 1/34 (2.9) 2/44 (4.5) 3/78 (3.8) 5--9 21/147 (14.3) 11/163 (6.7) 32/310 (10.3) 10--15 35/150 (23.3) 12/101 (11.8) 47/251(18.7) Total 57/331 (17.2) 25/308 (8.1) 82/639 (12.8) Page 22 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 22 Table 3: Asymptomatic infection rates detected by the three different tests and their combination displayed by gender, age and location (N = number of children tested per variable group; n = number of positive children by each test per variable group; % = percentage of positive children by each test per variable group; *Figures for LST are related to a 623 children population) TESTS VARIABLES rK39-ICT n (%) DAT n (%) LST* n (%) Seropositive n (%) Infected n (%) WHOLE POPULATION (N = 639) 13 (2.0) 49 (7.7) 37 (5.9) 57 (8.9) 82 (12.8) GENDER Boys (N = 331) 9 (2.7) 33 (9.9) 27 (8.3) 40 (12.1) 57 (17.2) Girls (N = 308) 4 (1.3) 16 (5.2) 10 (3.3) 17 (5.5) 25 (8.1) Age group (yr) < 5 (N = 78) 1 (1.3) 3 (3.8) 1 (1.3) 3 (3.8) 3 (3.8) 5--9 (N = 310) 5 (1.6) 23 (7.4) 8 (2.6) 26 (8.4) 32 (10.3) 10--15 (N = 251) 7 (2.8) 23 (9.1) 28 (11.4) 28 (11.1) 47 (18.7) SUBDISTRICT Agita (N = 139) 1 (0.7) 5 (3.6) 0 (0.0) 5 (3.6) 5 (3.6) Bura (N = 147) 5 (3.4) 22 (14.9) 24 (16.4) 24 (16.3) 41 (27.9) Dibasifatra (N = 140) 6 (4.3) 4 (2.8) 6 (4.4) 9 (6.4) 13 (9.3) Rib Gebriel (N = 144) 1 (0.7) 13 (9.0) 7 (4.9) 14 (9.7) 18 (12.5) Yifag (N = 69) 0 (0.0) 5 (7.2) 0 (0) 5 (7.2) 5 (7.2) Page 23 of 23 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review ETHIOPIA UGANDA KENYA SUDAN SOMALIA Blue Nile W h it e N il e Humera Metema Libo Lake Tana Belessa 300 km ERITREA DJIBOUTI FOGERA DISTRICT Mender Mariam Micheldebr Asta Mariam Martadios Bilb Wuha Libo Giorgis Ameno Ajmeda Bir Kute Deleta Tehara Mante Woger Birra Abo Estifanos Shemo Godgua Dit AGITA Tara Gedam Addis Zemen Angot BURA Shina Bandiko Ginaze Yekog Ketema YIFAG Tibeka Washa TirsAgo Kirgna Kab Tezeba Gendewa RIB RIVER LAKE TANA Tsion Shena K id is th an a Wagefera Shega Nabga Sink Addis Beta Christian RIB GEBRIEL Kokit Woraj Eribenk Amedber Mintura Chelma DimHagereselam Tir Michael Kuarabo Wiji Bebecks Abakiros M eneguzer Zeng Wotemb LIBO DISTRICT LAKE TANA DIBASIFATRAWoreta Figure 1 Figure 2 Page 24 of 23American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review Low prevalence of Leishmania infection in post-epidemic areas of Libo Kemkem, Ethiopia Journal: American Journal of Tropical Medicine & Hygiene Manuscript ID: Draft Manuscript Type: Short Report Date Submitted by the Author: n/a Complete List of Authors: Sordo, Luis; Instituto de Salud Carlos III, Centro Nacional de Epidemiología. CIBER en Epidemiología y Salud Pública Gadisa, Endalamaw; Armauer Hansen Research Institute, ALERT Compound Custodio, Estefanía; Instituto de Salud Carlos III, Centro Nacional de Medicina Tropical Cruz, Israel; Instituto de Salud Carlos III, Centro Nacional de Microbiología, Servicio de Parasitología Simón, Fernando; Instituto de Salud Carlos III, Centro Nacional de Epidemiología. CIBER en Epidemiología y Salud Pública Abebe, Zelalem; Amhara Regional State Research Laboratory, Amhara Regional State Research Laboratory Moreno, Javier; Instituto de Salud Carlos III, Centro Nacional de Microbiología, Servicio de Parasitología Aseffa, Abraham; Armauer Hansen Research Institute, ALERT Compound Tsegaye, Hailu; Armauer Hansen Research Institute, ALERT Compound Nieto, Javier; Instituto de Salud Carlos III, Centro Nacional de Microbiología, Servicio de Parasitología Chicharro, Carmen; Instituto de Salud Carlos III, Centro Nacional de Microbiología, Servicio de Parasitología Cañavate, Carmen; Instituto de Salud Carlos III, Centro Nacional de Microbiología, Servicio de Parasitología Key Words: Leishmaniasis, Emerging Diseases, Epidemiology, Infectious Diseases, Protozoan Infections, Parasitology American Journal of Tropical Medicine & Hygiene For Peer Review Page 1 of 12 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 1 LRH: SORDO ET AL. RRH: PREVALENCE OF LEISHMANIA INFECTION IN LIBO KEMKEM Low prevalence of Leishmania infection in post-epidemic areas of Libo Kemkem, Ethiopia Luis Sordo, Endalamaw Gadisa, Estefanía Custodio, Israel Cruz, Fernando Simón, Zelalem Abebe, Javier Moreno, Abraham Aseffa, Hailu Tsegaye, Javier Nieto, Carmen Chicharro, Carmen Cañavate* Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP); Armauer Hansen Research Institute, Addis Ababa, Ethiopia; Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain; WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain; Amhara Regional State Laboratory, Bahir Dar, Ethiopia *Corresponding author: Carmen Cañavate, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km 2, 28220 Majadahonda, Madrid, Spain. Telephone: +34 918223623, Fax: +34 915097034, E-mail: ccanave@isciii.es ABSTRACT In Libo Kemkem (a district of the Amhara region, Ethiopia), no cases of kala-azar had ever been reported until 2005, when an outbreak occurred. Over one third of those affected were children under 15 years of age. The aim of the present study was to determine the Page 2 of 12American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 2 prevalence of Leishmania infection in children aged 4--15 years. A cross-sectional survey was conducted in 2009. Sampling was performed in a multi-staged cluster survey. A total of 386 children were included in the study. The overall prevalence of Leishmania infection (DAT- and/or rK39-ICT- and/or LST-positive subjects) in this population was then estimated. Only one case of active disease was encountered. The overall prevalence of infection was 1.02% (95% CI: 0--4.54), being higher among boys and in children older than 12 years. The results suggest that the conditions responsible for the outbreak no longer reign. However, active surveillance remains necessary. Page 3 of 12 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 3 East Africa has suffered a marked increase in the number of cases of visceral leishmaniasis (VL) or kala-azar over the last two decades, probably due to a combination of demographic and climatic changes.1,2 The areas traditionally regarded as endemic for VL in Ethiopia lie in the north-west (bordering Sudan) and south of the country.3,4 Libo Kemkem district (wereda) is located in the highlands of the Amhara region in northwestern Ethiopia at an altitude of 1800--2000 m. No cases of kala-azar had ever been declared in this area until 2005. Earlier, in 2004, the Amhara Regional Health Bureau reported a 5-fold increase in crude mortality rates in the Libo Kemkem district, attributing this to an outbreak of drug-resistant malaria. However, in May 2005 an outbreak of kala-azar was determined to be the culprit.5 The epidemiological background - a few cases over a 1-year period followed by an explosive increase - was consistent with the rapid emergence of the disease in a population with little pre-existing immunity.5 By December 2007, 2543 patients with kala-azar had been treated by Médecins sans Frontières.6 More than one third were children under 15 years of age, for whom a fatality rate of over 3% was reported.6 The rapid spread of the disease between 2004 to 2007 suggested that transmission would not be easy to control.5 Before the Libo Kemkem outbreak there was no epidemiological surveillance system for leishmaniasis in Ethiopia, making it difficult to determine whether the epidemic between 2004--2007 was an outbreak due to a recent introduction of the parasite or, as suggested by Herrero et al.,6 the parasite was endemic to the area but in low numbers. The aim of the present study was to determine the prevalence of Leishmania infection in children aged 4--15 years from Libo Kemkem, four years after the outbreak. A cross-sectional survey was conducted between May and July 2009, as part of the project Visceral Leishmaniasis and Malnutrition in Amhara State, Ethiopia, funded by the UBS-Optimus Foundation. Sampling was undertaken as part of a multi-staged cluster survey. Page 4 of 12American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 4 The Primary sampling units were randomly selected sub-districts (kebeles) of Libo Kemkem that, according to the records of Médecins sans Frontières-Greece held at the Addis Zemen Health Centre, had reported at least one case of VL during the 2004--2007 epidemic. These were selected taking into account their size according to a recent census.7 The secondary sampling units were randomly selected villages (gotts) in each of the selected sub-districts. The tertiary sampling units were households randomly selected from an updated census for each village. All children between 4 and 15 years of age residing in these household were tested. A total of 386 children were included in the study. Ethical clearance was obtained from the review boards of the Instituto de Salud Carlos III, the Armauer Hansen Research Institute, and the Ethiopian National Ethical Review Committee. Parents/guardians gave written, informed consent prior to the enrolment of their children in the study. For children over 11 years of age, verbal assent was obtained in addition to the consent of their parents or guardians. Each participant was clinically assessed by health professionals for any complaint of fever lasting longer than two weeks, weight loss, and the presence of splenomegaly and lymphadenopathy, in order to determine the presence of any active infection. All children were tested using the leishmanin skin test (LST), the rK39-immunochromatographic test (ICT) (Kalazar Detect® Rapid Test, InBios International Inc., Seattle, WA), and the direct agglutination test (DAT) (ITMA-DAT/VL, Institute of Tropical Medicine, Antwerp, Belgium). Sociodemographic data were recorded using pre-tested questionnaires. The rK39- ICT test was performed immediately after blood sampling, according to the manufacturer’s instructions. The DAT test was performed on blood-impregnated filter paper using freeze- dried antigen. The screening method followed the manufacturer’s protocol; titres of ≥1:3200 were deemed positive. Leishmanin skin testing was performed using L. major antigen (Leishmanin batch 123-2; Pasteur Institute, Tehran, Iran), as previously described.8,9 Page 5 of 12 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 5 The overall prevalence of Leishmania infection (DAT- and/or rK39-ICT- and/or LST- positive) in the population was then calculated. Prevalence rates were expressed in percentages with 95% confidence intervals (95% CI). Stata v.10.1 software was used to perform all statistical analyses. Data were weighted according to selection probabilities and analysed using the Stata v.10.1 complex samples procedures, which takes into account sample clustering. One hundred and ninety nine of the 386 children (50.9%) were girls. The mean age of the participants was 8.9 years (SD 3.03); 44.76% of the children were under 8 years of age, and 33.08% between 8 and 11 years. Only one case of active VL was found, which returned positive results for both rK39- ICT and DAT. Nine children were DAT-positive only; four of them had suffered kala-azar previously. However, five children that previously had VL showed negative results for both rK39-ICT and DAT. None of the children returned a positive LST result. The overall prevalence of infection (DAT and/or rk39 positive) was 1.02% (95% CI: 0- -4.54). The prevalence among boys was higher (1.78%; 95% CI: 0--7.98, vs. 0.3%; 95% CI: 0--1.31 in girls). The greatest prevalence was recorded in children older than 12 years (2.56%; 95% CI: 0--10.54), followed by those between 8 and 11 (0.82%; 95% CI: 0--3.53); the under 8 years subgroup showed the lowest prevalence (0.49%; 95% CI: 0--2.59). However, these prevalence values were not statistically different to one another (Table 1). To the best of our knowledge, these are the first Leishmania infection prevalence data for Libo Kemkem since the 2004--2007 epidemic. Higher prevalence rates for similar populations have, however, been reported for other regions of Ethiopia.10,11 The permanence of Leishmanin skin test reactivity is thought to depend on latent infection and the continuous exposure to biting, Leishmania-carrying sand flies;10,17 a decrease of these vectors might explain the absence of positive results in the present study Page 6 of 12American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 6 population. This would also explain the reduction in the number of VL cases reported in this area.6 Some authors report a natural conversion rate from positive to negative of 14.8% to 9.3% in other settings in Ethiopia.12 Nevertheless, the absence of positive results is noteworthy, especially in comparison with previous results in the same age range (23.6%),5 though in the latter study rapid assessment via convenience sampling was undertaken. The present study also used DAT and rK39 ICT detection of infection, methods that reveal the presence of anti-Leishmania antibodies appearing early after infection. The combined use of these methods, which has performed well in VL diagnosis in this area,13 yielded just 1% prevalence. It should be remembered that this result is only for 4--15 year-old and not for the whole population. However, although the prevalence of Leishmania infection increases with age,10 the presence of only one active case in the study population and the low prevalence even among the older children, suggests a low prevalence for the general population. The present results appear to indicate that the conditions that provoked the kala-azar epidemic in the study region no longer reign. The parasite may have been introduced by migrant agricultural labourers who, returning to their villages after completing seasonal work on the border of Sudan,14 acted as a reservoir of the causal parasite – a hypothesis put forward at the time of the epidemic. However, the available evidence indicates that the affected population was not made up simply of migrant workers, and there is no evidence that any such migration has ever ceased. This suggests that, as well as an increase in the size of the human reservoir, some change in the vector population must have occurred. Libo Kemkem lies at an altitude of 1800--2000 m, beyond that at which phlebotomes are normally found. However, as described by other authors,15 changes in the temperature or relative humidity could have encouraged their increased presence. In other scenarios such changes have been attributed to global warming.15,16 It should be noted, however, that the response to the Page 7 of 12 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 7 outbreak included the establishment of centres where specific treatment could be received. The clearance of patients’ infections would have led to a reduction in the seroprevalence rate. Until 2004, no case of leishmaniasis had ever been reported in Libo Kemkem. The very low prevalence in the study population may suggest that the district may be experiencing a pre-epidemic status similar to that seen prior to the outbreak. Efforts to identify areas of high prevalence and then focus control efforts in these places might be wiser than blanket control of the entire district. However, the doubts surrounding the reasons for the outbreak means vigilance with respect to the impact of possible climate changes should be considered; such changes might encourage new outbreaks. Acknowledgements The authors thank the study participants for volunteering, the data collectors for their field work efforts, the AHRI/ALERT and the Fundación Española para la Cooperación Internacional, Salud y Política Social for logistic and technical support, and the Amhara State Regional Laboratory for allowing us to use their laboratory facilities and for creating a conducive environment during field work. Financial support We also gratefully acknowledge the financial support of the UBS-Optimus Foundation (Switzerland). Support was also provided by provided via the Visceral Leishmaniasis and Malnutrition in Amhara State, Ethiopia project, and the Instituto de Salud Carlos III via the Tropical Diseases Research Network (RICET RD06/0021/0009 and RD06/0021/0000). Authors´ addresses Luis Sordo, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain, CIBER en Epidemiología y Salud Pública (CIBERESP), Telephone: 34-918222699, Fax: 34-913877815, E-mail: lsordo@isciii.es. Endalamaw Gadisa, Armauer Hansen Research Institute, POB 1005, Jimma Road, ALERT Compound, Page 8 of 12American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 8 Addis Ababa, Ethiopia, Telephone: 251-113211375, Fax: 251-113211563, E-mail: endalamawgadisa@yahoo.com. Estefanía Custodio, Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid, Spain, Telephone: 34- 918222282, Fax: 34-913877756, E-mail: ecustodio@isciii.es. Israel Cruz, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220 Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: cruzi@isciii.es. Fernando Simón, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain, CIBER en Epidemiología y Salud Pública (CIBERESP), Telephone: 34-918222033, Fax: 34-913877815, E-mail: fsimon@isciii.es. Zelalem Abebe, Amhara Regional State Research Laboratory, POB 531, Bahir Dar, Ethiopia, E-mail: gebriyehailu@gmail.com. Javier Moreno, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220 Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: javier.moreno@isciii.es. Abraham Aseffa, Armauer Hansen Research Institute, POB 1005, Jimma Road, ALERT Compound, Addis Ababa, Ethiopia, Telephone: 251-113211375, Fax: 251-113211563, E- mail: aseffaa@gmail.com. Hailu Tsegaye, Armauer Hansen Research Institute, POB 1005, Jimma Road, ALERT Compound, Addis Ababa, Ethiopia, Telephone: 251-113211375, Fax: 251-113211563, E-mail: tsegsha2@gmail.com. Javier Nieto, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220 Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: fjnieto@isciii.es. Carmen Chicharro, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220 Page 9 of 12 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 9 Majadahonda, Madrid, Spain, Telephone: 34-918223623, Fax: 34-915097034, E-mail: cchichar@isciii.es. Carmen Cañavate, WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km2, 28220 Majadahonda, Madrid, Spain, Telephone: 34- 918223623, Fax: 34-915097034, E-mail: ccanave@isciii.es. REFERENCES 1. Marlet MV, Sang DK, Ritmeijer K, Muga RO, Onsongo J, Davidson RN, 2003. Emergence or re-emergence of visceral leishmaniasis in areas of Somalia, north- eastern Kenya, and south-eastern Ethiopia in 2000-01. Trans R Soc Trop Med Hyg 97:515-8. 