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Abstract

As solar energy will be an increasingly important renewable energy source in the future years, the study 

of how climate change affects both temporal and spatial variability is very important. In this paper, we  

study  future  changes  of  the  solar  radiation  resource  in  the  Iberian  Peninsula  (IP)  through  a  set  of 

simulations  from  ESCENA  project  until  mid-century.  The  evaluation  of  the  simulations  against 

observations indicates contrasting biases for the different regional climate models (RCMs) in terms of 

solar irradiation amount and its interannual variability. We propose a diagnostic for the quality of solar 

energy resource, in which the gridpoints are classified in four categories depending on the combination of  

solar irradiation amount and variability. The observed large percentage of points in the optimal category 

(high irradiation/low variability) in the IP is captured by the RCMs in general terms.

The analysis of scenarios indicates a future increase in solar irradiation, although not all scenarios agree 

in the geographical distribution of this increase. In most projections, a shift is projected from the category 

with optimal resource quality towards the category with high irradiation/high variability, pointing to a 

certain quality loss in the solar resource. This result is not general, as a few scenarios show an opposite  

result. The exceptions are not linked to a particular GCM or emissions scenario. Finally, results from a 

first approximation to the issue of the ability of solar energy to cover power demand peaks in summer 

show  important  differences  between  regions  of  the  IP.  The  spatially-averaged  correlation  of  solar  

irradiation and summer surface temperatures for the whole IP is rather high, which is a positive result as  



the strong interconnections of the power grid within the IP could allow a distribution of solar power  

surpluses in certain regions for such high-temperature episodes.
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Introduction

Iberian Peninsula has an abundant solar energy resource which remains largely unused. In comparison to 

wind power, installed solar power capacity is relatively small, though it has increased rapidly over the  

past few years. Together with the amount of solar radiation, the interannual and seasonal variability of the  

solar energy will significantly influence the production of future solar power plants, so that their study  is 

very important  to decide which are the best  locations.  Particularly, a low interannual variability will  

enable a stable and reliable solar energy supply. The southwestern part of IP stands out because of a low 

interannual variability combined with a high number of sunshine hours (Gil et al., 2015). Another point to 

consider  in  the  analysis  of  the  impact  of  climate  change  on  the  production  of  solar  energy  is  the 

vulnerability to extreme weather events that can damage the installations of solar plants (Patt et al., 2013) 

or reduce the electricity generation capacity due to the incidence of extreme heat and drought events 

(Bartos et al., 2015). Electricity demand can increase strongly during strong heat waves, and solar power 

can contribute to cover such demand increases, if solar radiation also increases during such episodes.

Several  research projects  have been developed to calculate the implications of climate change in the 

medium and long term. The main variables studied have been temperature, precipitation and wind, while 

less attention has been devoted to possible changes in solar radiation.  Thus,  one of the motivations for  

this article is to study the change in solar energy caused by climate change as a principal objective. The 

patterns in precipitation variation are clearly related to solar insolation via cloud cover. Under cloudless 

skies, aerosol optical depth becomes the driving factor (Gueymard, 2012).  



Different  researchers  have  studied  the  impacts  of  climate  change  on  renewable  energy  resources  at  

different spatial scales. Wild et al. (2015) and Crook et al. (2011) have made a global study and both  

obtain very similar conclusions, detecting an increase of solar energy in Europe and an almost generalized 

decrease in the rest of the world. Other studies focus on Europe, such as Gaetani et al. (2014), Tobin et al. 

(2015) or Jerez et al. (2015). The first indicates that the W of Europe and E of Mediterranean are the areas  

of greatest increase in solar energy, while Jerez et al. (2015) concludes that there will be a decline in the 

north of  the European continent and slight increses in southern areas.  Moreover, Tobin et  al.  (2015) 

studies the effect of climate change on wind and indicates a decrease in the Mediterranean and an increase 

in the NE of Europe. Gómez et al. (2016) also finds a future decrease of wind energy resources in the 

Iberian Peninsula, but with important variations among subregions. Finally, some articles have studied the 

potential impacts from a more local perspective. This is the case of Panagea et al. (2014) that detects an 

increased insolation on Greece by 2100. Pašičko et al. (2012) studies the effects of climate change in  

Croatia, on the three most common renewable energies, solar, wind and hydropower. Gunderson et al. 

(2015) focuses on the  Black Sea where he finds significant variations in solar energy caused by climate 

change. Burnett et al. (2014) investigates the UK solar irradiation resource for the present and future 

climate, obtaining a general insolation increase with the exception of NW Scotland.

