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Abstract. We describe complemented copies of `2 both in C(K1)⊗̂πC(K2) when at least

one of the compact spaces Ki is not scattered and in L1(µ1)⊗̂εL1(µ2) when at least one of

the measures is not atomic. The corresponding local construction gives uniformly comple-

mented copies of the `n
2 ’s in c0⊗̂πc0. We continue the study of c0⊗̂πc0 showing that it contains

a complemented copy of Stegall’s space c0(`n
2 ) and proving that (c0⊗̂πc0)′′ is isomorphic to

`∞(`n
∞⊗̂π`n

∞), together with other results. In the last section we use Hardy spaces to find an

isomorphic copy of Lp in the space of compact operators from Lq to Lr, where 1 < p, q, r < ∞

and 1/r = 1/p + 1/q.

Introduction

This paper studies subspaces of tensor products of Banach spaces, with emphasis in the

‘Varopoulos space’ C(K1)⊗̂πC(K2). The contents and organization of the article are as follows.

Section 1 contains our main result: C(K1)⊗̂πC(K2) has a complemented copy of `2 as long

as C(K1) is infinite dimensional and K2 non-scattered (Theorem 1.2). Actually we give a

very explicit representation of `2, namely, if (fn) is equivalent to the standard basis of c0 in

C(K1) and (gn) to that of `1 in C(K2), then (fn ⊗ gn) spans a complemented copy of `2 inside

C(K1)⊗̂πC(K2).

Then we “predualize” Theorem 1.2 to obtain also a complemented copy of `2 in L1(µ1)⊗̂εL2(µ2)

when µ2 is not purely atomic.
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As an application, we show that the 4-fold tensor product ⊗̂4
πc0 lacks the uniform approxi-

mation property, while (⊗̂4
πC(K))′ lacks the approximation property if K is non-scattered.

In Section 2 we study the bidual of c0⊗̂πc0 and we prove that it is isomorphic to `∞(`n
∞⊗̂π`n

∞),

but not to `∞⊗̂π`∞ which, as we will see, is not a direct factor in any dual Banach space.

Finally, Section 3 deals with injective tensor product of Lebesgue spaces. We use Hankel-

like operators on the Hardy classes to exhibit a copy of Lp in the space of compact operators

K(Lq, Lr) if we are given 1 < p, q, r < ∞ such that 1/p+1/q = 1/r. Complementation, however,

will not follow.

Although we have presented our main results without any mention to the Dunford-Pettis

property (DPP for short), our research was motivated by the study of the DPP in tensor

products.

Recall that a Banach space is said to have the DPP if every weakly compact operator defined

on it is completely continuous. (An operator is called completely continuous if it takes weakly

Cauchy sequences to norm convergent sequences, and weakly compact if it sends the unit ball

into a set with weakly compact closure.) It is a consequence of the work of Dunford and Pettis

that L1(µ) spaces have the DPP, and later Grothendieck, who first isolated this property and

named it, proved that C(K) spaces also have it. It is well known that the DPP is stable by

complemented subspaces, that reflexive (infinite dimensional) spaces never have the DPP and

that, if X ′ has the DPP, so does X. The converse is not true, as shown in [20]. It is interesting

to remark that Stegall actually constructs a Banach space X such that X ′ has the DPP but X ′′

does not: X = c0(`
n
2 ) has the DPP because X ′ = `1(`

n
2 ) has even the Schur property (weakly

convergent sequences converge in norm); X ′′ = `∞(`n
2 ) lacks the DPP because it contains a

complemented copy of `2.

This example was essentially unique until recently it was proved that c0⊗̂πc0 has the same

behaviour. The space c0⊗̂πc0 has the DPP because its dual `1⊗̂ε`1 has the Schur property,

as in Stegall example. On the other hand Fernando Bombal and the third named author

showed that C(K1)⊗̂πC(K2) does not have the DPP whenever at least one of the compact

spaces Ki is not scattered. They proved this showing an explicit example of an operator
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$ : C(K1)⊗̂πC(K2) −→ `2 which is not completely continuous. Soon afterwards, the authors

of [10] pushed the same ideas further to exhibit several instances of both projective and injective

tensor products of Banach spaces lacking the DPP. In particular, they proved that (c0⊗̂πc0)
′′

lacks the DPP by extending $ : `∞⊗̂π`∞ −→ `2 to an operator (c0⊗̂πc0)
′′ −→ `2. Actually,

every weakly compact operator on `∞⊗̂π`∞ extends to (c0⊗̂πc0)
′′ as the former space is a

locally complemented subspace of the latter, see [4]. This provided the essentially second

example known to the authors of a Banach space with the DPP whose second dual lacks it.

The starting point of our research was to find out whether there is some relation between

Stegall’s example and c0⊗̂πc0. Our main result implies that the above mentioned operator

$ : C(K1)⊗̂πC(K2) −→ `2 is in fact a projection, while the corresponding local argument

and the results of Section 2 imply that c0⊗̂πc0 contains a complemented copy of c0(`
n
2 ). Thus,

essentially and as far as we know, Stegall’s example remains as the sole available example of a

Banach space having the DPP and whose bidual lacks it. To tell the truth, we should mention

that the space T constructed by Talagrand in [23] has the DPP, its dual has the Schur property,

and T ′′ lacks the DPP, as it is shown by Núñez in [17]. However a close inspection to T reveals

that it contains a complemented copy of Stegall’s c0(`
n
2 ), too.

