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ABSTRACT

This paper analyzes the equilibrium dynamics of an AK-type endogenous growth model
with vintage capital. The inclusion of vintage capital leads to osciflatory dynamics go-
verned by replacement echoes, which additionally influence the intercept of the balanced
growth path. These features, which are in sharp contrast to those from the standard AK
model, can contribute to explaining the short-run deviations observed between investment
and growth rates time series. To characterize the convergence properties and the dynamics
of the model we develop analytical and numerical methods that should be of interest for
the general resclution of endogenous growth models with vintage capital.

RESUMEN

En este articulo se analiza la dindmica de un modelo de crecimiento erddgeno de la clase
AK en presencia de cosechas de capital {vintege capifal). La inclusién en el modelo de una
estructura wvintage da Jugar a una dindmica oscilatoria, vinculada a lo que se conoce coma
ecos de reemplazo, los cuales a su vez tienen efectos sobre el nivel de la senda de crecimiento
equilibrado. Esta propiedad conirasta marcadamente con el comportamiento del modelo
AK estandar, y puede centribuir a explicar las desviaciones a corte plazo, que se observan
en los datos, entre las tasas de inversién y las fasas de crecimiento. Para caracterizar las
propiedades de convergencia ¥ la dindmica del modele se desarrollan métedos analiticos y
numéricos que son de interés para la resolucidn de modelos de crecimiento endégeno con
cosechas de capital.
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1 Introduction

This paper focuses on the equilibrium dynamics of an AK-type endogenouns growth
model with vintage capital and non-linear utility. Several important considerations
warrant the analysis of vintage capital growth models. First, vintage capital has
become a key feature to be incorporated in growth models toward a satisfactory
account of the postwar growth experience of the United States.! Second, most of
the theoretical literature on this ground [e.g. Aghion and Howitt (1994), Parente
(1994)] only focuses on the analysis of balanced growth paths. One of the main rea-
sons underlying this circumstance is that dynamic general equilibrium models with
vintage technology often collapse into a mixed delay differential equation system,
which cannot in general be solved either mathematically or numerically.? Finally, it
has been of some concern to us how vintages determine the long-term growth of an
economy and the transitional dynamics to a given balanced growth path. A precise
characterization of the role of vintages in the determination of the growth rate is
still an open gquestion in modern growth theory.

This paper proposes a first attempt towards the complete resolution of endoge-
nous growth models with vintage capital. In doing so we incorporate a simple
depreciation rule into the simplest approach to endogenous growth, namely the AK
model. More precisely, by assuming that machines have a finite lifetime, the one-
hoss shay depreciation assumption, we add to the AK model the minimum structure
needed to make the vintage capital technology economically relevant. This small de-
parture from the standard mode! of exponential depreciation modifies dramatically
the dynamics of the standard AK class of models. Indeed, convergence to the bal-
anced prowth path is no longer monotonic and the initial reaction to a shock affects
the position of the balanced growth path.

The Gnding of persistent oscillations in investment is somewhat an expected
result once non-exponential depreciation structures are incorporated into growth
models. However, a complete model specification is needed to precisely characterize
how the endogenous growth rate is affected by the determinants of the vintage strue-
ture of capital as well as to analyze the role of replacement echoes for the short-run
dynaxuics. To achieve these results it turns out to be useful to proceed in two stages.
We start by specifying a Solow-Swan version of the model where explicit results can
be brought about. Then, we incorporate our technology assumptions into an oth-

LFor atecent Teview see Greenwood and Jovanovie {1998), Of course a simifar growth experience
shotld be found in most OECD countries, but it appears that still $here are no systematic studies
of the relevant evidence. .

