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Abstract 

TbxFe73Ga27-x (7 at.%  x  11 at.%) ternary alloys have been obtained by cosputtering 

from Tb33Fe67 and Fe72Ga28 targets. In contrast with other Tb-Fe-Ga compounds that 

consist of just one structural phase, the diffraction pattern of the Tb7Fe73Ga20 shows the 

presence of two different phases related to binary Tb-Fe and Fe-Ga alloys. This 

microstructure evolves as the Tb content is increased, and for a Tb of 11 at.% x-ray 

diffractometry only evidences the presence of a phase close to the TbFe2. Although 

none of the studied samples show perpendicular magnetic anisotropy, there is a 

significant component of the magnetization perpendicular to the sample plane. The 

increase of the Tb content on the compounds from 7 at.% to 11 at.% enhances this 

component most probably due to the shift of the microstructure towards one similar to 

the TbFe2.  
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1. Introduction 

Magnetic thin films exhibit a close correlation between structural and magnetic 

properties being possible to tailor their magnetic characteristics by means of the growth 

conditions. In the last years, Fe1-xGax alloys have received great attention due to their 

unique magnetoelastic properties [1-10]. The magnetostriction constant (s) for these 

alloys shows two peaks for Ga contents of 18 at.% and 29 at.% [8]. The exact position 

of these peaks depends on the thermal history during processing being achieved higher 

magnetostriction values in quenched samples [8]. The largest λs value is observed in the 

(100) direction also reflecting the strong correlation between structural and 

magnetoelastic properties in this material system. Nevertheless, Fe1-xGax compounds 

exhibit a tendency to the (110) texture when deposited in form of thin films either by 

electrodeposition or vacuum techniques [11-15]. TbFe2 has also been deeply studied 

due to its huge s of around 4000 ppm at 10 K and 2500 ppm at room temperature [16]. 

Also, it has been reported perpendicular magnetic anisotropy (PMA) in TbFe2 and the 

influence of growth conditions and composition on it [17-19]. Nevertheless, its high 

coercivity and brittleness have reduced the interest on this material system.  

Recently, it has been reported the increase of λs in Fe-Ga alloys with a Ga 

content  17 at.% doped with a quantity of Tb below 1 at.% [20-23]. In particular, λs 

shows an increase of  250 % in (110)-textured polycrystalline alloys doped with a 0.3 

at.% of Tb [23]. Besides, there have also appeared works about ternary Tb-Fe-Ga 

compounds where another compositional range has been explored, TbyFe100-x-yGax thin 

films with y between 9 and 10 at.% and x from 13 to 16 at.% obtained by cosputtering 

[24-25]. The magnetic anisotropy and the possibility to control it by means of the 

growth conditions have been the main goal of those studies. Although PMA has been 

observed for some specific compositions, the compositional range and the growth 

conditions analyzed so far are rather small. One of the main differences between the 

ternary compounds studied so far is the microstructure. When the Tb content is low 

(below 1 at.%), the compound exhibits a bcc structure similar to what is found in Fe-Ga 

alloys [20]. When the Tb content is higher, around 10 at.%, the microstructure is closer 

to that of TbFe2 [24]. Nevertheless, more studies are necessary to know the 

microstructure and magnetic behavior in each compositional range. In addition, it is of 

relevance the investigation of the effect of growth conditions as already indicated by 

previous works [25]. Here, we present an investigation about the magnetic behavior of 
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TbxFe73Ga27-x (7 at.%  x  11 at.%) thin films obtained by cosputtering. In comparison 

to previous works, we have analyzed alloys deposited at a lower distance between target 

and substrate and with the same type of power source (DC) in both targets. We have 

observed an evolution of the microstructure from two to one phase as the Tb content is 

increased from 7 at.% to 11 at.%. We have also studied the out-of-plane (OOP) 

component of the magnetization and its dependence with the structural properties.  

 

2. Experimental techniques 

Samples were deposited at room temperature on 5 × 4 mm
2
 glass substrates. 

