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Abstract

We consider an elliptic problem with nonlinear boundary condi-
tion involving nonlinearity with superlinear and subcritical growth at
infinity and a bifurcation parameter as a factor. We use re-scaling
method, degree theory and continuation theorem to prove that there
exists a connected branch of positive solutions bifurcating from infinity
when the parameter goes to zero. Moreover, if the nonlinearity satis-
fies additional conditions near zero, we establish a global bifurcation
result, and discuss the number of positive solution(s) with respect to
the parameter using bifurcation theory and degree theory.

1 Introduction

We consider the following elliptic equation with nonlinear boundary condition
{

−∆u+ u = 0 in Ω ;
∂u
∂η

= λf(u) on ∂Ω,
(1.1)

where Ω ⊂ R
N (N ≥ 2) is a bounded domain with C2,α (0 < α < 1) boundary

∂Ω, ∂/∂η := η(x) · ∇ denotes the outer normal derivative on ∂Ω, λ > 0 is
a bifurcation parameter and the nonlinearity on the boundary f : [0,∞) →
[0,∞) is locally Lipschtiz.

Keywords: elliptic problem, nonlinear boundary conditions, superlinear and subcriti-

cal, local bifurcation, degree theory, global bifurcation.
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Reaction-diffusion equations involving nonlinear boundary conditions, ap-
pear naturally in applications. For example, limb development which incor-
porates both outgrowth due to cell growth as well as cell division and inter-
actions between morphogens produced in several very specific zones of the
limb bud, see [31]. Another known application is when a highly exothermic
reaction takes place in a thin layer around a boundary [22], this information
is then used in cryosurgery (surgery using local application of intense cold to
destroy damaged tissue) [17].

Elliptic equations with nonlinear boundary conditions have been investi-
gated extensively in recent years. Results on existence of positive solutions
of problems with nonlinear boundary conditions can be found (without be-
ing exhaustive), using techniques such as, monotone methods and functional
analysis in [1, 19], concentration compactness method of Lions (see [24, 25])
in [15], bifurcation theory in [5, 6, 7, 26, 28, 30], variational methods in
[20, 29, 34], and topological degree in [10, 13].

Regarding the nonlinear eigenproblem (1.1), we refer to [14, 33, 29, 34,
26] where there are existence results with a parameter λ on the boundary
for a pure power sublinear nonlinearity. When f is also a pure power and
superlinear, we mention for instance [14] with a combination of interior and
boundary reaction terms, and also [18] where the authors describe the profile
near blowup time for solution of the associated parabolic problem.

To the best of our knowledge, there are so far no existence results with
respect to the parameter λ on the boundary of problem (1.1) when the bound-
ary nonlinearity f is superlinear and subcritical, but not necessarily a pure
power. In this paper, we fill this gap by showing that there exists a positive
weak solution for λ small (see Theorem 1.1), depending only on the behavior
of f at infinity. Further, by imposing additional conditions on f to guarantee
bifurcation from the trivial solution, nonexistence for large λ, and some nec-
essary technical assumptions, we obtain global bifurcation and multiplicity
results (see Theorem 1.2).

Main focus of this paper is to study (1.1) when f is superlinear and
subcritical, that is, there exists a constant b > 0 such that

(H)∞ lim
s→+∞

f(s)

sp
= b with

{

1 < p < N
N−2

if N ≥ 3,

p > 1 if N = 2 .

By a weak solution of problem (1.1), we mean a pair (λ, u) ∈ (0,∞) ×
H1(Ω) such that

∫

Ω

∇u∇ψ +

∫

Ω

uψ = λ

∫

∂Ω

f(u)ψ, for all ψ ∈ H1(Ω). (1.2)
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Moreover, one gets that the weak solution u is actually in C2,α(Ω)∩C1,α(Ω)
if f satisfies the condition (H)∞ (see Corollary 2.3). Therefore, we use C(Ω)
as our underlying space, and define the solution set as

Σ :=
{

(λ, u) ∈ [0,+∞)× C(Ω) : (λ, u) is a weak solution of (1.1)
}

.

The closure of the set of nontrivial solutions will be denoted by S . Let
λ0, λ∞ ∈ [0,+∞). We say that (λ0, 0)

(

respectively, (λ∞,∞)
)

is a bifurca-
tion point from the trivial solution (respectively, from infinity) if there exists
a sequence (λn, un) ∈ Σ such that λn → λ0 and ‖un‖C(Ω) → 0 (respectively,
λn → λ∞ and ‖un‖C(Ω) → +∞) as n → +∞. Likewise, we say that a
connected component C bifurcates from the trivial solution at (λ0, 0) if C

is a maximal closed connected subset of S ∪ (λ0, 0) containing (λ0, 0). A
connected component bifurcating from infinity can be defined similarly.

We state our first result on local bifurcation from infinity.

Theorem 1.1. Assume that f satisfies (H)∞. Then, there exists λ̂ > 0

such that for all λ ∈ (0, λ̂], (1.1) has a positive weak solution u such that
‖u‖C(Ω) → ∞ as λ → 0+. Moreover, there exists a connected component
C + ⊂ Σ, of positive weak solutions of (1.1), bifurcating from infinity at
λ = 0, such that λ takes all values in (0, λ̂] along C + (see Fig. 1).

λ

‖u‖C(Ω)

λ̂

Figure 1: Bifurcation from infinity at λ∞ = 0

We use uniform a-priori bounds results for asymptotically superlinear,
subcritical nonlinearities, and re-scaling argument together with degree the-
ory and bifurcation theory to prove Theorem 1.1. Such method was first
used in [4] for a result in the Dirichlet boundary condition case. We remark
that Theorem 1.1 is independent of the behavior of the nonlinearity f away
from infinity.
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Next, in order to discuss global bifurcation and multiplicity results, we
impose additional conditions on the nonlinearity f . First, we assume con-
ditions on f that guarantees bifurcation from the trivial solution, that is,
f ∈ C1([0,∞)) satisfies the following:

(H)0











f(0) = 0, f ′(0) > 0,

and there exists a constant ν > 1 such that

f(s) = f ′(0)s+R(s) for s ≥ 0 with R(s) = O(sν) as s→ 0.

Second, to discuss the bifurcation direction of weak solutions near the
bifurcation point, following quantities play a crucial role. For ν > 1 as
defined in (H)0, set

R0 := lim inf
s→0+

R(s)

sν
and R0 := lim sup

s→0+

R(s)

sν
. (1.3)

Finally, let µ1 > 0 be the first Steklov eigenvalue and ϕ1 ∈ H1(Ω) the cor-
responding nonnegative eigenfunction associated with the Steklov eigenvalue
problem

{

−∆ψ + ψ = 0 in Ω ;
∂ψ

∂η
= µψ on ∂Ω .

(1.4)

See Remark 2.8 for the regularity and positivity of the nonnegative eigen-
function ϕ1.

Now, we state the following theorem concerning global bifurcation and
multiplicity result.