2. Seaman J, Mercer AJ, Sondorp E, 1996. The epidemic of visceral leishmaniasis in western Upper Nile, southern Sudan: course and impact from 1984 to 1994. Int J Epidemiol 25:862-71. 3. Fuller GK, Lemma A, Haile T, Atwood CL, 1976. Kala-azar in Ethiopia I: Leishmanin skin test in Setit Humera, a kala-azar endemic area in northwestern Ethopia. Ann Trop Med Parasitol 70:147-63. 4. Fuller GK, Lemma A, Haile T, Gemeda N, 1979. Kala-azar in Ethiopia: survey of south-west Ethiopia. The Leishmanin skin test and epidemiological studies. Ann Trop Med Parasitol 73:417-30. 5. Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, Kassa A, Orfanos G, Parreño F, Babaniyi O, Gudeta N, Cañavate C, Bern C 2007. Kala-azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic assessment. Am J Trop Med Hyg 77:275-82. 6. Herrero M, Orfanos G, Argaw D, Mulugeta A, Aparicio P, Parreño F, Bernal O, Rubens D, Pedraza J, Lima MA, Flevaud L, Palma PP, Bashaye S, Alvar J, Bern C, Page 10 of 12American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 http://www.ncbi.nlm.nih.gov/pubmed/534446 http://www.ncbi.nlm.nih.gov/pubmed/534446 For Peer Review 10 2009. Natural history of a visceral leishmaniasis outbreak in highland Ethiopia. Am J Trop Med Hyg 81:373-7. 7. Summary and Statistical Report of the 2007 Population and Housing Census. Population Size by Age and Sex. Federal Democratic Republic of Ethiopia. Population Census Commission. United Nations Population Fund (UNFPA). Addis Ababa. 2008. 8. Zijlstra EE, el-Hassan AM, Ismael A, Ghalib HW, 1994. Endemic kala-azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 51:826-36. 9. Fakhar M, Motazedian MH, Hatam GR, Asgari Q, Kalantari M, Mohebali M, 2008. Asymptomatic human carriers of Leishmania infantum: possible reservoirs for Mediterranean visceral leishmaniasis in southern Iran, Ann Trop Med Parasitol 102: 577-83. 10. Hailu A, Gramiccia M, Kager PA, 2009. Visceral leishmaniasis in Aba-Roba, south- western Ethiopia: prevalence and incidence of active and subclinical infections. Ann Trop Med Parasitol 103:659-70. 11. Hailu A, Berhe N, Yeneneh H, 1996. Visceral leishmaniasis in Gambela, western Ethiopia. Ethiop Med J 34:33-42. 12. Ali A, Ashford RW, 1993. Visceral leishmaniasis in Ethiopia. II. Annual leishmanin transformation in a population. Is positive leishmanin reaction a life-long phenomenon? Ann Trop Med Parasitol 87:163-7. 13. Cañavate C, Herrero M, Nieto J, Cruz I, Chicharro C, Aparicio P, Argaw D, Blackstock AJ, Alvar J, Bern C, 2008. Evaluation of Two rK39 Dipstick Tests, Direct Agglutination Test, and Indirect Fluorescent Antibody Test for Diagnosis of Visceral Page 11 of 12 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 11 Leishmaniasis in a New Epidemic Site in Highland Ethiopia. Am J Trop Med Hyg 84: 102-106 14. Bashaye S, Nombela N, Argaw D, Mulugeta A, Herrero M, Nieto J, Chicharro C, Cañavate C, Aparicio P, Vélez ID, Alvar J, Bern C, 2009. Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. Am J Trop Med Hyg 81:34-9. 15. Maroli M, Rossi L, Baldelli R, Capelli G, Ferroglio E, Genchi C, Gramiccia M, Mortarino M, Pietrobelli M, Gradoni L, 2008. The northward spread of leishmaniasis in Italy: evidence from retrospective and ongoing studies on the canine reservoir and phlebotomine vectors. Trop Med Int Health 13:256-64. 16. Gálvez R, Descalzo MA, Miró G, Jiménez MI, Martín O, Dos Santos-Brandao F, Guerrero I, Cubero E, Molina R, 2010. Seasonal trends and spatial relations between environmental/meteorological factors and leishmaniosis sand fly vector abundances in Central Spain. Acta Trop 115:95-102. 17. Weigle KA, Valderrama L, Arias AL, Santrich C, Saravia NG, 1991. Leishmanin skin test standardization and evaluation of safety, dose, storage, longevity of reaction and sensitization. Am J Trop Med Hyg 44:260-71. Page 12 of 12American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For Peer Review 12 Table 1: Prevalence of Leishmania infection Sample Prevalence of Leishmania infection (rK39- and/or DAT-positive) Na %b Na %b 95% CIb OR (95% CI) p Overall 386 10 1.02 0-4.54 Sex Girls 199 50.9 2 0.3 0-1.31 Ref. Boys 187 49.1 8 1.78 0-7.98 5.94 (0.38-93.84) 0.291c Age <8 years 169 44.76 2 0.49 0-2.59 Ref. 8-11 years 132 33.08 3 0.82 0-3.53 1.675 (0.1-29.12) >11 years 85 22.16 5 2.56 0-10.54 5.228 (0.43-63.4) 0.39c aUnweighted bWeighted cFisher Page 13 of 12 American Journal of Tropical Medicine & Hygiene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 PLoS Neglected Tropical Diseases Factors Associated with Leishmania Asymptomatic Infection in Highland Northern Ethiopia --Manuscript Draft-- Manuscript Number: Full Title: Factors Associated with Leishmania Asymptomatic Infection in Highland Northern Ethiopia Short Title: Leishmania Asymptomatic Infection Correlates Article Type: Research Article Keywords: Visceral leishmaniasis, Ethiopia, Leishmania asymptomatic infection, Amhara state Corresponding Author: Estefania Custodio, Ph.D. Instituto de Salud Carlos III Madrid, SPAIN Corresponding Author Secondary Information: Corresponding Author's Institution: Instituto de Salud Carlos III Corresponding Author's Secondary Institution: First Author: Estefania Custodio, Ph.D. First Author Secondary Information: All Authors: Estefania Custodio, Ph.D. Endalamaw Gadisa Luis Sordo Israel Cruz Javier Moreno Javier Nieto Carmen Chicharro Abraham Aseffa Zelalem Abebe Haiulu Tsegaye Carmen Cañavate All Authors Secondary Information: Abstract: Background: In northern Ethiopia the prevalence of visceral leishmaniasis is steadily rising posing an increasing public health concern. In order to develop effective control strategies on the transmission of the disease it is important to generate knowledge on the epidemiological determinants of the infection. Methodology/Principal Findings: We conducted a cross-sectional survey using a multi staged stratified cluster sampling on high incidence sub-districts of Amhara state, Ethiopia. The survey included a socio-demographic, health and dietary questionnaire and anthropometric measurements. We performed RK39-ICT and DAT serological tests in order to detect anti-Leishmania antibodies and carried out Leishmanin Skin Test (LST) using L. major antigen. Logistic regression models were used. Of the 605 children surveyed 61 children were positive to infection (10.1%). The individual variables that showed a positive association with infection were increasing age, being male and sleeping outside [odds ratios (95% CI): 1.12 (1.02, 1.23), 2.06 (1.10, 3.82) and 2.10 (1.15, 3.85) respectively] and in relation to the household: increasing number of people living in the house, past history of VL in the family, living in a straw roofed Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation house and if the family owned sheep [OR (95% CI): 1.26 (1.06, 1.50), 2.66 (1.44, 4.92), 2.35 (1.24, 4.45) and 3.25 (1.52, 6.98) respectively]. The presence of dogs in the house [OR (95% CI): 0.44 (0.23, 0.85] showed an inverse association. Conclusions/Significance: Behavioural patterns like sleeping outside are determinant in the transmission of the infection in this area. Protective measures should be implemented against these identified risk activities. Results also suggest a geographical clustering of the infection and a transmission within the homestead, human to human, but more studies are needed on the behaviour of the vector to clarify possible entomological interventions related to housing conditions. The role of domestic animals in transmission needs to be studied further before giving any recommendation. Suggested Reviewers: Jorge Alvar World Health Organization alvarj@who.int Philippe Desjeux One World Health Organization pdesjeux@oneworldhealth.org Caryn Bern Center for Disease Control and Prevention, Atlanta cxb9@cdc.gov Lashitew Gedamu Calgary University lgedamu@ucalgary.ca Opposed Reviewers: Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation To the PLOS Neglected Tropical Diseases Editors: It is my pleasure to send you enclosed a paper entitled “Factors associated with Leishmania asymptomatic infection in highland northern Ethiopia” for consideration as an article in the PLOS Neglected Tropical Diseases. Visceral leishmaniasis prevalence is steadily rising in northern Ethiopia, posing a public health challenge in the region. In two highland (1800-2000 mts above sea level) provinces of Amhara state an outbreak occurred in 2005 that has ever since transited into an endemic focus with sustained transmission. The role of asymptomatic infected individuals in the control and prevention of the disease is important, as they can and act as reservoirs for new infection or become ill if immunosuppression occurs. Factors associated with infection can differ from disease correlates, and may also change in relation to the vector behaviour in the local environment. We find important to disseminate the results of our study not only towards the reinforcement of the program control developed by the Amhara Regional Health Bureau, but also in order to contribute to the scientific community with the epidemiological determinants of Leishmania asymptomatic infection in an environment that, to the best of our knowledge, has not been described before. We certainly consider the PLOS Neglected Tropical Diseases the best vehicle for it. All authors have contributed to the conception and design of the work, the acquisition of data, or the analysis of the data in a manner substantial enough to take public responsibility for it. All authors believe the manuscript represents valid work and have reviewed the final version of the manuscript and approve it for publication. None of the authors had any conflict of interest. Finally, the material included in the manuscript is our original work and has not been published before, nor has been submitted for publication elsewhere. Looking forward to hearing from you, Yours sincerely, Estefanía Custodio Cover Letter 1 Title: Factors associated with Leishmania asymptomatic infection in 1 highland northern Ethiopia 2 3 Short Title: Leishmania asymptomatic infection correlates 4 5 Authors: Estefanía Custodio1, Endalamaw Gadisa2, Luis Sordo3,4 , Israel Cruz5, 6 Javier Moreno5, Javier Nieto5, Carmen Chicharro5, Abraham Aseffa2, Zelalem 7 Abebe6, Hailu Tsegaye2 and Carmen Cañavate5 8 1. Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, 9 Madrid, Spain 10 2. Armauer Hansen Research Institute, Addis Ababa, Ethiopia 11 3. Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, 12 Spain 13 4. CIBER en Epidemiología y Salud Pública (CIBERESP), Spain 14 5. WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, 15 Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, 16 Spain 17 6. Amhara Regional State Laboratory, Bahir Dar, Ethiopia 18 19 AsymInfecNorthEthio_ECustodio Click here to download Manuscript: AsymInfRiskFact_ECustodio.doc http://www.editorialmanager.com/pntd/download.aspx?id=57824&guid=c8183611-61f3-47b9-ae2a-ed092d8c0149&scheme=1 2 ABSTRACT 20 21 Background: In northern Ethiopia the prevalence of visceral leishmaniasis is 22 steadily rising posing an increasing public health concern. In order to develop 23 effective control strategies on the transmission of the disease it is important to 24 generate knowledge on the epidemiological determinants of the infection. 25 Methodology/Principal Findings: We conducted a cross-sectional survey 26 using a multi staged stratified cluster sampling on high incidence sub-districts of 27 Amhara state, Ethiopia. The survey included a socio-demographic, health and 28 dietary questionnaire and anthropometric measurements. We performed RK39-29 ICT and DAT serological tests in order to detect anti-Leishmania antibodies and 30 carried out Leishmanin Skin Test (LST) using L. major antigen. Logistic 31 regression models were used. Of the 605 children surveyed 61 children were 32 positive to infection (10.1%). The individual variables that showed a positive 33 association with infection were increasing age, being male and sleeping outside 34 [odds ratios (95% CI): 1.12 (1.02, 1.23), 2.06 (1.10, 3.82) and 2.10 (1.15, 3.85) 35 respectively] and in relation to the household: increasing number of people 36 living in the house, past history of VL in the family, living in a straw roofed house 37 and if the family owned sheep [OR (95% CI): 1.26 (1.06, 1.50), 2.66 (1.44, 38 4.92), 2.35 (1.24, 4.45) and 3.25 (1.52, 6.98) respectively]. The presence of 39 dogs in the house [OR (95% CI): 0.44 (0.23, 0.85] showed an inverse 40 association. 41 Conclusions/Significance: Behavioural patterns like sleeping outside and 42 herding the cattle are determinant in the transmission of the infection in this 43 area. Protective measures should be implemented against these identified risk 44 activities. Results also suggest a geographical clustering of the infection and a 45 transmission within the homestead, human to human, but more studies are 46 needed on the behaviour of the vector to clarify possible entomological 47 interventions related to housing conditions. The role of domestic animals in 48 transmission needs to be studied further before giving any recommendation. 49 50 51 52 53 54 3 AUTHORS SUMMARY: 55 56 Visceral leishmaniasis is a vector borne disease that can be fatal if left 57 untreated. Its prevalence is steadily rising in northern Ethiopia posing a public 58 health challenge in the region. We conducted a study on the factors associated 59 to asymptomatic infection in Amhara state, where little is known about 60 Leishmania transmission. Sleeping outside and herding the cattle were 61 identified as risk activities, so the implementation of preventive measures 62 towards them is recommended. Our results also suggested a transmission 63 within the homestead, human to human, but more entomological studies are 64 needed in order to clarify the vector’s behaviour in the area. Individuals living in 65 houses that owned sheep were more likely to be infected and those living in 66 houses with dogs seemed to be protected. This last result differs from the direct 67 association between dog’s ownership and the clinical form of the disease found 68 in a case control study carried out in this same area. These conflicting results 69 add up to the debate found in the literature regarding the role of domestic 70 animals in the transmission of Leishmania in different regions of the world. No 71 specific recommendation should be given until the exact role of the domestic 72 animal in the transmission cycle is clearly understood. 