2There exist some well-knowrn exceptions. First of all, Arrow (1962) proposes a vintage capital
model in which learning-by-doing zllows for a capital aggregator, Thus, integration with respect
to time can be substituted by integration with respect to knowledge and explicit resuits can be
brought out. A second example is provided by Solow {1960}, where each vintage technology has a
Cobb-Douglas specification. Under this assumption, it is also possible to derive an aggregator for
capital,
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crwise standard optimal growth framework. There are important insights we get
from the Solow-Swan version of the model that we apply and extend in chavacter-
izing analytically the dynamics in the optimal growth version® In solving for the
Solow-Swan version of the mode! we are close to the strategy proposed by Benhabib
and Rustichini (1991} since the vintage capital structure can be reduced to delayed
differential equations with constant delays. However, the optimal growth version
of the model requires an alternative strategy since the dynamic system augments
to a mixed delayed-differential equation system. We have the advantage that some
stability results can be proved in our setting though. In light of these results we are
able to overcome the simultaneous ocenrrence of state dependent leads and lags by
operating directly on the optimization problem without using the optimality condi-
tions. We develop a numerical procedure that allows us in addition to deal with the
important issue of the indetermination in levels that arises in an endogenous growth
framework. Consequently, the analytical and numerical methods we present shonld
be of interest in retated applications.

Besides the methodological contribution there are some features we can learn
from the AK vintage capital growth model, notwithstanding i¢s simplicity as a theory
of endogenous growth. First, with respect to the relevance of the AIX model for the
endogenous growth literature it is worth to say that the more precisely empirical
evidence is revised the more the theory does not appear to be inconsistent with
available data.? Second, and related, in particular for vintage capital we can build
a case in favor of AK theory as far as deviations in trends of investment rates and
prowih rates are comsistent with the patterns in postwar data, a testable prediction
of our model specification. Finally, more elaborated theories of endogenous growth
might be discussed as having constant social returns to capital as a limiting case. A
lot of our procedures should be at work when reducing the level of aggregation by
thinking more carefully about the economics of technology and knowledge.

The paper is organized as follows. We first specify in Section 2 the AK one-
hoss shay depreciation technology. In Section 3, we solve for the constant saving
rate growth model, we characterize the balanced prowth path and we prove non-
monotonic convergence. An example is provided to explain the main economic
properties of this type of model. In Section 4, the same type of analyses is carried
out in the context of an optimal growth model. In Section 5, we show that a model
with vintages of physical and human capital has the same reduced form that the

*As emphasized in Boucekkine, Germain and Licandro {1897), there are important differences
between a Solow and a Ramsey formulation of the vintage capital exogenous growth model, at
ieast in the short-medium run.

iThe AK class of models has been criticized as having little empirical support its main as-
sumption: the absence of diminishing returns. This critique vanishes once technological knowledge
ig assumed to be part of an aggregate of different sorts of capital goods. More serious critiques
analyze the testabie predictions of this type of medels [e.g. Jones (1595)]. Howover, such criti-
clsins are themselves difficult to support when versions of the model and the data are comparcd
appropriately [cf. MeGrattan (1998)].
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simple AKX model, but it provides an explanation of growth in terms of embodied
techmological progress. Section 6 concludes.

2 The technology

We propose a very simple AK technology with vintage capital:

W) =4[ i) 0)

where y{t} represents production at time ¢ and i(z) represents investment at time
z, which corresponds to the vintage 2. As in the AK model, the productivity of
capital A is constant and strictly positive, and only capital goods are required to
produce. Machines depreciate suddenly after T > 0 units of time, the one-hoss shay
depreciation assumption. As we show below, the introdaction of an exogenous life
time for machines changes dramatically the behavior of the AK model.

Technology (1) has some interesting properties. First, let us denote by &(t) the
integral in the right hand side of (1). It can be interpreted as the stock of capital.
Differentiating with respect to time, we have

k() = ilt) — 8(t)k(t),

where 6(1) = "(’t&)ﬂ. In the standard AK mode}, the depreciation rate is assumed to
be constant. However, in the one-hoss shay version, the depreciation rate depends
on delayed investment, which shows the vintage capital nature of the model. In-
deed, non-exponential depreciation schemes should be seen as a generalization of the
classical view of capital. This view is related to the standard model of cxponcutial
depreciation and dramatically reduces the possible dynamics that an optimal growth

model can describe.