Theorem 1.2. Let f ∈ C1([0,∞)) be such that hypotheses (H)0, (H)∞ are
satisfied. Suppose that there exists K > 0 such that

f(s) ≥ Ks for s ≥ 0 . (1.5)

Then, there exists a connected component C + of positive weak solutions of
(1.1) emanating from the trivial solution at the bifurcation point

(

µ1
f ′(0)

, 0
)

∈ Σ
possessing a unique bifurcation point from infinity at λ = 0. More precisely,
if (λ, uλ) ∈ C +, then the following holds:











‖uλ‖C(Ω) → 0 as λ→ µ1
f ′(0)

,

‖uλ‖C(Ω) → ∞ as λ→ 0+ and

if (λ∞,∞) is a bifurcation point from infinity, then λ∞ = 0.

(1.6)

Moreover, problem (1.1) has a positive weak solution for any λ ∈
(

0, µ1
f ′(0)

)

and no positive weak solutions for λ > µ1
K

, see Fig. 2 (a)-(b).
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Furthermore, if R0 < 0, then the bifurcation from the trivial solution at
(

µ1
f ′(0)

, 0
)

is supercritical. In addition, there exists λ̄ > µ1
f ′(0)

such that problem

(1.1) has at least two positive weak solutions for any λ ∈
(

µ1
f ′(0)

, λ̄
)

, and at

least one positive weak solution for λ = µ1
f ′(0)

, and for λ = λ̄, as depicted in

Fig. 2 (b).

λ

‖u‖C(Ω)

µ1
f ′(0)

µ1
K

(a)

λ

‖u‖C(Ω)

µ1
f ′(0) λ

µ1
K

(b)

Figure 2: Possible global bifurcation diagrams: (a) represents subcritical bifurca-
tion; (b) represents supercritical bifurcation.

We use novel approach of combining re-scaling argument used in the proof
of local result, Theorem 1.1, and uniform a-priori bound together with the
abstract local and global bifurcation theory [11, 32], and degree theory to
prove Theorem 1.2.

Analogous existence results, such as Theorems 1.1 and 1.2, when the
nonlinear reaction term appears as a source in the equation complemented
with homogeneous Dirichlet boundary condition, can be found, among others,
in [3, 4] and the survey paper [23].

Sections 2 deals with some preliminaries such as regularity of weak solu-
tions, positivity, and uniform a-priori bounds. In Section 3, we prove Theo-
rem 1.1 using re-scaling argument and degree theory. In Section 4, we collect
results concerning bifurcation from the trivial solution using Rabinowitz’s
global bifurcation Theorem [32]. We also characterize the subcritical or su-
percritical nature of weak solutions near the bifurcation point. Finally, we
prove Theorem 1.2 by combining bifurcation theory and degree theory.

Unless otherwise specified, solutions in this paper are understood as weak
solutions, as defined in (1.2).
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2 Preliminaries and Auxiliary Results

In this section, we discuss regularity and positivity of weak solutions of (1.1),
and uniform a-priori bound result.

2.1 Regularity of weak solutions and positivity

Here, we state and prove regularity results for some linear and nonlinear
problems, which are relevant for our purposes. In particular, we prove that
any weak solution of (1.1) is in fact Hölder continuous, see Proposition 2.2
and Corollary 2.3.

To analyze the existence and regularity of weak solutions of (1.1), we
must set up the appropriate functional framework. To this end, we consider
the following linear problem

{

−∆v + v = 0 in Ω ;
∂v
∂η

= h on ∂Ω ,
(2.7)

where h ∈ Lq(∂Ω) for q ≥ 1. It is known that for each q ≥ 1, (2.7) has a
unique solution in W 1,m(Ω) and

‖v‖W 1,m(Ω) ≤ C‖h‖Lq(∂Ω), where 1 ≤ m ≤ Nq/(N − 1) , (2.8)

see, for instance [28] for more details. We denote the solution operator cor-
responding to (2.7) by

T : Lq(∂Ω) →W 1,m(Ω) with T h := v .

It is known that the trace operator

Γ : W 1,m(Ω) → Lr(∂Ω) (2.9)

is a continuous linear operator for every r satisfying N−1
r

≥ N
m

− 1, and
compact if N−1

r
> N

m
− 1, see [21, Ch. 6]. Now, we define the resolvent

operator (also known as the Neumann-to-Dirichlet operator) S := T ◦ Γ as

S : Lq(∂Ω) → Lr(∂Ω) given by Sh := Γ
(

T h
)

= Γv , (2.10)

for any q ≥ 1 and for all r satisfying N−1
r

≥ N−m
m

with 1 ≤ m ≤ Nq/(N −1),
given schematically by

Lq(∂Ω)
T

−→ W 1,m(Ω)
Γ

−→ Lr(∂Ω) .

Note that if N−1
r

> N−m
m

then S is compact by the compactness of Γ. The

following Lemma states the regularity of the solution of the linear problem
(2.7). In particular, if q > N − 1, then v ∈ Cα(Ω).
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Lemma 2.1. Let N ≥ 2 and h ∈ Lq(∂Ω) with q ≥ 1. Then, the unique
solution v = Th of the linear problem (2.7) satisfies the following:

(i) If 1 ≤ q < N−1, then Γv ∈ Lr(∂Ω) for all 1 ≤ r ≤ (N−1)q
N−1−q

and the map

S : Lq(∂Ω) → Lr(∂Ω) is continuous for 1 ≤ r ≤ (N−1)q
N−1−q

and compact

for 1 ≤ r < (N−1)q
N−1−q

.

(ii) If q = N−1, then Γv ∈ Lr(∂Ω) for all r ≥ 1 and the map S : Lq(∂Ω) →
Lr(∂Ω) is continuous and compact for 1 ≤ r <∞.

(iii) If q > N − 1, then v ∈ Cα(Ω) with ‖v‖Cα(Ω) ≤ C‖h‖Lq(∂Ω) for some
α ∈ (0, 1). Moreover, Γv ∈ Cα(∂Ω) and the map S : Lq(∂Ω) → Cα(∂Ω)
is continuous and compact.

(iv) If h ∈ Cα(∂Ω), then v ∈ C2,α(Ω) ∩ C1,α(Ω).

Proof. See [5, Lemma 2.1] for proofs of items (i)-(iii).
(iv) Since h ∈ Cα(∂Ω) then by (iii) v ∈ Cα(Ω), it follows from the first

equation in (2.7) that v ∈ C2,α(Ω). Furthermore, using the second equation
of (2.7), it follows that v ∈ C2,α(Ω) ∩ C1,α(Ω).

In what follows, we will show that any weak solution u of our nonlinear
problem (1.1) lies in fact in Cα(Ω) for some α ∈ (0, 1). To accomplish this,
we will establish regularity results for problems with nonlinearities satisfying
(H)∞. Hereafter, we will use the same symbol to denote both the function
and the associated Nemytskii operator.

Proposition 2.2. Let N ≥ 2 and h : [0,∞) → [0,∞) be locally Lipschitz
continuous satisfying condition (H)∞. Let v be a nontrivial weak solution of
the following problem

{

−∆v + v = 0 in Ω ;
∂v
∂η

= h(v) on ∂Ω .