In terms of   study periods to explore the consequences of  climate change, generally, there are more 

analysis of the long-term (end of the century)(Dosio, 2016; Rowell, 2005; Räisänen et al., 2004) and only  

a few studies analyze the effects in the medium term (mid-century)(Gutowski et al., 2007). To locate the 

best places for future solar power plants, it will be more interesting to study the medium term, because it  

will be at these moment when solar plants that are projected today will be operating. This is another gap 

that we try to clarify with this study.

Another motivation for this article is to analyze the reliability of the solar resource for energy production  

over the Iberian Peninsula,  through the examination of interannual and seasonal  variability. The best 

resource areas should combine a high amount of solar resource with low interannual variability, so that 

the yearly produced energy does not vary much. These aspects will be studied under climate change 



conditions.  To this effect, we will use simulations of ESCENA project because they focus on our study 

domain, in contrast to other scenarios from European projects in which the simulation boundaries are  too 

close to the Iberian Peninsula.

 Global climate models (GCMs) have insufficient spatial resolution to describe the climate at the regional  

level, particularly for regions with complex terrain like IP. Regionalization techniques, like the dynamical 

downscaling, are needed to represent smaller scales.  The dynamical downscaling consists in applying 

regional climate models (RCMs) driven by boundary conditions which are taken from projections of a 

global model. The existence of different formulations of RCMs introduces new uncertainties in future 

climate projections. The way to evaluate this uncertainty is using a multi-model ensemble of simulations. 

This is based on the independence of errors for each model, even if some models have important common 

parts (Knutti et al., 2010). A number of EU-funded projects (PRUDENCE, Christensen and Christensen, 

2007;  ENSEMBLES,Van  der  Linden  and  Mitchell,  2009)  have  explored  the  use  of  an  ensemble  of 

regional models for estimating climate change uncertainties at a local scale in Europe. As IP lies very near  

to a lateral  border in these European projects,  we will  use simulations from  the project  ESCENA . 

(http://meteo.unican.es/en/projects/escena; Jiménez-Guerrero et al., 2013; Domínguez et al., 2013). In this 

project,   AR4 climate  change scenarios  have been  dynamically  downscaled by means  of  4  different 

regional climate models (PROMES, WRF, MM5 and REMO), using a high resolution of 25Km on a 

domain that extends further west than that of other European projects, covering Peninsular Spain and the 

Balearic and Canary Islands.

This paper is  organised as  follows. In  section 2,  we describe  the solar  radiation measurements,  the 

reanalysis and the different models used in this study, as well as  the analysis methods applied in this 

article.  In section 3, we show validation results for the RCMs models of ESCENA project  and their  

behaviour under climate change scenarios. Section 4 presents the main conclusions of this study.

Data and methods

http://meteo.unican.es/en/projects/escena


Data

The  satellite  database  Satellite  Application  Facility  on  Climate  Monitoring (CM  SAF  , 

http://www.cmsaf.eu.) has been used as the reference for validating the simulation. The simulation results  

have been interpolated onto the satellite data grid in order to allow comparisons between data.

The  CM-SAF  is  a  joint  venture  of  the  Royal  Netherlands  Meteorological  Institute,  the  Swedish 

Meteorological and Hydrological Institute, the Royal Meteorological Institute of Belgium, the Finnish 

Meteorological  Institute,  the  Deutscher  Wetterdienst,  Meteoswiss,  the  UK  MetOffice,  with  the 

collaboration  of  the  European  Organization  for  the  Exploitation  of  Meteorological  Satellites 

(EUMETSAT). The CM SAF provides two categories of data: operational products and climate data.  

Climate data are long-term data series appropriate to assess interannual variability and so we selected 

them for this study, in particular,  the shortwave incoming solar radiation product (SIS) with a spatial  

resolution of 0.2ºx0.2º as daily averages. SIS collates shortwave radiation reaching a horizontal unit earth  

surface obtained by processing information from geostationary satellites (SEVIRI sensor on board of the 

METEOSAT Second Generation). The data are available for 1983-2013 period.

 

Models

The ESCENA project generated climate change scenarios based on an ensemble of 4 Regional Climate 

Models (RCMs): PROMES, WRF (two versions with different physical parameterizations), MM5 and 

REMO. A brief description of each model configuration is provided in Table 1, and further information 

can be found in Jiménez-Guerrero et al. (2013) and Domínguez et al. (2013).

The simulations cover a large part of Europe, but we have selected a common area centred in the Iberian 

Peninsula (IP) which is defined from 12ºW to 7ºE and from 35ºN to 45ºN.

