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Abstract

The obtention of spontaneous Raman photons is analyzed in singly charged p-doped quantum

dots in the absence of an external magnetic field. The use of a far detuned single driving laser

allows to obtain a Raman photon line which exhibits subnatural linewidth, and whose center can

be tuned by changing the detuning and/or the Rabi frequency of the driving field. The Raman

photons are produced along the undriven transition and they arise from the weak interaction of the

trion states with the nuclear spins. The operating point for the gate voltage of the heterostructure

can also be used to modify the linewidth and the peak value of the fluorescent signal.
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I. INTRODUCTION

Optical properties of Quantum Dots (QDs) closely resemble those found in real atoms.

They have been proposed as a basic unit to implementing qubits due to their large coher-

ence times and their relatively high immunity to the surrounding environment1. Coherent

manipulation of exciton wave-functions2, optical pumping3–9, partial rotations of the spin

vector10–13, resonance fluorescence14–20, and single photon generation22–24 are some of the

challenging experiments which have revealed their potential in the field of quantum infor-

mation science.

Quantum entanglement plays a central role in quantum repeaters. The underlying proto-

col requires the creation of entanglement between two distant emitters by making the single

photons arising from them to spectrally overlap on a beam splitter25. Such entanglement

previously demonstrated in ions26, atoms27, NV centers28, has been recently demonstrated

in p-doped QDs in the Voigt geometry29. In the latter system, the entanglement genera-

tion relies on the application of far detuned pulses which produce Raman photons30, whose

detection projects the composite system wave-function onto the desired entangled state.

The aim of this work is to extend previous investigations on the production of Raman

photons carried out in n-doped QDs in the Voigt geometry30. Here we consider p-doped

QDs in the absence of an external magnetic field. The paper is organized as follows: Section

II establishes the model, i.e., the Hamiltonian of the system and the keys of the main

dissipative processes which are needed to derive the time-evolution equations of the atomic

operators. We also presents the basis for the analysis of the spectral properties of the

fluorescent photons when the system is driven by a far detuned coupling laser. Section III

presents numerical results assuming typical data for QD taken from experimental studies.

Finally, Section IV summarizes the main conclusions.

II. THEORETICAL MODEL

We consider InAs/GaAs Stranski-Krastanov self-assembled QDs with growth direction

along the Z-axis. The QDs are separated from a Fermi sea of holes by several nanometers in

thick p-doped back contact layer. An external bias voltage applied between the top gate and

the back contact allows the charge of the QD. The ground hole states are labeled |1〉 ≡ | ⇓〉
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FIG. 1. Four level scheme illustrating the ground and excited states of self-assembled QDs. In

the absence of an external magnetic field both the ground and excited states are degenerate.

Transition |1〉 ↔ |3〉(|2〉 ↔ |4〉) is driven by a σ+(σ−) laser field with Rabi frequency Ω3(Ω4) and

optical detuning δ3(δ4).

and |2〉 ≡ | ⇑〉, while the excited trion states are |4〉 ≡ | ⇓ ⇑ ↑〉 and |3〉 ≡ | ⇓ ⇑ ↓〉. Here ⇑ (⇓)
and ↑ (↓) denote a heavy hole (HH) and an electron with spins along (against) the Z-axis.

The energy level diagram is depicted in Fig. 1. The optical transition |1〉 ↔ |3〉(|2〉 ↔ |4〉)
is driven by a σ+(σ−) polarized laser field, while transitions |1〉 ↔ |4〉 and |2〉 ↔ |3〉 remain

dark due to selection rules. The application of an external magnetic field along the Z-axis,

in the so-called Faraday geometry, lifts the degeneracy of hole/electron levels according to

E
h(e)
Zm = 1

2
µBg

h(e)Bz, where E
h(e)
Zm stands for the Zeeman energy shift relative to Bz = 0 T,

Bz and µB being the external magnetic field and the Bohr magneton, respectively. Quantity

gh(e) is the Landé factor of carrier h(e).

The Hamiltonian that governs the dynamics of the QD can be expressed as

H = HA +HInt +Hns . (1)

The free Hamiltonian HA of the four-level QD system reads

HA =
4

∑

j=1

Ejσjj , (2)

where Ej = ~ωj is the energy of the j-th QD level and σij are the Pauli operators of the

excitation electron-hole pair.