Then,
||v||Cα(Ω) ≤ C(1 + ||Γv||Lr(∂Ω))

for some positive α ∈ (0, 1), where r =
2(N − 1)

N − 2
if N > 2, and r ≥ 1 when

N = 2.
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Proof. We assume N > 2, since the proof is trivial when N = 2. By definition
of a weak solution and the trace operator, (2.9), v ∈ H1(Ω) and its trace

Γv ∈ Lr(∂Ω), where 1 ≤ r ≤ r0 := 2(N−1)
N−2

, respectively. It follows from the
condition (H)∞ that

h
(

Γv
)

≤ C(1 + |Γv|p), (2.11)

and by the continuity of the Nemytskii operator

h
(

Γv
)

∈ Lq0(∂Ω), where q0 :=
r0
p

=
2(N − 1)

p(N − 2)
.

Now we proceed with the bootstrap argument. For h
(

Γv
)

∈ Lq0(∂Ω) and
(2.8), we have

v ∈ W 1,si(Ω), where si :=
Nqi−1

N − 1
for i = 1, 2, . . . .

By (2.9), we get

Γv ∈ Lri(∂Ω), where ri :=
(N − 1)qi−1

N − 1− qi−1
for i = 1, 2, . . . .

Then, using (2.11) and the continuity of the Nemytskii operator

h
(

Γv
)

∈ Lqi(∂Ω), where qi :=
ri
p

for i = 1, 2, . . . .

If qi > N − 1 for some i ∈ N, then v ∈ Cα(Ω) for some α ∈ (0, 1) by
Lemma 2.1 (iii).

If qi = N − 1 for some i ∈ N, then by Lemma 2.1 (ii), Γv ∈ Lr(∂Ω)
for r ≥ 1. By (2.11), h(Γv) ∈ Lm for m ≥ 1 . Using the Lq-estimates for
second-order linear elliptic equations, we get that u is actually in W 1,s(Ω)
for any s > 1, in particular for s > N . By the continuity of the embedding
W 1,s(Ω) →֒ Cα(Ω) for s > N , one has that v ∈ Cα(Ω), see e.g [9, p. 285].

Now suppose qi < N − 1. Then,

1

r1
=

1

q0
−

1

N − 1
=
p(N − 2)− 2

2(N − 1)
<

N − 2

2(N − 1)
=

1

r0
iff p <

N

N − 2
.

If ri > ri−1, then

1

ri+1

=
1

qi
−

1

N − 1
=
p

ri
−

1

N − 1
<

p

ri−1

−
1

N − 1
=

1

qi−1

−
1

N − 1
=

1

ri
.

Hence, by induction {ri} is strictly increasing. Then, clearly {si} and {qi}
are strictly increasing as well.
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Suppose qi < N −1 for all i ∈ N. Since {qi} is strictly increasing and 1 ≤
qi < N−1 for all i ∈ N, qi → q∞ for some 1 ≤ q∞ ≤ N−1. If q∞ = N−1, then
fixing ε > 0, there exists an i0 ∈ N such thatN−1 > qi0 ≥ N−1−ε. However,
{qi} is strictly increasing, hence qi0+1 > qi0 ≥ N − 1, a contradiction. As a
consequence, q∞ < N − 1. Define r∞ := lim

i→∞
ri = lim

i→∞
pqi = pq∞ > 0. Note

that

qi+1 − qi =
ri+1 − ri

p
=
ri+1 ri
p

(

1

ri
−

1

ri+1

)

=
ri+1 ri
p

(

1

qi−1
−

1

qi

)

=
ri+1 ri
p

qi − qi−1

qi−1 qi

hence

qi+1 − qi
qi − qi−1

=
ri+1 ri
p

1

qi−1 qi
=
ri+1 ri
p

p2

ri−1 ri
= p

ri+1

ri−1
.

Taking the limit as i goes to infinity and noting that r∞ > 0, we have

lim
i→∞

qi+1 − qi
qi − qi−1

= p > 1 .

This contradicts the boundedness of {qi}. Therefore, there exists i0 ∈ N

such that qi0 ≥ N − 1 and hence v ∈ Cα(Ω) for some α ∈ (0, 1), as desired.
Furthermore, the estimate in Lemma 2.1 and (2.11) give

||v||Cα(Ω) ≤ ‖h(Γv)‖Lq0 (∂Ω) ≤ ‖C(1 + |Γv|p)‖Lq0 (∂Ω) ≤ C(1 + ||Γv||Lr(∂Ω))
(2.12)

where r = pq0 =
2(N − 1)

N − 2
if N > 2.

Corollary 2.3. Assume that the nonlinearity f : [0,∞) → [0,∞) is locally
Lipschitz continuous and satisfies condition (H)∞. Fix any Λ > 0 and let u
be a weak solution of the nonlinear problem (1.1) for some 0 < λ ≤ Λ. Then

||u||Cα(Ω) ≤ C(1 + ||Γu||Lr(∂Ω)),

for some α ∈ (0, 1) and some C = C(Λ) > 0, where r =
2(N − 1)

N − 2
for N > 2

and r ≥ 1 for N = 2. Moreover, u ∈ C2,α(Ω) ∩ C1,α(Ω).

Proof. Proposition 2.2 yields the proof for the first part.
Since u ∈ Cα(Ω), f is locally Lipschtiz continuous, f(u) ∈ Cα(∂Ω). The

conclusion follows from Lemma 2.1 (iv).
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Under additional assumption on the nonlinearity f , Corollary 2.3 can be
rewritten in the following way.

Proposition 2.4. Assume that the nonlinearity f ∈ C1([0,∞)) satisfies
conditions (H)0 and (H)∞. For any fixed Λ > 0, if u is a weak solution of
the nonlinear problem (1.1) for some 0 ≤ λ ≤ Λ, then

‖u‖Cα(Ω) ≤ C||Γu||Lr(∂Ω),

for some α ∈ (0, 1), where C = C(Λ) and r = 2(N−1)
N−2

if N > 2, and r ≥ 1
when N = 2.

Proof. Note that under conditions (H)0 and (H)∞, for any ε > 0, there exists
a constant Cε > 0 such that

f(s) ≤ (1 + ε)f ′(0)|s|+ Cε|s|
p.

In particular, there exists a constant C > 0 such that f(s) ≤ C(|s| + |s|p).
Hence, the conclusion follows from (2.12).

Next lemma shows that any nonnegative nontrivial solution of (2.7) is
positive on Ω.

Proposition 2.5. Let v ∈ C2(Ω) ∩ C1(Ω) be a solution of (2.7) for h ≥ 0
with h 6≡ 0. Then v > 0 on Ω.

Proof. Clearly v > 0 in Ω by the strong Maximum Principle, see [1, p. 127].
Assume to the contrary that there exists an x0 ∈ ∂Ω such that v(x0) = 0. By
the Hopf’s Lemma ([16, Lem. 3.4]) ∂v

∂η
(x0) < 0, contradicting the boundary

condition ∂v
∂η
(x0) = h(x0) ≥ 0. As a conclusion, v > 0 for all x ∈ Ω.

Remark 2.6. Let f : [0,∞) → [0,∞) be a locally Lipschitz continuous
satisfying condition (H)∞ and u be a weak solution of (1.1) for some λ > 0.
Then, Corollary 2.3 implies that u ∈ C2,α(Ω) ∩ C1,α(Ω) and hence u > 0 on
Ω by Proposition 2.5.