All the simulations in the validation period (1989-2008) were forced at the boundaries by ERA-Interim 

reanalysis (Dee et al., 2011) every 6 hours. The ERA-Interim atmospheric model and reanalysis system 

uses cycle 31r2 of ECMWF’s Integrated Forecast System (IFS), and has 60 levels in the vertical and a  

http://www.cmsaf.eu/


spatial resolution of 0.7ºx0.7º. 

The climate change response is determined by comparing the historical present-day simulation (50-year 

periods, 1951-2000) and the future climate simulations (2001-2050), forced by 3 different Global Climate 

Models (GCMs) of the IPCC-AR4 (Table 2) forced by various emission scenarios. 

The use of the models HDQ03 and HDQ16  allows us to explore the uncertainty associated with the 

perturbation of the physical parameters in the GCM, using two configurations,  Q03 for low sensitivity to  

global temperature and Q16 for high sensitivity.

Methodology

To evaluate the interannual variability we have calculated the coefficient of variation (CV) with the data  

of monthly accumulated solar radiation at the surface (rsds). This coefficient removes the dimensionality 

of the variables by considering the ratio between the standard deviation and the mean. A low value of this  

ratio shows a high concentration of data around the mean. 

We also analyse the variability with the speed of convergence, defined as the number of years in which 

the anomaly (difference between each year and the average climate value) is lower than 3%. For its 

calculation we assume that the annual average calculated from all years in the dataset is not significantly  

different from the climatological value (Gueymard et al., 2011). A high value of this coefficient indicates 

that we have a greater number of years with low value of anomaly and therefore the variable at that grid 

point has a low temporal variability.

In addition, to validate the models we calculate the spatial and temporal correlation between the satellite  

variable SIS and the variable of RCMs, rsds, with the coefficient of Pearson. This coefficient measures  

the level of relationship between two fields. The range of the coefficient varies between -1 and 1.  As we 

are comparing modelled values to observations, a good reproduction of solar radiation in the simulations 

will be characterized by positive values near 1.

Results



Validation

In this first part we evaluate the model biases with respect to observations, so that they can be considered 

in the second part of the article where we  study the climate change signal in various emission scenarios.

Fig. 1 shows the average value of the accumulated annual solar radiation at the surface, detected by the 

satellite (SIS) and calculated by the 5 RCMs (rsds).  The minimum values for observed radiation are 

located in the northern coast and the maximum in the south of IP. Note the relative maximum in the Ebro  

valley, which is characterized by a dry climate. Among the models, the lowest simulated values appear in  

UAHE and the highest in the two UCAN model versions. The UCLM and UMU models show values 

nearer to observations. The biggest differences are in mountainous areas and especially in the Pyrenees. 

There is also an important difference in the orientation of the isolines over the south of IP and in the 

excess  irradiation  shown by  the  models  over  the  southeast  (fig.  A3).  If  we  calculate  the  difference 

between SIS and rsds (fig.  A1),  the two UCAN models show positive biases (100-300 kWh·m-2), the 

largest differences being in the east. UMU and UAHE show predominantly a negative bias except in 

Pyrenees and Cantabria where it is positive. UCLM presents a positive bias in the NE and  Sierra Nevada 

and negative in the rest. An analysis of the seasonal bias (Fig. A.2) reveals a consistent pattern of positive  

(or less negative) biases for mountainous areas and the northern coast, and in general more positive biases 

in spring and summer, and more negative biases in autumn and winter.

The  observed  interannual  variability  of  annual  accumulated  solar  radiation  at  the  surface,  measured 

through the CV, shows low values over the IP, with values between 0.02 and 0.04 over most of the area  

(Fig. 2). This indicates that the solar power resource is very reliable in annual terms, particularly when 

compared to other renewable energy resources like precipitation (Gil et al., 2015). The largest  values are 

found  in  the  Pyrenees,  the  northern  coast  and  the  southeast.  The  simulations  reproduce  the  higher 

variability in the northern coast.  For UAHE model, the CV has similar values to CM-SAF, but without 

the southeastern maximum. UCAN model shows also a negative bias in the southeast  (fig. A4). Both 



models underestimate the CV in the Pyrenees. On the other hand, UCLM and UMU show higher values 

of CV and generally have a positive bias in relation to CM-SAF, with the maximum positive bias in the  

northwest. Despite the differences among the models, all coincide in simulating low variability values. 

