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Abstract 

 

The purpose of the paper is to show that univariate GARCH is not a special case of multivariate 

GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-

diagonal elements of the random coefficient autoregressive coefficient matrix, provides the 

regularity conditions that arise from the underlying random coefficient autoregressive process, 

and for which the (quasi-) maximum likelihood estimates have valid asymptotic properties under 

the appropriate parametric restrictions. The paper provides a discussion of the stochastic 

processes, regularity conditions, and asymptotic properties of univariate and multivariate 

GARCH models. It is shown that the Full BEKK model, which in practice is estimated almost 

exclusively, has no underlying stochastic process, regularity conditions, or asymptotic properties.  
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Univariate and multivariate models. 
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1. Introduction 

 
The most widely estimated univariate and multivariate models of time-varying volatility for 

financial data, as well as any high frequency data that are measured in days, hours and minutes, 

is the conditional volatility model. The stochastic processes, regularity conditions and asymptotic 

properties of the most popular univariate conditional volatility models, such as GARCH (see 

Engle (1982) and Bollerslev (1986)) and GJR (see Glosten et al. (1993)) are well established in 

the literature, though McAleer and Hafner (2014) have raised caveats regarding the existence of 

the stochastic process underlying exponential GARCH (EGARCH) (see Nelson (1990, 1991)).  

 

However, the same cannot be said about multivariate conditional volatility models, specifically 

Full BEKK (see Baba et al. (1985) and Engle and Kroner (1995)), for which the underlying 

stochastic processes, regularity conditions and asymptotic properties have either not been 

established, or are simply assumed rather than derived. These conditions are essential for valid 

statistical analysis of empirical estimates.  

 

The purpose of the paper is to show that the stochastic process underlying univariate GARCH is 

not a special case of that underlying multivariate GARCH, except under parametric restrictions 

on the off-diagonal elements of the random coefficient autoregressive coefficient matrix. The 

paper provides the regularity conditions that arise from the underlying random coefficient 

autoregressive process, and for which the (quasi-) maximum likelihood estimates (QMLE) have 

valid asymptotic properties under the appropriate parametric restrictions.  

 

The Full BEKK model is estimated almost exclusively in practice, despite the fact that it has no 

underlying stochastic process, regularity conditions, or asymptotic properties, as shown in the 

proposition and three corollaries. 

 

The plan of the paper is as follows. Section 2 provides a discussion of the stochastic processes, 

regularity conditions, and asymptotic properties of univariate and multivariate GARCH models. 

Section 3 shows that the Full BEKK model has no underlying stochastic process, regularity 

conditions, or asymptotic properties. Section 3 gives some concluding comments. 
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2. Univariate and Multivariate GARCH Models 
 
2.1 Univariate Conditional Volatility Models 

 
Consider the conditional mean of financial returns for commodity i, in a financial portfolio of m 

assets, as follows: 

 

    𝑦𝑖𝑡 = 𝐸(𝑦𝑖𝑡|𝐼𝑡−1) + 𝜀𝑖𝑡 , 𝑖 = 1, 2, … ,𝑚,   (1) 

     

where the returns, 𝑦𝑖𝑡 = Δ𝑙𝑜𝑔𝑃𝑖𝑡, represent the log-difference in financial commodity prices, 

𝑃𝑡, 𝐼𝑡−1 is the information set for all financial assets at time t-1, 𝐸(𝑦𝑖𝑡|𝐼𝑡−1) is the conditional 

expectation of returns, and 𝜀𝑖𝑡 is a conditionally heteroskedastic error term.  

 

In order to derive conditional volatility specifications, it is necessary to specify the stochastic 

processes underlying the returns shocks, 𝜀𝑖𝑡. The most popular univariate conditional volatility 

model, GARCH model, is discussed below.  

 

For a portfolio of m financial assets, consider the random coefficient autoregressive process 

underlying the returns shocks, 𝜀𝑖𝑡, as follows: 

 

𝜀𝑖𝑡 = 𝜙𝑖𝑡𝜀𝑖𝑡−1+ 𝜂𝑖𝑡 ,  𝑖 = 1, 2, … ,𝑚,  m > 1,     (2) 

 

where 

 

𝜙𝑖𝑡~𝑖𝑖𝑑(0,𝛼𝑖), 𝛼𝑖 ≥ 0, 

𝜂𝑖𝑡~𝑖𝑖𝑑(0,𝜔𝑖), 𝜔𝑖 ≥ 0, 

𝜂𝑖𝑡 = 𝜀𝑖𝑡/�ℎ𝑖𝑡 is the standardized residual,  

ℎ𝑖𝑡 is the conditional volatility of financial asset i. 
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Tsay (1987) derived the following conditional volatility of financial asset i as an ARCH process 

(see Engle, 1982): 

 