Remark 2.7. Let f : [0,∞) → [0,∞) be a locally Lipschitz continuous
function satisfying condition (H)∞. Then, for a given u ∈ C(Ω), f(Γu) maps
C(Ω) into Lq(∂Ω) with q > 1 by the continuity of the Nemytskii operator
associated with f , see [2, Lemma 3.1]. Then, using (2.10), we have that

S ◦ f ◦ Γ : C(Ω) −→ Lr(∂Ω)
Cor.2.3
−→ Cα(Ω)

c
→֒ C(Ω) , (2.13)
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is compact, and v = (S ◦ f ◦ Γ)u is the weak solution of

{

−∆v + v = 0 in Ω ;
∂v
∂η

= λf(u) on ∂Ω .

More precisely,

u is a weak solution of (1.1) for λ > 0 ⇐⇒ u = λS
(

f(Γu)
)

.

We end this subsection with a remark about the sign and regularity of the
eigenfunction ϕ1 corresponding to the first Steklov eigenvalue µ1 of problem
(1.4).

Remark 2.8. By the regularity of weak solutions, see [9, Thm. 9.26], and
repeating the arguments as in the proof of Corollary 2.3, the eigenfunction
ϕ1 corresponding to the first Steklov eigenvalue µ1 of problem (1.4) is in
C2,α(Ω) ∩ C1,α(Ω) with 0 < α < 1 (see also e.g. [27, Thm 8.12]). Therefore,
by Proposition 2.5 ϕ1 > 0 on Ω.

2.2 Uniform a-priori bound

Our main tool in the proof of Theorem 1.1 is degree theory, for which the
following uniform a-priori bound is crucial. To state the result, consider

{

−∆u + u = 0 in Ω ;
∂u
∂η

= bup + ζ(x, u) on ∂Ω ,
(2.14)

where p is as in (H)∞, and for a.e. x ∈ Ω, all σ ∈ R, and

lim
σ→∞

|ζ(x, σ)|

|σ|p
= 0. (2.15)

While we are not aware of any paper that establishes uniform a-priori
estimate for (2.14), the result below follows by adapting the proof for sys-
tems case in [13, Thm. 3.7]. Their proof is written for |ζ(x, σ)| ≤ c(1 +
|σ|r) for some 0 < r < p, but the same arguments can be used to prove the
existence of a priori bound under condition (2.15).

Proposition 2.9. There exists a constant M > 0 such that every positive
solution u ∈ C(Ω) of (2.14) satisfies

‖u‖C(Ω) ≤ M .
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3 Proof of Theorem 1.1

Our proof is motivated by [4]. In particular, we re-scale (1.1) in such a way
that the transformed problem approaches a limiting problem of "pure power
type" as λ→ 0+. Then, using λ ≥ 0 as the homotopy parameter, we obtain
a positive weak solution of the re-scaled problem, hence of (1.1) for λ > 0
small.

First, let us extend f to R by setting f(s) = f(|s|) for s ∈ R. Now
consider the problem

{

−∆u+ u = 0 in Ω ;
∂u
∂η

= λf(|u|) on ∂Ω .
(3.16)

Note that for λ > 0, u is a solution of (3.16) if and only if w = λ
1

p−1u satisfies
{

−∆w + w = 0 in Ω ;
∂w
∂η

= λ
p

p−1f
(

λ−
1

p−1 |w|
)

on ∂Ω .
(3.17)

For λ > 0, define

f̃(λ, s) := λ
p

p−1f
(

λ−
1

p−1 |s|
)

= λ
p

p−1

[

f
(

λ−
1

p−1 |s|
)

− b
(

λ−
1

p−1 |s|
)p
]

+ b|s|p .

We observe that
lim
λ→0+
s→s0

λ
p

p−1 f
(

λ−
1

p−1 |s|
)

= b|s0|
p ,

due to superlinear condition at infinity (H)∞ for s0 6= 0, and by the continuity

of f at s0 = 0. Therefore, we can define f̃ at λ = 0 by setting f̃(0, s) := b|s|p.
Therefore, since f is Lipschitz continuous, so is f̃ : [0,+∞)× R → [0,+∞)
defined above.

Then the goal is to study the following re-scaled problem for λ ≥ 0

{

−∆w + w = 0 in Ω ;
∂w
∂η

= f̃(λ, w) on ∂Ω ,
(3.18)

while keeping in mind that (3.18) reduces to the limiting problem for λ = 0

{

−∆w + w = 0 in Ω ;
∂w
∂η

= b|w|p on ∂Ω .
(3.19)

Our strategy to proceed with the proof of Theorem 1.1 is as follows: 1)
we show that the limiting problem (3.19), corresponding to λ = 0, has a

12



positive solution using the Leray-Schauder degree, 2) show that the re-scaled
problem (3.18) has a positive solution using 1) and λ ≥ 0 as the homotopy
parameter, then 3) return to the original problem via the re-scaling.

To set up for the Leray-Schauder degree, we formulate the problem (3.18)
in an abstract setting in terms of the compact and Nemytskii operators. For
this, we define the compact map F̃ : [0,+∞)× C(Ω) → C(Ω) given by

F̃(λ, v) := S(f̃(λ,Γ(v))) ,

where f̃(λ, ·) denotes the Nemytskii operator corresponding to f̃(λ, ·), and S
is as defined in Remark 2.7. It follows from Remark 2.7 that

(λ, w) is a weak solution of (3.18) ⇐⇒ F̃(λ, w) = w .

First we establish the following result regarding the limiting problem
(3.19).

Lemma 3.1. There exists r > 0 such that for all θ ∈ [0, 1] and all w ∈ C(Ω)
with ‖w‖C(Ω) = r, w 6= θF̃(0, w). Consequently deg(I−F̃(0, ·), Br(0), 0) = 1.

Proof. Suppose to the contrary that for each r > 0, there exists θ ∈ [0, 1]
such that the operator equation

w = θF̃(0, w) for θ ∈ [0, 1]

has a solution w ∈ C(Ω) with ‖w‖C(Ω) = r, that is, w is a solution of
{

−∆w + w = 0 in Ω ;
∂w
∂η

= θ b|w|p on ∂Ω .
(3.20)

Clearly w 6= 0 since ‖w‖C(Ω) = r > 0. Hence w > 0 in Ω by Proposition 2.5.
Now, let 0 < ε < µ1 be fixed. Since p > 1, there exists r∗ > 0 such

that bsp < εs for 0 < s ≤ r∗. Then there exists θr∗ ∈ [0, 1] and a solution
wr∗ > 0 of (3.20) such that ‖wr∗‖C(Ω) = r∗, and wr∗ satisfies bwpr∗ < εwr∗
whenever ‖wr∗‖C(Ω) = r∗. Using ϕ1 ≥ 0 as the test function and the fact
that θr∗ ∈ [0, 1], we have

0 =

∫

Ω

∇wr∗∇ϕ1 +

∫

Ω

wr∗ϕ1 − θr∗b

∫

∂Ω

wpr∗ϕ1

≥

∫

Ω

∇wr∗∇ϕ1 +

∫

Ω

wr∗ϕ1 − ε

∫

∂Ω

wr∗ϕ1 = (µ1 − ε)

∫

∂Ω

wr∗ϕ1 ,

a contradiction since ε < µ1. Thus there exists r > 0 such that for all
θ ∈ [0, 1] and all w ∈ C(Ω) with ‖w‖C(Ω) = r, w 6= θF̃(0, w). Therefore,
using θ ∈ [0, 1] as a homotopy parameter, we get

deg(I−F̃(0, ·), Br(0), 0) = deg(I−θF̃ (0, ·), Br(0), 0) = deg(I, Br(0), 0) = 1 ,

as desired. This completes the proof of Lemma 3.1.
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Lemma 3.2. There exists R > r > 0 and 0 ≤ z ∈ C(Ω) such that w 6=
F̃(0, w)+tz for all t ≥ 0 and all w ∈ C(Ω) with ‖w‖C(Ω) = R. Consequently,

deg(I − F̃(0, ·), BR(0), 0) = 0.