If we analyze the seasonal bias of CV  (Fig. A.5), we can see that the models tend to overestimate it in  

autumn and winter and to underestimate it in spring and summer. The largest negative biases are found in  

the Pyrenees area. In the western part of IP, the CV is overestimated for almost all models and seasons, in  

coincidence with the modelled behaviour over the Atlantic Ocean.

Fig. 3 shows the convergence speed. This index indicates the number of years in which solar radiation 

value differs from average climate value by 3% or less. High values of the convergence speed indicate 

also that  less  years  of  observed  data  are  needed to  characterize  the  solar  resource  properly. As our 

validation period is 20 years, this rate will range from 0 to 20. The observations show convergence speed  

values around 10 in the N and SE, while in the rest of IP it is  over 15 years, meaning that  in over 75% of  

the years the  anomaly is lower than 3%. The maximum values are located in the Gulf of Cadiz and the  

Ebro valley. UCLM and UMU simulate convergence speed values generally lower than CM-SAF, in 

accordance to their tendency to overestimate the observed temporal variability. In contrast, UAHE and 

UCAN generally overestimate the observed values, reaching maximum values of 20 years, indicating that 

the simulated anomaly in these points is always below 3%

Here we propose a classification of gridpoints in terms of the quality of solar energy resource, in which 

the gridpoints are classified in four categories depending on the combination of solar irradiation amount 

and variability. The categories or quadrants are obtained dividing in two halves the observed range of  

solar  irradiation and  CV over  the  IP. In  Figure  4  we have  represented  the  scatter-plot  of  these  two 

variables for all land points in the IP, for the different RCMs, observations of CM-SAF and the ensemble  

of 5 RCMs.  There is a high accumulation of points in the lower-right quadrant, which is the optimal 

combination for solar energy applications: high amount of solar radiation and low variability. Table 3 

shows the percentage of points which belong to each quadrant. The high concentration of points in the 



lower-right quadrant is reproduced by the models, though most of them show a lower fraction of values in 

this quadrant,  underestimating the number of optimal gridpoints for solar energy uses. The reason for this 

bias is different depending on the model: UAHE overestimates the fraction of points in the lower-left 

quadrant, i.e. the main reason is a negative bias of the irradiation, while UCLM and UMU overestimate 

the fraction in the upper-right quadrant, which means that they show a positive variability bias. The two 

versions of UCAN model overestimate the fraction of points in the lower-right quadrant. The ensemble 

mean is remarkably near to the observed fractions.

We can see where the points for the different quadrants lie by comparing Figures 1 and 2. The northern  

coast is the area receiving less radiation and is also one of the areas with higher variability, thus being a 

relatively less suitable area for the installation of solar plants. Its extension is relatively small, which 

explains the small fraction of points in the upper-left quadrant of Figure 4. Most of the points to the south 

of that area combine relatively high irradiation with low variability, explaining the large fraction of points 

in the lower-left quadrant. The areas with the best combined values are found in the southwestern part,  

which is therefore an area with a high and reliable solar energy resource. These results are consistent with  

those obtained by Gil et al. (2015).

Fig.  5  shows  the  temporal  correlations  of  the  5  RCMs  and  the  ensemble  mean  with  respect  to 

observations.  The northern mountainous areas  of IP are the ones with a lower correlation coefficient 

according to all models, while there are differences among them in the location of higher values. For 

UAHE and UMU the maximum correlations are located in the SW, while for UCLM and UCAN models 

they are located in the SE of the IP. A noteworthy aspect is that high temporal correlation can be found for 

areas with important biases, like the eastern areas of the IP for UCAN, indicating that model biases may 

not be related with model variability. In the ensemble mean we can see high correlation values along the  

entire Mediterranean coast and lower correlation values near the Atlantic coasts.

Table 4 shows the value of temporal and spatial correlation for the whole domain. In this estimation we 



have only taken into account the domain cells belonging to the Iberian Peninsula and the Balearic Islands, 

while the cells belonging to sea, Africa and France were discarded. In both cases the correlation of the  

ensemble mean is high, but not the highest. Spatial correlation values are always above 0.85 indicating 

that the spatial distribution of radiation is well captured by the simulations. The temporal correlation is 

lower, but still rather high,  around 0.65, significant at 99% for all models. Models with higher spatial  

correlation show lower temporal correlation, and vice versa. An interesting result is found for the  two 

different versions of UCAN model, as for both types of correlation  the model version A has lower values  

than B. Version B includes a more complex (non-local) parameterization of the planetary boundary layer  

(Jiménez-Guerrero et al., 2013), which can indicate that the simulation of spatial and temporal variations  

of solar radiation is affected by boundary layer processes. The table also shows the bias and RMSE of the 

models with respect to satellite observations. We can see clearly the model with the smallest errors is 

UCLM, which shows the best values in 3 of the 4 indexes. It is also interesting to see that the ensemble  

mean shows lower RMSE and bias than any of the models, but not the highest correlations. 