The interaction Hamiltonian HInt is taken in the rotating-wave approximation

HInt = ~Ω3e
iω3Ltσ13 + ~Ω4e

iω4Ltσ24 +H.c. , (3)

and it accounts for the interaction of the QD with the optical fields of angular frequencies

ω3L, and ω4L which drive transitions |1〉 ↔ |3〉, and |2〉 ↔ |4〉, respectively. The Rabi
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frequencies are explicitly given by Ω3 = ~µ13 · ~E3/2~, and Ω4 = ~µ24 · ~E4/2~, ~E3 and ~E4

being the slowly varying amplitudes of the optical fields. Finally, Hns is the part of the

Hamiltonian which accounts for the electron spin interaction with the nuclear spins which

can be modeled as

Hns = ~ΩNσ34 +H.c. , (4)

where ΩN = geµBB
xy
int/~ is the angular Rabi frequency of the exciton electron spin precession,

and Bxy
int stands for the in-plane internal magnetic Overhauser field. In arriving at Eq. (4)

we have considered the interaction of a localized electron spin with the surrounding nuclear

spin ensemble given by31: He
hyp = ν0

8

∑

iA
e
i |ψ(Ri)|2 (Îi · σ̂), where ν0 is the volume of the

unit cell, ψ(Ri) is the electron envelope wave function at the i-th nucleus, Îi(σ̂) stands

for the spin operator of i − th nuclear(electron) spin and the sum runs over all nuclei i in

the lattice. Ae
i is the hyperfine coupling strength determined by the value of the electron

wave function at the site of each nucleus. We resort to describing the effect of hyperfine

interaction through an effective magnetic field felt by the QD spin, the so-called Overhauser

field: BN = ν0
8

Ae

geµB
〈
∑

i Îi〉, where Ae is an average spin-nuclei coupling constant. Due to

the arbitrary direction of the Overhauser field, the spin excited states become admixed. For

the kind of situations considered in this work, we can treat the hyperfine field as a purely

classical field with correlation time in the millisecond scale. Thus assuming that the nuclear

field is described through a Gaussian distribution of zero mean and with variance Bnuc, the

hyperfine interaction reduces to the one given in Eq. (4). Note that the z component of

BN only leads to a small Zeeman splitting which is reabsorbed into the energy of the upper

levels. A similar approach was used by Dreiser et al. 32 to describe the effect of hyperfine

interaction through an effective magnetic field. Typical values of Bnuc range from 9 − 30

mT9,32. The hyperfine interaction of the hole with the spin nuclei Hh
hyp can be considered to

be negligible to leading order due to the p-like symmetry of the hole Bloch wave function.

Measurements on individual QDs using optical detection with a high spectral resolution allow

for measuring simultaneously the hole Overhauser shift and that for the electron: the ratio

between the all-element-averaged hole Ah and electron (Ae) was found to be Ah/Ae ≈ −0.1

in InP and InGaAs QDs33.

The dissipative processes are described through operator Lρ which in the Linblad form
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reads as

Lρ = Γ12σ21ρσ12 −
Γ12

2
(σ11ρ+ ρσ11)

+Γ21σ12ρσ21 −
Γ21

2
(σ22ρ+ ρσ22)

+Γ34σ43ρσ34 −
Γ34

2
(σ33ρ+ ρσ33)

+Γ43σ34ρσ43 −
Γ43

2
(σ44ρ+ ρσ44)

+Γ0σ24ρσ42 −
Γ0

2
(σ44ρ+ ρσ44)

+Γ0σ13ρσ31 −
Γ0

2
(σ33ρ+ ρσ33) . (5)

The terms involving Γ0 arise from Linblad operators L1(
√
Γ0σ13), and L2(

√
Γ0σ24) account

for the spontaneous photons produced along transitions |3〉 ↔ |1〉, and |4〉 ↔ |2〉, respec-
tively. The action of a Linblad operator is defined as: L(C) = CρC† − 1

2
(ρC†C + C†Cρ).