Notations. The notations and terminology used along the paper will be the standard in

Banach space theory, as for instance in [9]. We have written X⊗̂πY for the projective tensor

product of two given Banach spaces X and Y , while the injective tensor product is denoted

X⊗̂εY .

If Y is a complemented subspace of X, then the (relative) projection constant of Y in X is

the infimum of the norms of all projections from X onto Y and it is denoted λ(Y,X).

If X and Y are isomorphic, then the (multiplicative) Banach-Mazur distance between X

and Y is

d(X, Y ) = inf{‖T‖‖T−1‖ with T : X −→ Y an isomorphism}.

The topological dual of X is denoted X ′; the value of x′ ∈ X at x ∈ X is often denoted

〈x′, x〉. If T : X −→ Y is a (linear, bounded) operator, then the adjoint is denoted by T ′. We
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use K (with or without subscripts) for a compact (Hausdorff) space, while C(K) stands for

the space of all continuous functions on K (with values in the ground field), endowed with the

supremum norm.

Further notation will be introduced when needed.

1. Complemented copies of `2 in c0⊗̂πL∞ and `1⊗̂εL1

In this Section we show that `2 lives complemented in c0⊗̂πC(K) if (and only if) K is not

scattered. We use well known weak summability arguments to show that certain operators are

bounded, the proof ultimately relying on Grothendieck’s theorem (or on Orlicz’s theorem).

Let 1 ≤ p ≤ ∞. A sequence (xn) is weakly p-summable in X if, for every x′ ∈ X ′, the scalar

sequence (〈x′, xn〉) is in `p. In that case we define its p-weak norm by

‖(xn)‖ω
p = sup

‖x′‖≤1

(∑
n

|〈x′, xn〉|p
)1/p

.

It is clear (and easy to prove) that (xn) is weakly p-summable if and only if the operator

`p′ −→ X sending en to xn is bounded (here p′ denotes the conjugate of p, that is, 1/p′+1/p = 1;

if p = 1 then c0 should replace `∞). In fact the norm of that operator equals ‖(xn)‖ω
p .

An operator T : X −→ Y is p-summing when it takes weakly p-summable sequences into

p-summable sequences. In that case we have an estimate(
∞∑

n=1

‖T (xn)‖p

)1/p

≤ K‖(xn)‖ω
p ,

for some constant K independent on xn. The least possible constant in the preceding inequality

is denoted πp(T ). All this can be seen in [9, Chapter 2].

We start with the following simple technical Lemma.

Lemma 1.1. Let (fn) be a weakly 2-summable sequence in C(K1) and (gn) a bounded se-

quence in C(K2). Then (fn ⊗ gn) is weakly 2-summable in C(K1)⊗̂πC(K2).

Proof. We may assume ‖gn‖ ≤ 1 for all n and ‖(fn)‖ω
2 ≤ 1. Let us compute the 2-

weak norm of the sequence (fn ⊗ gn) in C(K1)⊗̂πC(K2). Let B be a norm one functional on
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C(K1)⊗̂πC(K2) and let T : C(K1) −→ C(K2) be the associated operator, so that

〈B, f ⊗ g〉 = 〈Tf, g〉 (f ∈ C(K1), g ∈ C(K2)).

By Grothendieck’s inequality T is 2-summing, with π2(T ) ≤ KG, where KG is the Grothendieck

constant; see [9, theorem 3.5]. Therefore(∑
n

|〈B, fn ⊗ gn〉|2
)1/2(∑

n

|〈Tfn, gn〉|2
)1/2

≤

(∑
n

‖Tfn‖2

)1/2

≤ π2(T )‖(fn)n‖w
2 ≤ KG.

Hence ‖(fn ⊗ gn)‖ω
2 ≤ KG. �

Our first result follows suit.

Theorem 1.2. Let K2 be a non scattered compact space and K1 an infinite compact space.

Then C(K1)⊗̂πC(K2) has a complemented copy of `2.

Proof. First of all, let us fix an isomorphic embedding  : c0 −→ C(K1). Such a  clearly

exists: just map the unit basis of c0 into a normalized sequence of functions in C(K1) having

disjoint supports. Let κ : C(K1) −→ `∞ be any extension of the inclusion map c0 −→ `∞

through : this can be obtained applying the Hahn-Banach theorem to each coordinate.

Also, since K2 is not scattered, there is an operator ϕ : C(K2) −→ `2 mapping a bounded

sequence onto the usual basis of `2. Indeed, C(K2) contains an isomorphic copy of `1, and

therefore there exists even a surjective operator C(K2) −→ `2 by [9, Corollary 4.16].

Now, define an operator $ : C(K1)⊗̂πC(K2) −→ `2 by

$(f ⊗ g) = κ(f) · ϕ(g),

where the product is taken coordinatewise. It is clear that $ is well defined and also that

‖$‖ ≤ ‖κ‖‖ϕ‖.