Proof. Let 0 ≤ z ∈ C(Ω) be the unique solution of

{

−∆z + z = 0 in Ω ;
∂z
∂η

= 1 on ∂Ω .

Then, we observe that the operator equation

w = F̃(0, w) + t z

corresponds to the PDE

{

−∆w + w = 0 in Ω ;
∂w
∂η

= b|w|p + t on ∂Ω .
(3.21)

Step 1: We show that there exists t0 > 0 such that (3.21) does not have a
solution for t ≥ t0.

For this, let µ > µ1 be fixed. Then there exists t0 > 0 such that bsp+ t >
µs+ t− t0 for t ≥ 0. Suppose by contradiction that there exists t1 ≥ t0 such
that w ≥ 0 is a solution of (3.21). Using ϕ1 ≥ 0 as the test function, we get

0 =

∫

Ω

∇w∇ϕ1 +

∫

Ω

wϕ1 −

∫

∂Ω

[bwp + t1]ϕ1

=

∫

∂Ω

[bwp + t1]ϕ1 −

∫

Ω

∇w∇ϕ1 −

∫

Ω

wϕ1

>

∫

∂Ω

[µw + (t1 − t0)]ϕ1 −

∫

Ω

∇w∇ϕ1 −

∫

Ω

wϕ1

≥ µ

∫

∂Ω

wϕ1 −

∫

Ω

∇w∇ϕ1 −

∫

Ω

wϕ1 = (µ− µ1)

∫

∂Ω

wϕ1 ,

which is a contradiction since µ > µ1. This establishes Step 1, which implies
that for all a > 0, w 6= F̃(0, w) + t0 z for all w ∈ C(Ω) with ‖w‖C(Ω) = a for
any a > 0. Hence, for any a > 0, we have

deg(I − F̃(0, w) + t0 z, Ba, 0) = 0 . (3.22)

Step 2: We show there exists R > r > 0 such that for all t ∈ [0, t0],

deg(I − F̃(0, w) + t z, BR, 0) = 0 .
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Indeed, by Proposition 2.9 with ξ(t) ≡ t ∈ [0, t0], there exists M > 0 such
that ‖w‖C(Ω) ≤M . By taking R > max{r,M}, we get w 6= F̃(0, w) + t z for

all w ∈ C(Ω) with ‖w‖C(Ω) = R and t ∈ [0, t0]. Then, using (3.22), we get

deg(I − F̃(0, w), BR, 0) = deg(I − F̃(0, w) + t0 z, BR, 0) = 0 ,

as desired, establishing Step 2. This completes the proof of Lemma 3.2.

Now we show that the limiting problem (3.19) has a positive solution.
Indeed, it follows from Lemma 3.1, Lemma 3.2 and the excision property of
degree that

deg(I − F̃(0, w), BR \Br, 0) = −1 . (3.23)

Therefore, there exists a solution of w = F̃(0, w), or equivalently a weak
solution of (3.19), say w0 ∈ BR \Br. Using the fact that ‖w0‖C(Ω) > r > 0,

it follows from Proposition 2.5 that w0 > 0 in Ω.

Now we use λ ≥ 0 as homotopy parameter to establish the following
existence result for the re-scaled problem (3.18).

Lemma 3.3. There exists λ̂ > 0 such that

(a) F̃(λ, w) 6= w for all λ ∈ [0, λ̂] whenever ‖w‖C(Ω) ∈ {r, R}; and

(b) deg(I − F̃(λ, ·), BR \Br, 0) = −1 for all λ ∈ [0, λ̂].

Proof. (a) Suppose not. Then there exist sequences λn ≥ 0 with λn → 0 and
wn ∈ C(Ω) such that F̃(λn, wn) = wn and ‖wn‖C(Ω) = r (or ‖wn‖C(Ω) = R).

Since wn is bounded and F̃ is compact, (λn, wn) → (0, w) for some w ∈
C(Ω) with ‖w‖C(Ω) = r or ‖w‖C(Ω) = R, a contradiction to Lemma 3.1 or

Lemma 3.2, respectively. Hence there exists λ̂ > 0 satisfying (a).
(b) Now using λ ∈ [0, λ̂] as the homotopy parameter, it follows from part

(a) that
deg(I − F̃(λ, ·), BR \Br, 0) = const. ∀λ ∈ [0, λ̂] .

In particular, it follows from (3.23) that for all λ ∈ [0, λ̂]

deg(I − F̃(λ, ·), BR \Br, 0) = deg(I − F̃(0, ·), BR \Br, 0) = −1 .

This complete the proof of Lemma 3.3.

Lemma 3.3 implies that the re-scaled problem (3.18) has a nontrivial
solution wλ ∈ C(Ω̃) for all λ ∈ [0, λ̂] satisfying r < ‖wλ‖C(Ω̃) < R. Moreover,

since f is nonnegative and satisfies (H)∞, so does f̃ and hence wλ > 0 in Ω
by Proposition 2.5.
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Now we return to the original problem (1.1). Using the re-scaling

u = λ−
1

p−1wλ ,

we can conclude that (1.1) has a positive solution (λ, u) for λ ∈ (0, λ̂]. Also,
since ‖wλ‖C(Ω) > r > 0, it follows that ‖u‖C(Ω) → +∞ as λ→ 0+.

We use the following Leray-Schauder continuation theorem to establish
the last part of Theorem 1.1.

Proposition 3.4. ([12, Prop. 2.3]) Let X be a Banach space and U a
bounded open subset of X. Let T : [a, b] × U → X be a compact map
and S := {(t, x) ∈ [a, b]× U : T (t, x) = x} is the set of all fixed points of
T . Assume that

• T (t, x) 6= x for (t, x) ∈ [a, b]× ∂U ;

• deg(I − T (t, ·), 0) 6= 0 for all t ∈ [a, b].

Then there exists a connected component D of S such that D∩ ({a}×U) and
D ∩ ({b} × U) are nonempty.