73 74 4 INTRODUCTION 75 76 Visceral leishmaniasis (VL) or kala-azar is a neglected vector-borne 77 parasitic disease that manifests with irregular bouts of fever, substantial weight 78 loss, weakness, hepatosplenomegaly and pancytopenia, and that is fatal if left 79 untreated [1]. It has an estimated annual incidence of 500 000 clinical cases 80 with 50 000 associated deaths and 2 357 000 disability-adjusted life years lost. 81 It is mainly concentrated in few major foci and the East African L.donovani focus 82 is the second largest, with the highest incidence in Ethiopia and the Sudan [2]. 83 84 VL is caused by protozoan parasites of the Leishmania donovani species 85 complex transmitted to human and animal hosts by the bite of phlebotomine 86 sand flies. It has already been determined that large numbers of individuals in 87 endemic areas are infected with the parasite but do not develop any signs or 88 symptoms of the disease. The reported ratio of asymptomatic infections to VL 89 clinical cases varies widely from 4:1 in Kenya [3] to 50:1 in Spain [4]. This 90 variation is presumed to reflect differences in parasite virulence and host 91 population characteristics, and may also depend on the study designs and on 92 the tests used to define asymptomatic infection [1]. 93 94 The methods more widely used in order to assess asymptomatic 95 infection in the field are a) serological assays that detect anti-Leishmania 96 antibodies based either on the direct agglutination test (DAT) or the rK39-97 immunochromatographic test (rK39-ICT) and b) Leishmanin Skin Test (LST) 98 that measures cell-mediated immunity against Leishmania [5,6]. 99 100 5 It is important to generate knowledge on the factors associated with 101 asymptomatic infection for the optimal design and implementation of prevention 102 and control strategies of VL, as asymptomatically infected individuals can 103 harbor latent parasite and act as reservoirs for new infection or become ill if 104 immunosuppression occurs [7,8]. 105 106 In northern Ethiopia, the prevalence of VL is steadily rising posing an 107 increasing public health concern. The region has recently experienced 108 epidemics in previously unaffected areas [2]. In 2005, a kala-azar outbreak 109 occurred in the district of Libo Kemkem in Amhara regional state, described by 110 Alvar et al [9] . A case control study was conducted there in 2007 to evaluate 111 the risk factors associated with the clinical form of the disease [10]. However, 112 and as it has been previously stated, the epidemiological determinants of 113 clinical VL and sub clinical infection are not necessarily the same [11]. 114 115 Thus, the aim of this study is to describe the determinants of 116 asymptomatic leishmanial infection among the villages with high incidence of VL 117 in Libo Kemkem and Fogera in order to provide further information that will help 118 the Amhara regional health authorities to develop effective strategies to control 119 the transmission of the disease. 120 121 122 MATERIAL AND METHODS 123 124 Study area and population 125 6 126 The study was conducted during May-July 2009 in the districts (weredas) 127 of Libo Kemkem and Fogera (Amhara State, Ethiopia). These are adjacent 128 districts most affected by the outbreak of VL that occurred in 2005 [9]. In 2009, 129 the population numbered 198 374 and 226 595 in Libo Kemkem and Fogera, 130 respectively. The economic status of the population is uniformly low. The 131 districts are located in a black cotton clay soil flat plain (1800-2000 meters 132 a.s.l.). Human activities related to intensive cultivation of teff, maize, beans, 133 oilseeds, rice and cotton, have reduced the natural vegetation to scattered 134 clumps of acacia trees. Most of the area is flooded during the rainy season 135 (July-September) and dried up during the dry season (November-May), 136 resulting in deep cracks in the soil surface, which could turn into breeding sites 137 for the putative vector Phlebotomus orientalis [12,13]. 138 139 Study design 140 141 Population sampling was carried out by a multi-staged cluster survey. 142 Primary sampling units were sub-districts (kebeles) with high incidence of VL 143 according to the 2008 register of the Addis Zemen VL Treatment Center: Bura, 144 Yifag Akababi and Agita from Libo Kemkem and Sifatra and Rib Gebriel from 145 Fogera. Secondary sampling units were randomly selected villages (gotts) in 146 each of the selected sub-districts. Third sampling units were randomly selected 147 households in each of the villages. All children with reported age between 4 and 148 15 years living in the household at the time of the survey, and who had not 149 previously suffered VL, were included in the study, as long as they were 150 7 asymptomatic (absence of VL signs and symptoms: fever for > 2 weeks, in 151 combination with either enlargement of spleen and/or liver, or weight loss). 152 153 Data collection 154 155 A blood sample was taken from the selected children in order to detect 156 anti-Leishmania antibodies. The rK39-ICT (Kalazar Detect® Rapid Test, InBios 157 International Inc., USA) was performed following the manufacturers’ 158 instructions. DAT with freeze-dried antigen (ITMA-DAT/VL, Prince Leopold 159 Institute of Tropical Medicine, Antwerp, Belgium) was carried out on blood-160 impregnated filter paper following the screening procedure according to the 161 manufacturer’s instructions. Titers ≥1:3200 were considered positive. 162 163 Leishmanin Skin Test was carried out using L. major antigen (Leishmanin 164 batch 123-2; Pasteur Institute, Iran). The test was read 48 hours later by the 165 ballpoint pen method. An induration with an average of two perpendiculars ≥5 166 mm was considered as positive. 167 168 All children were measured and weighted according to standard WHO 169 procedures [14]. Wasting was defined as Body Mass Index (BMI) for age <-2 Z 170 scores, and stunting as Height for Age < -2 Z scores according to the 2006 171 WHO Growth Standards for children < 5 years and to the 2007 WHO Growth 172 Reference for children > 5 years respectively [15]. 173 174 8 Care providers of the children were interviewed by trained health 175 professionals using standardized questionnaires that included questions on 176 demographics, household characteristics, child health, dietary habits and VL 177 prevention behaviours. The questionnaires used were pretested and translated 178 into Amharic, the local language. 179 180 181 182 9 Data Analysis 183 184 The primary outcome of interest was Leishmania asymptomatic infection 185 defined as a positive result either in rK39-ICT, DAT or LST. The serological 186 tests and the LST measure different types of the immune response and are thus 187 not likely to produce the same results. Therefore we created two secondary 188 outcomes: a) Seropositive: positive to rK39-ICT and/or DAT irrespective of the 189 LST result and b) LST Positive: positive to LST irrespective of the serostatus. 190 191 We attempted to estimate the factors associated with asymptomatic 192 infection and then to isolate the factors associated with the seropositivity and 193 LST positivity by making independent analysis for the three outcomes described 194 above. 195 196 Multivariate analysis to examine the socio-economic, behavioural, 197 nutritional and dietary predictors of asymptomatic infection indicators were 198 carried out using logistic regression models adjusting for potential confounding 199 variables that were significant in the univariate analysis (carried out using 200 bivariate logistic regression). Variables included in the model as numeric have 201 the p value for trend and the Odds Ratios (OR) and Confidence Intervals (CI) 202 described in the text and the OR (CI) for categories detailed in the tables. 203 Multivariate models included all variables for which adjusted estimates are 204 presented. 205 206 A p value less than 0.05 was considered statistically significant. 207 10 208 Data analysis was performed using AnthroPlus v1.02 (WHO, Geneva, 209 Switzerland), and SPSS version 18.0 (SPSS Inc., Chicago, Illinois, USA). 210 211 212 Ethical considerations 213 214 The study was approved by the ethical advisory boards of Instituto de 215 Salud Carlos III in Spain and the Armauer Hansen Research Institute and the 216 Ethiopian National Ethical Review Committee in Ethiopia. Support letters were 217 obtained from the Amhara Regional State and the district Health Bureaus. All 218 parents/guardians gave written informed consent prior to the enrolment of their 219 children in the study. Assent was also obtained from children > 11 years of age. 220 221 222 RESULTS 223 224 All the gotts selected were rural. Around 90% of the households were 225 headed by males and in more than 99% of the households the occupation of the 226 head was related to farming activities (farmer, labourer, cotton worker, etc.). 227 Ninety eight per cent of the households reported owning land. The mean size of 228 land owned by a household was 1.6 Ha (range 0.01 – 8 Ha). Only 6.4% of the 229 households owned more than 3 Ha. More than 95% of the households reported 230 owning some type of domestic animals, mainly cows (89.8%), chicken (59.2%) 231 11 and sheep (23.6%). Thirty two per cent of the households had radio and only 232 0.3% had access to electricity. 233 234 A total of 605 children were surveyed (51.1% boys and 48.9% girls) with 235 a mean age of 8.8 (3.2 SD). Sixty one children (10.1%) had asymptomatic 236 infection, of which 38 (6.3%) were seropositive and 33 (5.6%) LST positive. 237 There was a wide variation in the number of asymptomatically infected children 238 according to gotts, with the gotts in Bura kebele presenting the highest 239 frequencies (see Table 1). 240 241 Among the children, 245 (40.7%) were found to be stunted and 130 242 (21.6%) were wasted. Only 4.6% had consumed animal food source products 243 the day before the interview. 244 245 Unadjusted analysis of infection 246 247 Table 2 and Table 3 summarize the individual and household 248 characteristics that showed significant association in the univariate analysis with 249 any of the outcomes previously described. 250 251 The individual factors that showed a positive association with 252 asymptomatic infection were: increasing age, male sex, being wasted, sleeping 253 outside and herding cattle; and the household characteristics: increasing 254 number of people in the household, having a past history of VL in the family, 255 living in a household straw roofed house and owning sheep three years before 256 12 and at the time of the survey. On the other hand, owning dogs three years 257 before and at the time of the survey showed an inverse association with 258 asymptomatic infection. 259 260 Sleeping outside at any time of the day was the only individual variable 261 that showed a direct association with seropositivity besides increasing age and 262 being male. In terms of household characteristics, those that presented a 263 positive association were increasing number of people in the household, living 264 in a family with past history of VL and if the household owned sheep three years 265 before and at the time of the survey. In the opposite direction, the number of 266 cattle owned by the family at the time of the survey showed an inverse 267 association. 268 269 The individual variables that showed a direct association with LST 270 positivity were the same as those for asymptomatic infection, except for 271 wasting. The use of bed net by a child, although not statistically significant 272 suggested an inverse relationship (p=0.07). In terms of household conditions, 273 increasing number of people in the family and straw roof showed a positive 274 association with a positive LST, and the increasing number of cattle owned by 275 the family and the presence of dogs three years before and at the time of the 276 survey showed a negative one. 277 278 Adjusted analysis 279 280 13 Table 4 shows the results of the multivariate logistic regression for 281 asymptomatic infection, seropositivity and LST positivity. 282 283 The individual variables that kept in the model positively associated with 284 asymptomatic infection after adjustment were: increasing age, being male and 285 sleeping out at any time [OR (95% CI): 1.12 (1.02, 1.23), 2.06 (1.10, 3.82) and 286 2.10 (1.15, 3.85) respectively]. In terms of household characteristics: increasing 287 number of people living in the household, past history of VL in the family, living 288 in a straw roofed house and if the family owned sheep three years before and at 289 the time of the survey [OR (95% CI): 1.26 (1.06, 1.50), 2.66 (1.44, 4.92), 2.35 290 (1.24, 4.45) and 3.25 (1.52, 6.98) respectively]. And with an inverse and 291 significant association, the presence of dogs in the house three years before 292 and at the time of the survey [OR (95% CI): 0.44 (0.23, 0.85]. 293 294 Being male and increasing age were the only two individual variables that 295 kept direct and significant association with seropositivity after adjustment [OR 296 (95% CI): 2.69 (1.26, 5.77) and 1.12 (1.00, 1.25) respectively]. Living in a family 297 with past history of VL and if the household owned sheep three years before 298 and at the time of the survey also showed a positive association [OR (95% CI): 299 3.66 (1.84, 7.28) and 2.43 (1.02, 5.78) respectively]. And in the opposite 300 direction, the number of cattle remained inversely associated with seropositivity 301 [OR (95% CI): 0.85 (0.74, 0.99)]. 302 303 The individual factors positively and significantly associated with LST 304 were sleeping outside and herding the cattle [OR (95% CI): 3.14 (1.33, 7.39) 305 14 and 3.80 (1.04, 13.89) respectively]; and in terms of household conditions the 306 only one positively associated with it was increasing number of people in the 307 household [OR (95% CI): 1.29 (1.03, 1.63)] and in the opposite direction the 308 presence of dogs three years before and at the time of the survey [OR (95% 309 CI): 0.29 (0.13, 0.67)] 310 311 No significant association was found between any of the outcomes 312 analysed for asymptomatic infection and stunting; sex, age or education of the 313 head of the household; household electricity, radio or land owning, floor and 314 walls construction material and condition; number of meals or consumption of 315 animal source food products; number of bed nets in the household, house 316 spraying status; the existence of an animal shed, animal dung or a termite 317 mound near the house; and number of chicken owned by the household. 318 319 320 DISCUSSION 321 322 The prevalence of asymptomatic infection found in our study sample as 323 well as the factors associated with it differed depending on the outcome variable 324 used for the analysis. 325 326 The discordances observed between serology and LST have been 327 discussed elsewhere [16-18]. The last LST screening in the area was 328 conducted in 2005 as part of the outbreak assessment, and the prevalence of 329 LST positivity was considerably higher than in our study, 34% for men and 26% 330 for women [9]. This discrepancy is consistent with the fact that the cited study 331 15 was conducted in a different population age range (0.7 to 60 years old) and at 332 the peak of the epidemic in an area that has since transited into an endemic 333 focus with a sustained low transmission, as described recently by Herrero et al 334 (Herrero, 2009). The strong variation in the prevalence of asymptomatic 335 infection among clusters highly endemic for VL is congruent with the spatial 336 clustering observed in other studies of asymptomatic infection [19,20] and of 337 clinical VL cases [21,22]. Notably, Bura, the kebele where the 2005 outbreak 338 started, has maintained the highest prevalence ever since [9]. 