Two targets with a nominal composition of Tb33Fe67 and Fe72Ga28 were employed to 

cosputter the alloys. The targets have a diameter of 5 cm and a thickness of 0.3 cm. The 

deposition was performed in the oblique incidence, being the angle of incidence 

between each target and the substrate of about 25 and the distance between the targets 

and the substrate of 9 cm, i.e., smaller than in previous works [24-25]. Another 

difference in comparison to previous works is the use of a DC power source in the two 

targets. Before the deposition of each sample, the base pressure was below 4 × 10
-7

 

mbar. To obtain samples with different compositions, we have kept fixed a power of 90 

W in the Fe72Ga28 being modified between 50 and 90 W in the Tb33Fe67 target. The 

growth rate was calibrated in previous samples measuring the thickness of the layers as 

described in [26]. Then, the time of deposition was controlled to obtain a thickness of 

around 320 nm in the layers shown in this work. Mo 20 nm thick was used as buffer and 

capping layers for all the samples. They were grown with a DC power of 90 W. The Ar 

pressure was 2 × 10
-3

 mbar to evaporate all the layers: buffer, capping, and ternary Tb-

Fe-Ga alloys.  

We have focused our attention on the analysis of as-grown samples, i.e., we have 

not performed any thermal treatment previous to the analysis of the samples. The 

composition of the samples was analyzed by means of the Energy Dispersive X-ray 

Spectroscopy (EDS) in a JEOL JSM 7600F SEM microscope operated at 20 kV and 9 

A. We have estimated an uncertainty of around 1 at.% in the compositional 

measurements. -2 x-ray diffractometry (XRD) patterns were measured in the Bragg-

Brentano configuration. The step size of the diffraction scans (0.02) was optimized 

considering that the layers are polycrystalline with diffraction peaks rather wide. At 

room temperature, in-plane and out-of-plane hysteresis loops were carried out in a 
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vibrating sample magnetometer (VSM). In the VSM we can rotate the sample being 

possible to measure the in-plane loops at different angles between the applied magnetic 

field and the in-plane reference direction, the long side of the substrates. The same 

routine as in previous works was used for the field-cooled (FC) curves performed in a 

superconducting quantum interference device (SQUID) magnetometer [24]. Prior to 

measuring the temperature dependence of the magnetization, the sample was first 

cooled from room temperature to 5 K under a saturation field of 2 kOe and then, the FC 

curves were recorded with an applied magnetic field of 100 Oe during the warming-up. 

Hysteresis loops at 10 K were also performed in the SQUID magnetometer. Magnetic 

Force Microscopy (MFM) images were recorded by a Digital Instruments Nanoscope 

IIIa, using the phase detection mode, i.e., monitoring the cantilever’s phase of 

oscillation while the magnetic tip was scanning the sample surface at a distance of 80 

nm on the average (lift mode). Commercially available ferromagnetic CoCr tips were 

used. The MFM measurements were performed both at remanence and in-field 

(applying an external magnetic field lying in the plane of the film, with an intensity of 

0.8 kOe) [27-28]. In order to exclude the influence of the tip on the magnetic state of the 

sample, we used different scanning directions and tip to sample distances, obtaining the 

same results with different operating conditions.    

 

3. Results and discussion 

 Our experimental results show that the composition of the alloys can be 

controlled by means of the growth power applied in the TbFe2 target (table I). Thanks to 

the growth conditions proposed in this work, we have managed to keep fixed the Fe 

content in the 73 at.%. The increase of the growth power in the TbFe2 target from 50 W 

to 90 W modifies the Tb from 7 to 11 at.% as the Ga is reduced from 20 to the 16 at.% 

(table I). When the atoms ejected from the targets arrive to the substrate, they suffer 

resputtering and reflection processes [29-30]. All these processes can affect the 

composition of the layers because each type of atom can suffer a different resputtering 

or reflection phenomena. This fact can explain that the Tb-Fe-Ga ternary compounds 

have an Fe content of 73 at.% in spite of starting with targets with a lower Fe content. 