Future scenarios

In  this  second  part  we  analyse  future  climate  projections  downscaled  by  one  of  the  RCM  models  

(UCLM), for different emission scenarios (B1, A1B and A2) and 3 different nesting GCMs.  We have 

used the regional climate model UCLM for two reasons. The first is that it is the model with the  lowest  

bias and RMSE compared to satellite observations, and it shows the highest temporal correlation (see  

Table  4).  The  second  reason  is  that  this  model  has  been  nested  in  all  the  available  GCM scenario  

simulations, unlike other models.

First, we study the projected time-averaged changes of annual solar irradiation. These changes and their 

statistical significance are shown in Figure 6. The predominant change is a radiation increase in the period 

2001-2050 compared to 1951-2000, and significant changes are almost totally positive. In 4 of the 7 

scenarios there are extended areas of statistically significant increase (up to more than 60 kWh/m2). These 

4  scenarios  correspond  to  simulations  with  ARPEGE,  HDQ03  and  HDQ16  GCMs.  In  the  other  3 



scenarios, which have been obtained with a different GCM (EC5R2), the projected changes are much 

smaller, with areas of increase and areas of decrease, and most of them are not significant. The contrast  

between nesting GCMs indicates that the uncertainty due to GCM formulation is important, more than the 

uncertainty linked to the emissions scenario. There is no clear coincidence between simulations for the 

same emissions scenario, and no tendency can be discerned with increasing emissions (from B1 to A2 

scenarios). This may be probably associated with the fact that precipitation changes do not show either 

any clear tendency with increasing emissions in the period considered, as clear signals for precipitation 

changes tend to appear only in the second half of the century (Jacob et al., 2014; Sillmann et al., 2013;  

Kharin et al., 2007).

The spatial distribution of the changes shows a rather systematic maximum in southwestern IP (6 out of 7  

simulations show this).  The minimum change values  (which are  even negative in  some simulations, 

though not statistically significant) are found in the mountainous areas of the north and in the southeast,  

in most simulations. The main exception to this behaviour is the A2 scenario simulation nested in EC5R2, 

which shows a decrease in the southern and central IP together with a (statistically significant) increase in 

the north. 

In  Fig.  7  the  projected  change  in  the  coefficient  of  variability  (CV)  is  shown.  The  general  pattern 

followed by most of the simulations consists in a negative change (less variability) in a broad northeastern 

area and a positive change (more variability) in the southwestern part of IP.  But this geographic pattern  

has two exceptions. The simulation nested in HDQ3 shows an inverse pattern (more variability in the 

northeast and less in the southwest),  while the simulation for A2 scenario nested in EC5R2 is dominated  

by negative changes except for small areas in the north and south of the peninsula. There seems to be no  

systematic relationship between the change in annual irradiation and the change in interannual variability. 

For example, the increase in annual irradiation (of more than 60 kWh·m -2) found in the western part in the 

A1B simulation nested in ARPEGE is associated to a decreased variability in the northwest and to an 

increased variability in the southwest. 



Table 5 shows the spatially-averaged change of solar irradiation and interannual variability for the Iberian 

Peninsula in the different scenarios compared to the control scenario. An increase in surface irradiation is  

found on average for the whole IP in most simulations, with the smallest changes corresponding to the 

three scenarios nested in EC5R2. The latter result is consistent with the lack of statistical significance in 

the spatial distribution of the changes (Fig. 6). In contrast, the largest average changes of the variability  

(with opposite sign) are found in two of the EC5R2 simulations. This reflects the absence of a clear  

relationship between the change in irradiation and the change in variability. 

The combined changes of irradiation amount and variability are presented in the scatter-plots of Fig. 8. In 

most scenarios, a future increase in the variability is found for points with high present irradiation values.  

This variability increase is associated to a higher spread, which indicates larger differences in variability  

between different points in IP. There are two exceptions, for the same scenarios that showed a different 

behaviour in Fig. 7. In HDQ03-A1B scenario there is less spread in the variability values, together with  

some tendency towards a reduction in variability for points with low irradiation values. EC5R2-A2 shows 

a variability reduction for the whole range of irradiation values. These two scenarios show a CV decrease  

over the southwestern part of the IP, in contrast to the other ones. 