Let us construct a bounded right inverse for $. Pick a bounded sequence (gn) such that

ϕ(gn) = en (in `2) and let (fn) be the image under  of the unit basis of c0. By Lemma 1.1 the

sequence (fn ⊗ gn) is weakly 2-summable in C(K1)⊗̂πC(K2) and so we can define a bounded
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operator σ : `2 −→ C(K1)⊗̂πC(K2) taking σ(en) = fn ⊗ gn. Moreover

$(σ(en)) = $(fn ⊗ gn) = κ(fn) · ϕ(gn) = en,

so that $ ◦ σ = 1`2 . This shows that σ ◦$ is a projection on C(K1)⊗̂πC(K2) whose range is

isomorphic to `2 —and also that $ is onto, even if ϕ is not. �

In particular c0⊗̂π`∞ and c0⊗̂πC[0, 1] do contain `2 as a complemented space. Notice that if

both K1 and K2 are scattered, then C(K1)⊗̂πC(K2) has the Dunford-Pettis property (since the

dual space is isomorphic to `1(K1)⊗̂ε`1(K2) which has the Schur property [14]) and it cannot

contain a complemented reflexive subspace.

It is clear from the proof of Theorem 1.2 that the complemented copy of `2 in C(K1)⊗̂πC(K2)

is just the subspace spanned by the sequence (fn ⊗ gn). Denote it by H. Since $ ◦ σ = 1`2

we see that the Banach-Mazur distance between H and `2 is at most ‖$‖‖σ‖. Since σ ◦ $

is a projection onto H we see that the relative projection constant of H in C(K1)⊗̂πC(K2) is

bounded by ‖$‖‖σ‖, too. If  is an isometric embedding then ‖$‖ = ‖ϕ‖, while (in view of

the proof of Lemma 1.1) ‖σ‖ ≤ KGM , with M = supn ‖gn‖C(K2).

Let us consider a concrete example in detail. For the sake of clarity the action takes place

in the Cantor group ∆ = {1,−1}N furnished with the product topology and Haar measure. It

is convenient to regard the elements of ∆ as functions t : N −→ {1,−1}. In this setting the

Rademacher funtions are just evaluations:

rn(t) = t(n) (n ∈ N, u ∈ ∆).

Clearly, rn are in C(∆) and so in Lp(∆) for all p. Consider the operator ρ : `2 −→ L1(∆)

defined by ρ(en) = rn. It is clear that ‖ρ‖ = 1:

‖ρ(x)‖L2(∆) = ‖x‖`2 and ‖ρ(x)‖L1(∆) ≤ ‖ρ(x)‖L2(∆).

Actually ρ is an isomorphic embedding, according to Khinchin inequality (see [15] or [9, p.

227]) but we will not use this fact. The adjoint ρ′ : L∞(∆) −→ `2 (which is a quotient map) is
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given by

〈ρ′(f), en〉 =

∫
∆

rn(t)f(t)dt (f ∈ L∞(∆)).

But the sequence (rn) is orthonormal in L2(∆) and so ρ′(rn) = en. Hence the sequence (en⊗rn)

spans a subspace H isomorphic to `2 and complemented in c0⊗̂πL∞(∆). Actually H is even a

(necessarily complemented) subspace of the smaller space c0⊗̂πC(∆). In this case both d(H, `2)

and λ(H, c0⊗̂πL∞(∆)) are bounded by KG. See [9, p. 29] for numerical bounds of KG.

The same ideas can be used to obtain the following local version of Theorem 1.2.

Corollary 1.3. For every n, there is Hn ⊂ `n
∞⊗̂π`2n

∞ such that d(Hn, `
n
2 ) ≤ KG and

λ(Hn, `
n
∞⊗̂π`2n

∞) ≤ KG.

Proof. Let ∆(n) = {1,−1}n. We embed `n
2 into L1(∆

(n)) using the n Rademachers at

our disposal. Then Hn is the subspace spanned in `n
∞⊗̂πL∞(∆(n)) by the system (ek ⊗ rk) for

1 ≤ k ≤ n. Of course L∞(∆(n)) is isometric to `2n

∞ . �

Now, we state and prove a dual version of Theorem 1.2. Consider again the operator

$ : c0⊗̂πL∞(∆) −→ `2 given by

$(f ⊗ g) = f · ρ′(g) (f ∈ c0, g ∈ L∞(∆)).

Identifying `2 with its own dual let us consider the adjoint operator

$′ : `2 −→ (c0⊗̂πL∞(∆))′.

It is obvious that G = $′(`2) is KG-isomorphic to `2 and also that it is KG-complemented in

(c0⊗̂πL∞(∆))′. But actually $′ takes values in `1⊗̂εL1(∆), which is a subspace of (c0⊗̂πL∞(∆))′.

Indeed we have $′(en) = en ⊗ rn ∈ `1⊗̂εL1(∆) since

〈$′(en), f ⊗ g〉 = 〈en, f · ρ′(g)〉 = f(n)〈en, ρ
′(g)〉 = 〈en, f〉〈rn, g〉 = 〈en ⊗ rn, f ⊗ g〉

for f ∈ c0 and g ∈ L∞(∆). Therefore G is a complemented subspace of `1⊗̂εL1(∆).

Corollary 1.4. Let µ1 and µ2 be two measures. If L1(µ1) is infinite-dimensional and µ2

is not purely atomic, then L1(µ1)⊗̂εL1(µ2) contains a complemented copy of `2.
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Proof. The hypotheses imply that L1(µ1) contains a complemented copy of `1 and L1(µ2)

contains a complemented copy of L1(∆). Hence L1(µ1)⊗̂εL1(µ2) contains `1⊗̂εL1(∆) (hence `2)

complemented. �

Our next result is a ‘formal’ consequence of Theorem 1.2 thanks to the main result of [4].

