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Is there an absolute cosmic electric potential? The recent discovery of the accelerated
expansion of the universe could be indicating that this is certainly the case. In this essay
we show that the consistency of the covariant and gauge-invariant theory of electromag-
netism is truly questionable when considered on cosmological scales. Out of the four
components of the electromagnetic field, Maxwell’s theory contains only two physical
degrees of freedom. However, in the presence of gravity, one of the “unphysical” states
cannot be consistently eliminated, thus becoming real. This third polarization state
is completely decoupled from charged matter, but can be excited gravitationally, thus
breaking gauge invariance. On large scales the new state can be seen as a homogeneous
cosmic electric potential, whose energy density behaves as a cosmological constant.

The recent discovery of the accelerated expansion of the universe, and the difficulties
found in the context of general relativity (GR) and the standard model (SM) of
elementary particles to properly account for this effect, have led to consideration of
the possibility that physics on large scales could differ from our well-known small
scale laws.

In this context, models in which the description of the own gravitational inter-
action is modified on large scales with respect to GR have been extensively consid-
ered in recent years. Here we will concentrate on the other long-range interaction
of nature, and explore the possibility that our standard theory of (quantum) elec-
tromagnetism, being valid on small scales, could give rise to unexpected effects
on cosmological scales. As a matter of fact, this possibility is perfectly compati-
ble with current experimental limits which have tested electromagnetism only for
wavelengths roughly below the solar system scales (1.3 A.U.1).

*This essay received an honorable mention in the 2009 Essay Competition of the Gravity Research
Foundation. It was refereed, not as a regular IJMPD research paper, but as an essay.
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In this essay we will discuss one of the most striking consequences of electro-
magnetism in the cosmological context, which is the possibility that the universe
at large scales not only sets a privileged reference frame, but could also determine
an absolute electric potential. Indeed, it is well known that the presence of matter
and radiation in the universe implies that, on large scales, the universe as a whole
has associated a privileged reference frame. That frame is nothing but the cosmic
center-of-mass frame®? of the different components (baryonic and dark matter,
radiation and dark energy). In the case in which all such components are at rest
with respect to each other, the frame can be identified with that of the observers
who see an isotropic cosmic microwave background. Thus we can say that, although
Lorentz symmetry is locally a good symmetry of space—time, it is broken on large
scales by the matter/energy content of the universe. But what about the rest of
the gauge symmetries and, in particular, that of electromagnetism? Is it also pos-
sible that, although on small scales we see electromagnetic gauge symmetry as an
exact symmetry of nature, the actual situation is that it is broken by the content
of the universe on large scales? Does it make sense to talk about a privileged elec-
tromagnetic gauge? We will argue that dark energy, responsible for the accelerated
expansion of the universe, could be nothing but the energy density associated with
such absolute electric potential.*®

Let us start by briefly reviewing the standard covariant electromagnetic quan-
tization in Minkowski space-time.%" The starting point is the action

4 1 v, § 2
S = /d x (—ZF,“,F“ + 5(8MA“) +AMJ"> , (1)
which is not invariant under general gauge transformations, but only under residual
ones, given by A, — A, + 0,0, with 00 = 0. The equations of motion obtained
from this action read

P + E0M(D,A") = J*. (2)

In order to recover the ordinary Maxwell equation, the Lorenz condition 9, A" =0
must be imposed so that the & term disappears. At the classical level this can be
achieved by means of appropriate boundary conditions on the field. Indeed, taking
the four-divergence of the above equation, we find that

0(6,A") = 0, 3)

where we have made use of current conservation. This means that the field 9, A"
evolves as a free scalar field, so that if it vanishes for large |¢t| it will vanish for
all time. At the quantum level, the Lorenz condition cannot be imposed as an
operator identity, but only in the weak sense, 9, A¥ ()|¢) = 0, where (+) denotes
the positive frequency part of the operator and |¢) is a physical state. This condition
is equivalent to requiring that the physical states contain the same number of
temporal and longitudinal photons, so that their energy densities, having opposite
signs, cancel each other. Thus we see that the Lorenz condition seems to be essential
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in order to recover standard Maxwell equations and get rid of the negative energy
states.

Now we move to an expanding universe. The curved space-time version of the
action (1) reads

1
S = /d4x\/§ <—ZF,“,F’“’ + g(VMA“)z + A,J") (4)
and the modified Maxwell equations are
V,FW +VH(V,AY) = JH. (5)
Taking again the four-divergence, we get
O(V,A") =0. (6)

We see that once again V, A" behaves as a scalar field which is decoupled from
the conserved electromagnetic currents, but it is nonconformally coupled to grav-
ity. This means that, unlike the flat space-time case, this field can be excited from
quantum vacuum fluctuations by the expanding background in a completely analo-
gous way to the inflaton fluctuations during inflation. Thus this poses the question
of the validity of the Lorenz condition at all times.