339 340 The increase of asymptomatic infection rate with age observed in our 341 study area is consistent with an endemic focus of VL, in spite of the low VL 342 incidence situation reached after the outbreak [23]. The permanence of LST 343 reactivity is thought to be a consequence of cumulative past exposure, thus 344 prevalence typically rises with age [24]. The positive association between 345 Leishmania infection and older age, as well as with male sex, has also been 346 related to activities like cattle herding or sleeping outside, that imply an 347 increased potential exposure to the sand fly vector, and that are culturally 348 specific to male adolescents and male adults [19,25]. Our results would support 349 this hypothesis, as cattle herding and sleeping outside were also identified in 350 our study population as risk factors for asymptomatic infection and had 351 previously been identified as risk factors for VL in South Ethiopia [26] and North 352 Ethiopia (in our study area) as well [10]. The greater exposure to sand flies 353 when herding livestock can be associated with the moving near and/or far away 354 from homesteads at dusk and down when the sand flies are active [27] and also 355 with an increased proximity to acacia trees. Resting under acacia trees has 356 16 been identified as a risk factor for VL in our study area [10]. Among our 357 surveyed population, 82% of the herder children reported resting under acacia 358 trees while herding. Acacia trees are thought to be diurnal resting sites for 359 Phlebotomus orientalis, the described potential vector of the disease in the 360 area [12,13]. 361 362 Poor nutritional status has been associated with a higher risk of 363 developing visceral leishmaniasis in other studies [28-31] although to the best of 364 our knowledge, an association with asymptomatic infection has not yet been 365 described. In our findings wasting appeared as a risk factor for asymptomatic 366 infection but only in the unadjusted analysis, so we can not conclude there is 367 association between nutritional status, measured by anthropometry, and 368 asymptomatic infection in our study population. 369 370 The use of bed net appeared to be protective but did not reach a 371 significant association with any of the infection outcomes used in the analyses, 372 which is in agreement with other studies in relation to asymptomatic infection 373 [18,32]. The protective effect of bed net use against visceral leishmaniasis 374 remains unclear, with variable results depending on the setting and study 375 [11,33]. The lack of protective effect found in our study could be associated with 376 the net condition, nature of utilization and impregnation status, conditions that 377 were not assessed in our survey. 378 379 A larger family size may appear as a risk factor for asymptomatic 380 infection based on attraction of sand flies by greater biomass, as it was 381 17 described for the risk of VL in this same area [10]. Other studies have also 382 shown a positive association with seropositivity and previous VL cases contact 383 [3,20,34], supporting the hypothesis of transmission within the homestead, 384 human to human. This hypothesis has been further strengthened by the failure 385 of other studies to relate the household clustering of infection and disease to 386 characteristics of the house or the surroundings [3,28]. It is important to 387 highlight that the increased likelihood of asymptomatic infection among children 388 with a past VL case in the family remained significant only for seropositivity and 389 not for LST positivity, in concordance with findings of Bern et al in Bangladesh 390 [32]. In one study conducted in Kenya, it was found that the association 391 between LST positivity and previous VL cases in the family was significant only 392 for women and young children, suggesting that women were exposed in and 393 around the house and males, in addition, exposed elsewhere [35]. We tested 394 this hypothesis by conducting separate analyses for male and female 395 populations but results did not vary (data not shown). 396 397 Living in a straw roofed house versus an iron thatched one was the only 398 house characteristic associated with asymptomatic infection. It could be related 399 to socioeconomic status or to the potential of straw roofs to provide resting 400 places for the sand fly that would increase its survival and abundance. Mud-401 type houses have been identified as risk factors for VL or asymptomatic 402 infection before and have been associated with better living conditions or with 403 the vector preference for mud crack walls for breeding and resting 404 [22,26,36,37]. However, regarding P. orientalis more studies are needed, as the 405 18 few extant studies in the literature point out to an exophagic behaviour of the 406 vector, ill suited with this hypothesis [38]. 407 408 In relation to domestic animals the associations found are conflicting. 409 Owning sheep increases the risk of asymptomatic infection but the presence of 410 dogs and an increasing number of cattle owned by the family minimizes it. 411 412 The positive correlation of disease and the presence of sheep has 413 already been described [19,22], and has been explained by the greater biomass 414 and the accumulation of animal dung that may be attractive to the sand flies, 415 drawing the vectors into closer association with humans. 416 417 The role of cattle in the transmission of the disease remains unclear and 418 has been subject of a recent review [11]. Several studies coincide with our 419 results in the protective effect of cattle towards VL [21,22,39] and the possible 420 explanation given is that the number of cattle acts as wealth indicator and/or 421 that there is a potential vector blood preference for these domestic animals that 422 will exert a zooprophylactic effect. P. orientalis blood preference for cattle 423 versus humans has already been shown in other areas of Ethiopia, supporting 424 this idea [38]. Interestingly, this protective effect was seen in relation to 425 seropositivity, but not to LST positivity, in concordance with findings in 426 Bangladesh by Bern et al [32], where increased cattle density was found to be 427 protective against VL and DAT positivity but was identified as a risk factor for 428 LST positivity. 429 430 19 The negative correlation between the presence of dogs and 431 asymptomatic infection is in contrast to the finding of owning dogs as a risk 432 factor for VL in this same area [10]. The protective role of dogs against 433 asymptomatic infection had been described in Brazil [34], but other studies have 434 not found any significant association with either asymptomatic infection or VL 435 [20,22]. 436 437 Our study had a number of limitations. One of them is the cross sectional 438 nature of the study, which limits the making of causal inferences between the 439 analysed factors and the infection. Another limitation is that the study subjects 440 were not tested for HIV, which may alter the results. However, adult HIV 441 incidence in Amhara state was 0.32 in 2007 [40] (theoretically lower for children 442 below 15 years old) so although it is possible that a subset of our cases may 443 have had HIV it would be a small number and we are confident it would not alter 444 our general conclusions. 445 446 CONCLUSIONS 447 448 Selected behavioural and housing factors were associated with higher rates 449 of asymptomatic infection and these can be the focus of interventions. 450 Protective measures should be implemented against the identified risk activities 451 such as herding cattle or sleeping outside. More studies are needed on the 452 behaviour of the P.orientalis in the area in order to clarify possible 453 entomological interventions related to housing conditions. Given the contrasting 454 results found in our study and in the literature, and the complex nature of the 455 20 relationship between disease transmission and domestic animals, the exact role 456 of domestic animals in transmission needs to be studied further before any 457 intervention is recommend in this regard. 458 459 Acknowledgements 460 461 The authors thank the study participants for volunteering, the data 462 collectors for the field work efforts, the AHRI/ALERT and the Fundación 463 Española para la Cooperación Internacional, Salud y Política Social for logistic 464 and technical support, and the Amhara Regional State Regional Laboratory for 465 allowing us to use their laboratory facilities and for creating a conducive 466 environment during field work. 467 21 Table 1: Leishmania asymptomatic infection, seropositivity and LST positivity prevalence by gott in Amhara state, Ethiopia. Asymptomatic infection* Seropositivity* LST positivity*± Name of cluster/Gott Kebele Wereda N n % n % N n % FOGERIE MENDER Agita Libo Kemkem 32 0 0 0 0 32 0 0 FUAT FUAT Agita Libo Kemkem 34 2 5.9 2 5.9 31 0 0 GILGEL TERARA Agita Libo Kemkem 32 0 0 0 0 29 0 0 MELAGUD Agita Libo Kemkem 35 0 0 0 0 35 0 0 MEDROGE Bura Libo Kemkem 46 11 23.9 10 21.7 46 7 15.2 MEHAL-EGZIABHERAB Bura Libo Kemkem 31 11 35.5 1 3.2 31 10 32.3 MENTA-WARKA Bura Libo Kemkem 29 8 27.6 6 20.7 29 2 6.9 QUARA Bura Libo Kemkem 34 5 14.7 1 2.9 33 4 12.1 GULTOCH D. Sifatra Fogera 34 4 11.8 3 8.8 34 2 5.9 LAHADA D. Sifatra Fogera 35 2 5.7 1 2.9 34 1 2.9 RAS DIBA D. Sifatra Fogera 34 0 0 0 0 33 0 0 SIFATRA D. Sifatra Fogera 30 4 13.3 3 10 27 1 3.7 AMAGA Rib Gebriel Fogera 30 3 10 3 10 30 0 0 DENBOCH Rib Gebriel Fogera 35 2 5.7 1 2.9 35 1 2.9 GICHOCH Rib Gebriel Fogera 35 2 5.7 2 5.7 32 2 6.2 GOMBEL Rib Gebriel Fogera 32 4 12.5 2 6.3 32 3 9.4 ANSHA Yifag Akababi Libo Kemkem 33 2 6.1 2 6.1 33 0 0 BATA Yifag Akababi Libo Kemkem 34 1 2.9 1 2.9 33 0 0 Total 605 61 10.1 38 6.3 589 33 5.6 *As defined in the Materials and Methods section LST=Leishmanin Skin Test ± A total of 589 children had the LST performed. 22 Table 2: Individual variables associated with Leishmania asymptomatic infection in children. Unadjusted analysis. Asymptomatic infection * Seropositivity* LST positivity*± Factor N (%) Positive Odds ratio§ Positive Odds ratio§ Positive Odds ratio§ n (%) (95% CI) n (%) (95% CI) n (%) (95% CI) Age <5 years 77 (12.7) 2 (2.6) Reference 2 (2.6) Reference 1 (1.3) Reference 5 to 9 years 295 (48.8) 21 (7.1) 2.87 (0.66, 12.53) 15 (5.1) 2.01 (0.45, 8.98) 8 (2.7) 2.16 (0.27, 17.53) 10 to 15 years 233 (38.5) 38 (16.3) 7.31 (1.72, 31.05) 21 (9.0) 3.71 (0.85, 16.22) 24 (10.6) 8.87 (1.58, 66.69) p for trend <0.0001 0.03 0.002 Sex Girl 296 (48.9) 18 (6.1) Reference 18 (6.1) Reference 10 (3.4) Reference Boy 309(51.1) 43 (13.9) 2.50 (1.40, 4.41) 43 (13.9) 2.85 (1.36, 5.98) 23 (7.6) 2.30 (1.07, 4.92) p global 0.002 0.006 0.032 Wasting¶ No 472 (78.4) 47 (10.0) Reference 29 (6.1) Reference 25 (5.4) Reference Yes 130 (21.6) 14 (10.8) 1.10 (0.58, 2.05) 9 (6.9) 1.14 (0.52, 2.46) 8 (6.2) 1.15 (0.51, 2.62) p for trend 0.05 0.11 0.14 Sleeps outside No 366 (60.6) 21 (5.7) Reference 16 (4.4) Reference 8 (2.2) Reference Yes 238 (39.4) 40 (16.8) 3.32 (1.93, 5.08) 22 (9.2) 2.23 (1.14, 4.34) 25 (10.7) 5.21 (2.31, 11.77) p global <0.0001 0.018 <0.0001 Herds the cattle No 250 (41.3) 12 (4.8) Reference 10 (4.0) Reference 3 (1.2) Reference Yes 355 (58.7) 49 (13.8) 3.17 (1.65, 6.10) 28 (7.9) 2.05 (0.98, 4.31) 30 (8.5) 7.54 (2.27, 24.91) p global 0.001 0.06 0.001 Uses bed net No 365 (60.3) 41 (11.2) Reference 21 (5.8) Reference 25 (6.9) Reference Yes 240 (39.7) 20 (8.3) 0.72 (0.41, 1.26) 17 (7.1) 1.25 (0.64, 2.42) 8 (3.4) 0.47 (0.21, 1.07) p global 0.25 0.51 0.072 Overall 605 *As defined in the Materials and Methods section LST=Leishmanin Skin Test ± Only 589 children had the LST performed. §OR obtained by logistic regression ¶Defined as Body Mass Index for Age Z score < -2 SD based on the 2006 WHO Growth Standards for children < 5 y and on the 2007 WHO Growth Reference for children > 5 y 23 Table 3: Household characteristics associated with Leishmania asymptomatic infection in children. Unadjusted analysis. Asymptomatic infection* Seropositivity* LST positivity*± Factor N (%) Positive Odds ratio§ Positive Odds ratio§ Positive Odds ratio§ n (%) (95% CI) n (%) (95% CI) n (%) (95% CI) People in the family < 5 people 201 (33.3) 13 (6.5) Reference 10 (5.0) Reference 5 (2.6) Reference 5-7 people 257 (42.6) 23 (8.9) 1.42 (0.70, 2.88) 14 (5.4) 1.10 (0.48, 17.53) 14 (5.6) 2.24 (0.79, 6.33) > 7 people 145 (24.0) 24 (16.6) 2.87 (1.41, 5.85) 14 (9.7) 2.04 (0.88, 4.73) 13 (9.0) 3.71 (1.29, 10.64) p for trend 0.003 0.05 0.03 Past history of kala azar in the family No 442 (73.2) 34 (7.7) Reference 18 (4.1) Reference 22 (5.1) Reference Yes 162 (26.8) 27 (16.7) 2.40 (1.39, 4.12) 20 (12.3) 3.32 (1.71, 6.45) 14 (7.5) 1.37 (0.65, 2.91) 0.002 <0.0001 0.4 House roof material Corrugated iron 223 (36.9) 32 (14.3) Reference 19 (8.5) Reference 18 (8.4) Reference Straw 382 (63.1) 29(7.6) 2.04 (1.19, 3.47) 19 (5.0) 1.78 (0.92, 3.44) 15 (4.0) 2.19 (1.08, 4.34) p global 0.009 0.09 0.03 Number of cattle owned by the household No cattle 62 (10.2) 7 (11.3) Reference 6 (9.7) Reference 4 (6.9) Reference Less than 10 cattle 502 (83.0) 50 (10.0) 0.87 (0.37, 2.01) 30 (6.0) 0.59 (0.24, 1.48) 27 (5.5) 0.78 (0.26, 2.33) More than 10 cattle 41 (6.8) 4 (9.8) 0.85 (0.23, 3.11) 2 (4.9) 0.48 (0.09, 2.49) 2 (4.9) 0.69 (0.12, 3.97) p for trend 0.1 0.041 <0.0001 Household owns sheep No 462 (76.4) 38 (8.2) Reference 27 (5.8) Reference 18 (4.0) Reference Yes 143 (23.6) 23 (16.1) 2.56 (1.30, 5.04) 11 (7.7) 2.38 (1.04, 5.45) 15 (10.5) 2.36 (0.98, 5.67) p global <0.0001 0.039 0.056 Household owns dogs No 273 (45.1) 35 (12.8) Reference 22 (8.1) Reference 21 (7.8) Reference Yes 332 (54.9) 26 (7.8) 0.58 (0.34, 0.98) 16 (4.8) 0.58 (0.29, 1.12) 12 (3.1) 0.46 (0.22, 0.95) p global 0.04 0.11 0.035 Overall 605 *As defined in the Materials and Methods section LST=Leishmanin Skin Test ± Only 589 children had the LST performed. §OR obtained by logistic regression 24 Table 4: Factors associated with Leishmania asymptomatic infection in children. Adjusted analysis. Asymptomatic* Seropositivity* LST positivity* infection Factor Odds ratio (95% CI) Odds ratio (95% CI) Odds ratio (95% CI) Child age <5 years Reference Reference Reference 5 to 9 years 2.61 (0.57, 12.02) 1.99 (0.43, 9.16) 2.03 (0.44, 9.44) 10 to 15 years 5.62 (1.24, 25.45) 3.57 (0.79, 16.07) 4.20 (0.89, 19.49) p for trend 0.014 0.041 0.16 Child sex Girl Reference Reference Reference Boy 2.06 (1.10, 3.82) 2.69 (1.26, 5.77) 1.34 (0.59, 3.03) p global 0.02 0.011 0.48 Child sleeps outside No Reference " Reference Yes 2.10 (1.15, 3.85) 3.14 (1.33, 7.39) p global 0.016 0.009 Child herds the cattle No Reference Yes " " 3.80 (1.04, 13.89) p global 0.044 People in the family < 5 people Reference " Reference 5-7 people 1.54 (0.72, 3.32) 1.45 (0.69, 3.05) > 7 people 3.04 (1.32, 7.00) 3.01 (1.37, 6.60) p for trend 0.009 0.029 History of past kala azar in family No Reference Reference Yes 2.66 (1.44, 4.92) 3.66 (1.84, 7.28) " p global 0.002 <0.0001 House Roof Material Corrugated iron Reference Straw 2.35 (1.24, 4.45) " " p global 0.009 Number of cattle No cattle Reference Less than 10 cattle " 0.38 (0.14, 1.04) " More than 10 cattle 0.28 (0.05, 1.57) p for trend 0.035 Household owned sheep 3 years before and at the time of the survey No Reference Reference Yes 3.25 (1.52, 6.98) 2.43 (1.02, 5.78) p global 0.002 0.046 Household owned dogs 3 years before and at the time of the survey No Reference Reference Yes 0.44 (0.23, 0.85) 0.29 (0.13, 0.67) p global 0.014 0.003 *As defined in the Materials and Methods section LST=Leishmanin Skin Test ± Only 589 children had the LST performed. §OR obtained by logistic regresssion 25 Reference List 1. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, et al. (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5 11:873-882 2. World Health Organization (2010)Control of the leishmaniases: Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22-26 March 2010. 949 Geneva, World Health Organization. WHO technical report series. 