Now, by taking [a, b] = [0, λ̂], U = BR\Br, T = F̃(·, ·) in Proposition 3.4,
it follows, using Lemma 3.3, that the re-scaled problem (3.18) has a connected
component D of positive weak solutions along which λ takes all values in

[0, λ̂]. This in turn, again using u = λ−
1

p−1wλ, implies that there exists a
connected component C + ⊂ Σ of positive weak solutions of (1.1) bifurcating
from infinity at λ∞ = 0. This completes the proof of Theorem 1.1.

4 Global Bifurcation

In this section, we will prove that there exists a connected set of positive
weak solutions C

+ of (1.1) bifurcating from the trivial solution at λ = µ1
f ′(0)

,
and bifurcating from infinity at λ = 0. Furthermore, we discuss the direc-
tion of bifurcation of positive weak solutions at ( µ1

f ′(0)
, 0). Finally, we prove

Theorem 1.2.

4.1 Bifurcation from the trivial solution

We first show that the condition (H)0 guarantees solutions bifurcating from
the trivial solution. The proof is similar to the case of bifurcation from
infinity, see for instance [5, Proposition 3.1]. We provide the proof below for
completeness.
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Proposition 4.1. Assume that the nonlinearity f ∈ C1([0,∞)) satisfies the
hypothesis (H)0. Let {λn} be a convergent sequence of real numbers and un
be the corresponding sequence of positive weak solutions of equation (1.1)

satisfying ||un||C(Ω) → 0 as n → ∞. Then, necessarily λn →
µ1

f ′(0)
, and

{un} satisfies, up to a subsequence,

un
||un||C(Ω)

→ ϕ1 in Cβ(Ω)

for some β ∈ (0, 1).

Proof. Suppose that λn → λ for some λ ∈ R and set vn :=
un

||un||C(Ω)

.

Observe that vn is a weak solution of the problem







−∆vn + vn = 0 in Ω ;
∂vn
∂η

= λnf
′(0)vn + λn

R(un)

||un||C(Ω)

on ∂Ω .
(4.24)

It follows from (H)0 that R(un)
||un||C(Ω)

→ 0 in C(Ω) as n → ∞. Therefore, the

right-hand side of the second equation in (4.24) is bounded in C(Ω). Hence,
by the elliptic regularity, vn ∈ W 1,s(Ω) for any s > 1, in particular for s > N .
Then, the Sobolev embedding theorem implies that ||vn||Cα(Ω) is bounded by
a constant C that is independent of n. Then, the compact embedding of
Cα(Ω) into Cβ(Ω) for 0 < β < α yields, up to a subsequence, vn → Φ ≥ 0 in
Cβ(Ω). Since ||vn||C(Ω) = 1, we have that ||Φ||C(Ω) = 1. Hence, Φ 6≡ 0.

Using the weak formulation of equation (4.24), passing to the limit, and
taking into account that λn → λ for some λ ∈ R and vn → Φ, we obtain that
Φ is a weak solution of the equation







−∆Φ+ Φ = 0 in Ω ;
∂Φ

∂η
= λf ′(0)Φ on ∂Ω.

Then, it follows that λf ′(0) = µ1, the first Steklov eigenvalue, and Φ = ϕ1 >
0 is its corresponding eigenfunction, ending the proof.

Now, we will show that
(

µ1
f ′(0)

, 0
)

is a bifurcation point from the trivial

solution of positive weak solutions of (1.1). That is, there exists a sequence
(λn, un) ∈ Σ such that λn → µ1

f ′(0)
, un > 0 on Ω, and that ||un||C(Ω) → 0. In

particular, we have the following result.
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Theorem 4.2. Assume that the nonlinearity f ∈ C1([0,∞)) satisfies hypoth-
esis (H)0. Then, there exists a connected component C + ⊂ Σ of positive weak
solutions of (1.1) emanating from the trivial solution at

(

µ1
f ′(0)

, 0
)

∈ R×C(Ω).

Moreover, C + is unbounded in R× C(Ω).

Proof. The proof follows from the general results on bifurcation from the
trivial solutions given in [32, Thm. 1.3]. More precisely, there exists a con-
nected component C + ⊂ Σ of positive weak solutions of (1.1) emanating
from the trivial solution at

(

µ1
f ′(0)

, 0
)

∈ R× C(Ω) and, the branch C + either
meets another bifurcation point from the trivial solution, or it is unbounded
in R× C(Ω). Since f ≥ 0 satisfies (H)0, it follows from Lemma 2.1 (iv) and
Proposition 2.5 that the branch contains only positive solutions. From the
Crandall-Rabinowitz Theorem, see [11], C

+ can neither meet another bifur-
cation point from zero (that is, another point

(

µ′

f ′(0)
, 0
)

for another Steklov

eigenvalue µ′), nor can meet
(

µ1
f ′(0)

, 0
)

again, so the branch is unbounded in

R× C(Ω).

4.2 Subcritical and supercritical bifurcations from the

trivial solution

In this subsection, we discuss sufficient conditions for the bifurcation from
the trivial solution to be either subcritical (to the left) or supercritical (to
the right). Following lemma is key in determining the direction of bifurcation

from the trivial solution at
(

µ1
f ′(0)

, 0
)

.

Lemma 4.3. Assume that the nonlinearity f ∈ C1([0,∞)) satisfies the hy-
pothesis (H)0. Consider a sequence of positive weak solutions un of (1.1)
corresponding to the parameters λn such that λn → µ1

f ′(0)
and ‖un‖C(Ω) → 0.

Then, we have

R0

µ1
(

f ′(0)
)2

∫

∂Ω
ϕ1+ν
1

∫

∂Ω
ϕ2
1

≤ lim inf
n→∞

µ1
f ′(0)

− λn

‖un‖
ν−1
C(Ω)

(4.25)

≤ lim sup
n→∞

µ1
f ′(0)

− λn

‖un‖
ν−1
C(Ω)

≤ R0
µ1

(

f ′(0)
)2

∫

∂Ω
ϕ1+ν
1

∫

∂Ω
ϕ2
1

,

where R0 and R0 are defined in (1.3), and ν > 1 as defined in (H)0.

Proof. Using the weak formulation of (1.1) with ϕ1 as the test function, we
get

∫

Ω

∇un∇ϕ1 +

∫

Ω

unϕ1 = λnf
′(0)

∫

∂Ω

unϕ1 + λn

∫

∂Ω

R(un)ϕ1 ,
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which yields

(µ1 − λnf
′(0))

∫

∂Ω

unϕ1 = λn

∫

∂Ω

R(un)ϕ1 .

Consequently, we get

(µ1 − λnf
′(0))

||un||
ν−1

C(Ω)

∫

∂Ω

un
||un||C(Ω)

ϕ1 = λn

∫

∂Ω

R(un)

||un||νC(Ω)

ϕ1. (4.26)

From Fatou’s Lemma,

lim inf
n→∞

∫

∂Ω

R(un)

uνn

(

un
‖un‖C(Ω)

)ν

ϕ1 (4.27)

≥

∫

∂Ω

lim inf
n→∞

[

R(un)

uνn

(

un
‖un‖C(Ω)

)ν

ϕ1

]

≥ R0

∫

∂Ω

ϕ1+ν
1 ,

where we have used the definition of R0 (see (1.3)), that ϕ1 > 0 on ∂Ω and
the fact that un

‖un‖C(Ω)
→ ϕ1 uniformly on ∂Ω ( see Proposition 4.1).