We need the notion of a locally complemented subspace. Suppose Y is a closed subspace of

X. We say that Y is locally complemented in X if for each finite-dimensional subspace E ⊂ X

there exists an operator P : E → Y such that P is the identity on Y ∩ E, with ‖P‖ ≤ M

for some M independent on E. A standard compactness argument shows that for dual spaces

‘locally complemented’ implies ‘complemented’. The same is true for Banach spaces which are

isomorphic to complemented subspaces of a conjugate space.

Corollary 1.5. Let K1 and K2 be infinite compact spaces. Then (C(K1)⊗̂πC(K2))
′′ con-

tains a complemented copy of `2.

Proof. The main result of [4] states that C(K1)
′′⊗̂πC(K2)

′′ is a locally complemented

subspace of (C(K1)⊗̂πC(K2))
′′. Since ‘to be a locally complemented subspace of’ is a transitive

property and `2 is reflexive (hence a dual space), it suffices to find a complemented copy of `2

in C(K1)
′′⊗̂πC(K2)

′′. But the last space obviously contains a complemented copy of `∞⊗̂π`∞,

and Theorem 1.2 applies. �

Remark 1. There is an alternate way to Theorem 1.2 which gives better estimates (though

less weakly 2-summable sequences). Just use the following result instead of Lemma 1.1.

Lemma 1.6. Let (fn) be a weakly 1-summable sequence in C(K1) and (gn) a bounded se-

quence in C(K2). Then (fn ⊗ gn) is weakly 2-summable in C(K1)⊗̂πC(K2).

Proof. The proof is as that of Lemma 1.1, but we use Orlicz theorem (instead of Grothendieck

inequality) as stated in [24, theorem 11.11]: every weakly 1-summable sequence in L1(µ) is

strongly 2-summable, with (∑
n

‖hn‖2

)1/2

≤ KO‖(hn)‖ω
1 ,
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where KO ≤ KG and KO =
√

2 in the real case. Hence, if ‖gn‖ ≤ 1 for all n and ‖(fn)‖ω
1 ≤ 1,

we obtain ‖(fn⊗ gn)‖ω
2 ≤

√
2, taking into accout that C(K2)

′ = L1(µ) for some measure µ. �

Remark 2. There are two long time open questions related to the results of this Section.

On one hand, it is not known whether c0⊗̂πc0 has the uniform approximation property (UAP

for short), where a Banach space X has UAP if there is a constant K and a function f : N −→ N

such that, given E ⊂ X with dim E = k there is T ∈ L(X) such that T is the identity on E,

with ‖T‖ ≤ K and dim T (X) ≤ f(k) ([11, 6]).

On the other hand, it is also not known whether c0⊗̂πc0 is isomorphic to c0⊗̂πc0⊗̂πc0 = ⊗̂3
πc0.

We first heard of the first problem from Aleksander Pe lczyński, and of the second one from

Joe Diestel. Note that it follows from the associativity of the projective tensor product that if

c0⊗̂πc0 is isomorphic to ⊗̂3
πc0, then it is also isomorphic to ⊗̂4

πc0. In this context the following

consequence of our results maybe useful.

Corollary 1.7. The space ⊗̂4
πc0 does not have the UAP.

Proof. It follows from Theorem 1.3 that ⊗̂4
πc0 contains uniformly complemented copies of

the trace class spaces Sn
1 = `n

2 ⊗̂π`n
2 , and now, using the results in [22], it follows that ⊗̂4

πc0

does not have the UAP. �

With a very similar reasoning we have

Corollary 1.8. If K is non-scattered, then (⊗̂4
πC(K))′ lacks the AP.

Proof. By Theorem 1.2, ⊗̂4
πC(K) has a complemented copy of `2⊗̂π`2, therefore (⊗̂4

πC(K))′

has a complemented copy of (`2⊗̂π`2)
′ = L(`2), and this space does not have the AP. �

Essentially the same questions as for the c0 case are, as far as we know, open for `∞: we

do not know whether `∞⊗̂π`∞ is isomorphic to `∞⊗̂π`∞⊗̂π`∞, and we do not know whether

(`∞⊗̂π`∞)′ has the AP.
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2. A description of the bidual of c0⊗̂πc0

In this Section we compare the spaces (c0⊗̂πc0)
′′, `∞(`n

∞⊗̂π`n
∞) and `∞⊗̂π`∞. Given a se-

quence space S and A ⊂ N, we put

S[A] = {x ∈ S : x(n) = 0 for n /∈ A}.

The following result generalizes [3, lemma 2]. The observation that one can (and must) use a

Riemann integral to simplify the proof is due to Klaus Floret.

Lemma 2.1. Let X and Y have unconditional bases and let (An) and (Bn) be two partitions

of N. Let E be the smallest closed subspace of X⊗̂πY containing every X[An] ⊗ Y [Bn]. Then

E is complemented in X⊗̂πY .

Proof. We may and do assume the bases 1-unconditional. We have an action of the Cantor

group ∆ on X given by

(t ◦ x)(k) = t(n)x(k) (k ∈ An).