3. Schaefer KU, Kurtzhals JA, Gachihi GS, Muller AS, Kager PA (1995) A prospective sero-epidemiological study of visceral leishmaniasis in Baringo District, Rift Valley Province, Kenya. Trans R Soc Trop Med Hyg 89 5:471-475 4. Moral L, Rubio EM, Moya M (2002) A leishmanin skin test survey in the human population of l'Alacanti region (Spain): implications for the epidemiology of Leishmania infantum infection in southern Europe. Trans R Soc Trop Med Hyg 96 2:129-132 5. Khalil EA, Ayed NB, Musa AM, Ibrahim ME, Mukhtar MM, et al. (2005) Dichotomy of protective cellular immune responses to human visceral leishmaniasis. Clin Exp Immunol 140 2:349-353 6. Zijlstra EE, el-Hassan AM, Ismael A, Ghalib HW (1994) Endemic kala- azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 51 6:826-836 7. de Rossell RA, de Duran RJ, Rossell O, Rodriguez AM (1992) Is leishmaniasis ever cured? Trans R Soc Trop Med Hyg 86 3:251- 253 8. Kubar J, Marty P, Lelievre A, Quaranta JF, Staccini P, et al. (1998) Visceral leishmaniosis in HIV-positive patients: primary infection, reactivation and latent infection. Impact of the CD4+ T-lymphocyte counts. AIDS 12 16:2147-2153 9. Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, et al. (2007) Kala-azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic assessment. Am J Trop Med Hyg 77 2:275-282 10. Bashaye S, Nombela N, Argaw D, Mulugeta A, Herrero M, et al. (2009) Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. Am J Trop Med Hyg 81 1:34-39 11. Bern C, Courtenay O, Alvar J (2010) Of cattle, sand flies and men: a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination. PLoS Negl Trop Dis 4 2:e599 26 12. Elnaiem DA, Hassan HK, Ward RD (1999) Associations of Phlebotomus orientalis and other sandflies with vegetation types in the eastern Sudan focus of kala-azar. Med Vet Entomol 13 2:198-203 13. Gebre-Michael T, Balkew M, Alamirew T, Gudeta N, Reta M (2007) Preliminary entomological observations in a highland area of Amhara region, northern Ethiopia, with epidemic visceral leishmaniasis. Ann Trop Med Parasitol 101 4:367-370 14. WHO Working Group (1986) Use and interpretation of anthropometric indicators of nutritional status. Bull World Health Organ 64 6:929- 941 15. de Onis M, Garza C, Onyango AW, Martorell R (2006) WHO Child Growth Standards. Acta Paediatr Supplementum 450:1-101 16. Hailu A, Gramiccia M, Kager PA (2009) Visceral leishmaniasis in Aba- Roba, south-western Ethiopia: prevalence and incidence of active and subclinical infections. Ann Trop Med Parasitol 103 8:659-670 17. Riera C, Fisa R, Lopez-Chejade P, Serra T, Girona E, et al. (2008) Asymptomatic infection by Leishmania infantum in blood donors from the Balearic Islands (Spain). Transfusion 48 7:1383-1389 18. Schenkel K, Rijal S, Koirala S, Koirala S, Vanlerberghe V, et al. (2006) Visceral leishmaniasis in southeastern Nepal: a cross-sectional survey on Leishmania donovani infection and its risk factors. Trop Med Int Health 11 12:1792-1799 19. Singh SP, Picado A, Boelaert M, Gidwani K, Andersen EW, et al. (2010) The epidemiology of Leishmania donovani infection in high transmission foci in India. Trop Med Int Health 15 Suppl 2:12-20 20. Evans TG, Teixeira MJ, McAuliffe IT, Vasconcelos I, Vasconcelos AW, et al. (1992) Epidemiology of visceral leishmaniasis in northeast Brazil. J Infect Dis 166 5:1124-1132 21. Bern C, Hightower AW, Chowdhury R, Ali M, Amann J, et al. (2005) Risk factors for kala-azar in Bangladesh. Emerg Infect Dis 11 5:655- 662 22. Ryan JR, Mbui J, Rashid JR, Wasunna MK, Kirigi G, et al. (2006) Spatial clustering and epidemiological aspects of visceral leishmaniasis in two endemic villages, Baringo District, Kenya. Am J Trop Med Hyg 74 2:308-317 23. Herrero M, Orfanos G, Argaw D, Mulugeta A, Aparicio P, et al. (2009) Natural history of a visceral leishmaniasis outbreak in highland Ethiopia. Am J Trop Med Hyg 81 3:373-377 24. Weigle KA, Valderrama L, Arias AL, Santrich C, Saravia NG (1991) Leishmanin skin test standardization and evaluation of safety, dose, storage, longevity of reaction and sensitization. Am J Trop Med Hyg 44 3:260-271 27 25. Ali A, Ashford RW (1993) Visceral leishmaniasis in Ethiopia. I. Cross- sectional leishmanin skin test in an endemic locality. Ann Trop Med Parasitol 87 2:157-161 26. Ali A (1997) Visceral leishmaniasis in southern Ethiopia: I. Environmental and behavioral risk factors. Ethiop J Health Dev 11:131-137 27. WIJERS DJ (1963) Studies on the vector of kala-azar in Kenya. II. Epidemiological evidence. Ann Trop Med Parasitol 57:7-18 28. Badaro R, Jones TC, Lorenco R, Cerf BJ, Sampaio D, et al. (1986) A prospective study of visceral leishmaniasis in an endemic area of Brazil. J Infect Dis 154 4:639-649 29. Cerf BJ, Jones TC, Badaro R, Sampaio D, Teixeira R, et al. (1987) Malnutrition as a risk factor for severe visceral leishmaniasis. J Infect Dis 156 6:1030-1033 30. Ali A (1997) Visceral leishmaniasis in southern Ethiopia: II. Nutritional risk factors. Ethiop J Health Dev 11:139-144 31. Kolaczinski JH, Reithinger R, Worku DT, Ocheng A, Kasimiro J, et al. (2008) Risk factors of visceral leishmaniasis in East Africa: a case-control study in Pokot territory of Kenya and Uganda. Int J Epidemiol 37 2:344-352 32. Bern C, Haque R, Chowdhury R, Ali M, Kurkjian KM, et al. (2007) The epidemiology of visceral leishmaniasis and asymptomatic leishmanial infection in a highly endemic Bangladeshi village. Am J Trop Med Hyg 76 5:909-914 33. Picado A, Singh SP, Rijal S, Sundar S, Ostyn B, et al. (2010) Longlasting insecticidal nets for prevention of Leishmania donovani infection in India and Nepal: paired cluster randomised trial. BMJ 341:c6760 34. Caldas AJ, Costa JM, Silva AA, Vinhas V, Barral A (2002) Risk factors associated with asymptomatic infection by Leishmania chagasi in north-east Brazil. Trans R Soc Trop Med Hyg 96 1:21-28 35. Schaefer KU, Kurtzhals JA, Kager PA, Gachihi GS, Gramiccia M, et al. (1994) Studies on the prevalence of leishmanin skin test positivity in the Baringo District, Rift Valley, Kenya. Am J Trop Med Hyg 50 1:78-84 36. Saha S, Ramachandran R, Hutin YJ, Gupte MD (2009) Visceral leishmaniasis is preventable in a highly endemic village in West Bengal, India. Trans R Soc Trop Med Hyg 103 7:737-742 37. Ranjan A, Sur D, Singh VP, Siddique NA, Manna B, et al. (2005) Risk factors for Indian kala-azar. Am J Trop Med Hyg 73 1:74-78 38. Gebre-Michael T, Balkew M, Berhe N, Hailu A, Mekonnen Y (2010) Further studies on the phlebotomine sandflies of the kala-azar endemic lowlands of Humera-Metema (north-west Ethiopia) with 28 observations on their natural blood meal sources. Parasit Vectors 3 1:6 39. Bern C, Joshi AB, Jha SN, Das ML, Hightower A, et al. (2000) Factors associated with visceral leishmaniasis in Nepal: bed-net use is strongly protective. Am J Trop Med Hyg 63 3-4:184-188 40. Planning and Programming Department MoHFDRoE (2007)Health and health indicators. Ethiopia.     1 Effect of childhood protein energy malnutrition on the immunological status of 1 children from the new Visceral Leishmaniasis focus in Libo Kemkem (Amhara 2 State, Ethiopia) 3 Endalamaw Gadisa1, Zelalem Abebe2, Estefanía Custodio3, Tsegaye Hailu1, Luis 4 Sordo4, Javier Nieto5, Carmen Chicharro5, Abraham Aseffa1, Carmen Cañavate5, 5 Howard Engers1, Israel Cruz5 and Javier Moreno5 6 (1) Armauer Hansen Research Institute, Addis Ababa, Ethiopia; 7 (2) Amhara Regional State Laboratory, Bahir Dar, Ethiopia 8 (3) Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain; 9 (4) Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain; 10 (5) WHO Collaborating Center for Leishmaniasis, Servicio de Parasitología, Centro 11 Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain; 12 13 Abstract 14 Childhood Protein Energy Malnutrition (PEM) is a major public health problem in developing 15 countries. Epidemiologic studies documented strong association between PEM and risk of child 16 death and/or severity of infections. However, the mechanisms that govern the relationship 17 between PEM and infectious diseases are multiple and not well described. The present study 18 examined the effect of PEM on selected immunological players implicated in the infection by 19 Leishmania parasites. Our data showed significantly lower total count of white blood cells, 20 lymphocytes and T cell subpopulations (CD4+ and CD8+) in severely malnourished children. 21 PBMCs from the severely malnourished children produced significantly low or no cytokine after 22 24 hours of stimulation with PHA. Moderately malnourished children produced significantly high 23 level of PGE2 as compared to the non-malnourished children. Non-malnourished children 24 showed high level of cytokines in the serum, while no detectable levels of any of the cytokine 25 assayed were found in severely malnourished children and only IL-4 and IL-10 were detected in 26 the serum of moderately malnourished children. The DAT positive non-malnourished children 27 produced significantly high level of IFN-γ and IL-10 as compared to the moderately and severely 28 malnourished children. The detection of low levels of serum IFN-γ and relatively high levels of 29 IL-4 and IL-10 in the moderately malnourished children might indicate a Th2 bias in this group 30 2 probably associated to the high level of PGE2 production. In conclusion, severe malnutrition 31 affected not only the absolute number of the immune cells in children but also their functional 32 activity, an adverse effect that might be mediated by overproduction of biochemical factors 33 induced by malnutrition like PGE2. 34 35 INTRODUCTION 36 Childhood Protein Energy Malnutrition (PEM) is a major public health problem in developing 37 countries. In Africa it is estimated that 45% of the children suffer from malnutrition [1]. There is a 38 strong relationship between malnutrition, infection, and infant mortality. Human epidemiologic 39 studies have documented that PEM is a primary cause of immunodeficiency and a major 40 determinant of both progression and severity of infections caused by different pathogens [2-4]. 41 Children with mild and moderate malnutrition present a reduced cell mediated and humoral 42 immune function [5] which can make them more susceptible to infections. A recent meta-43 analysis showed that HIV prevalence is high in malnourished children in sub-Saharan Africa, 44 and they are at a significantly increased risk of mortality [6]. Zachariah et al, observed that 45 moderate to severe malnutrition is a risk factor associated with TB [7]. A strong association of 46 giardiasis and PEM has also been reported [8]. The specific anti-IgG response to Plasmodium 47 falciparum was found to be significantly lower in severely stunted children as compared to non 48 stunted [9]. 49 Visceral leishmaniasis (VL) or kala-azar is a (re)emerging neglected tropical disease often 50 associated with malnutrition. VL is a life-threatening infectious disease caused by protozoan of 51 the Leishmania (Leishmania) donovani species complex, causing 59,000 deaths per year. Of 52 the 500,000 annual cases, 90% occur in Bangladesh, Brazil, India, Nepal, Ethiopia and Sudan. 53 VL provokes in the patients fever, severe cachexia, hepatosplenomegaly, pancytopenia and 54 hypergammaglobulinaemia [10]. In most endemic areas children of young age are the most 55 affected and immature immune system and malnutrition were documented as predisposing 56 factors [11, 12]. A recent study confirms that percentages of VL patients with underweight 57 ranges from 21.4% in Brazil to 92.6% in Sudan [13]. PEM was also shown to be a determinant 58 factor for progression to clinical VL [14], and it is associated with more severe form of VL and a 59 major risk for poor treatment outcomes [15]. 60 3 The immunodeficiency caused by malnutrition is responsible for the high susceptibility to VL, but 61 the specific mechanism underlying the interaction between VL and malnutrition are not totally 62 understood. A protective immune response in human VL is associated with a predominant cell 63 mediated immunity and a type 1 cytokine profile [16]. Different studies demonstrated a 64 significant decrease of peripheral blood CD3+ cells, impairment in the development of effector 65 cell responses and an alteration in the balance of type 1/type 2 cytokine expression in 66 malnourished children as compared to the non-malnourished once [17, 18]. Moreover, a bias to 67 T helper 2 (Th2) type responses in malnourished infected children with decreased IFN-γ and an 68 increased IL-4 and IL-10 production was documented [19]. 69 Studies of malnutrition in animal models have reported a decrease in the percentage of CD3+ T 70 lymphocytes in the spleens of moderately and severely malnourished rats [20], and it has also 71 been shown that the T cells (CD4+ and CD8+) from malnourished mice are quiescent [20, 21]. 72 Furthermore, Anstead et al. [22] in experimental VL showed that early visceralization of L. 73 donovani in malnourished BALB/c mice is due to failure of lymph node barrier function, and may 74 be related to decreased levels of IL-10 and nitric oxide (NO) and excessive production of 75 prostaglandin E2 (PGE2), an important negative regulator of host immunity. 76 77 Understanding the impact of the immunodeficiency caused by malnutrition in a population at risk 78 for VL will help in the control effort; preventing the spread to new areas and/or mitigating the 79 problem in affected communities. Libo Kemkem (Amhara, Ethiopia) is a high land district that 80 converted to a low transmission area of VL after the outbreak detected in 2004/2005 [23, 24]. A 81 study assessing the post outbreak situation indicated that children of 3 to 15 age group 82 accounted for 30% of the cases. Moreover, 18% of the outbreak cases were malnourished [24]. 83 In order to understand the effect of nutritional status on immunity we evaluate hematological 84 parameters and levels of peripheral blood lymphocyte subsets, as well as the functional 85 capability of these cells to produce cytokine, in malnourished and non-malnourished children of 86 4 to 15 years of age living in the new outbreak zone. In addition, we have measured serum 87 levels of PGE2 in these children to assess the possible role of this factor in immunodeficiency 88 and susceptibility to Leishmania infection. 89 90 91 92 4 93 Materials and methods 94 This study was done as part of an ongoing longitudinal study on childhood malnutrition and risk 95 factors for asymptomatic VL, in the frame of the UBS-Optimus Foundation granted project 96 “Visceral leishmaniasis and malnutrition in Amhara State, Ethiopia”. 97 STUDY SUBJECTS. The study was conducted in children of age 4 to 15 years and was 98 approved by the ethical review boards of Instituto de Salud Carlos III, Armauer Hansen 99 Research Institute and the Ethiopian National Ethical Review Committee. Support letters were 100 obtained from the Amhara State and the different districts’ Health Bureau. Parents /guardians 101 gave written informed consent prior to the enrolment of their children in the study, and for 102 children above 11 years of age verbal assents were also obtained in addition to the consent of 103 their parents/guardians. 104 The study was carried out in two phases. The first phase was done during May and July 2009, 105 and included 456 children whose nutritional status, hematological parameters, and peripheral 106 blood lymphoid subset were analyzed. The second phase was done during May and June 2010, 107 enrolling 410 children, in whose nutritional, cytokine and serum PGE2 analyses were carried 108 out. Anthropometric and clinical data were documented using structured questionnaires. Trained 109 health professionals conducted the physical examination, anthropometric measurements 110 (height, weight and age), clinical assessments and biological sample collection. 