In terms of the quadrants of Fig. 8, there is a clear shift in most scenarios from the lower-right quadrant  

(high  irradiation/low  variability)  to  the  upper-right  quadrant  (high  irradiation/high  variability).  This 

implies some loss of quality in the solar resource, but it should be taken into account that the quadrants  

are relative to the observed ranges in IP, which are not particularly large. In any case, even including this 

shift more than 50% of the points should remain in the optimal lower-right quadrant (there is only one  

exception, ARPEGE-A1B scenario, in which this percentage diminishes to 43%). Interestingly , in the  

two scenarios with a different future evolution (HDQ03-A1B and EC5R2-A2) the percentage of points in 

the optimal quadrant increases to  high values (70% and 73%, respectively), pointing towards higher 

quality of the solar resource in IP. This contrasting result can be associated to the different evolution over 

the south-southwestern part of the IP, where CV is projected to increase in most simulations except those 

two (see Fig. 7).



Finally, we have made a first analysis of the future ability of solar resource to cover high energy demand  

periods in summer, which will occur due to above-average temperatures and the associated increase of 

air-conditioning. We have calculated the temporal correlation (Pearson coefficient) of monthly anomalies 

of 2m temperature and solar irradiation in summer, in order to focus on extended periods of higher-than-

normal temperatures. The considered period is 2001-2050. The last column of Table 5 shows the value of 

the correlation coefficient R between the spatially-averaged anomalies, while Fig. 9 shows the spatial 

distribution of  the correlation coefficient.  Spatially-averaged values are rather  high and fairly similar 

among the different scenarios, ranging from 0.57 to 0.68. But the spatial distribution shows important  

differences between regions. Particularly over central and southern parts of IP, the correlation is lower 

(about 0.4-0.5), while higher values (about 0.6-0.7) are found over areas near to the northwestern and 

northern coasts. The Ebro valley in the northeast shows consistently relatively low values, in contrast to  

the relatively high values over mountainous areas in the east. The overall spatial patterns seem to depend 

more on the nesting GCM than on the emissions scenario. In summary, a clear local solar irradiation 

response to locally higher temperatures would occur only in some regions, but on an aggregated level  

there should be an increase of solar energy resource in periods with higher temperatures over the whole 

IP. 

Conclusions

In this study, we have analysed the impact of climate change on surface solar irradiation over the Iberian 

Peninsula (IP). This type of study is important because solar energy can play a decisive roll in the future  

electrical production. We make use of simulations from ESCENA project (Jiménez-Guerrero et al., 2013), 

that are particularly adequate for studies over the IP as the domains of the RCMs are centered on it and  

extend much more towards the west  than data from other  multi-model downscaling experiments like 

EUROCORDEX or MedCORDEX.

Simulations nested in ERA-Interim reanalysis (evaluation runs) are compared to observations (CM SAF 



satellite  data).  The main  differences  between  the  models  and  the  satellite  in  terms  of   annual  solar 

irradiation  are  found  in  mountainous  areas.  Most  models  simulate  the  maximum  gradient  of  solar 

irradiation along a northwest to southeast axis, instead of the observed overall north to south gradient.  

The biases are very different among the RCMs. Interestingly, the model with the highest RMSE and bias 

values (UAHE) shows the best spatial distribution, as reflected by a spatial correlation of 0.94.  The  

relatively high interannual variability values in the north are well captured by the models, while the other  

observed variability maximum near the Mediterranean coast is only reproduced by some of them. This  

could  be  related  to  the  large  differences  between  models  in  the  representation  of  precipitation  (and 

therefore clouds) over the Mediterranean regions of IP (Domínguez et al., 2013). The strong variability 

contrast between the Pyrenees mountain range and the Ebro valley south of it is rather well reproduced in 

the simulations.  Some models also overestimate the variability near the western coast. But overall, the 

low observed interannual variability is rather well captured in general. This aspect is important, as it  

makes solar energy a very reliable source in terms of annual production.

Another diagnostic to characterize the interannual stability of the solar resource is the convergence speed 

(Gueymard and Wilcox, 2011), which indicates the number of years in which solar irradiation differs from 

average climate values by 3% or less. Less years of observed data are needed to characterize the solar 

resource if the convergence speed is high. The observed convergence is high over most of IP, except in 

the north and southeast. The contrasts in the simulation of interannual variability are reflected in biases of 

different sign for the convergence speed in the RCMs.