The terms proportional to Γ21, and Γ12 arise from an incoherent relaxation process which

couples states |1〉 ↔ |2〉 bidirectionally. They arise from exchange interaction with the Fermi

sea of holes in the back contact giving rise to spin-flip cotunneling. Let VA and VB be the

gate voltages which determine the single hole charging region. For V < VA no hole is charged

in the QD, whereas for V > VB the QD accommodates two holes. The state with the lowest

energy depends on the gate voltage and the QD attempts to reach it by either attracting or

repelling holes from or into the reservoir. The cotunneling at a certain gate voltage Vg in

the absence of an external magnetic field can be shown to be given by32

Γ12 = ~Γ2
t

∫

ǫ

∣

∣

∣

∣

∣

1

ǫ+ qe(Vg − VA)/λ+ i~Γt

2

+
1

−ǫ+ qe(Vg − VA)/λ+ i~Γt

2

∣

∣

∣

∣

∣

2

g(ǫ)dǫ, (6)

qe, Γt and λ being the charge of the electron, the tunneling rate and a constant describing the

geometric lever arm of the heterostructure, respectively. g(ǫ) = f(ǫ) [1− f(ǫ)], f(ǫ) stands

for the Fermi function: f(ǫ) = 1/ [1 + exp(ǫ/kBT )], kB(T ) being the Boltzman constant(

temperature). ǫ stands for the detuning from the reservoir’s Fermi energy ǫF of the hole state

in the reservoir which couples with the hole in the QD to form a virtual state which finally

relaxes producing the hole spin flip. The imaginary part in the denominator in Eq. (6)

introduces a finite lifetime to the hole states given by Γt which is relevant for those regions

of the integral with vanishing real part. Decay rate for relaxing from an energetically higher

into a lower state is different from the opposite direction. The two processes are related by
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thermal equilibrium and read as Γ21 = Γ12e
−Eh

Zm
/kBT . The terms proportional to Γ43, and

Γ34 arise from a similar cotunneling process involving the trion states, and the following

condition Γ43 = Γ34e
−Ee

Zm/kBT holds.

The Hamiltonian in an appropriate rotating frame reads as

H = ~(δ3 − δ4 + ω43)σ22 + ~δ3σ33 + ~(δ3 + ω43)σ44 +

~ (Ω3σ13 + Ω4σ24 + ΩNσ34 +H.c.) , (7)

where δ3 = ω31 − ω3L, and δ4 = ω42 − ω4L stand for the optical detunings. The equations of

motion of the density matrix elements are derived in Appendix A.

Quantum optical experiments allow also to investigate the statistics of emitted light.

Here we focus on the spectral properties of the fluorescent photons, in particular the so-

called Resonance Fluorescence Spectrum (RFS) of the QDs. In the steady-state regime,

this spectrum is proportional to the Fourier transformation of the correlation function

lim
t→∞

〈E−(r, t′ + t) ·E+(r, t)〉, where E−(r, t)/E+(r, t) is the negative/positive frequency part

of the radiation field in the far zone. The radiation field consists of a free-field operator and

a source-field operator that is proportional to the atomic polarization operator34. Therefore,

the steady-state RFS can be expressed in terms of the atomic correlation function

S(ω) = ℜ
[

lim
t→∞

∫ ∞

0

〈E+ (t′ + t) · E− (t)〉e−iωt′dt′
]

, (8)

where ℜ [ ] denotes the real part of the magnitude enclosed in square brackets, and E+ (t) is

the positive frequency part of the fluorescent field which in the far-field zone (|~r| ≫ c/ωij, i =

4, 3 , j = 1, 2) reads

~E+(~r, t) =
ω2
31

c2|~r|~µ13σ31(t− |~r|/c) + ω2
42

c2|~r|~µ24σ42(t− |~r|/c) , (9)

and E− (t) = (E+ (t))
†
. We will assume that ω31 ≈ ω42. We remind here that the following

conditions hold: ~µ13 = µ( ûx√
2
− i ûy√

2
), ~µ24 = µ( ûx√

2
+ i ûy√

2
), whereas the direction of detection

of the fluorescent field is perpendicular to the plane XY which contains the atomic dipole

moments ~µ13 and ~µ24.

In writing Eq. (8), we abbreviate ω − ω3L(ω − ω4L) by ω, but we should interpret ω as a

frequency measured relative to the laser frequency ω3L(ω4L) since we will assume that the QD

is singly driven by Ω3(Ω4). The calculation of S(ω) requires to evaluate two-time correlation
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functions, which can be performed by means of the quantum-regression theorem34,35 (see

Appendix A for details). The RFS given in Eq. (8) has two contributions: one of them is

due to the dipole operator σ31 (the term involving Û13(τ) as defined in Appendix A), while

the other arises from the dipole operator σ42 (the term involving Û24(τ)). The numerical

solution of the equations of interest make use of a collection of scripts written in Octave36.