In order to illustrate this effect, we will present a toy example. Let us consider
quantization in the absence of currents, in a spatially flat expanding background,
whose metric is written in conformal time as

ds* = a(n)*(dn* — dx?). (7)

For the scale factor we assume the following form: a(n) = 2+tanh(n/no), where ng is
constant. This metric is asympotically flat in the remote past and far future. Let us
prepare our system in an initial state |¢) belonging to the physical Hilbert space, i.e.
satisfying 8V.Afn(+)|¢> = 0 in the initial flat region. We solve the coupled system of
equations (5) for the corresponding Fourier modes A,x. Because of the expansion of
the universe, the positive frequency modes in the in region with a given temporal
or longitudinal polarization A will become a linear superposition of positive and
negative frequency modes in the out region and with different polarizations \’.3

Thus the system will end up in a final state which no longer satisfies the weak
Lorenz condition, i.e. in the out region 9,.4%\”|¢) # 0. This is shown in Fig. 1,
where we have computed the final number of temporal and longitudinal photons
starting from an initial vacuum state with ni(k) = nl‘l"(k’) = 0. We see that in
the final region ng" (k) # n{"*(k). Notice that the failure comes essentially from
large scales (kng < 1), since on small scales (kng > 1) the Lorenz condition can
be restored. Motivated by this fact, in the following we will explore the possibility
of quantizing electromagnetism in an expanding universe without imposing this
condition.

Let us then assume that the fundamental theory for electromagnetism is given

by (4) and is not invariant under general gauge transformations, but only under
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Fig. 1. Occupation numbers for temporal (continuous line) and longitudinal (dashed line) pho-
tons in the out region versus k in 7761 units.

residual ones. The general solution to the modified equations (5) can be written as
Ap=AD + AR + AP + 0,0, (8)

where Aff), with ¢ = 1,2, are the two transverse modes of the massless photon;
AELS) is the new scalar state, which is the mode that would have been eliminated if
we had imposed the Lorenz condition; and 9,0 is a pure gauge mode which can be
eliminated. In order to quantize the free theory, we perform the mode expansion
for the three physical states:

A X
A= [E| 3 @Al +almAR) | )
A=1,2,s
In fact, the three modes can be chosen to have positive normalization and, for
& = 1/3, the canonical commutation relations are satisfied:

[ax(k),al, (K)] = 6 6@ (k—K), AN =1,2,5, (10)

with a positive sign for the three physical states, i.e. there are no negative norm
states in the theory, which in turn guarantees that there are no negative energy
states (ghosts). Moreover, as shown in Refs. 5 and 9, the theory does not exhibit
either local gravity inconsistencies or classical instabilities.

As shown in (6), VA" evolves as a minimally coupled scalar field. This means
that on sub-Hubble scales (|kn| > 1), the field is suppressed by the universe expan-
sion as |VMA,(€S)”| oc a~ 1. Thus, on small scales, the modified Maxwell equations (5)
will be physically indistinguishable from the flat space ones. To summarize, from
the previous discussion we see that the theory is consistent even though we have not
imposed the Lorenz condition. But, moreover, on super-Hubble scales (|kn| < 1),
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we find that |VMA§:)“ | = const., which, as shown in Ref. 5, implies that the field
contributes as an effective cosmological constant in (4).

In order to determine its value, we will assume that the field is generated during
inflation from quantum vacuum fluctuations, in a completely analogous way to
cosmological metric perturbations. Thus, in an inflationary de Sitter space—time, it
is possible to obtain the corresponding dispersion:

0/(v,4710) = [ pyh) (1)

where Py (k) = 47rk3|VMA§:)”|2. In the super-Hubble limit, we obtain for the power
spectrum
_on
- 1672’
with Hj the constant Hubble parameter during inflation. Thus the electromagnetic
energy density on cosmological scales is given by (0|p4|0) ~ (H;)*. The measured
value of the dark energy density then requires that H; ~ 10~2eV, which corre-
sponds to an inflationary scale of Mj ~ 1TeV. Thus we see that the cosmological
constant value can be naturally explained in terms of physics at the electroweak
scale.

Once the field is produced during inflation, its cosmological evolution can be
easily calculated.® We find that in cosmological time [dt = a(n)dn], the homogeneous
temporal component Ag(t) (the electric potential) is constant during inflation and

Pa(k)

(12)
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Fig. 2. Cosmological evolution of the electric potential Ap from electroweak scale inflation until
the present.
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grows as ¢ during matter and radiation eras. When the electromagnetic dark energy
starts dominating, Ao (t) becomes also constant. The spatial components on super-
Hubble scales A(t) are shown to grow more slowly than Ag(¢) and can be neglected.
In Fig. 2 we show the cosmological evolution of the electric potential from its initial
value generated in inflation [Ag(t;) ~ 1073eV] up to its present value Ag(tg) ~
0.3 Mp, with Mp ~ 10" GeV the Planck mass.

In conclusion, we have discussed the possibility that the true theory of electro-
magnetism contains three and not only two physical degrees of freedom. Although
the new scalar state is completely decoupled from the conserved currents, it can be
gravitationally amplified during inflation, giving rise to the observed dark energy
density. The accelerated expansion of the universe would then be the natural con-
sequence of the existence of an absolute electric potential in the universe.
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