We make a combined assessment of the amount and variability of solar irradiation. Dividing the observed  

range of  solar  irradiation and  the  CV over  the  IP in  two halves,  we classify  the gridpoints  in  four  

quadrants.  The  quadrant  with  the  highest  resource  quality  combines  high  solar  irradiation  with  low 

variability, while the quadrant with the lowest resource quality combines low solar irradiation with high 

variability. In the observations, most of the points (81%) of the IP are  in the best quadrant, showing 

therefore an optimal combination for solar energy applications. Geographically, the best quality points are 

in  the  southwestern  part  of  the  IP.  The  evaluation  runs  of  most  RCMs  are  able  to  reproduce  a 

concentration of points in the optimal quadrant,  though there is  some tendency in the simulations to 



overestimate the weak relationship found in observations between increasing irradiation and decreasing 

variability. The multi-model ensemble mean is very near to the observations, indicating that the model 

biases are of opposite sign.

In  the  second  part  of  this  study  we  have  characterized  the  impact  of  the  climatic  change  on  solar  

irradiation in the IP. For this goal we have used only the simulations of the UCLM RCM as it is the one  

that shows the best values in most skill scores and also has been nested in all the available GCM scenario 

simulations.  In  the  downscaled  scenarios,  the  predominant  change  is  an  increase  in  annual  solar  

irradiation, although both the geographical distribution and the degree of statistical significance is very 

different between simulations. There is no definite trend of irradiation changes with increasing emissions, 

which is probably due to the fact that differences in emissions and concentrations of greenhouse gases are  

beginning to be clearly noticeable only after mid-century. The differences associated to the nesting GCM 

are greater than the differences due to the emission scenario used. Regarding the change in interannual 

variability,  most simulations show an overall  pattern  that consists in a negative change (less variability) 

in a broad northeastern area and a positive change (more variability) in the southwestern part of IP. But 

there are two exceptions to this projected change. The simulation nested in HDQ3 shows an inverse 

pattern  (more  variability  in  the  northeast  and  less  in  the  southwest),  while  the  simulation  nested  in 

EC5R2-A2 scenario is dominated by negative changes.  There seems to be no systematic relationship 

between the change in annual irradiation and the change in interannual variability.  

The combined assessment of solar irradiation amount and variability indicates that in most projections, a 

future increase in the variability is found for points with high present irradiation values, with a clear shift  

from  the  optimal  quadrant  (high  irradiation/low  variability)  towards  the  quadrant  with  high 

irradiation/high variability. This points to a certain quality loss in the solar resource, but it should be taken 

into consideration that the classification of irradiation quality in quadrants is relative to the observed  

ranges of  solar  irradiation amount  and variability  in  IP, which are not  particularly large.  Not  all  the  

scenarios  follow this  behavior,  as  in  two  of  them the  percentage  of  points  in  the  optimal  quadrant 

increases, pointing towards an enlargement of the area with a high quality of the solar resource in the IP. 

These two scenarios are characterized by a CV decrease over the southwestern part of the IP, in contrast  



to the other ones. These exceptions are not linked to a particular GCM or emissions scenario.

Finally, we have made a first approximation to the issue of the future ability of solar energy to cover  

power demand peaks due to high summer temperatures. The response of local solar irradiation to above-

normal temperatures in summer months differs between regions. The correlation between both variables 

is rather high near the northern coasts and over the eastern mountains, while in central and southern parts  

lower, but still  positive, correlations are found. On an aggregated level the correlation is rather high, 

indicating  that  spatially  averaged  solar  irradiation  should  increase  clearly  when  spatially  averaged 

temperatures  are  above  the  mean  value.  This  is  a  positive  result  as  the  power  grid  is  strongly  

interconnected within IP, which could allow a distribution of possible surpluses of solar power between 

different peninsular regions.
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Model Geographical 

projection

Number of 

vertical levels

Horizontal 

resolution

Name in 

this study

References

PROMES Lambert 37 25 km UCLM Castro et al. (1993), Domínguez 

et al. (2010)

WRF-A Lambert 33 25 km UCAN-A Klemp et al. (2007), Skamarock 

et al. (2008), Fita et al. (2010)
WRF-B Lambert 33 25 km UCAN-B

MM5 Lambert 30 25 km UMU Gomez-Navarro et al. (2011), 

Jerez et al. (2012), Jerez et al. 

(2013), Grell et al. (1994)

REMO Rotated lat-lon 31 0.22º UAHE Jacob et al. (2001)

Table 1: RCM models used in this study.