III. NUMERICAL RESULTS

Let us start considering how the gate voltage Vg influences the cotunneling rates Γ12 and

Γ34. Previous studies on neutral excitons in n-doped QDs have shown that cotunneling rates

are characterized by their nonlinear voltage dependence, showing an ultra-steep slope at the

edges of the voltage plateau, and a weak dependence on voltage in the plateau center37.

The results for negatively charged excitons also shown a similar trend32. Here we address

the problem for the case of p-doped QDs in the absence of an external magnetic field. The

decay rates obtained through Eq. (6) (not shown) reproduce quite well the results for the

hole spin lifetime and the trion spin lifetime at the plateau center reported in Refs. 8 and

9 for the following set of parameters: Γt = 0.433 ns−1 for the hole states, Γt = 0.137 ns−1

for the trion states, and VA = −VB = −50 mV, kBT = 362µeV, and λ = 5. Changing the

gating voltage should result in the modification of the cotunneling rates by more than six

orders of magnitude. We will show that the tuning of V should influence the linewidth of

the Raman photons.

In order to study the Raman photons, we assume free space radiative decay rates of the

transitions of ~Γ0 = 4.83µeV. The magnitude ~ΩN is taken to be 0.73µeV which corresponds

to an average internal Overhauser magnetic field of 21 mT. These data are obtained from

experimental studies8,9. In what follows we also consider a single driving field Ω3 non

resonant with transition |1〉 ↔ |3〉, i.e., δ3 6= 0 and Ω4 = 0. Numerical results are displayed

in Fig. 2(a) for Ω3 = 1.5Γ0, and δ3 = −5Γ0. We set the gate voltage to V = −40 mV, which

is far from the plateau center, thus preventing hole spin pumping. Solid line corresponds to

the contribution to RFS from the correlation U13(τ) and exhibits a Mollow-like triplet. Most

interestingly, dashed line represents the contribution to RFS from the correlation U24(τ) and

exhibit a two-peak structure: one of the peaks, the blue detuned which is close to ω = 0,

exhibit subnatural linewidth (the Raman photons) whereas the other peak has a linewidth
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FIG. 2. Steady-state RFS (S(ω)) versus ω of the out of resonance singly driven QD (Ω3). (a)

δ3 = −5Γ0, Ω3 = 1.5Γ0. Solid line(dashed line) represents the resonance fluorescence arising from

correlation U13(τ) (U24(τ)). The gating voltage was set to V = −40 mV. (b) RFS (S(ω)) versus

ω arising from correlation U24(τ) (thick solid line) when δ3 = +5Γ0, Ω3 = 1.5Γ0. Lorentzians

obtained in the dressed state basis (Eq. (B11)). Thin solid line is the RFS obtained as the sum of

the three Lorentzians (Eq. (B10)).

close to Γ0. The photons arising from these two correlations can be isolated by making use

of a polarization selective detection geometry. Based on the characteristic of the current

QD we estimated the FWHM of this peak to be in the order of 0.66 GHz, which is around

eleven times lower than the value of the spontaneous emission rate (Γ0 = 7.33 GHz). Most

interestingly, the narrow spectral feature can be tuned by changing the detuning of the

external laser as shown in Fig. 2(b) which demonstrates the appearance of a red detuned

subnatural peak for the Raman photons (thick solid line) when the detuning of the driving

laser is set to δ3 = +5Γ0 while keeping fixed the rest of parameters. It is worth noting that

the Overhauser field is responsible for the appearance of such narrow spectral feature: in the

case of setting ΩN = 0 (which is a meaningless physical situation), the spontaneous photons

(Raman photons) cannot decay to level |2〉 since levels |3〉 and |4〉 eventually decouple one

another.

The RFS in the Dressed State Picture (DSP) for the Raman photons is obtained in

Appendix B when δ3 6= 0. There it is shown that RFS of the Raman photons arises from

correlation U24(τ), and we show that in the secular approximation the RFS for the photons

produced along |2〉 ↔ |4〉 channel can be described as transitions between states of adjacent
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manifolds: from state |j, N〉 to |2, N − 1〉, j = a′, b′, c′, N being the number of photons.