Similarly,

(t ◦ y)(k) = t(n)y(k) (k ∈ Bn)

defines an action of ∆ on Y . These actions are continuous. In particular, given z in X

(respectively, in Y ), the map u 7−→ u ◦ z is continuous from ∆ to X (respectively, to Y ). Thus

we can define a bilinear map B : X × Y −→ X⊗̂πY through the (Riemann) integral

B(x, y) =

∫
∆

(t ◦ x⊗ t−1 ◦ y)dt.

It is clear that ‖B‖ ≤ 1. Let P denote the linearization of B, so that P (x⊗ y) = B(x, y). We

have ‖P‖ = ‖B‖ ≤ 1. It is easily seen that P is a projection of X⊗̂πY onto E. In fact

P (ei ⊗ ej) =


ei ⊗ ej if ei ⊗ ej ∈ E

0 otherwise.

This completes the proof. �

Proposition 2.2. The space (c0⊗̂πc0)
′′ is isomorphic to `∞(`n

∞⊗̂π`n
∞).
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Proof. We prepare the ground for Pe lczyński decomposition method by showing that

`∞(`n
∞⊗̂π`n

∞) embeds as a complemented subspace of (c0⊗̂πc0)
′′.

Let (An) and (Bn) be two partitions of N and let E be the subspace of c0⊗̂πc0 defined in

Lemma 2.1. We already know that E is the range of a contractive projection on c0⊗̂πc0. We

claim that E is isometric to c0(c0[An]⊗̂πc0[Bn]). It is completely obvious that the closure of

c0[An] ⊗ c0[Bn] in c0⊗̂πc0 is isometric to c0[An]⊗̂πc0[Bn], and so we treat the latter space as a

subspace of c0⊗̂πc0. Now, it suffices to show that, given un ∈ c0[An]⊗̂πc0[Bn], one has

‖u1 + · · ·+ uk‖ = max
1≤n≤k

‖un‖.

Put u = u1 + · · ·+ uk. That ‖u‖ ≥ ‖un‖ for 1 ≤ n ≤ k is clear since un is the image of u under

a contractive projection. Hence

‖u‖ ≥ max
1≤n≤k

‖un‖.

To prove the reversed inequality, let P ′ be the adjoint of the averaging projection described in

Lemma 2.1 acting on (c0⊗̂πc0)
′. Notice that

〈P ′f, x⊗ y〉 =

∫
∆

f(t ◦ x⊗ t−1 ◦ y)dt

for all f ∈ (c0⊗̂πc0)
′ and x, y ∈ c0. Every functional in the range of P ′ vanishes on the kernel

of P and, in fact, for x ∈ c0[An], y ∈ c0[Bm] and f ∈ (c0⊗̂πc0)
′ one has

〈P ′f, x⊗ y〉 = δnmf(x⊗ y).

Now, let f be a norm one functional attaining the norm on u and let φ = P ′f . Clearly

φ(u) = f(u) and so

‖u‖ = φ(u1) + · · ·+ φ(uk).

Fix ε > 0 and choose xn ∈ c0[An] and yn ∈ c0[Bn] so that

|φ(un)| < φ(xn ⊗ yn) +
ε

k
with ‖xn‖ = 1 and ‖yn‖ = ‖un‖.
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This can be done because the norm of a bilinear functional equals the norm of its linearization

on the corresponding tensor product. We obtain

‖u‖ ≤ |φ(u1)|+ · · ·+ |φ(uk)|

< φ(x1 ⊗ y1) + · · ·+ φ(xk ⊗ yk) + ε

= φ((x1 + · · ·+ xk)⊗ (y1 + · · ·+ yk)) + ε

≤ ‖φ‖‖x1 + · · ·+ xk‖‖y1 + · · ·+ yk‖+ ε

= ‖y1 + · · ·+ yk‖+ ε

= max
n
‖un‖+ ε,

and since ε is arbitrary we are done.

Taking An = Bn successive intervals consisting of n numbers we conclude that c0(`
n
∞⊗̂π`n

∞) is

isometric to a 1-complemented subspace of c0⊗̂πc0 and, passing to the biduals, that `∞(`n
∞⊗̂π`n

∞)

is isometric to a 1-complemented subspace of (c0⊗̂πc0)
′′.

Next, we show that (c0⊗̂πc0)
′′ is a complemented subspace of `∞(`n

∞⊗̂π`n
∞). We regard

`1⊗̂ε`1 as the conjugate of c0⊗̂πc0, so that (c0⊗̂πc0)
′′ is the conjugate of `1⊗̂ε`1. Also, we treat

`n
∞⊗̂π`n

∞ as the conjugate of `n
1 ⊗̂ε`

n
1 ; and the latter space as a subspace of `1⊗̂ε`1. Using these

conventions we can define an operator κ : (c0⊗̂πc0)
′′ −→ `∞(`n

∞⊗̂π`n
∞) taking

(κ(u))n = u|`n
1 ⊗̂ε`

n
1
∈ `n

∞⊗̂π`n
∞.