Model EC5R2 ARPEGE HDQ03  and HDQ16

Institution Max Planck Institute für 

Meteorologie, Germany

CNRM-Météofrance, France Met  Office  Hadley 

Center, UK

Reference Jungclaus et al. (2006) Salas-Mélia et al. (2005) Collins et al. (2006)

Atmospheric model ECHAM5 ARPEGE C13 HadAM3

Resolution T63 L31 T63 L45 3.75ºx2.5º L19

Ocean model MPI-OM OPA 8.1 HadOM3

Emission scenarios A1B, B1,A2 A1B, B1 A1B
Table 2: GCM models used in this study.



Quadrant CMSAF UAHE UCANA UCANB UCLM UMU ENSEMBLE

Upper-left 3.00 1.21 8.18 4.86 14.57 19.55 7.54

Upper-right 0.38 0.00 0.83 0.00 9.58 2.17 0.00

Lower-left 15.14 53.29 3.51 6.52 9.84 24.73 11.31

Lower-right 81.47 45.50 87.48 88.63 66.01 53.55 81.15
Table 3: Percentage of points in each quadrant for the RCMs, CM-SAF and the ensemble. 

Models Spatial 

correlation

Temporal 

correlation

RMSE

(kWhm­2)

BIAS

(kWhm­2)

UAHE 0.94 0.64 152.458 -141.562

UCAN_A 0.85 0.63 144.816 124.839

UCAN_B 0.89 0.68 141.575 130.123

UCLM 0.86 0.69 88.184 -42.310

UMU 0.89 0.60 132.176 -116.273

Ensemble 0.90 0.65 63.988 -9.037

Table 4: Temporal and spatial correlation, rmse and mean bias of solar irradiation for the RCMs and the 
ensemble mean.

RSDS CHANGE 

(kWh·m-2)

CV CHANGE R

ARPEGE- A1B 23.7 0.0018 0.65

ARPEGE- B1 33.2 0.0002 0.60

HDQ03-A1B 42.5 -0.0025 0.66

HDQ16-A1B 51.3 0.0016 0.68

EC5R2-B1 8.0 0.0004 0.57

EC5R2-A2 -2.0 -0.0031 0.65

EC5R2-A1B 3.5 0.0026 0.63
Table 5: Change of solar irradiation (rsds) and CV and correlation coefficient R between the monthly 
time series of anomalies of the temperature and solar irradiation in summer for the 50 scenario years 

(2001-2050).  



Figure 1: Annual mean values of cumulative surface downward shortwave radiation (kWhm­2) 
for the satellite (CM­SAF) and the 5 RCMs.

Figure 2: Values of interannual CV of solar irradiation for the satellite (CM­SAF) and the 5 
RCMs. 



Figure 3: Convergence speed: number of years in the rsds series with an annual anomaly 
below 3%.

Figure 4: Scatter­plot of the coefficient of variability against solar irradiation at the surface for 
the 5 RCMs, CM­SAF and the ensemble of the 5 models. 

Figure 5: Values of temporal correlation for rsds series for the 5 RCMs and the ensemble of the 
models.



Figure 6: Values of projected change of rsds (contours, red positive, blue negative) for the 
different scenarios. The colour scale represents the significance level using the t-student test. 

Figure 7: Values of projected change of CV for the different scenarios.



Figure8: Scatter­plot of global solar radiation against coefficient of variability for the different 
scenarios. The dividing red lines correspond to the irradiation and variability values at half the 

range of all the observed values over the IP (see CMSAF plot in Fig. 4). Blue points correspond 
to the historical (present climate) runs, while green points correspond to future scenario runs.

Figure 9: Values of temporal correlation between anomaly of temperature and rsds for summer 
(JJA).



APPENDIX   A

Figure A.1: Values of annual bias of accumulated surface downwelling shortwave radiation 
(kWhm­2) for the 5 RCMs.



Figure A.2: Values of seasonal bias of accumulated surface downwelling shortwave radiation 
(kWhm­2). Each column represents one season (left to right) winter, spring, summer and 

autumn. The rows correspond to the models (top to bottom) UAHE, UCAN­A, UCAN­B, UCLM 
and UMU.



Figure A.3: Values of annual mean of accumulated surface downwelling shortwave radiation 
(kWhm­2) and bias (top) and values of annual CV of accumulated radiation and bias (bottom) for 

the ensemble mean.

Figure A.4: Values of annual bias of CV of accumulated radiation for the 5 RCMs.



Figure A.5: Values of seasonal bias of CV of accumulated radiation. Each column represents 
one season (left to right) winter, spring, summer and autumn. The rows correspond to the 

models (top to bottom) UAHE, UCAN­A, UCAN­B, UCLM and UMU.