Equation (B10) shows that RFS is given as a sum of three different Lorentzians. In the

case of δ3 < 0, the Raman photons line is obtained through the transition |c′〉 ↔ |2〉: it is

centered at ω = −λ3, and the linewidth is 2Γc′2. In the case with δ3 > 0 the Raman photons

line arise from transition |a′〉 ↔ |2〉, is centered at ω = −λ1 and the linewidth is 2Γa′2. The

amplitudes of the different Lorentzians are obtained by solving Eqs. (B3)-(B5). Figure 2(b)

also show the individual Lorentzians obtained for that particular situation, demonstrating

the adequacy of the description in the DSP which catch the peaks positions and reproduces

the shape of the spectrum. We checked that the FWHM of Sa(ω) is 2Γa′2 = 0.656 GHz, in

good agreement with the numerical determination using the full RFS.
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FIG. 3. (a) Peak position of the Raman photons (−λ3) in GHz measured relative to ω3L versus the

Rabi frequency of the driving field Ω3 (solid line), and FWHM of the Raman photon line (2Γc′2)

versus Rabi frequency of the driving field Ω3 (dashed line) for δ3 = −5Γ0. (b) Peak value of the

Raman photon line (max(Sc(ω))) versus Rabi frequency of the driving field Ω3 for δ3 = −5Γ0.

The Rabi frequency of the driving field Ω3 can be also used as a knob to tune the peak

location and linewidth of the Raman photons line. Such tunability is shown with solid line

in Fig. 3(a) which was produced while keeping constant δ3 = −5Γ0, and V = −40 mV.

In addition, we also plot in the same panel the FWHM in GHz of this spectral feature.

These curves where obtained through the values of λ3 and Γc′2, respectively, as defined in

Appendix B. This figure reveals that large changes of the peak location are obtained at the

expense of increasing the linewidth, which however remains subnatural. This increase of

the linewidth is just a consequence of power broadening. The negative value for the peak

9



position is just an indication that the Raman photons are blue detuned with regard to the

laser field. Figure 3(b) shows the peak value, i.e., the maximum value of Sc(ω), in arbitrary

units versus the Rabi frequency of the driving field. This curve shows the existence of a

Rabi frequency which maximizes the signal of the Raman line. The use of a large value for

δ3 = −10Γ0 also allows to obtain a large degree of tunability, in the order of 44 GHz for

the largest Rabi frequency accompanied by a slight reduction of the maximum linewidth up

to 2.2 GHz. In this case the maximum signal shifts to large values of Ω3. In summary, the

Raman photons signal can be tuned by changing the detuning and/or the Rabi frequency

of the driving field.
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FIG. 4. (a) FWHM of the Raman photon line (2Γc′2) versus the gate voltage. (b) Peak value Peak

value of the Raman photon line (max(Sc(ω))) versus the gate voltage. Ω3 = 1.5Γ0, and δ3 = −5Γ0.

A change of the gating voltage results in the modification of the cotunneling of the lower

and upper levels. This in turn results in changes in the linewidth and the peak value of the

Raman line as depicted in Fig. 4. These curves where produced while keeping constant the

Rabi frequency and the detuning of the driving field. Here we observe a non-linear character

of the linewidth when the gate voltage is changed, while it remains almost constant at the

voltage plateau. This result can be explained by the nonlinearity of the cotunneling rates

given by Eq. (6). The reduction in the linewidth at the center of the voltage plateau (where

efficient optical pumping is obtained) is accompanied by a drop of the peak value of the

Raman line by more than two orders of magnitude.

One may wonder whether spectral fluctuations (SD)38 should affect the spontaneous Ra-

man photons. Signatures of of such influence on the RFS in QDs have been experimentally
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found39–41. In what follows we assume that the effect of SD can be accounted for by consid-

ering a Gaussian weighting function W (δ3) = exp
[

−1/2 (δ3/∆diff )
2 8 ln 2

]

, ∆diff being the

diffusion coefficient, thus the effective RFS is obtained as a convolution of the unweighted

RFS (obtained from Eq. (A6)) and the Gaussian line shape W (δ3). Matthiesen et al. 39

have provided experimental evidence that ∆diff depends on the average excitation detuning

(δ3 in our notation). Assuming a value of ∆diff ≈ 140 MHz, we computed the linewidth of

the resulting Raman photon line which after convolution shows very minor changes in the

width (in the second decimal place) in relation to the unweighted spectrum. This results is

expected: when convolving two functions of very different width, the one with the largest

width (2Γc′2) dominates over the other (∆diff ).