111 NUTRITIONAL STATUS. All children were measured and weighted according to standard WHO 112 procedures (WHO Working Group, 1986). Malnutrition was defined according to the Body Mass 113 Index (BMI) for Age in relation to the 2006 WHO Growth Standards for children ≤ 5 years and 114 to the 2007 WHO Growth Reference for children older than 5 years respectively [25]. Global 115 malnutrition was defined as BMI for Age Z score (BAZ) < -2 SD, moderate malnutrition as BAZ < 116 -2 SD and BAZ > = -3 and severe malnutrition as BAZ < -3 SD. 117 HEMATOLOGICAL ANALYSIS. Blood samples from 394 children of the first phase were 118 collected in 4 ml Na2-EDTA tubes (SIGMA, UK) for hematological analysis. Analysis was done 119 with hematology analyzer (Abbot CELL-DYN® 1800, USA) at the Amhara Health Bureau 120 Regional Laboratory in Bahir-Dar. 121 CELL STAINING. Percentage of peripheral blood CD4+, CD8+ and CD19+ cells were 122 determined by cell staining of whole blood samples and flow cytometry analysis. One hundred 123 5 µL. of blood was incubated with anti-human anti-CD4 FITC conjugated, anti-CD8 PE conjugated 124 and anti-CD19 FITC-conjugated monoclonal antibodies (Immunotools – Germany), and red 125 blood cells were lysed using lysis buffer (BD, USA). The stained cells were fixed with 2% 126 formaldehyde and kept at 4oC. Analysis with four colors FACSCalibur (BD, USA) was done 127 within one week period of the cell staining date. Absolute number of cell subsets was 128 determined taken into consideration the percentage of the different cell subsets after gating for 129 lymphocytes at the FSC-SSC dot plot and the absolute number of peripheral lymphocytes 130 obtained at the hematological analysis. 131 CELL PREPARATION AND IN VITRO STIMULATION ASSAY: Blood sample collected in 2 ml 132 Na2-EDTA tubes (SIGMA, UK) from 88 randomly selected children were used for in vitro 133 stimulation assay with Phytohemaglutinin (PHA). One mL of whole blood was incubated for 15 134 minutes at 4 oC after gentle shaking with 1 mL ice cold ACK buffer to lyse red blood cells. After 135 5 minute centrifugation at 6000 rpm the supernatant was removed and the pellet washed in 2 136 mL PBS (7.2 pH). The washed pellet was diluted in 1 mL of complete medium (RPMI10 with 137 10% FCS complemented with antibiotics (100 IU/mL Penicillin and100 µg/mL Streptomycin) and 138 subsequently 0.5 mL of the suspension of peripheral blood mononuclear cells (PBMC) were 139 cultured in a flat bottom 24 well-plate with PHA (0.08 pg/µL final concentration). The culture 140 supernatants were collected after 24 hours and kept frozen at -20 ºC until analysis. 141 DIRECT AGLUTINATION TEST. Two drops of blood were impregnated on Whatman 3MM filter 142 paper (Whatman International Ltd., England), left to air dry and placed individually in sealed 143 plastic bags. The dry blood was used to determine asymptomatic Leishmania infection and/or 144 exposure to Leishmania. Direct agglutination test (DAT) with freeze dried antigen (ITMA-145 DAT/VL, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium) was used according 146 to the manufacturer’s protocol and titers ≥1:3200 were considered positive [26, 27]. 147 CYTOKINE ANALYSIS. The level of cytokines in the serum and culture supernatant were 148 measured by commercially available kit for flow cytometric detection (Diaclone Research, 149 Besancon, France) as per the manufactures instruction. 150 PROSTAGLANDIN E2 ANALYSIS. Venous blood sample was collected in 5 mL plane tubes 151 (SIGMA, UK) and serum was separated and stored at -20oC. PGE2 assay was done for 94 152 randomly selected serum samples from DAT negative children. The ELISA assay was done 153 using commercially available kit (Parameter™, R&D Systems, Inc, USA) according to the 154 6 manufacture’s instruction. Cytokine and PGE2 concentrations (picogram per milliliter) were 155 calculated using a standard curve developed with the standard provided with the kits. 156 STATISTICAL ANALYSIS. Comparison of mean values of cytokines, PGE2 and hematological 157 parameters was performed using STATA version 11 (Stata Corp., College Station, TX, USA) 158 and P values ≤ 0.05 were considered statistically significant. 159 160 RESULTS 161 Nutritional status 162 A total of 456 children were enrolled into the first study, of those 227 were boys and 229 were 163 girls. In terms of nutritional status; 77.2% (352/456) were non malnourished and 22.8% 164 (104/456) had acute malnutrition. Of the acutely malnourished children 5.0% (23/456) had the 165 severe form and 17.8% (81/456) had the moderate form. Of the 410 (201 boys and 209 girls) 166 children enrolled in the second phase; 77.1% (316/410) were non malnourished and 22.9% 167 (94/410) had acute malnutrition. Of the acutely malnourished, 4.4% (18/410) had the severe 168 form and 18.5% (76/410) had the moderate form. 169 Hematological analysis 170 We managed to get blood from 394 out of 456 children. Table 1 shows the red blood cell (RBC), 171 Hemoglobin (HGB), hematocrit (HCT), and white blood cells (WBC), lymphocyte and 172 subpopulations (CD4+, CD8+ and CD19+) of lymphocytes counts by nutritional status and sex. 173 No difference was seen with sex and within the different nutritional status group of the girls in 174 mean RBC, HGB and HCT. However, severely malnourished boys had significantly less RBC 175 and HCT as compared to the normal and moderately malnourished (P<0.05) and their HCT was 176 lower than the normal reference range. Moreover, their hemoglobin was less than the normal 177 reference range but it was not significantly (P=0.064) lower as compared to the normal and 178 moderately malnourished boys. Statistically significant difference was observed between the 179 different nutritional status groups for total count of WBC, lymphocytes and sub populations of 180 lymphocytes (P <0.05). There was no statistically significant (P=0.161) difference in CD4/CD8 181 ratio among the different nutritional status groups. The malnourished children had less CD19+ 182 cells (P=0.018) as compared to the non-malnourished group (Table 1). 183 7 184 Cytokine production by PHA-stimulated PBMCs 185 Of the 88 samples used for PHA stimulation 57 were from non-malnourished, 21 from 186 moderately and 10 from severely malnourished children. In the overnight PHA culture of PBMC, 187 there was no detectable level of IL-4 and IL-12 in the severely malnourished children. 188 Statistically significant level (P=0.002) of IL-10, TNF-α and IFN-γ were produced by the PBMC 189 from the non-malnourished and moderately malnourished children as compared to the severely 190 malnourished group. Higher level of TNF-α, IL-4, IL-10, and IFN-γ were detected in the 191 supernatant of the PBMC culture from the non-malnourished children but the difference was not 192 statistically significant (P>0.05) as compared to moderately malnourished children. There was 193 no detectable level of IL-12 in the culture supernatant from the moderately malnourished 194 children (Figure 1). 195 196 Serum levels of Prostaglandin E2 and Cytokines 197 From the total of 94 DAT negative serum samples assayed for PGE2; 61 were from non-198 malnourished, 6 were from severely malnourished and 27 were from moderately malnourished 199 children. The mean PGE2 level was higher in the malnourished children as compared to non-200 malnourished. Significantly (P=0.007) high level was produced by the moderately malnourished 201 children compared to the non-malnourished children (Figure 2). 202 Of the 43 DAT negative children; 29 were non-malnourished, 12 moderately malnourished and 203 2 severely malnourished while from the 36 DAT positive children; 18 were non-malnourished, 10 204 moderately malnourished and 8 severely malnourished. We observed difference in the cytokine 205 production profile in the DAT positive and negative groups. In the DAT negative groups there 206 was detectable level of all the assayed cytokines (IL-4, IL-10, IFN-γ and TNF-α) in non-207 malnourished children, but none in the severely malnourished children, and in the moderately 208 malnourished children low level of IL-4 and IL-10 were detected. In the DAT positive groups 209 there was significantly high (P=0.00) level of IFN-γ production in the non-malnourished when 210 compared to malnourished children, higher level of TNF-α, IL-4 and IL-10 were produced by the 211 non-malnourished children but was not significantly high compared to the moderately 212 8 malnourished children. Only IL-10 reached at a detectable level in the severely malnourished 213 children (Fig 3). 214 215 DISCUSSION 216 The strong association between malnutrition and infections has been established through 217 epidemiologic studies conducted in several different countries. The severity of malnutrition 218 determines the risk of death and/or severity of infections [2, 4, 6, 14]. In our study area, 18% of 219 the visceral leishmaniasis cases were reported to be malnourished and malnutrition was one of 220 the implicated risk factors for the outbreak [24]. In line with this we assessed the effect of 221 malnutrition on hematological parameters and cytokine production. 222 Our data showed significantly lower total count of white blood cells, lymphocytes and sub 223 populations of lymphocytes (CD4+ and CD8+ cells) in severely malnourished children (P <0.05). 224 Hematopoietic tissue requires a high nutrient supply, and in consequence bone marrow function 225 may be altered by nutritional deficiencies that can be reflected in a change of the hematological 226 parameters (RBC, WBC, etc…). A similar observation was reported in animal model study; 227 malnourished mice presented anemia with reduced hemoglobin concentration, and total number 228 of erythrocytes, leucopenia with depletion of polymorphonuclear granulocytes, lymphocytes and 229 monocytes [29]. Change in the hematopoietic environment (high fibronectin and laminin) and 230 biochemical evidence of alterations in extracellular matrix proteins in the bone marrow was 231 observed in malnourished mice [30, 31]. And severe malnutrition during childhood was shown to 232 affect thymic development, which compromises immunity by a long-term reduction of peripheral 233 lymphocyte counts [15]. 234 The absence of significant difference in the CD4+/CD8+ ratio in our data indifferent to the report 235 by Nassar et al 2007 [32], supports the idea that the immunodeficiency associated with the 236 severe form of malnutrition is not due to increased helper-suppressor T-cells ratio[33]. 237 Our stimulation data showed that the PBMC from the severely malnourished children produced 238 significantly low or no cytokine response to PHA. This probably means that the cells from the 239 severely malnourished children are non-responsive (quiescent). With intracellular staining and 240 flow cytometric analysis Rodriguez et al 2005 [34] reported significantly lower CD4+ IL-2-241 positive cells in malnourished children compared to those in well nourished children. In 242 addition, they showed that cells from malnourished children had impaired activation capability 243 9 as compared to the well-nourished, infected children. A reduction in the number of lymphocyte 244 subpopulation producing a specific cytokine or the dormancy induced by malnutrition could alter 245 the capacity of cells to produce specific cytokines in response to a stimulus. 246 The high level of PGE2 in the serum of the DAT negative moderately malnourished children 247 observed in our data is in accordance with previous observation. PGE2 production is enhanced 248 in malnutrition [22, 35]. Also, Anstead et al. [22] demonstrated that mice fed with a diet deficient 249 in protein, iron and zinc have an altered innate immune response with lymph node cells from 250 malnourished infected mice producing increased levels of PGE2, decreased levels of IL-10 and 251 had a lower inducible nitric oxide synthase (iNOS) activity in the spleen and liver. 252 The serum from both the DAT positive and the DAT negative non-malnourished children 253 produced a higher level of cytokines than the malnourished. In the DAT negative group, the 254 severely malnourished children produced no detectable level of any of the cytokines assayed; 255 the moderately malnourished children produced IL-4 and IL-10, while the non-malnourished 256 groups produced all the assayed cytokines (Fig2). The bias to the Th1 type in the non-257 malnourished DAT negative children and Th2 type in the moderately malnourished group is in 258 agreement with our PGE2 data explained above (Fig 1). Previous in vivo studies have also 259 demonstrated that PGE2, can affect cytokine production directly during an inflammatory 260 response; the production of Th1cytokines (IFN-γ and TNF-α) are down regulated [36]. 261 The DAT positive non-malnourished children produced significantly high level of IFN-γ and IL-10 262 as compared to the moderately and severely malnourished children (Fig 3). Our data is in 263 agreement with behavior of immune response in L. donovani infection; IFN-γ is secreted at the 264 very initial stages of the exposure to the parasites as observed in the seroconverted or 265 subclinically infected individuals in the endemic area [37]. Carvalho et al. [38] observed high 266 levels of IFN-γ in oligosymptomatic individuals who evolved to spontaneous cure, supporting the 267 fact that resistance is related to an efficient cellular immune response. Also Gama et al [39] 268 described the detection of IL-12 in 85.2%, IFN-γ in 48.1%, IL-10 in 88.9%, and TNF- α in 269 100.0% subclinically infected children. However the detection of low level of IL-4 in our non-270 malnourished DAT positive children might indicate that some children might shift the Th2 271 response and progress to the clinical from of VL. While the detection of the low IFN-γ and 272 relatively high IL-4 and IL-10 in the moderately malnourished children indicates a Th2 bias in 273 this group that might be related to the high level of PGE2 production. 274 11 References 276 1. de Onis M, Blossner M, Borghi E, Morris R, Frongillo EA: Methodology for estimating 277 regional and global trends of child malnutrition. Int J Epidemiol 2004, 33(6):1260-278 1270. 279 2. de Pee S, Semba RD: Role of nutrition in HIV infection: review of evidence for more 280 effective programming in resource-limited settings. Food Nutr Bull 2010, 281 31(4):S313-344. 282 3. Serafim TD, Malafaia G, Silva ME, Pedrosa ML, Rezende SA: Immune response to 283 Leishmania (Leishmania) chagasi infection is reduced in malnourished BALB/c 284 mice. Mem Inst Oswaldo Cruz 2010, 105(6):811-817. 285 4. Semba RD, Darnton-Hill I, de Pee S: Addressing tuberculosis in the context of 286 malnutrition and HIV coinfection. Food Nutr Bull 2010, 31(4):S345-364. 287 5. McMurray DN, Loomis SA, Casazza LJ, Rey H, Miranda R: Development of impaired 288 cell-mediated immunity in mild and moderate malnutrition. Am J Clin Nutr 1981, 289 34(1):68-77. 290 6. Fergusson P, Tomkins A: HIV prevalence and mortality among children undergoing 291 treatment for severe acute malnutrition in sub-Saharan Africa: a systematic review 292 and meta-analysis. Trans R Soc Trop Med Hyg 2009, 103(6):541-548. 293 7. Zachariah R, Spielmann MP, Harries AD, Salaniponi FM: Moderate to severe 294 malnutrition in patients with tuberculosis is a risk factor associated with early 295 death. Trans R Soc Trop Med Hyg 2002, 96(3):291-294. 296 8. Al-Mekhlafi MS, Azlin M, Nor Aini U, Shaik A, Sa'iah A, Fatmah MS, Ismail MG, Ahmad 297 Firdaus MS, Aisah MY, Rozlida AR et al: Giardiasis as a predictor of childhood 298 malnutrition in Orang Asli children in Malaysia. Trans R Soc Trop Med Hyg 2005, 299 99(9):686-691. 300 9. Fillol F, Sarr JB, Boulanger D, Cisse B, Sokhna C, Riveau G, Simondon KB, Remoue F: 301 Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody 302 response. Malar J 2009, 8:116. 303 10. Herwaldt BL: Leishmaniasis. Lancet 1999, 354:1191-1199. 304 11. Muller I, Hailu A, Choi BS, Abebe T, Fuentes JM, Munder M, Modolell M, Kropf P: Age-305 related alteration of arginase activity impacts on severity of leishmaniasis. PLoS 306 Negl Trop Dis 2008, 2(5):e235. 307 12. Correa Antonialli SA, Torres TG, Paranhos Filho AC, Tolezano JE: Spatial analysis of 308 American Visceral Leishmaniasis in Mato Grosso do Sul State, Central Brazil. J 309 Infect 2007, 54(5):509-514. 310 13. Harhay MO, Olliaro PL, Vaillant M, Chappuis F, Lima MA, Ritmeijer K, Costa CH, Costa 311 DL, Rijal S, Sundar S et al: Who is a typical patient with visceral leishmaniasis? 312 Characterizing the demographic and nutritional profile of patients in Brazil, East 313 Africa, and South Asia. Am J Trop Med Hyg 2011, 84(4):543-550. 314 14. Davidson R, Croft S: Visceral leishmaniasis in Africa. Afr Health 1992, 14(5):18-19. 315 15. Malafaia G: Protein-energy malnutrition as a risk factor for visceral leishmaniasis: 316 a review. Parasite Immunol 2009, 31(10):587-596. 