Quite clearly, ‖κ‖ ≤ 1. Let us construct a projection of `∞(`n
∞⊗̂π`n

∞) onto (c0⊗̂πc0)
′′ through

κ. Let V be a nontrivial ultrafilter on N and define π : `∞(`n
∞⊗̂π`n

∞) −→ (c0⊗̂πc0)
′′ as

π((Bn)n) = weak*− lim
V(n)

Bn,

where `n
∞⊗̂π`n

∞ is treated as a subspace of c0⊗̂πc0 (hence of the bidual). We check that π is a

right inverse for κ (incidentally, this will show that κ is an isomorphic embedding). One only

has to show that

B = weak*− lim
n→∞

Bn (B ∈ (c0⊗̂πc0)
′′)
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where Bn is given by

Bn(A) = B(Pn(A)) (A ∈ `1⊗̂ε`1)

and Pn is the obvious projection of `1⊗̂ε`1 onto `n
1 ⊗̂ε`

n
1 . But this is clear since Pn(A) converges

to A strongly in `1⊗̂ε`1 as n →∞.

Thus, each of the spaces (c0⊗̂πc0)
′′ and `∞(`n

∞⊗̂π`n
∞) is isomorphic to a complemented

subspace of the other and the proof will be complete if we show that (c0⊗̂πc0)
′′ is isomorphic

to its `∞-sum (see [25, theorem 24]). It clearly suffices to see that c0⊗̂πc0 is isomorphic to

c0(c0⊗̂πc0). That c0⊗̂πc0 is isomorphic to its c0-sum follows from the most elementary version

of Pe lczyński’s method (that in [18]): both spaces are isomorphic to their squares and, in view

of Lemma 2.1 each of them contains a complemented copy of the other. �

As a by-product of Corollary 1.3, Lemma 2.1 and the proof of the preceding proposition we

obtain:

Corollary 2.3. The space c0⊗̂πc0 contains a complemented copy of c0(`
n
2 ). �

Thus Stegall’s example remains as the sole known example of a Banach space having DDP

and whose bidual lacks it.

The space `∞⊗̂π`∞ occupies, to some extent, an intermediate position between c0⊗̂πc0 and

its bidual. To be more precise, there are isometries

(1) c0⊗̂πc0
−−−→ `∞⊗̂π`∞

κ−−−→ (c0⊗̂πc0)
′′

so that κ ◦  is the inclusion of c0⊗̂πc0 in its bidual. Here,  is obtained tensorizing (twice) the

inclusion of c0 in `∞ and κ is defined through the Aron-Berner (or Davie-Gamelin) extension

in a much more general setting; see [4]. For our current purposes it suffices to identify `1⊗̂ε`1

with the dual of c0⊗̂πc0: in this way (c0⊗̂πc0)
′′ is the conjugate space of `1⊗̂ε`1 and `∞⊗̂π`∞ is

just the space generated by the functionals of the form

x⊗ y 7−→ 〈f, x〉〈g, y〉 (x, y ∈ `1, f, g ∈ `∞),
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while c0⊗̂πc0 is obtained with f, g ∈ c0. Under these representations the arrows of (1) are just

inclusions.

Another possibility is to identify (c0⊗̂πc0)
′′ with the space of all integral operators I(`1, `∞).

Then `∞⊗̂π`∞ = N(`1, `∞), the subspace of nucleal operators.

In view of Proposition 2.2 one may wonder if `∞⊗̂π`∞ is isomorphic to (c0⊗̂πc0)
′′, too. The

following result answers the last question in the negative. Its proof shows that the results in

[4] are, to some extent, optimal.

Proposition 2.4. The space `∞⊗̂π`∞ is not complemented in any dual space. In particular

it is not isomorphic to (c0⊗̂πc0)
′′.

Proof. Recall that if a Banach space is complemented in some dual space, then it is

complemented in every space containing it as a locally complemented subspace.

It is proved in [4] that `∞⊗̂π`∞ is locally complemented in (c0⊗̂πc0)
′′. Thus if `∞⊗̂π`∞ were

complemented in some dual space, it should be complemented in (c0⊗̂πc0)
′′. We complete the

proof by showing that this is not the case.

For the remainder of this Section we abbreviate `∞⊗̂π`∞ to N and (c0⊗̂πc0)
′′ to I.

Consider the whole exact sequence

0 −−−→ N
κ−−−→ I

π−−−→ I/N −−−→ 0

and recall that in such a diagram the subspace is complemented in the middle space if and only

if the quotient map π admits a (linear and bounded) section, that is, there is an operator

S : I/N −→ I

such that π ◦ S is the identity on I/N. We shall see that such a S cannot exist. Consider the

operator δ : `∞ −→ I given by

δ(f) =
∞∑

n=1

f(n)(en ⊗ en) (f ∈ `∞),

where the summation of the series is performed in the weak* topology of I = (`1⊗̂ε`1)
′. It is

clear that δ is an isometric embedding. A moment’s reflection shows that N ∩ δ(`∞) = δ(c0).
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Thus the composition π ◦ δ factorizes through the quotient `∞/c0 and we have a commutative

diagram

0 −−−→ N
κ−−−→ I

π−−−→ I/N −−−→ 0

δ

x δ

x x
0 −−−→ c0 −−−→ `∞ −−−→ `∞/c0 −−−→ 0

where the rows are exact and the vertical arrows are isometric embeddings. Therefore I/N

contains a subspace isometric to `∞/c0. But the latter space contains a further subspace