Secondly, this specification of the production function does not introduce any
type of technological progress. However, as in the standard AK model, the fact that
returns to capital are constant results in sustained growth, Consequently, we have an
endopenous prowth model of vintage capital witheut (embodied) technical change.
Notice that, even if vintage capital is a natural technological environment for the
analyses of embodied technical progress these are two distinet concepts. Section §
provides an interpretation of equation (1) in terms of human capital accumulation,
that gives place to some type of embedied technological progress.

3 A constant saving rate

Let us start by analyzing an economy of the Sclow-Swan type, where the saving
rate, 0 < s < 1, is supposed to be constant. Tle eqguilibriuni for this coconomy can
he written as a delayed integral equation on i(t), i.e., V& >0,

i) = sA /L_T i(2) dz @)

with initial conditions i(t) = ig(f) > 0 for all ¢ € {—T,0[. By differentiating (2),
we can rewrite the equilibrivm of this economy as a delayed differential equation
(DDE) on (£}, vt = 0,

I(t) = sA (it} —i(t - 1)) (3)
with #{t) = 4p{t} > 0 for all £ € [-T,0[ and
0

i{0) = sA f—T ig(z) d=. {4)

From the defnition of technology in (1), we know that changes in output depend
linearly on the difference between creation (current investment) and destruction (de-
layed investment). Since investment is a constant fraction of fotal entput, changes
in imvestment are also a linear function of creation minus destruction, as specified
in equation (3). This type of dynamics are expected to be non monotonic and to be
governed by echo effects.

3.1 Balanced growth path

A balanced growth path solution for equation (2) is a constant growth rate g # 0,
such that.

g=sA(1— ™). {5)

In what follows, g = g(T') refers to the implicit BGP relation, in (5), between g
and T, for given values of s and A.

Proposition 1 g > 0 exists and is wnique df T > 4
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Figure 1. Determination of the growth rate on the BGP

Proof. From {5), we can write for g > 0

1
HKg):z;E’

where H{g) = 1= ';'I'”T. By I'Hopital rule, we ean prove that limy e+ Hig) =T.
] rpt 14+4T) e—97—1

Moreover, limy_e. H{g) = 0. Additionally, H g} = (—i‘—‘—gg—_ < 0, b(:ca,}sj? the

numerator A{g) = (1+¢17) e7" —Lis such that h0) =0 and W (g) = fg?“ e’ <0

iif g = 0. Consequently, as it can he seen in Figure 1, if T > :7‘ there exits a aulgue

¢ > 0 satistying (5). B

In what follows, we impose the restriction on parameters T '> }4. Notice f.ha.t
a machine produces AT units of output during all its productive hve. gnd, given
individuals’ saving behavior, produces sAT units of capital. To have positive growf:h
each machine must produce more than the one anit of good needed to produce 1t,
ie., sAT should be greater than one.

-, 1 83 @ Bg s
Proposition 2 Under T > 33, 35 22 and 55 are oll positive

Proof. Aswe can see in Figure 1, the two first results are immediate. Notice that

for any g > 0, = ‘;_gT > 1= “';T #T > T'. Then, we can still use Figure 1 to sec

that a proof for g—% > [ is jmmediate. B

Therefore, as it is shown in Figure 2, there is a positive relation between the
Lifetime of machines and the growth rate. Since machines from all generations are
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Figure 2: The BGP growth rate

equally productive, an increase on T is equivalent to a decrease in the depreciation
rate in the AK model, which is positive for growth. Tndeed, es T goes to infinity,
g{T" is bounded ahove by A which is the limit case for the AK model with zero
depreciation rate: (5) reduces to g = sA. It turns out to be the case that property
,—;l% = 0 is crucial for the statement of the stability results below. Finally, the positive
effect on growth of both the saving rate and the productivity of capital are cbvious
and they are present in the AK model as well.

‘With respect to the average age of capital, let us define it as:

[ e, i(z) B
m(t) —j;T(t ) i) & dz,

that is, a weighted average of the ages of active vintages, the weights being equal
to the relative participations of the successive active vintages in the total operating
capital.