Passing to the limit in (4.26) and using (4.27), we obtain the first in-
equality of (4.25). The second inequality is trivial and the third is obtained
likewise.

Now, we can state the following result with regarding subcritical or su-
percritical bifurcations from the trivial solution.

Theorem 4.4. (Bifurcation of positive solutions from the trivial so-
lution) Assume that the nonlinearity f ∈ C1([0,∞)) satisfies hypothesis
(H)0. Then, the following holds.

(i) (Subcritical bifurcations). If R0 > 0, then the bifurcation of positive
weak solutions from the trivial solution at λ = µ1

f ′(0)
is subcritical, i.e.

λ < µ1
f ′(0)

for every positive solution (λ, u) of (1.1) with (λ, ‖u‖C(Ω)) in

a neighborhood of ( µ1
f ′(0)

, 0).

(ii) (Supercritical bifurcations). If R0 < 0, then the bifurcation of pos-
itive weak solutions from the trivial solution at λ = µ1

f ′(0)
is supercritical,

i.e. λ > µ1
f ′(0)

for every positive solution (λ, u) of (1.1) with (λ, ‖u‖C(Ω))

in a neighborhood of ( µ1
f ′(0)

, 0).

Proof. Consider a sequence of positive weak solutions un of (1.1) correspond-
ing to the parameters λn such that λn → µ1

f ′(0)
and ‖un‖C(Ω) → 0. Observe

that, by (4.25), conditions R0 > 0 and R0 < 0 imply that µ1
f ′(0)

> λn and
µ1
f ′(0)

< λn, respectively, for sufficiently large n. This completes the proof.
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4.3 Proof of Theorem 1.2

The proof will be completed in several steps.

Step 1: By Theorem 4.2, there exists a connected component C
+ of positive

weak solutions of (1.1) bifurcating from the trivial solution at the bifurcation
point

(

µ1
f ′(0)

, 0
)

and that C + is unbounded in R× C(Ω).

Step 2: At this step, we show that (1.1) has no positive weak solution for
λ > µ1

K
, where K > 0 is as given in the hypothesis (1.5).

Indeed, let u be a positive weak solution of (1.1) for some λ > 0. Then,
using ϕ1 ≥ 0 as the test function, we get

0 =

∫

Ω

∇u∇ϕ1 +

∫

Ω

uϕ1 − λ

∫

∂Ω

f(u)ϕ1

= λ

∫

∂Ω

f(u)ϕ1 −

∫

Ω

∇u∇ϕ1 −

∫

Ω

uϕ1

≥ λK

∫

∂Ω

uϕ1 −

∫

Ω

∇u∇ϕ1 −

∫

Ω

uϕ1 = (λK − µ1)

∫

∂Ω

uϕ1 .

This yields λ ≤ µ1
K

. Hence there exists no positive weak solution u of (1.1)
for λ > µ1

K
, completing the proof of this step.

Step 3: Here, we show that C + from Step 1 contains weak positive solutions
that bifurcate from infinity at λ = 0, and establish (1.6).

By Step 1-Step 2, if (λ, u) ∈ C + then ‖u‖C(Ω) → 0 as λ → µ1
f ′(0)

, and C +

is bounded in the λ-direction. Hence, there exists a sequence (λn, un) ∈ C
+

such that λn ∈ (0, K) and ‖un‖C(Ω) → ∞. By choosing a subsequence
if necessary, there exists a sequence (λn, un) ∈ C + with the property that
λn → λ̃ and ‖un‖C(Ω) → ∞. It suffices to show λ̃ = 0.

Assume to the contrary that λ̃ > 0. For a0 > 0, let [a0, b0] be any fixed
compact interval with λ̃ ∈ (a0, b0). By Proposition 2.9, for any λ ∈ [a0, b0],
there exists a uniform constant M =M(a0, b0) > 0 such that for every (λ, w)
with λ ∈ [a0, b0] and w a positive weak solution of the re-scaled problem
(3.17)λ, we have

‖w‖C(Ω) ≤M .

Here we recall from Section 3 that for any λ > 0, u is a positive weak

solution of (1.1) if and only if w = λ
1

p−1u is a weak solution of (3.17). Hence,

‖u‖C(Ω) ≤ λ−
1

p−1M ≤ a
− 1

p−1

0 M =:M ′ for any λ ∈ [a0, b0], (4.28)

which contradicts that ‖un‖C(Ω) → ∞ with λn → λ̃ > 0. Hence λ̃ = 0. As a
conclusion, necessarily, C + contains a unique bifurcation point from infinity
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at λ = 0 and (1.6) holds. Then, (1.1) has a positive weak solution for any
λ ∈

(

0, µ1
f ′(0)

)

. This completes Step 3. Now, set

λ̄ := sup{λ > 0 : (λ, u) ∈ C
+}.

Then, λ̄ <∞ by Step 2. Step 4: Assuming R0 < 0, we prove the existence

of two positive weak solutions for each λ ∈
(

µ1
f ′(0)

, λ̄
)

.

It follows from Theorem 4.4 (ii), that the bifurcation is supercritical at
the bifurcation point

(

µ1
f ′(0)

, 0
)

from the trivial solution. Note that since

R0 < 0, λ̄ > µ1
f ′(0)

. Let λ0 ∈
(

µ1
f ′(0)

, λ
)

and u0 be a positive weak solution

corresponding to λ0. Now, let λ ∈
(

µ1
f ′(0)

, λ0

)

be fixed. We show that there

exist two distinct positive weak solutions of (1.1) corresponding to λ using
degree theory. For this, first we extend f to R by setting f(t) = 0 for t < 0.
First solution corresponding to λ:

First we note that, since f is Lipschitz continuous, there exists c ∈ R

such that λf(s)+ cs is nondecreasing on [0,M ′], where M ′ > M , and M > 0
is given by Proposition 2.9. Now let θ ∈ [0, 1] and β > µ1. For a given
u ∈ C(Ω), define the operator Tθ : C(Ω) → C(Ω) by v = Tθ(u) := (S◦fθ◦Γ)u,
where v is given by

{

−∆v + v = 0 in Ω ;
∂v
∂η

+ θc v = θ(λf(u) + cu) + (1− θ)(βu+ + 1) on ∂Ω ,

and fθ(u) := θ(λf(u) + cu) + (1− θ)(βu+ + 1). We note that Tθ is compact
by Remark 2.7, and fixed point of the operator T1 is a weak solution of (1.1).

We begin by establishing that u0 > ǫϕ1 for sufficiently small ǫ > 0.
Clearly, u0 − ǫϕ1 satisfies

−∆(u0 − ǫϕ1) + (u0 − ǫϕ1) = 0 in Ω .

Now, using the hypothesis (1.5), and the facts that λ > µ1
f ′(0)

, ‖u0‖C(Ω) < M ′

and f is continuous, we get

λf(u0)− ǫµ1ϕ1 ≥
µ1

f ′(0)
(f(u0)− ǫf ′(0)ϕ1) ≥ 0

for ǫ > 0 sufficiently small. Then

∂(u0 − ǫϕ1)

∂η
= λf(u0)− ǫµ1ϕ1 ≥ 0 on ∂Ω .
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Therefore, by Proposition 2.5, u0 > ǫϕ1 for ǫ > 0 sufficiently small.