isometric to c0(Γ), where Γ has the power of continuum. Since there is no one-to-one operator

from c0(Γ) into the dual of a separable Banach space (such as `1⊗̂ε`1) we conclude that π cannot

have a linear and bounded section. �

Remark 3. There is a number of intriguing questions about `∞⊗̂π`∞. For instance, it is

not known whether `∞⊗̂π`∞ contains a complemented subspace isomorphic to c0 or not. Note

that Proposition 2.4 leaves the possibility of an affirmative answer open. We know very little

about how to embeed c0 into `∞⊗̂π`∞. It is clear that if S is a subspace isomorphic to c0

and there is another subspace M ⊂ `∞⊗̂π`∞ containing S and isomorphic to `∞, then S is

not complemented in `∞⊗̂π`∞. On the other hand, we know that δ(c0) is uncomplemented in

`∞⊗̂π`∞ (this follows, e.g., from [5]). However, `∞⊗̂π`∞ is very “thin” around the diagonal:

Claim 2.5. No subspace of `∞⊗̂π`∞ containing δ(c0) is isomorphic to `∞.

Proof. With the same notation as before, suppose δ(c0) ⊂ M ⊂ N, with M isomorphic to

`∞. Then M/δ(c0) is isomorphic to a subspace of N/δ(c0). It is known that there is only one

isomorphic embedding of c0 into `∞, up to automorphisms of `∞ (the Lindenstrauss-Rosenthal

theorem [16]; there is a remarkable simple proof in [7]). Hence M/δ(c0) is isomorphic to `∞/c0.

On the other hand, applying diamond’s lemma (see any book in basic algebra or just chase

the diagram below) to N and δ(`∞) in I and, bearing in mind that δ(`∞) ∩N = δ(c0), we get
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the commutative diagram

0 0 0y y y
0 −−−→ c0 −−−→ `∞ −−−→ `∞/c0 −−−→ 0

δ

y δ

y ∥∥∥
0 −−−→ N −−−→ N + δ(`∞) −−−→ (N + δ(`∞))/N −−−→ 0y y y
0 −−−→ N/δ(c0) (N + δ(`∞))/δ(`∞) −−−→ 0y y

0 0

where the rows and columns are exact sequences. But `∞ is injective amongst Banach spaces

and so the middle vertical sequence splits: this implies that N + δ(`∞) (hence I) contains an

isomorphic copy of N/δ(c0) (hence of `∞/c0). A contradiction. �

Remark 4. Proposition 2.2 cannot be predualized (twice) to obtain an isomorphism be-

tween c0⊗̂πc0 and c0(`
n
∞⊗̂π`n

∞). Actually, the latter space is (as every c0-sum of finite dimen-

sional spaces) isomorphic to a subspace of c0, while the former is not. This follows from the

fact (proved by Stehle in [21]) that there are subspaces of c0⊗̂πc0 failing the DPP.

3. Lp as a space of compact operators

This Section has only loose connections with the preceding ones. As a motivation of our

closing result, let us consider numbers p, q and r so that 1/p + 1/q = 1/r. Hölder’s inequality

tells us that the bilinear operator

m : Lp × Lq −→ Lr

sending (f, g) to the product f · g is continuous: actually ‖m‖ = 1. It is easy to see that it

is also surjective: indeed, if h ∈ Lr, and we write h = u|h| with u unitary, then f = u|h|r/p

belongs to Lp, g = |h|r/q belongs to Lq and h = f · g. Moreover, ‖h‖r = ‖f‖p‖g‖q. Thus, the

linearization of m is a quotient operator m̃ : Lp⊗̂πLq −→ Lr. One may wonder if m̃ has a
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right inverse so that there is a complemented copy of Lr in Lp⊗̂πLq —as it is the case for the

operator C(K1)⊗̂πC(K2) −→ `2 appearing in Section 1. All we know is:

• In general m̃ does not have a right inverse. Indeed, take p = q = 2 so that r = 1. Then

L1 cannot be a subspace of L2⊗̂πL2 because the latter space has the Radon-Nikodým

property (a hereditary property) while the former lacks it.

• However m̃ has a right inverse in the purely atomic case, so that `p⊗̂π`q has a comple-

mented copy of `r ([1] or [3, proposition 1]).

¿From now on, we assume r > 1. The main result of [3] implies that there is always a local

right inverse for m̃ (explicit constructions are also available). As the reader can imagine we

say that P : X −→ Z has a local right inverse if, for each finite-dimensional E ⊂ Z there is an

operator S : E −→ X such that P ◦ S = 1E, with ‖S‖ ≤ M for some M independent on E.

Thus, if we consider the whole exact sequence

(2) 0 −−−→ ker m̃ −−−→ Lp⊗̂πLq
m̃−−−→ Lr −−−→ 0,

we have that ker m̃ is locally complemented in Lp⊗̂πLq (see, e.g., [12]). Since our hypotheses

imply that Lp⊗̂πLq is a dual space, namely the dual of Lp′⊗̂εLq′ = K(Lp, Lq′), we see that the

above sequence splits if and only if ker m̃ is complemented in some dual space. Of course this

would be the case if m̃ were weak* continuous. But an operator T : Lp⊗̂πLq −→ Lr is weak*

continuous if and only if T ′ : Lr′ −→ L(Lp, Lq′) takes values in K(Lp, Lq′) and m̃′(f) is compact

only if f = 0. At this juncture it is not clear whether K(Lp, Lq′) contains a copy of Lr′ when

1/p + 1/q = 1/r. The following result answers this question in the affirmative.