IV. CONCLUSIONS

In this work we present a theoretical description of the spontaneous Raman photons

in singly charged p-doped QDs. The QDs are modeled as a four level-like atomic system

where the interaction of the electron spin with the nuclei of the QD is taken into account

using a frozen model for the nuclear spins. We present numerical simulations using data

taken from experimental studies which show that the center and linewidth of the Raman

photon line can be changed by all optical methods by changing either the detuning and/or

the Rabi frequency of the far detuned driving laser. We also analyze the influence of the

gating voltage on the linewidth and the peak value of the fluorescent signal. In contrast with

n-doped quantum dots, the current scheme does not require the application of an external

magnetic field, making the current system a candidate for quantum information applications.

Appendix A: Appendix A: Density matrix equations of motion and RFS in the bare

state basis

The equations of motion of the density matrix elements are obtained through ρ̇ = − i
h
[H, ρ]+

Lρ, and are rewritten in terms of time averaged σ operators for convenience, and read
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∂〈σ22〉
∂t

= (Γ0 − Γ12)〈σ44〉 − (Γ12 + Γ21)〈σ22〉 − Γ12〈σ33〉+ Γ12

−iΩ4〈σ24〉+ iΩ∗
4〈σ42〉 ,

∂〈σ33〉
∂t

= −(Γ34 + Γ0)〈σ33〉+ Γ43〈σ44〉

+iΩ3〈σ13〉 − iΩ∗
3〈σ31〉 − iΩN 〈σ34〉+ iΩN 〈σ43〉 ,

∂〈σ44〉
∂t

= Γ34〈σ33〉 − (Γ43 + Γ0)〈σ44〉

+iΩ4〈σ24〉 − iΩ∗
4〈σ42〉+ iΩN 〈σ34〉 − iΩN 〈σ43〉 ,

∂〈σ12〉
∂t

= −F12〈σ12〉+ iΩ∗
3〈σ32〉 − iΩ4〈σ14〉 ,

∂〈σ13〉
∂t

= −F13〈σ13〉+ iΩ∗
3(〈σ33〉 − 〈σ11〉)− iΩN 〈σ14〉 ,

∂〈σ14〉
∂t

= −F14〈σ14〉 − iΩ∗
4〈σ12〉+ iΩ∗

3〈σ34〉 − iΩN 〈σ13〉 ,
∂〈σ23〉
∂t

= −F23〈σ23〉 − iΩ∗
3〈σ21〉+ iΩ∗

4〈σ43〉 − iΩN 〈σ24〉 ,
∂〈σ24〉
∂t

= −F24〈σ24〉+ iΩ∗
4(〈σ44〉 − 〈σ22〉)− iΩN 〈σ23〉 ,

∂〈σ34〉
∂t

= −F34〈σ34〉+ iΩ3〈σ14〉 − iΩ∗
4〈σ32〉+ iΩN (〈σ44〉 − 〈σ33〉) . (A1)

To obtain the above equations we made use of the following definition for the generalized

dephasings: F12 = (Γ12 + Γ21)/2 + i(δ3 − δ4 − Ee
Zm), F13 = (Γ12 + Γ34 + Γ0)/2 + iδ3,

F14 = (Γ12 + Γ43 + Γ0)/2 + i(δ3 − Ee
Zm), F23 = (Γ21 + Γ34 + Γ0)/2 + i(δ4 + Ee

Zm), F24 =

(Γ21 + Γ43 + Γ0)/2 + iδ4, F34 = (Γ43 + Γ34 + 2Γ0)/2 − iEe
Zm. We also assume that we are

dealing with a closed system, i.e., 〈σ11〉 + 〈σ22〉+ 〈σ33〉+ 〈σ44〉 = 1. In writing Eq. (A1) we

take into account that ρkl(t) = 〈σlk(t)〉.
Let us define the vector U(t) = [σ22(t), σ33(t), σ44(t), σ12(t), σ21(t), σ13(t), σ31(t), σ14(t),

σ41(t), σ23(t), σ32(t), σ24(t), σ42(t), σ34(t), σ43(t)]
T , where T stands for transpose. Thus Eq.

(A1) can be written in matrix form as

dU(t)

d t
=MU(t) +B , (A2)

M being a 15 × 15 matrix of coefficients and B the independent term which can be easily

derived from Eq. (A1).