Now define

Y :=
{

v ∈ C(Ω) : ‖v‖C(Ω) < M ′ and v > ǫϕ1 on Ω
}

,

and
Z :=

{

v ∈ Y : v < u0 on Ω
}

,

where ǫ > 0 to be chosen sufficiently small later such that in particular
u0 > ǫϕ1 in Ω.

Claim I: deg(I − T1, Y, 0) = 0.
First, we justify that the degree deg(I − Tθ, Y, 0) is well defined and

independent of θ ∈ [0, 1]. That is, u 6= Tθu for any u on the boundary
of Y , ∂Y . We note that if u ∈ ∂Y , then either ‖u‖C(Ω) = M ′ or u = ǫϕ1.
Now, if ‖u‖C(Ω) = M ′, then by Proposition 2.9, u 6= Tθu for any θ ∈ [0, 1].
On the other hand, if u = ǫϕ1 is a solution of u = Tθu for θ = 0, then β > µ1

yields the contradiction

βǫϕ1 + 1 =
∂ǫϕ1

∂η
= µ1ǫϕ1 < βǫϕ1 .

Thus, u 6= Tθu when u = ǫϕ1.
Now, by repeating arguments in Step 2 with λf(u) replaced by βu+ + 1

and using β > µ1, we see that u 6= T0u for any u ∈ Y . Then, using θ ∈ [0, 1]
as a homotopy parameter, we conclude that

deg(I − T1, Y, 0) = deg(I − Tθ, Y, 0) = deg(I − T0, Y, 0) = 0 . (4.29)

Claim II: deg(I − T1, Z, 0) = 1.
We fix ψ0 ∈ Z and show deg(I − (θT1 + (1 − θ)Tψ0), Z, 0) = 1 for θ ∈ [0, 1],
where Tψ0 maps every element of Z to ψ0. By v = (θT1 + (1 − θ)Tψ0)u, for
θ ∈ [0, 1], we mean

{

−∆v + v = 0 in Ω ;
∂v
∂η

+ θc v = θ(λf(u) + cu) + (1− θ)ψ0 on ∂Ω .

Now we show that deg(I − (θT1 + (1− θ)Tψ0), Z, 0) is well defined and inde-
pendent of θ ∈ [0, 1]. Indeed, note that if u ∈ Z, that is, u ≤ u0, then by
Proposition 2.5 v = T1u ∈ Z, since −∆v + v = 0 in Ω and

∂v

∂η
+ cv = λf(u) + cu ≤ λf(u0) + cu0 < λ0f(u0) + cu0 on ∂Ω .
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Also, Tψ0u ∈ Z for u ∈ Z. Then θT1u + (1 − θ)Tψ0u ∈ Z for all θ ∈ [0, 1],
since Z is convex. Hence, there is no solution of I − (θT1 + (1 − θ)Tψ0) on
the boundary of Z, and deg(I − (θT1 + (1 − θ)Tψ0), Z, 0) is well defined for
all θ ∈ [0, 1]. Therefore, since ψ0 ∈ Z, we have

deg(I − T1, Z, 0) = deg(I − Tψ0 , Z, 0) = deg(I, Z, ψ0) = 1 , (4.30)

completing Claim II.
Combining (4.29) and (4.30), one has deg(I − T1, Y \ Z, 0) = −1 and

hence there exists a positive weak solution u2 ∈ Y \Z of (1.1) corresponding
to the fixed λ.
Second solution corresponding to λ:

We construct the second positive weak solution distinct from u2 by the
method of sub- and supersolutions. Using the facts that f(0) = 0 and f ′(0) >
0, we verify that u = ǫϕ1 is a subsolution of (1.1) for ǫ ≈ 0. Indeed, we
observe that since λ > µ1

f ′(0)
is fixed, ξ(s) := µ1s − λf(s) satisfies ξ(0) = 0

and ξ′(0) < 0, then ξ(s) < 0 for s ≈ 0. Therefore, for all 0 ≤ ψ ∈ H1(Ω), the
following holds for ǫ ≈ 0

∫

Ω

∇u∇ψ +

∫

Ω

uψ = µ1

∫

∂Ω

(ǫϕ1)ψ ≤ λ

∫

∂Ω

f(ǫϕ1)ψ = λ

∫

∂Ω

f(u)ψ .

Note that u0 ∈ Y since ǫϕ1 < u0 < M < M ′ for sufficiently small ǫ > 0.
It follows from [8] that min(u2, u0) is a strict supersolution of (1.1). Since
u0, u2 ∈ Y , u = ǫϕ1 < min(u2, u0) on Ω. Hence, there exists a positive weak
solution u1 of (1.1) corresponding to the fixed λ satisfying ǫϕ1 ≤ u1 < u2 on
Ω by Proposition 2.5. This completes Step 4.

Step 5: At this step, we prove the existence of a solution for λ = λ. For
each λ ∈ ( µ1

f ′(0)
, λ̄), problem (1.1) admits a positive weak solution uλ.

Using Proposition 2.9, (4.28) for λ ∈ [ µ1
f ′(0)

, λ̄], and Proposition 2.4, there

exists a uniform constant C > 0 such that ‖uλ‖Cα(Ω) ≤ C for any λ ∈

( µ1
f ′(0)

, λ̄). By compact embeddings, uλ has a subsequence that converges to

(say), u λ̄ in Cβ(Ω) as λ→ λ̄, where β < α.
Moreover,

‖uλ‖
2
H1(Ω) =

∫

Ω

|∇u λ|
2+

∫

Ω

|u λ|
2 = λ

∫

∂Ω

f(u λ)u λ ≤ C, ∀λ ∈

(

µ1

f ′(0)
, λ̄

)

.

By the reflexivity of H1(Ω), uλ has a subsequence that converges weakly to
(say), u λ̄ in H1(Ω) as λ → λ̄. On the other hand, since u λ → u λ̄ ∈ Cβ(Ω)
and f is locally Lipschitz, then f(u λ) → f(u λ̄) in Cβ(Ω) as λ→ λ̄.
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Then, by taking limits in the weak formulation of uλ as λ→ λ̄, we get
∫

Ω

∇u λ̄∇ψ +

∫

Ω

u λ̄ψ = λ̄

∫

∂Ω

f(u λ̄)ψ .

Hence u λ̄ is a positive weak solution of (1.1)λ̄.
Therefore, (1.1) has at least two positive weak solutions for λ ∈

(

µ1
f ′(0)

, λ̄
)

,

and at least one positive weak solution for λ = λ̄. Finally, since the connected
set C + bifurcates to the right at

(

µ1
f ′(0)

, 0
)

and bifurcates from infinity at

λ = 0, C + must cross the hyperplane λ = µ1
f ′(0)

at a point distinct from

u = 0. Hence, the problem (1.1) has a positive weak solution for λ = µ1
f ′(0)

.
This completes the proof of Theorem 1.2. �
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