317 16. Ribeiro-de-Jesus A, R.P.Almeida, H.Lessa, O.Bacellar, E.M.Carualho: Cytokine Profile 318 and Pathology in Human Leishmaniasis. Brazilian Journal of Medical and Biological 319 Research 1998, 31:143-148. 320 17. Gonzalez-Martinez H, Rodriguez L, Najera O, Cruz D, Miliar A, Dominguez A, Sanchez 321 F, Graniel J, Gonzalez-Torres MC: Expression of cytokine mRNA in lymphocytes of 322 malnourished children. J Clin Immunol 2008, 28(5):593-599. 323 12 18. Najera O, Gonzalez C, Cortes E, Toledo G, Ortiz R: Effector T lymphocytes in well-324 nourished and malnourished infected children. Clin Exp Immunol 2007, 148(3):501-325 506. 326 19. Rodriguez L, Graniel J, Ortiz R: Effect of leptin on activation and cytokine synthesis 327 in peripheral blood lymphocytes of malnourished infected children. Clin Exp 328 Immunol 2007, 148(3):478-485. 329 20. Cortes-Barberena E, Gonzalez-Marquez H, Gomez-Olivares JL, Ortiz-Muniz R: Effects 330 of moderate and severe malnutrition in rats on splenic T lymphocyte subsets and 331 activation assessed by flow cytometry. Clin Exp Immunol 2008, 152(3):585-592. 332 21. Woodward B, Hillyer L, Hunt K: T cells with a quiescent phenotype (CD45RA+) are 333 overabundant in the blood and involuted lymphoid tissues in wasting protein and 334 energy deficiencies. Immunology 1999, 96(2):246-253. 335 22. Anstead GM, Chandrasekar B, Zhao W, Yang J, Perez LE, Melby PC: Malnutrition 336 alters the innate immune response and increases early visceralization following 337 Leishmania donovani infection. Infect Immun 2001, 69(8):4709-4718. 338 23. Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, Kassa A, Orfanos G, Parreno F, 339 Babaniyi O, Gudeta N et al: Kala-azar outbreak in Libo Kemkem, Ethiopia: 340 epidemiologic and parasitologic assessment. Am J Trop Med Hyg 2007, 77(2):275-341 282. 342 24. Herrero M, Orfanos G, Argaw D, Mulugeta A, Aparicio P, Parreno F, Bernal O, Rubens 343 D, Pedraza J, Lima MA et al: Natural history of a visceral leishmaniasis outbreak in 344 highland Ethiopia. Am J Trop Med Hyg 2009, 81(3):373-377. 345 25. de Onis M, Onyango AW, Borghi E, Garza C, Yang H: Comparison of the World 346 Health Organization (WHO) Child Growth Standards and the National Center for 347 Health Statistics/WHO international growth reference: implications for child health 348 programmes. Public Health Nutr 2006, 9(7):942-947. 349 26. Hailu A, van der Poll T, Berhe N, Kager PA: Elevated plasma levels of interferon 350 (IFN)-gamma, IFN-gamma inducing cytokines, and IFN-gamma inducible CXC 351 chemokines in visceral leishmaniasis. Am J Trop Med Hyg 2004, 71(5):561-567. 352 27. Diro E, Techane Y, Tefera T, Assefa Y, Kebede T, Genetu A, Kebede Y, Tesfaye A, 353 Ergicho B, Gebre-Yohannes A et al: Field evaluation of FD-DAT, rK39 dipstick and 354 KATEX (urine latex agglutination) for diagnosis of visceral leishmaniasis in 355 northwest Ethiopia. Trans R Soc Trop Med Hyg 2007, 101(9):908-914. 356 28. Tsegaye A, Messele T, Tilahun T, Hailu E, Sahlu T, Doorly R, Fontanet AL, Rinke de Wit 357 TF: Immunohematological reference ranges for adult Ethiopians. Clin Diagn Lab 358 Immunol 1999, 6(3):410-414. 359 29. Fock RA, Vinolo MA, Crisma AR, Nakajima K, Rogero MM, Borelli P: Protein-energy 360 malnutrition modifies the production of interleukin-10 in response to 361 lipopolysaccharide (LPS) in a murine model. J Nutr Sci Vitaminol (Tokyo) 2008, 362 54(5):371-377. 363 30. Vituri CL, Alvarez-Silva M, Trentin AG, Borelli P: Alterations in proteins of bone 364 marrow extracellular matrix in undernourished mice. Braz J Med Biol Res 2000, 365 33(8):889-895. 366 31. Brown MA, Hural J: Functions of IL-4 and control of its expression. Crit Rev Immunol 367 1997, 17(1):1-32. 368 32. Nassar MF, Younis NT, Tohamy AG, Dalam DM, El Badawy MA: T-lymphocyte 369 subsets and thymic size in malnourished infants in Egypt: a hospital-based study. 370 East Mediterr Health J 2007, 13(5):1031-1042. 371 33. Lee WH, Woodward BD: The CD4/CD8 ratio in the blood does not reflect the 372 response of this index in secondary lymphoid organs of weanling mice in models 373 13 of protein-energy malnutrition known to depress thymus-dependent immunity. J 374 Nutr 1996, 126(4):849-859. 375 34. Rodriguez L, Gonzalez C, Flores L, Jimenez-Zamudio L, Graniel J, Ortiz R: 376 Assessment by flow cytometry of cytokine production in malnourished children. 377 Clin Diagn Lab Immunol 2005, 12(4):502-507. 378 35. Skerrett SJ, Henderson WR, Martin TR: Alveolar macrophage function in rats with 379 severe protein calorie malnutrition. Arachidonic acid metabolism, cytokine 380 release, and antimicrobial activity. J Immunol 1990, 144(3):1052-1061. 381 36. Dooper MM, Wassink L, M'Rabet L, Graus YM: The modulatory effects of 382 prostaglandin-E on cytokine production by human peripheral blood mononuclear 383 cells are independent of the prostaglandin subtype. Immunology 2002, 107(1):152-384 159. 385 37. Bacellar O, Barral-Netto M, Badaro R, Carvalho EM: Gamma interferon production by 386 lymphocytes from children infected with L. chagasi. Braz J Med Biol Res 1991, 387 24(8):791-795. 388 38. Carvalho EM, Barral A, Pedral-Sampaio D, Barral-Netto M, Badaro R, Rocha H, 389 Johnson WD, Jr.: Immunologic markers of clinical evolution in children recently 390 infected with Leishmania donovani chagasi. J Infect Dis 1992, 165(3):535-540. 391 39. Gama ME, Costa JM, Pereira JC, Gomes CM, Corbett CE: Serum cytokine profile in 392 the subclinical form of visceral leishmaniasis. Braz J Med Biol Res 2004, 37(1):129-393 136. 394 Table 1: Comparison of the mean hematological parameters in children of different nutritional status groups, Libo Kemkem, Ethiopia. Nutritional Status (N=number per group) Parameters Mean ±SE Normal Moderate Severe Reference range*1,2 RBC (106 cells/µL) Boys 4.55±0.42 (134) 4.58±0.08 (42) 4.09±0.21 (12) 3.80-6.20 Girls 4.50±0.04 (170) 4.55±0.08 (27) 4.34±0.15 (9) 3.80-5.60 HGB (g/dL) Boys 12.74 ± 0.14 (134) 12.80±0.21 (42) 11.63±0.61 (12) 12.20-17.70 Girls 12.78±0.15 (170) 12.75±0.32 (27) 12.41±0.42 (9) 9.50-15.80 HCT (%) Boys 37.43±0.34 (134) 37.70±0.72 (42) 34.20±1.83 (12) 35.00-50.80 Girls 37.04±0.41 (170) 37.17±0.90 (27) 36.07±1.19 (9) 29.40-45.40 WBC (103/µL 8.03 (304) 7.01 (69) 5.67 (21) 3.10-9.10 LYMP (103/µL) 3.63 (304) 2.97 (69) 2.39 (21) 1.20-3.70 CD4 (103/µL) 1.09 (124) 0.99 (23) 0.64 (10) 0.457-1.628 CD8 (103/µL) 0.91 (124) 1.05 (23) 0.53 (10) 0.23-1.178 CD4/CD8 (ratio) 1.38 (124) 1.42 (23) 1.30 (10) CD19 (103/µL) 0.34 (124) 0.26 (23) 0.17 (10) *1=Establishing Clinical laboratory Reference Intervals in Africa; IAVI (International AIDS Vaccine Initiative) and *2= Immunohematological Reference Ranges for Adult Ethiopians [28]. FIGURE LEGENDS Figure 1: Cytokine Concentration (pg/ml) in a supernatant from a 24 hour culture of peripheral blood mononuclear cells with PHA, in children from Libo Kemkem, south Gondar, Ethiopia. Cytokine measurement was performed for 57 non-malnourished, 21 moderately malnourished and 10 severely malnourished children. Figure 2. Serum concentration of PGE2 by nutritional status in children from Libo Kemkem, South Gondar, Ethiopia: Serum samples from 94 DAT negative children; 61 from non-malnourished, 6 from severely malnourished and 27 from moderately were analyzed. Figure 3. Serum concentration of cytokines (TNF- α, IL-10, IL-4, and IFN- γ) by nutritional status and asymptomatic infection as detected by DAT positivity in children from Libo Kemkem, South Gondar, Ethiopia; 43 DAT positive (29 non malnourished, 12 moderately malnourished and 2 severely malnourished) and 36 DAT positive (18 non malnourished, 10 moderately malnourished and 8 severely malnourished) serum samples were analyzed. FIGURE 1 P=0.02 0 1, 00 0 2, 00 0 3, 00 0 4, 00 0 C yt ok in e co nc en tr at io n (p g/ m l) Non malnorished Severely malnorished Moderately malnorished TNF-a IL-4 IL-10 INF-g IL-12 Key Nutritional status FIGURE 2 P=0.007 0 5, 00 0 10 ,0 00 15 ,0 00 P G E 2 (p g/ m l) Non malnorished Severely malnorished Moderately malnorished Nutritional Status FIGURE 3 P=0.00 0 50 0 1, 00 0 1, 50 0 2, 00 0 Non m aln or ish ed se ve re ly m aln or ish ed M od er ate ly m aln or ish ed Non m aln or ish ed Sev er ely m aln or ish ed M od er ate ly m aln or ish ed DAT negative DAT positive TNF-a IL-4 IL-10 INF-g Key C yt ok in e co nc en tr at io n (p g/ m l) Nutritional status     VIII- DISCUSIÓN En Etiopía, la LV está distribuida en todas las tierras bajas con diferentes grados de endemicidad. Se estima una incidencia de 4.500 a 5.000 casos nuevos por año y la tasa de coinfección Leishmania/VIH está entre el 15% y el 30% de todos casos de LV (Alvar et al., 2006). En los últimos años la LV se ha extendido en Etiopía, se han documentado nuevos brotes en el norte y sur del país: Libo Kemkem y Belesa (región de Amhara), Shiraro (región de Tigray) e Imey (región de Somalí) (Informe de Ministerio de Sanidad de Etiopía). Se piensa que los movimientos de trabajadores temporales a las zonas endémicas, la malnutrición asociada a la pobreza y la coinfección Leishmania/VIH han contribuido a la expansión de la LV a zonas previamente no endémicas (Herrero et al., 2009). Como consecuencia de este incremento la LV se ha convertido en una preocupación para la salud pública del país y su control se ha convertido en una prioridad. Para plantear un programa de control frente a la LV adaptada a las situaciones locales, hay que disponer de datos socio-epidemiológicos exhaustivos de buena calidad que permitan monitorizar el progreso del programa y la evaluación de su impacto. El entendimiento de la influencia de factores de riesgo como la malnutrición, y la disponibilidad de herramientas valoradas localmente para establecer las situaciones epidemiológicas tendrán un impacto positivo en los esfuerzos realizados para el control de la LV. El presente estudio mostró la presencia de infección asintomática por Leishmania en los niños de entre 4 y 15 años de edad en los distritos de Libo Kemkem y Fogera, en el nuevo foco del región de Amara, noroeste de Etiopía. La tasa global de la infección asintomática (positiva por LST y/o serología) en los comunidades en que se han documentado mayor número de LV después del brote (2008) fue del 10,1% (61/605), el 6,3% fueron individuos seropositivos y el 5,6% fueron positivos para LST. La discordancia observada entre LST y serología son probablemente debido a la diferencia del tipo de respuesta inmune detectada por cada prueba. LST mide la reacción de hipersensibilidad retardada frente Leishmania mientras que la seropositividad resulta de la respuesta de anticuerpos específicos a Leishmania. La positividad de LST aparece más tarde después de la infección, mientras que la seropositividad es considerada como un marcador de una infección más reciente. Por la misma razón, el LST positivo se produce como resultado de la exposición repetida a la infección natural, lo que también justifica porqué el número de individuos positivos para LST es mayor en los grupos de mayor edad. La mayor tasa de infección detectada por serología (con DAT y rK39-ICT) al comparar con las obtenidas con LST puede estar asociado a la necesidad de periodos de tiempo más largos para el desarrollo de respuesta positiva en el LST con respecto a la seropositividad y a que la LV ha aparecido recientemente en nuestro área de estudio. La diferente tasa de infección observada entre las pruebas serológicas puede depender de la etapa de la enfermedad/infección, la baja tasa detectada por la prueba rK39-ICT puede ser explicada por su capacidad para detectar solo los anticuerpos específicos frente al antígeno rK39, mientras que el DAT detecta una respuesta de anticuerpos frente a una amplia gama de antígenos de Leishmania (el promastigote completo liofilizado) (Boelaert et al., 2004). Otra posible explicación se basa en la naturaleza de las pruebas; tal y como propusieron ter Horst et al., (2009) los anticuerpos detectados por rK39-ICT podrían tener una menor capacidad de reacción en el formato rápido de tira inmunocromatográfica que en las incubaciones durante toda la noche usadas en el DAT. La observación de que la tasa de infección asintomática aumenta con la edad es consistente con un foco endémico de LV, de hecho, el incremento de edad es un factor del riesgo para la infección asintomática. La presencia de infección asintomática en individuos menores de 5 años de edad es consistente con la presencia de una transmisión activa. El mayor número de infección asintomática detectado por el uso combinado de las pruebas serológicas (particularmente DAT) y LST, indica que este método combinado es el procedimiento más apropiado para determinar la tasa de infección asintomática en un área endémica de LV. En efecto, la prevalencia de LV asintomática detectada varía según las técnicas y el área endémica por lo que se aconseja la combinación de técnicas para determinar la prevalencia más cercana a la realidad en ausencia de un método Gold Standard para la detección de infección asintomática (de Gouvea Viana et al., 2008). La prevalencia global detectada en las áreas donde hubo al menos un caso clínico de LV durante el brote de 2004/2005 fue del 1,02%. Los niños mayores de 12 años presentaban la mayor prevalencia (2,56%), seguidos por el grupo de niños entre 8 y 11 años de edad (0,82%), y la menor prevalencia fue detectada en los menores de 8 años (0,49%). La baja prevalencia detectada en nuestro estudio indica que las condiciones que provocaron la epidemia de la LV en la región de estudio ya no persisten. Una hipótesis propuesta durante la epidemia de LV mantenía que el parásito había sido introducido en la región por trabajadores agrícolas, quienes habían regresado infectados a sus pueblos después de completar su trabajo estacional en la frontera de Sudán y habían actuado como reservorio del parásito (Herrero et al., 2009). Sin embargo, de acuerdo con la información disponible, los afectados no fueron sólo estos trabajadores agrícolas desplazados, y no hay ninguna evidencia de que tal migración haya cesado. Esto nos hace pensar que algún cambio en la población del vector debió de provocar el brote, se ha sugerido que cambios en la temperatura y humedad relativa pueden aumentar la abundancia del vector (Gálvez et al., 2010). Por otro lado, también es posible que la respuesta al brote de LV y el tratamiento de los enfermos pudiera haber llevado a la reducción de la tasa de seroprevalencia. Antes del año 2004 no se había reportado ningún caso de LV en Libo Kemkem, y probablemente se está volviendo a la situación pre- epidémica. No obstante, las dudas sobre las causas del brote y la caída de la prevalencia post brote que hemos observado en este estudio resaltan la necesidad de vigilar los cambios climáticos para evitar la reemergencia de la LV en esta zona. Durante el brote de LV de 2004/2005, la prevalencia determinada por LST fue considerablemente mayor que la observada en nuestro estudio, 34% en hombres y 26% en mujeres (Alvar et al., 2007). No obstante, este estudio fue hecho para valorar el brote en la población de 0,7 a 60 años de edad, y se hizo mediante un muestreo por conveniencia. La fuerte variación en la infección asintomática observada entre zonas altamente endémicas de LV está de acuerdo con la agrupación especial observada en otros lugares en estudios de infección asintomática (Evans et al., 1992; Singh et al., 2010) y de casos clínicos (Bern et al., 2005; Ryan et al., 2006). El aumento de la edad constituye un factor de riesgo para la infección por Leishmania y se asocia con las actividades específicas de los niños mayores o adolescentes que implican un potencial aumento de la exposición a la picadura del flebótomo (Singh et al., 2010). Se piensa que esta situación es también responsable de la mayor frecuencia de infección entre el sexo masculino (Ali y Ashford, 1993). Nuestros resultados respaldan esta hipótesis, actividades tales como el hábito de dormir fuera de la casa y el cuidado del ganado se han identificado como factores de riesgo para la infección asintomática. La mayor exposición a los flebótomos durante el cuidado del ganado se puede asociar con estar en el campo al anochecer y amanecer, momentos del día en los que los flebótomos son más activos (Wijers, 1963) y también con una mayor proximidad a las acacias rojas (pudimos comprobar que el 82% de los niños que van