Proposition 3.1. Let 1 < p, q, r < ∞ be such that 1/p + 1/q = 1/r. Then K(Lq, Lr)

contains a copy of Lp.

Notice that we have relabeled the involved parameters. We will prove the analogous state-

ment about the Hardy classes. Recall that the Hardy space Hp = Hp(D) consists of those
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analytic functions f : D → C such that

‖f‖Hp = sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ

)1/p

< ∞.

The space Hp is a Banach space for 1 ≤ p < ∞. The boundary values

f(eiθ) = lim
r→1

f(reiθ)

exist almost everywhere in T and ‖f‖Hp = ‖f‖Lp(T). This implies that Hp is isometric to

Hp(T), the subspace spanned by the functions {einθ : n ≥ 0} in Lp(T). This correspondence

sends Taylor series into Fourier series: if f =
∑∞

n=0 anz
n is the Taylor series of f ∈ Hp, then the

boundary value of f has Fourier series
∑∞

n=0 ane
inθ. ¿From now on we treat Hp as a subspace

of Lp(T). The map
∞∑
−∞

ake
ikθ 7−→

∞∑
k=0

ake
ikθ

is often called the Riesz projection. It is bounded on Lp = Lp(T) if and only if 1 < p < ∞.

In this case Hp is a complemented subspace of Lp and, actually, the two spaces are linearly

isomorphic. Let us prove the result.

Proposition 3.2. Let 1 < p, q, r < ∞ satisfy 1/p + 1/q = 1/r. Then Hp is isomorphic to

a closed subspace of K(Hq, Hr).

Proof. Every f ∈ Hp induces a Hankel-like operator H(f) : Hq → Hr defined by

H(f)(g) = R(fg) (g ∈ Hq),

where R is the Riesz projection on Lr. We have ‖H(f)(g)‖r ≤ ‖R‖L(Lr)‖f‖p‖g‖r by Hölder

inequality. Hence

‖H(f) : Hq → Hr‖ ≤ ‖R‖L(Lr)‖f‖p,

and so

‖H : Hp → L(Hq, Hr)‖ ≤ ‖R‖L(Lr).
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Let us see that H(f) is always compact. Taking f = zk and g = zl, we have

H(zk)(zl) = R(zk−l) =


zk−l for l ≤ k

0 for l > k.

Thus H(f) has finite rank when f = zk with k ∈ N. By linearity H(f) has finite rank when f

is a polynomial and since polynomials are dense in Hp and H is continuous we see that H(f)

is compact for every f ∈ Hp.

It remains to verify that ‖H(f)‖ ≥ k‖f‖p for some constant k independent on f ∈ Hp.

Take f ∈ Hp with ‖f‖p = 1. Identifying f with its boundary value, there exists g ∈ Lp′ such

that ‖g‖p′ = 1 and

(3) 〈g|f〉 =

∫
T
fgdθ = 1.

But 〈g|f〉 = 〈R(g)|f〉 and so we can assume that the g appearing in (3) belongs to Hp′ ,

with ‖g‖p′ ≤ ‖R‖L(Lp′ ). Now since 1/p′ = 1/q + 1/r′ there exist a factorization g = g1g2, with

g1 ∈ Hq, g2 ∈ Hr′ and ‖g‖p′ = ‖g1‖q‖g2‖r′ . Without loss of generality we may assume ‖g2‖r′ = 1

and ‖g1‖q = ‖g‖p′ . Since

1 =

∫
T
f · g1 · g2dθ =

∫
T
R(f · g1) · g2dθ

we obtain ‖H(f)(g1)‖Hr = ‖R(fg1)‖Lr ≥ 1 and thus

‖H(f)‖K(Hq ,Hr) ≥
1

‖R‖L(Lp′ )
‖f‖p,

which completes the proof. �

Remark 5. A Hankel matrix A = (A[i, j])i,j≥0 is one such that A[i, j] = αi+j for some

sequence (αn), that is, it has the form

α0 α1 α2 . . .

α1 α2 . . . . . .

α2 . . . . . . . . .

. . . . . . . . . . . .


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It is easily seen that the matrix of H(f) with respect to the basis (zk)k≥0 in Hq and Hr is a

Hankel matrix, with

H(f)[i, j] = f̂(i + j),

where f̂(n) denotes the n-th Fourier coefficient of (the boundary value of) f . Conversely, if the

matrix of a bounded operator T : Hq → Hr with respect to (zk) satisfies T [i, j] = τi+j, for some

sequence τn, then

f =
∞∑

k=0

τkz
k

belongs to Hp and T = H(f). We leave the details to the interested reader.

We do not known whether H(Hp) is complemented in K(Hq, Hr) when 1 < p < ∞. It should

be mentioned that the subspace of Hankel operators is uncomplemented in K(H2), as it follows

from a result of Kislyakov [13]. We remark, however, that the Hankel operators in K(H2) form

a subspace isomorphic to C(T)/A, where A is the disk algebra (see [19]), and not to the disk

algebra itself. This is due to the unboundedness of the Riesz projection on C(T).
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