We have analyzed the structure of the samples by means of x-ray diffractometry (figure 

1). We also present the diffraction pattern of a Mo layer deposited in the same way as 

the buffer and capping layers for a better analysis of the results. The peak at 2  73.68 

corresponds to the reflection (211) of Mo. In the samples studied in this work, it is 
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observed a diffraction peak at 40.7 as also observed in previous works about Tb-Fe-Ga 

compounds with a Tb content  10 at.% [24-25]. Although this peak is near the (110) of 

Mo, it is closer to that of the TbFe2 being possible to correlate it to the latter structure 

(Fig. 1b). In addition to the reflection at 40.7, XRD also evidences a second peak 

around 44. The theoretical value for -Fe is 2θ = 44.67, but it moves towards lower 

angles as Ga is introduced in the Fe lattice and it can appear at 2θ = 44.1 for a Ga 

content of 25 at.% [9]. In our samples, we find the -Fe (110) reflection below 44, 

which points to the formation of Fe1-xGax alloys with a Ga content higher than 25 at.%. 

The existence of this reflection indicates a disordered A2 phase with a (110) texture as 

generally observed in Fe-Ga thin films [12-15]. It can also be observed that the position 

of this diffraction peak (related to Fe-Ga compounds) depends on the Tb content. It 

moves to smaller diffraction angles and decreases its intensity as it is raised the content 

of Tb in the samples (Fig. 1b). These two effects can be explained by considering the 

introduction of Tb in the Fe-Ga matrix as recently reported by Ma et al. [20]. On one 

hand, the introduction of Tb in the Fe-Ga matrix increases its lattice parameter because 

of the larger atomic radius of Tb and on the other, the disorder promoted in the Fe-Ga 

matrix by the Tb introduction reduces the intensity of the diffraction peak related to the 

Fe-Ga alloys present in the samples. In bulk samples obtained by other preparation 

techniques it has been reported a solubility limit of 0.2 at.% for Tb in the A2 phase of 

Fe-Ga [22-23]. In our compounds the Tb content is higher than that solubility limit, and 

in agreement with those reports, we observe a phase separation as indicated by the 

presence of diffraction peaks related to both Fe-Ga and Tb-Fe alloys. However, for a Tb 

content of 11 at.% (Tb11Fe73Ga16), XRD only evidences the presence of one structural 

phase similar to TbFe2 (Fig. 1b) as reported in previous works in which much higher Tb 

dopings are introduced [24-25]. Therefore, the growth conditions proposed in this work 

enable to tune the structure of TbxFe73Ga27-x (7 at.%  x  11 at.%) thin films from two 

separate phases, related to Fe-Ga and Tb-Fe alloys, to one phase similar to TbFe2 as the 

Tb content increases from 7 at.% to 11 at.%.  

We have analyzed the magnetic properties measuring the hysteresis loops with 

the applied magnetic field in and perpendicular to the sample plane (Fig. 2). A sample 

will show PMA if two conditions are fulfilled: a) it is magnetically isotropic in the 

sample plane, i.e. there is no difference between the hysteresis loops measured at 

different angles between the in-plane magnetic field and the reference direction, and b) 
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the OOP direction is an easy axis in comparison to any direction in the sample plane. 

Regardless of the composition, we have found that the OOP direction is not an easy axis 

in none of the studied samples (Fig. 2) and therefore, there is not a clear PMA in the 

samples studied in this work.  

The absence of PMA does not rule out the existence of a significant stray field 

emerging from the plane of the sample in the perpendicular direction. As a matter of 

fact, we observe a clear OOP component by MFM, as demonstrated by Figure 3, where 

the image at remanence corresponding to the sample with a Tb content of 10 at.% is 

reported and compared with the AFM image. In order to exclude the correlation 

between magnetic and topographic signals the comparison of relevant magnetic 

structures with the corresponding topographic reference is shown in figure 3. In 

particular, similar morphological textures detected by AFM (compare the three circular 

and the two elliptical highlighted zones) lead to very different magnetic structures. The 

surface roughness of the film, as determined by the AFM image reported in figure 3, is 

5 nm and the Power Spectral Density function (based on the Fourier analysis of the 

MFM micrograph) is greater than 50 nm (figure 3c): this means that the dimension of 

magnetic domains is one order of magnitude greater than the roughness of topography. 