𝐸(𝜀𝑖𝑡2 |𝐼𝑡−1) ≡  ℎ𝑖𝑡 =  𝜔𝑖 + 𝛼𝑖𝜀𝑖𝑡−12  ,  𝑖 = 1, 2, … ,𝑚,  m > 1,   (3) 

       

where ℎ𝑡 represents conditional volatility, and 𝐼𝑡−1 is the information set available at time t-1. A 

lagged dependent variable, ℎ𝑡−1, is typically added to equation (3) to improve the sample fit: 

 

ℎ𝑖𝑡 ≡ 𝐸(𝜀𝑖𝑡2 |𝐼𝑡−1) = 𝜔𝑖 + 𝛼𝑖𝜀𝑖𝑡−12  + 𝛽𝑖ℎ𝑡−1, 𝛽𝑖 ∈ (−1, 1).    (4) 

 

From the specification of equation (2), it is clear that both 𝜔𝑖 and 𝛼𝑖 should be positive as they 

are the unconditional variances of two different stochastic processes. In equation (4), which is a 

GARCH(1,1) model for commodity i (see Bollerslev, 1986), the stability condition requires that 

𝛽𝑖 ∈ (−1, 1).  

 

The stochastic process can be extended to asymmetric conditional volatility models (see, for 

example, McAleer (2014)), and to give higher-order lags and a larger number of alternative 

commodities, namely up to m-1. However, the symmetric process considered here is sufficient to 

focus the key ideas associated with the purpose of the paper. 

 

As the stochastic process in equation (2) follows a random coefficient autoregressive process, 

under normality (non-normality) of the random errors, the maximum likelihood estimators 

(quasi- maximum likelihood estimators, QMLE) of the parameters will be consistent and 

asymptotically normal. It is worth emphasizing that the regularity conditions include 

invertibility, which is obvious from equation (2), as: 

 

𝜀𝑖𝑡 − 𝜙𝑖𝑡𝜀𝑖𝑡−1 =  𝜂𝑖𝑡, 

 

so that the standardized shocks can be expressed in terms of the empirical data through equations 

(1) and (2). 
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Ling and McAleer (2003) and McAleer et al. (2008) provide general proofs of the asymptotic 

properties of univariate and multivariate conditional volatility models based on satisfying the 

regularity conditions in Jeantheau (1998) for consistency, and in Theorem 4.1.3 in Amemiya 

(1985) for asymptotic normality. 

 

2.2 Multivariate Conditional Volatility Models 
 
The multivariate extension of the univariate ARCH and GARCH models is given in Baba et al. 

(1985) and Engle and Kroner (1995). It is useful to define the multivariate extension of the 

relationship between the returns shocks and the standardized residuals, that is, 𝜂𝑖𝑡 = 𝜀𝑖𝑡/�ℎ𝑖𝑡 . 

The multivariate extension of equation (1), namely 𝑦𝑡 = 𝐸(𝑦𝑡|𝐼𝑡−1) + 𝜀𝑡, can remain unchanged 

by assuming that the three components are now 𝑚 × 1 vectors, where 𝑚 is the number of 

financial assets. 

 

Consider the vector random coefficient autoregressive process of order one, which is the 

multivariate extension of the univariate process given in equation (2):    

 

𝜀𝑡 = 𝛷𝑡𝜀𝑡−1 + 𝜂𝑡,     (5) 

 

where 

𝜀𝑡 and 𝜂𝑡 are 𝑚 × 1 vectors,  

𝛷𝑡 is an 𝑚 × 𝑚 matrix of random coefficients,   

𝛷𝑡~𝑖𝑖𝑑(0,𝐴), A is positive definite,  

𝜂𝑡~𝑖𝑖𝑑(0,𝐶), C is an 𝑚 × 𝑚 matrix. 

 

Vectorization of a full matrix A to vec A can have dimension as high as 𝑚2 × 𝑚2, whereas 

vectorization of a symmetric matrix A to vech A can have a smaller dimension of 𝑚(𝑚 + 1)/2 ×

𝑚(𝑚 + 1)/2.  
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In the case where A is a diagonal matrix, with 𝑎𝑖𝑖 > 0 for all i = 1,…,m and |𝑏𝑗𝑗| < 1 for all j = 

1,…,m, so that A has dimension 𝑚 × 𝑚, McAleer et al. (2008) showed that the multivariate 

extension of GARCH(1,1) from equation (5) is given as the Diagonal BEKK model, namely:  

 

𝑄𝑡 = 𝐶𝐶′ + 𝐴𝜀𝑡−1𝜀𝑡−1′ 𝐴′ + 𝐵𝑄𝑡−1𝐵′,   (6) 

 

where A and B are both diagonal matrices. The diagonality of the positive definite matrix A is 

essential for matrix multiplication as 𝜀𝑡−1𝜀𝑡−1′  is an 𝑚 × 𝑚 matrix; otherwise equation (6) could 

not be derived from the vector random coefficient autoregressive process in equation (5). 