Under the BGP assumption that (¢} grows at the rate g, we can easily compute the
BGP value for the average age:

1 T eoT

m:E—_“l_ e*yT’ (6)

and show that, for a given T, the average age of capital is negatively related to the
growth rate. Notice that when T" = oo, (6) reduces to the AK model with zero
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depreciation rate, whers m = . In this case, the average age of capital is negatively
related to the growth rate. The reason is straightforward: given T and for a greater
growth rate, the weight of new machines is larger and then the average age of capital
iz smaller. More in general, in the standard optimal growth model, if investment is
growing at a constant rate on the BGP, there should be a negative relation between
the average age of capital and the growth rate.”

3.2 Investment and output dynamics
3.2.1 Theoretical results on stability

In analyzing the stability properties of the DDE equation {3) we make use of a
result in Hayes (1950)% Let us define detrended investment as i(t) = iif) e~
From equations (3) and (5), we can show that

I(t) = (sA—g) [i(t) -t -T)]. {7)
Proposition 3 For g > 0 all the nonzero roots of (7) are stable

Proof. The characteristic equation associated to (7) is
F—(8A—g)+(sA—gle ¥ =0

By defining z = ¥T" we obtain Hayes form: p e’ —p—2¢” = 0, with p = (sA — )T
Consequently, in our case as i Benhabib and Rustichini (1991, example 4}, z = 0 is
a root. For the remaining roots to have strictly negative real parts, we must prove
p < 1. From (5), it can be easily shown that (sA — g)T' = sAT =97, Moreover, the
first derivative of the implicit function ¢(T) in (5) is
sgTe 9T
Ty — 29 T
9(T) 1— sATe T’
which is strictly positive by Proposition 2. ¢’ (T} > 0 implies p < 1, which completes
the proof. B

Given that the characteristic equation has only z = 0 as a real root, the economy
converges to the long-run growth trend by oscillations.”

Consequently, the Denison (1964) claim on the unimportance of the embodied question is
per-se irrelevant.

SThe basic Hayes theorem (see Thecrem 13.8 in Bellman and Cooke, 1963} is a set of two
necessary and sufficient conditions for the real parts of all the roots of the characteristic equation
to be strictly negative. See also Hale (1977, p. 109) for a complete hifurcation diagram for scalar

one delay DDEs.
"Note that Z = —g is also a root of the characteristic function of the DDE describing detrended
investment dyramies, It corresponds te constant solution paths for i(t}. Sinee under Proposition
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3.2.2 Numerical resolution of the dynamics

The DDE {7) can be solved using the method of steps described in Bellman and
Cooke (1963, p. 45). To this end, we now single out a numerical exercise by choosing
parameter values as reporied in Table 1. In the BGP, the growth rate is equal to
0.0296. Concerning initial conditions, we have assumed #(t) = e™* for all # < 0,
go = 0.0282. Exponential initial conditions are consisteat with the economy being in
a different BGP before t = 0. In this sense, this exercise is equivalent to a permanent
shock in s, A or T, which increases the BGP growth rate in a 5%. The nature of
the shock has no effect on the solution, but it associates to ig(t) different output
histories. Figures 3 and 4 show the solation for detrended output and the growth
rate. It is worth to remark that alternative specifications of initial conditions should
have consequences for the transitional dynamics.

Table 1: Parameter values

5 A T i ga g
02751 030 15 1 00282 | 0.0206

A first important observation, from Figure 4, is that the growth rate is non
constant from ¢ = 0, as it is in the standard AK model. It jumps at £ = 0,
is initially smaller than the BGP solution, increases monotonically over the first
inferval of length T and has a discontinuity in £ = T. Afier this point the growth
rate converges to its BGP value by oscillations. The behavior of the growth rate
in the interval [0,T], observed in Figure 4, is mathematically established in the
following proposition:

Proposition 4 If go < g, then
o) go<g{0)<g
(b} g'{t) > 0 for allt € 0,77
(¢} g(t) is discontinuous att =T
(d) g — g{0) is increasing in g

The Proposition is proved in the Appendix.