The value of roughness is much lower than the lift height (80 nm) used in the MFM 

measurements and this avoid an influence of the topography in the detection of MFM 

signal. Moreover a direct comparison of the AFM profile of a specific section with the 

correspondent MFM profile (3d, 3e)definitely confirm the uncorrelation between the 

two signals [31-32]. The results shown in figure 3 must be considered as representative 

of the magnetic signal observed in all the analyzed samples. The image consists of 

magnetic structures which are not modified in their overall shape and dimension by the 

presence of an external in-plane field up to 800 Oe. The shape of the magnetic 

structures and their in-field stability is comparable to the ones observed in samples [33], 

where the OOP component was detected and studied. In a previous study on Tb-Fe-Ga 

compounds with similar Tb but lower Ga content [25], we showed that the stability of 

the magnetic domains was more related to the power source used during deposition than 

to the composition of the alloy. For a composition of Tb10Fe76Ga14, there were obtained 

more stable magnetic domains and a higher PMA when using a DC power supply in the 

TbFe2 target. In this work, we have used DC power sources in the two targets and a 

smaller target to substrate distance. With these growth conditions, we have managed to 
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obtain stable magnetic structures with an OOP magnetization even in layers comprised 

of two separate phases (figure 3).  

In figure 4 (a) we present a detail of the hysteresis loops recorded with the 

magnetic field in the perpendicular direction. It is clear that the increase of Tb in the 

compound enhances the OOP component of the magnetization. The hysteresis loop of 

the sample with the lowest Tb content (7 at.%) does not saturate for the maximum 

applied magnetic field of 12.5 kOe. However, the hysteresis loops modify their shape as 

the Tb content is increased and eventually for a Tb of 11 at.%, the loop saturates for a 

magnetic field of a little bit less of 12.5 kOe. It is important to remark that the 

Tb11Fe73Ga16 layer does not present an easy axis in the OOP direction but an 

enhancement of the magnetization component in that direction in comparison to the 

other samples. We can correlate the shape of these perpendicular hysteresis loops to the 

evolution of the microstructure. To do that, we have plotted the ratio of the remnant 

magnetization (Mrem) and the magnetization at 12.5 kOe (M12.5 kOe) for the perpendicular 

hysteresis loops, Mrem/M12.5 kOe, as a function of the ratio between the intensity of the 

(113) diffraction peak of the TbFe2 (ITbFe2) and the (110) peak of FeGa (IFeGa), 

ITbFe2/IFeGa. It is clear from figure 4b that the OOP component of the magnetization 

increases as a microstructure closer to the TbFe2 is developed upon the increase of Tb in 

the compound.  

We can further analyze the evolution of the microstructure by means of FC 

curves. In materials systems comprised of heavy rare earths and magnetic transition 

metals it is observed a zero or a minimum value for the magnetization in the FC curves, 

generally denoted as the Compensation temperature (TComp), due to the 

antiferromagnetic coupling between these two type of atoms [34]. The presence of 

TComp in our samples can only be due to the existence of Tb-Fe alloys and thus, it can be 

used to obtain information about them. Nevertheless, it is important to consider that the 

presence of any other ferromagnetic phase in the ternary compound has an additional 

effect on the magnetization curve. In the FC curves of our samples we observe a 

minimum or a change of slope that marks the position of the TComp (Fig. 5a) and we can 

infer information about Tb-Fe alloys from it. A not clear compensation point indicates 

the presence of another magnetic phase that in these compounds is related to Fe-Ga 

alloys. In any case, the TComp is only due to the Tb-Fe alloys being possible to 

qualitatively determine their composition because the lower the TComp, the lower the Tb 

content [35]. Therefore, the shift of the TComp from 11 K to around 150 K shows the Tb 
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enrichment of the Tb-Fe phase present in the samples in agreement with the evolution 

of the microstructure towards one closer to the TbFe2 as observed by XRD (Figure 1). 

We have also performed hysteresis loops at low temperature (10 K). The coercivity in 

the layer with the highest Tb content is much higher with respect to the alloy with the 

lowest (fig. 5b). This increase of coercivity can be taken as a further indication of a 

structure close to the TbFe2 in the ternary compound with the highest Tb content as 

TbFe2 exhibits a much higher coercivity than Fe-Ga [36]. Therefore, the growth 

conditions proposed in this work enable to obtain an OOP component of the 

magnetization in Tb-Fe-Ga thin films comprised of two separate phases. Nevertheless, it 

is enhanced as a microstructure closer to the TbFe2 is developed upon the increase of Tb 

doping.  