The evaluation of the two-time correlation functions that appear in Eq. (8) can be recast
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to

S(ω) = f 2(r)|µ|2ℜ
[
∫ ∞

0

(〈σ31(τ)σ13(∞)〉+ 〈σ42(τ)σ24(∞)〉) e−iωτdτ

]

. (A3)

The two-time correlation functions which appear in Eq. (A3) can be determined with

the aid of the quantum regression theorem34,35 and the optical Bloch Eq. (A1). To this end

we define the column vector

Ûjk(τ) = [〈σ22(τ)σjk(∞)〉, 〈σ33(τ)σjk(∞)〉,

〈σ44(τ)σjk(∞)〉, 〈σ12(τ)σjk(∞)〉,

〈σ21(τ)σjk(∞)〉, 〈σ13(τ)σjk(∞)〉,

〈σ31(τ)σjk(∞)〉, 〈σ14(τ)σjk(∞)〉,

〈σ41(τ)σjk(∞)〉, 〈σ23(τ)σjk(∞)〉,

〈σ32(τ)σjk(∞)〉, 〈σ24(τ)σjk(∞)〉,

〈σ42(τ)σjk(∞)〉, 〈σ34(τ)σjk(∞)〉,

〈σ43(τ)σjk(∞)〉]T , (j = 1, k = 3) , (j = 2, k = 4) . (A4)

where the super-index T stands for transpose. According to the quantum regression theorem,

for τ > 0 the vector Ûjk satisfies

d Ûjk(τ)

dτ
=MÛjk(τ) +B〈σjk(∞)〉 . (A5)

By working in the Laplace space we obtain the steady-state resonance fluorescence spec-

trum. Specifically we have

S(ω) ∝ Γ0ℜ
{

l=15
∑

l=1

R7,l(iz)

(

Û
(l)
13 (∞) +B

〈σjk(∞)〉
iz

)

+

l=15
∑

l=1

R13,l(iz)

(

Û
(l)
24 (∞) +B

〈σjk(∞)〉
iz

)

}

, (A6)

where Û
(l)
jk (∞) is the value of the l−th component of the vector Ûjk(τ) evaluated at τ = 0,

i.e., in the steady-state. Rjk(iz) is the (j, k) element of the matrix R(iz) defined as

R(iz) =
(

izÎ −M
)−1

, (A7)

Î being the 15× 15 identity matrix, and z ≡ (ω − ω3L) /Γ0.
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Appendix B: Appendix B: Raman photons in the dressed state basis

Here we address the problem of computing the RFS in the dressed state picture for the

case of using a single driving field (Ω3 6= 0, and Ω4 = 0) when the system is driven out

of resonance (δ3 6= 0) and with no external magnetic field, i.e., B = 0. This simple case

allows for the obtention of an analytical expression for the spectrum of the emitted Raman

photons. The atomic and coherent part of the Hamiltonian reads

H = ~δ3σ33 + ~δ3σ44 + ~ (Ω3σ13 + ΩNσ34 +H.c.) . (B1)

The eigenvalues are obtained through the roots of the following polynomial: −λ3 + 2δ3λ
2 −

λ(δ23 − Ω2
N − Ω2

3) − Ω2
3δ3, and are labeled as λj (j = 1, 2, 3). They are sorted in ascending

order, i.e., |λ3| < |λ2| < |λ1|. The corresponding eigenstates are

|a′〉 = a1|1〉+ a3|3〉+ a4|4〉 ,

|b′〉 = b1|1〉+ b3|3〉+ b4|4〉 , (B2)

|c′〉 = c1|1〉+ c3|3〉+ c4|4〉 ,

|d′〉 = |2〉 .

The coefficients are given by a1 = Ω3

A1λ1
, a3 = 1

A1
, and a4 = − ΩN

A1(δ3−λ1)
, where A1 =

√

1 + (Ω3/λ1)
2 + (ΩN/(δ3 − λ1))

2. The coefficients bj(cj) are obtained from aj by making

the replacement λ1 → λ2(λ3).