 

McAleer et al. (2008) showed that the QMLE of the parameters of the Diagonal BEKK model 

were consistent and asymptotically normal, so that standard statistical inference on testing 

hypotheses is valid.  

 

3. The Fiction of Full BEKK 
 
Consider element i of equation (5), which is given as: 

 

 

𝜀𝑖𝑡 = ∑ 𝜙𝑖𝑗𝑡𝜀𝑖𝑗𝑡−1+ 𝜂𝑖𝑡𝑚
𝑗=1  ,  𝑖 = 1, 2, … ,𝑚,  m > 1   (7) 

 
which is not equivalent to equation (2) unless  𝜙𝑖𝑗𝑡 = 0  ∀ j ≠ i. The stochastic equation (7) is 

not a random coefficient autoregressive process because of the presence of an additional m-1 

random coefficients. Importantly, equation (7) is not invertible as the random processes cannot 

be connected to the data, which requires m equations, such as in equation (5). Consequently, the 

stochastic process underlying univariate ARCH is not a special case of that underlying 

multivariate ARCH unless  𝜙𝑖𝑗𝑡 = 0  ∀ j ≠ i.  

 

The same condition holds for all i = 1,…,m, which leads to the following: 

 

Proposition: For the stochastic process underlying univariate ARCH to be a special case of the 
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stochastic process underlying multivariate ARCH requires the restrictions:   

 

𝜙𝑖𝑗𝑡 = 0  ∀ j ≠ i. 

 

A similar condition holds for univariate GARCH and multivariate GARCH. 

 

The Proposition leads to the following corollaries:  

 

Corollary 1: The 𝑚 × 𝑚 matrix of random coefficients, 𝛷𝑡, is a diagonal matrix. 

 

Corollary 2: From Corollary 1, it follows that the 𝑚 × 𝑚 weight matrix of (co)variances, A, is a 

diagonal matrix.  

 

Corollary 3: Corollaries 1 and 2 show that a Full BEKK model, namely where there are no 

restrictions on the off-diagonal elements in 𝛷𝑡, and hence no restrictions in the off-diagonal 

elements in A, is not possible if univariate ARCH is to be a special case of its multivariate 

counterpart, BEKK.  

 

Corollary 4: As there are no underlying regularity conditions for Full BEKK, including 

invertibility, the model cannot be estimated. Therefore, there is no likelihood function, and hence 

there are also no asymptotic properties of the QMLE of the unknown parameters in Full BEKK.  

 

Corollary 4 is consistent with the proof in McAleer et al. (2008) that the QMLE of Full BEKK 

has no asymptotic properties, whereas the QMLE of Diagonal BEKK is consistent and 

asymptotically normal.  

 

For all intents and purposes, Full BEKK does not exist, except by assumption. 

 

4. Conclusion 
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The Full BEKK model in Baba et al. (1985) and Engle and Kroner (1995), who do not derive the 

model from an underlying stochastic process, was presented as equation (6), with A and B given 

as full matrices, with no restrictions on the off-diagonal elements. The Full BEKK model is 

estimated almost exclusively in practice, despite the fact that it has no underlying stochastic 

process, regularity conditions, or asymptotic properties, as shown in the proposition and three 

corollaries. 

       

The full BEKK model can be replaced by the triangular or Hadamard (element-by-element 

multiplication) BEKK models, with similar problems of identification and (lack of) existence. 

The full, triangular and Hadamard BEKK models cannot be derived from any known underlying 

stochastic processes, which means there are no regularity conditions (except by assumption) for 

checking the internal consistency of the alternative models, and consequently no valid 

asymptotic properties of the QMLE of the associated parameters (except by assumption).  

 

Moreover, as the number of parameters in a full BEKK model can be as much as 3m(m+1)/2, the 

“curse of dimensionality” will be likely to arise, which means that convergence of the estimation 

algorithm can become problematic and less reliable when there is a large number of parameters 

to be estimated. As a matter of fact, estimation of the full BEKK can be problematic even when 

m is as low as 5 financial assets. Such computational difficulties do not arise for the diagonal 

BEKK model. Convergence of the estimation algorithm is more likely when the number of 

commodities is less than 4, though this is nevertheless problematic in terms of interpretation. 

 

The purpose of the paper was to show that univariate GARCH is not a special case of 

multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on 

a random coefficient autoregressive coefficient matrix. The paper provided the regularity 

conditions that arise from the underlying random coefficient autoregressive process, and for 

which the (quasi-) maximum likelihood estimates have valid asymptotic properties under the 

appropriate parametric restrictions, for the univariate and multivariate GARCH models. It was 

shown that the Full BEKK model has no underlying stochastic process, regularity conditions, or 

asymptotic properties.  
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