 

 

4. Conclusions 

We have grown TbxFe73Ga27-x (7 at.%  x  11 at.%) thin films by cosputtering from 

two targets with composition Tb33Fe67 and Fe72Ga28, respectively. The growth 

conditions used here, DC power sources in the two targets and a lower target to 

substrate distance, in comparison to previous works have enabled us to tune the 

microstructure of the ternary compounds from two to one structural phase as the Tb 

content is increased. Although PMA has not been obtained in none of the samples, we 

have observed by MFM a significant OOP component of the magnetization stable up to 

external magnetic fields of 800 Oe. This magnetic signal is measured even in layers that 

exhibit two structural phases being enhanced upon the increase of Tb doping. 

Experimental results indicate that this can be due to the development of a microstructure 

closer to the TbFe2.   
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Table caption.  

Table I. Summary of growth conditions and composition of the samples studied in this 

work.  
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Table I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Composition Growth conditions 

Tb7Fe73Ga20 

 

TbFe2. DC: 50 W 

Fe3Ga. DC: 90 W 

Tb8Fe73Ga19 

 

TbFe2. DC: 60 W 

Fe3Ga. DC: 90 W 

Tb10Fe73Ga17 

 

TbFe2. DC: 70 W 

Fe3Ga. DC: 90 W 

Tb11Fe73Ga16 

 

TbFe2. DC: 90 W 

Fe3Ga. DC: 90 W 
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Figure captions 

Figure 1. X-ray diffraction scans of ternary compounds with different composition and 

a Mo layer. The composition is displayed in each curve and the curves are vertically 

shifted for clarity. (a) -2 complete scan, and (b) detail of the area of interest. The 

position of the TbFe2(113) and -Fe(110) are marked with a dashed and dotted line, 

respectively.  

Figure 2. Comparison of (□) in-plane and () out-of-plane hysteresis loops recorded at 

room temperature for layers with different composition, (a) Tb7Fe73Ga20 and (b) 

Tb11Fe73Ga16. The insets of (a) and (b) show the low field region in detail. In the two 

graphs the hysteresis loops are normalized to the value of the magnetization at 12.5 

kOe. 

Figure 3. (a) MFM image at remanence of the sample with a Tb content of 10 at.% and 

(b) corresponding AFM topography. The circles and ellipses indicate particular regions 

where the MFM signal reaches peaks of intensity or a particular morphology is 

observable: in the same subareas, the AFM image is clearly uncorrelated from the MFM 

signal. In (c) we report the Power Spectral Density from which the average size of 

magnetic domains is calculated to be greater than 50 nm. In (d) there is a section of the 

topography which shows that highest surface peaks (10 nm) are very low compared to 

the lift scan heigh (80 nm) and comparing it with the corresponding MFM profile (e) the 

differencies are clear. The results must be considered as representative of the magnetic 

signal observed in all the analyzed samples. 

Figure 4. (a) Detail of the perpendicular hysteresis loops for layers with different 

composition: (□) Tb7Fe73Ga20, (■) Tb8Fe73Ga19, (○) Tb10Fe73Ga17, and () Tb11Fe73Ga16. 

(b) Ratio between the remnant magnetization and the magnetization at 12.5 kOe 

(Mrem/M12.5 kOe) measured in the perpendicular hysteresis loops as a function of the 

intensity of the diffraction peak of the (113) reflection of the TbFe2 and the (110) of 

FeGa (ITbFe2/IFeGa). The dotted line is a guide to the eye.  

Figure 5. (a) FC curves of two ternary compounds (■) Tb8Fe73Ga19 and () 

Tb11Fe73Ga16. The inset is a detail of the low temperature range to better show the TComp 

of the Tb8Fe73Ga19. (b) Hysteresis loops at 10 K for the (□) Tb7Fe73Ga20 and () 

Tb11Fe73Ga16 compounds. Inset: Complete hysteresis loops. The hysteresis loops are 

normalized to the value of the magnetization at 50 kOe. 
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Figure 1.         R. Ranchal et al 
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Figure 2.         R. Ranchal et al 
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Figure 3.         R. Ranchal et al 

 

 

 

 

 

 

 

 

  



19 
 

Figure 4.         R. Ranchal et al 
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Figure 5.       R. Ranchal et al. 

 

 

 

 