a cuidar ganados descansaban a la sombra de las acacias rojas), que se consideran como sitios de descanso diurno para Phlebotomus orientalis, el potencial vector de Leishmania en el área de estudio (Elnaiem et al., 1999). En nuestro análisis de factores de riesgo, la malnutrición aguda se asocia positivamente a la infección asintomática, pero solo en el análisis univariante. Cuando el sexo y la edad fueron introducidos en el modelo la malnutrición aguda perdió su significancia, probablemente reflejando la interacción entre las tres variables, ya que factores como el sexo masculino y el aumento de la edad mostraron una asociación directa y significativa con la malnutrición aguda. El riesgo de infección asintomática asociado con un mayor número de miembros en la familia podría ser debido a la atracción de los flebótomos por grandes biomasas, que se ha descrito como un riesgo de LV en el mismo área (Bashaye et al., 2009). También había mayor probabilidad de infección asintomática entre los niños de una familia con historia previa de casos de LV en la familia, aunque esta asociación sólo fue significativa con los casos seropositivos y no con los positivos por LST, lo que está de acuerdo con las conclusiones de Bern et al. (2007) en Bangladesh. En relación con la seropositividad, otros estudios ya han mostrado la asociación entre este factor y el contacto previo con enfermos de LV (Caldas et al., 2002; Evans et al., 1992; Schaefer et al., 1995), apoyando la hipótesis de transmisión dentro de la familia. El incremento del riesgo de infección asintomática en familias que viven en una casa de techo de paja y con grietas en las paredes frente a las que viven en casas con chapa ondulada puede estar relacionado con el poder económico de la familia y refleja su pobreza/riqueza, además el techo de paja y las grietas en los paredes sirven como sitio potencial de reproducción y de descanso diurno por los flebótomos, incrementado su supervivencia y abundancia. No obstante, con respecto a P. orientalis, se necesitan más estudios para confirmar este último punto, ya que los pocos estudios existentes en la literatura señalan un comportamiento exofágico del vector, incompatible con este hipótesis (Gebre-Michael et al., 2010). Por otro lado, la posesión de un mayor número de cabezas de ganado por familia mostró un efecto protector frente a la infección asintomática y seropositividad, pero no a la positividad por LST. El efecto protector del ganado y gallinas frente a la LV puede explicarse por su papel como indicadores de riqueza o también por el efecto zooprofiláctico del ganado (Caldas et al., 2002; Schenkel et al., 2006). La preferencia P. orientalis por la sangre del ganado frente a la del hombre ya se ha demostrado en otra parte de Etiopía, contribuyendo a esta última teoría (Gebre-Michael et al., 2010), pero el efecto zooprofilático de las gallinas con respecto a P. orientalis necesita ser resuelta. Con respecto a los efectos de la malnutrición sobre el status inmunológico de los niños, nuestro estudio mostró un número de leucocitos, linfocitos y células T CD4+ y CD8+ significativamente menor en los niños con malnutrición severa (p <0,05). La malnutrición severa durante la infancia afecta el desarrollo del timo, lo que compromete la inmunidad a largo plazo y produce una reducción del número de linfocitos en sangre periférica. La baja o nula expresión de citoquinas observada en las células de los niños con malnutrición severa tras la estimulación con PHA está probablemente asociada con la menor actividad de estas células. Rodríguez et al. (2005) reportaron niveles significativamente menores de células T CD4+ e IL-2+ en niños malnutridos en comparación con los niños bien nutridos. Además, se demostró que las células procedentes de los niños malnutridos tienen deficiencia en el poder de activación en comparación con las células procedentes de niños bien nutridos. Los mayores niveles de PGE2 observados en el suero de los niños DAT negativos y con malnutrición moderada está de acuerdo con observaciones previas en las que la producción de PGE2 aumenta con la malnutrición (Anstead et al., 2001; Dooper et al., 2002). Además, la predisposición a una respuesta de citoquinas tipo Th1 en los niños no malnutridos y DAT negativos, y de tipo Th2 en los moderadamente malnutridos está también de acuerdo con el dato de PGE2 explicado anteriormente. BIBLIOGRAFÍA - Ali A, Ashford RW (1993). Visceral leishmaniasis in Ethiopia. I. Cross- sectional leishmanin skin test in an endemic locality. Annals of Tropical Medicine and Parasitology; 87: 157-61. - Alvar J, Yactayo S, Bern C (2006). Leishmaniasis and poverty. TRENDS in Parsitology; 22: 552-57. - Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, Kassa A, Orfanos G, Parreño F, Babaniyi O, Gudeta N, Cañavate C, Bern C (2007). Kala-Azar outbreak in Libo Kemkem, Ethiopia: Epidemiologic and parasitologic assessment. American Journal of Tropical Medicine and Hygiene; 77: 275-82. - Anstead G M, Chandrasekar B, Zhao W, Yang J, Perez L E, Melby P C (2001). Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infection and Immunity; 69: 4709-18. - Bashaye S, Nombela N, Argaw D, Mulugeta A, Herrero M, Nieto J, Chicharro C, Cañavate C, Aparicio P, Vélez I D, Alvar J, Bern C (2009). Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. American Journal of Tropical Medicine and Hygiene; 81: 34-9. - Bern C, Hightower A W, Chowdhury R, Ali M, Amann J, Wagatsuma Y, Haque R, Kurkjian K, Vaz L E, Begum M, Akter T, Cetre-Sossah C B, Ahluwalia I B, Dotson E, Secor W E, Breiman R F, Maguire J H (2005). Risk factors for kala- azar in Bangladesh. Emerging Infectious Diseases; 11: 655-62. - Bern C, Haque R, Chowdhury R, Ali M, Kurkjian K M, Vaz L, Amann J, Wahed M A, Wagatsuma Y, Breiman R F, Williamson J, Secor W E, Maguire J H (2007). The epidemiology of visceral leishmaniasis and asymptomatic leishmanial infection in a highly endemic Bangladeshi village. American Journal of Tropical Medicine and Hygiene; 76: 909-14. - Boelaert M, Rijal S, Regmi S, Singh R, Karki B, Jacquet D, Chappuis F, Campino L, Desjeux P, Le Ray D, Koirala S, Van der Stuyft P (2004). A comparative study of the effectiveness of diagnostic tests for visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene; 70: 72-7. - Caldas A J, Costa J M, Silva A A, Vinhas V, Barral A (2002). Risk factors associated with asymptomatic infection by Leishmania chagasi in north-east Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene; 96: 21-8. - de Gouvêa Viana L, de Assis T S, Orsini M, da Silva A R, de Souza G F, Caligiorne R, da Silva A C, Peruhype-Magalhães V, Marciano A P, Martins- Filho O A, Rabello A (2008). Combined diagnostic methods identify a remarkable proportion of asymptomatic Leishmania (Leishmania) chagasi carriers who present modulated cytokine profiles. Transactions of the Royal Society of Tropical Medicine and Hygiene; 102: 548-55. - Dooper M M, Wassink L, M'Rabet L, Graus Y M (2002). The modulatory effects of prostaglandin-E on cytokine production by human peripheral blood mononuclear cells are independent of the prostaglandin subtype. Immunology; 107: 152-9. - Elnaiem D A, Hassan H K, Ward R D (1999). Associations of Phlebotomus orientalis and other sandflies with vegetation types in the eastern Sudan focus of kala-azar. Medical Veterinary Entomology; 13: 198-203. - Evans T G, Teixeira M J, McAuliffe I T, Vasconcelos I, Vasconcelos A W, Sousa A de A, Lima J W, Pearson R D (1992). Epidemiology of visceral leishmaniasis in northeast Brazil. Journal of Infectious Diseases; 166: 1124-32. - Gálvez R, Descalzo M A, Miró G, Jiménez M I, Martín O, Dos Santos-Brandao F, Guerrero I, Cubero E, Molina R (2010). Seasonal trends and spatial relations between environmental/meteorological factors and leishmaniosis sand fly vector abundances in Central Spain. Acta Tropica; 115: 95-102. - Gebre-Michael T, Balkew M, Berhe N, Hailu A, Mekonnen Y (2010). Further studies on the phlebotomine sandflies of the kala-azar endemic lowlands of Humera-Metema (north-west Ethiopia) with observations on their natural blood meal sources. Parasite and Vectors; 3: 6. - Herrero M, Orfanos G, Argaw D, Mulugeta A, Aparicio P, Parreño F, Bernal O, Rubens D, Pedraza J, Lima MA, Flevaud L, Palma P P, Bashaye S, Alvar J, Bern C (2009). Natural History of a Visceral Leishmaniasis Outbreak in Highland Ethiopia. American Journal of Tropical Medicine and Hygiene; 81: 373–7. - Rodríguez L, González C, Flores L, Jiménez-Zamudio L, Graniel J, Ortiz R (2005). Assessment by flow cytometry of cytokine production in malnourished children. Clinical Diagnostic and Laboratory Immunology; 12: 502-7. - Ryan J R, Mbui J, Rashid J R, Wasunna M K, Kirigi G, Magiri C, Kinoti D, Ngumbi P M, Martin S K, Odera S O, Hochberg L P, Bautista C T, Chan A S (2006). Spatial clustering and epidemiological aspects of visceral leishmaniasis in two endemic villages, Baringo District, Kenya. American Journal of Tropical Medicine and Hygiene; 74: 308-17. - Schaefer K U, Kurtzhals J A, Gachihi G S, Muller A S, Kager P A (1995). A prospective sero-epidemiological study of visceral leishmaniasis in Baringo District, Rift Valley Province, Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene; 89: 471-5. - Schenkel K, Rijal S, Koirala S, Koirala S, Vanlerberghe V, Van der Stuyft P, Gramiccia M, Boelaert M (2006). Visceral leishmaniasis in southeastern Nepal: a cross-sectional survey on Leishmania donovani infection and its risk factors. Tropical Medicine and International Health; 11: 1792-9. - Singh S P, Picado A, Boelaert M, Gidwani K, Andersen E W, Ostyn B, Meheus F, Rai M, Chappuis F, Davies C, Sundar S (2010). The epidemiology of Leishmania donovani infection in high transmission foci in India. Tropical Medicine and International Health; 15(S2): 12-20. - ter Horst R, Tefera T, Assefa G, Ebrahim A Z, Davidson R N, Ritmeijer K (2009). Field evaluation of rK39 test and direct agglutination test for diagnosis of visceral leishmaniasis in a population with high prevalence of human immunodeficiency virus in Ethiopia. American Journal of Tropical Medicine and Hygiene; 80: 929-34. - Wijers DJ (1963). Studies on the vector of kala-azar in Kenya. II. Epidemiological evidence. Annals of Tropical Medicine and Parasitology; 57: 7- 18.         IX- CONCLUSIONES Se han evaluado a nivel local herramientas diagnósticas para la determinación de infección asintomática sobre el terreno, aspecto clave a la hora de implementar un programa de control en áreas donde la LV es antroponótica. Se ha determinado la utilidad de combinar DAT y LST para obtener la mejor medida de la tasa de infección asintomática en la comunidad. Esta metodología puede apliacrse igualmente en otras áreas endémicas de Etiopía. La prevalencia de LV activa y de infección asintomática en las poblaciones estudiadas fue baja, indicando la necesidad de identificar áreas con mayor prevalencia y enfocar el esfuerzo de control en ellas. Podemos considerar que la baja prevalencia post-brote puede deberse a la rápida instauración de un centro de tratamiento de LV, que contribuye a disminuir el número de individuos infectados (reservorios) en áreas de transmisión antroponótica. Se debe también considerar una posible disminución de la población de vectores a niveles similares a los de antes del brote. Una hipótesis de origen del brote es el aumento de la población de vectores en el área debido a cambios ambientales. No obstante, esto último no ha podidi probarse al no existir un sistema de vigilancia vectorial. Los factores personales (comportamiento), medioambientales y socioeconómicos que hemos identificado como asociados a un aumento del riesgo de infección asintomática son una aportación indispensable a la hora de plantear un programa de control de LV. A través del estudio de factores de riesgo y del estudio de los aspectos inmunológicos, hemos comprobado que la malnutrición influye en la infección por Leishmania. Por tanto consideramos que es necesario considerar el aspecto nutricional, particularmente en los grupos más vulnerables, a la hora de plantear un programa de control y prevención de la LV.         X - ANEXO I Galeria de fotos     ÁREA DE ESTUDIO El área de estudio es una meseta situada de 1800 a 2000 metros sobre el nivel del mar. Durante la estación de lluvias, (junio-septiembre) la mayor parte del área está inundada (1). A partir de octubre se empieza a secar y entre diciembre y febrero, la estación seca (2), se forman grietas profundas en el suelo que constituyen lugares ideales para el refugio, durante el día, de los flebótomos (3) 1 2 3     Debido a las actividades agrícolas la cobertura vegetal del área se ha visto reducida y por ello la principal fuente de energía para cocinar son los excrementos secos de vaca. Alrededor de numerosas viviendas, ya sea de tejado de paja o de chapa ondulada, pueden encontrarse apiladas las heces secas de vacas (4 y 5). Además, los animales se mantienen cerca (6) o incluso dentro de las viviendas (7). 4 5 6 7     98 POBLACIÓN DE ESTUDIOS En este estudio se incluyeron niños y niñas de 4 a 15 años de edad residentes en diferentes kebeles (sub-distritos) de Fogera y Libo Kemkem (8, 9 y 10) 10     COMIDA La injera es una torta fina hecha de harina de teff fermentada (11), o de una mezcla de harina de teff y de otros cereales. Se le suele añadir diferentes tipos de puré de legumbres (shiro), y verduras u hortalizas como tomate, patata, zanahoria o pimientos (12). En el shiro se añade aceite o a veces manteca, muy ocasionalmente se añade carne. El teff es el principal cultivo de la zona (13). 13 1211     ENTRENAMIENTO Antes de realizar el trabajo de campo se organizó un entrenamiento de los enfermeros encargados de realizar las encuestas, las medidas antropométricas, la toma de muestras biológicas y los diferentes análisis que se realizaron in situ. Entrenamiento en la prueba serológica DAT (14) y en la toma de medidas antropométricas en el aula del hospital de Bahir Dar (15). Entrenamiento en la prueba serológica rK39-ICT (16) y en la intradermorreación de la leishmanina (17). 1716 14 15     ESTUDIO PILOTO Se realizó un estudio piloto para optimizar los métodos de colección de los datos y confirmar las habilidades prácticas de los enfermeros. Personal experto acompañó al grupo de enfermeros al campo para asesorar y evaluar su trabajo práctico a la hora de hacer las medidas antropométricas (18) y las pruebas diagnósticas (19). Los problemas y resultados de estudio piloto se pusieron en común en una reunión final (20). 18 19 20     TRABAJO DE CAMPO En el momento de realizar el trabajo de campo, el equipo de encuestadores se instalaba en una zona de cada uno de los pueblos seleccionados (gotts) a la que acudían los niños para su examen (21). El examen físico incluía medida de temperatura (22), peso (23), talla (24) y la toma de sangre (25). A la vez se realizaba una encuesta al adulto responsable de los niños (26) 21 22 23     24 25 26     27 28 Durante el estudio transversal se realizó a los niños la prueba de la leishmanina. Para ello se inoculaba por vía intradérmica, 100 µL de la solución de leishmanina (27), y a las 42 – 72 horas se midió la presencia de induración mediante el método del bolígrafo (28). Esta prueba es positiva si el diámetro de la induración es mayor de 5 mm (29), en caso contrario se considera negativa (28) . 29 30     TRABAJO DE LABORATORIO. Las muestras obtenidas durante el trabajo de campo se trasladaban el mismo día al Laboratorio Regional de Amhara, en Bahir Dar, para su procesamiento (31). En este laboratorio se realizaba el hemograma (32), separación, cultivo y tinción de linfocitos (33 y 34), la separación del suero y el test DAT. 33 34 31 32     EVALUACIÓN EXTERNA DEL PROYECTO En noviembre de 2009 se llevó a cabo una evaluación del proyecto por parte de un experto externo, el Dr. Philippe Dexjeux , Institute for One World Health), quien visitó los diferentes centros implicados en el proyecto y el área de estudio (35, 36 y 37). 35 36 37     Tesis de Endalamaw Gadisa Belachew PORTADA AGRADECIMIENTOS RESUMEN INTRODUCCIÓN I- EPIDEMIOLOGÍA DE LA LEISHMANIASIS II- LEISHMANIASIS VISCERAL III- LEISHMANIASIS VISCERAL EN ETIOPÍA IV- BIBLIOGRAFÍA V- EL PROYECTO VI- OBJETIVOS VII- ARTÍCULOS CIENTÍFICOS VIII- DISCUSIÓN IX- CONCLUSIONES X - ANEXO I