The emitted Raman photons are related with the correlation function U24(τ) = 〈σ42(τ)σ24(∞)〉.
In the secular approximation this correlation reduces to U24(τ) ≈ a24〈σa′2(τ)σ2a′(∞)〉 +
b24〈σb′2(τ)σ2b′(∞)〉+ c24〈σc′2(τ)σ2c′(∞)〉, and can be computed using the quantum regression

theorem. Thus, we need the equations of motion of population and coherences of the dressed

states in Eq. (B2) which are derived in the secular approximation. The equations of interest

14



read

d〈σa′a′(t)〉
dt

= Γa′a′〈σa′a′〉+ Γa′b′〈σb′b′〉+ Γa′c′〈σc′c′〉+ Γ0
a′a′ , (B3)

d〈σb′b′(t)〉
dt

= Γb′a′〈σa′a′〉+ Γb′b′〈σb′b′〉+ Γb′c′〈σc′c′〉+ Γ0
b′b′ , (B4)

d〈σc′c′(t)〉
dt

= Γc′a′〈σa′a′〉+ Γc′b′〈σb′b′〉+ Γc′c′〈σc′c′〉+ Γ0
c′c′ , (B5)

d〈σa′2(t)〉
dt

= −Γa′2〈σa′2〉 , (B6)

d〈σb′2(t)〉
dt

= −Γb′2〈σb′2〉 , (B7)

d〈σc′2(t)〉
dt

= −Γc′2〈σc′2〉 , (B8)

with

Γa′a′ = −(Γ12 + Γ21)a
2
1 + (Γ34 + Γ43)a

2
3a

2
4 + Γ0a

2
1a

2
3 − (Γ34 + Γ0)a

2
3 − (Γ43 + Γ0)a

2
4 ,

Γa′b′ = −Γ21a
2
1 + Γ34a

2
4b

2
3 + Γ43a

2
3b

2
4 + Γ0a

2
1b

2
3 ,

Γa′c′ = −Γ21a
2
1 + Γ34a

2
4c

2
3 + Γ43a

2
3c

2
4 + Γ0a

2
1c

2
3 ,

Γ0
a′a′ = Γ21a

2
1 ,

Γb′a′ = −Γ21b
2
1 + Γ34b

2
4a

2
3 + Γ43b

2
3a

2
4 + Γ0b

2
1a

2
3 ,

Γb′b′ = −(Γ12 + Γ21)b
2
1 + (Γ34 + Γ43)b

2
3b

2
4 + Γ0b

2
1b

2
3 − (Γ34 + Γ0)b

2
3 − (Γ43 + Γ0)b

2
4 ,

Γb′c′ = −Γ21b
2
1 + Γ34b

2
4c

2
3 + Γ43b

2
3c

2
4 + Γ0b

2
1c

2
3 ,

Γ0
b′b′ = Γ21b

2
1 ,

Γc′a′ = −Γ21c
2
1 + Γ34c

2
4a

2
3 + Γ43c

2
3a

2
4 + Γ0c

2
1a

2
3 ,

Γc′b′ = −Γ21c
2
1 + Γ34c

2
4b

2
3 + Γ43c

2
3b

2
4 + Γ0c

2
1b

2
3 ,

Γc′c′ = −(Γ12 + Γ21)c
2
1 + (Γ34 + Γ43)c

2
3c

2
4 + Γ0c

2
1c

2
3 − (Γ34 + Γ0)c

2
3 − (Γ43 + Γ0)c

2
4 ,

Γ0
c′c′ = Γ21c

2
1 ,

Γa′2 = Γ21/2 + Γ12a
2
1/2 + (Γ34 + Γ0)a

2
3/2 + (Γ43 + Γ0)a

2
4/2 ,

Γb′2 = Γ21/2 + Γ12b
2
1/2 + (Γ34 + Γ0)b

2
3/2 + (Γ43 + Γ0)b

2
4/2 ,

Γc′2 = Γ21/2 + Γ12c
2
1/2 + (Γ34 + Γ0)c

2
3/2 + (Γ43 + Γ0)c

2
4/2 . (B9)

The spectrum of the Raman photons are finally derived making use of the Laplace trans-

form for the correlation function U24(τ), and reads

SRam(ω) = Sa(ω) + Sb(ω) + Sc(ω) , (B10)
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where

Sa(ω) = ℜ
{

a24
〈σa′a′(∞)〉

Γa′2 − i(ω + λ1)

}

,

Sb(ω) = ℜ
{

b24
〈σb′b′(∞)〉

Γb′2 − i(ω + λ2)

}

, (B11)

Sc(ω) = ℜ
{

c24
〈σc′c′(∞)〉

Γc′2 − i(ω + λ3)

}

.
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