A permanent shock in A or in T makes output to jump at ¢ = 0, thus investment
also jumps. A permanent shock in s does affect investment directly. We have an
equivalent jump in the AK model: under the same initial conditions but T = co,

1, g > 0, the latier solution paths are incompatible with the structural integral equation (2}. sa
that we have to disregard the this roct.
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Figure 3: Constant saving rate: Detrended output.
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Figure 4: Constant saving rate: The growth rate
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go < g 1if sgAg < sA, then {0) = ff b i'—;:i‘l = 1 = iy, Investment jumps in order to
allow the growth rate of the capital stock to jump at ¢ = 0.

Output at ¢ = 0 is totally determined by initial conditions for investment, More-
over, the level of the new BGP solution depends crucially on the initial level of
output. Since the adjustment is not instantaneous, the evolution of cutput on the
adjustment period also influences the output level on the BGP as we can obgerve in
Figure 3.

Finally, we perform numerical exercises for different values of the parameters.
They indicate that the profile of both detrended output and the growth rate do not
depend on g (of course, if gy > g the solution profile is inverted but symmetric)
or on s, A or T, provided that condision T > -% holds. The speed of comvergence
is always the same. Only the initial jump on the growth rate, the BGP level of
detrended output and the amplitude of fluctuations depend on these parameters.
As stated in part (d) of Proposition 4, the greater is g with respect to gg the larger
the distance between g(0) and g. When the permanent shock is important, the
economy starts relatively far from the BGP growth rate and, even if the speed of
convergence is always the same, this initial distance reduces the level of the BGP.
Consequently, the greater is a positive shock, the larger is the slope of the BGP but
the smaller is the intercept.

4 The optimal growth model

In the previous section, we have fully characterized the dynamics of the one-hoss
shay AK model under the assumption of a constant saving rate. Uader the same
technological assumptions, in this section we generalize these results for an optimal
growth model. Let a planner solve the following problem:

)=
Max f c'—_gl—g' e_"“t de (8)

y(t) = A/{;T i(z) dz. (1}

s.t.

clt) +i(t) = y(t). (9)

0 <i(t) < yl8)

and given i(t) = do(t) > 0 for all £ € {—T,0[, with parameters p > 0 and 7 > Q.
 #£ 1. cft) represents consumption. The optimal conditions for this problem are:

11




(y(t) — i)™ = 6(t) (19)

t+T
(1) et = A.[L $(z) e 7 dz, (an

where ¢(t) is the Lagrangian multiplier associated to the feasibility constraint.

Equation (11) says that at the optimum the cost of investment should be equal to
its discounted flow of benefits, both evaluated at the marginal value of consumption.

4.1 Balanced growth path

From the previous equations, and assuming that y(¢) = ¥ &% and #({) =1 c¥, y >0
and ¢ > (0, we obtain:

og+p=A{l - et {12)

g=1A(1— ). (13)
Y
Notice that equation (13) is equivalent to (5) if & = s. However, g is determined in
equation (12), given the parameters o, p, 4 and T, and {13) determines the ratio
i Tn what follows, we still use the notation g = g(T") to refer to the equilibrium
rolation between g and 7' implicit now in equation {12).

Proposition 5 If H(g) > §, then g > 0.

— =T . B
Proof. Using the function H{z) = %, whose properties were analyzed in
the proof of Proposition 1, we can easily show thai this proposition is true. M

From equation (13), we know that if o and p are such that i = & in the BGP, for
s defined in the previous section, the BGP of the optimal growth model is identical
to the BEP of the constant saving rate model. Moreover, as a direct consequence of
Proposition 2, it can be easily checked that ¢'(1") > 0, as in the Solow-Swan version
of the model.

The condition (1 — o)g < p is needed for utility to be bounded along the BGP.
Under this condition, it can be shown that i < 1. Along the BGP the saving rate
should be strictly smaller than one.

12

4.2 Investment and output dynamics
4.2.1 Theoretical results on stability

Notice that condition (11) only depends on the Lagrangian multiplier ¢{f), which
grows at the rate —og on the BGP. Let us define #(2) = ¢(t) €™ and rewrite (11)
a8

T
a(t) e wtelt — Af w(z) e ootz . (14)
3

This advanced integral equation is forward looking and forms a top block of the
system, bnplying that the detrended marginal value of consumption, (¢}, can be
solved first. By differentiating (14), we get the following advanced differential equa-
tion (ADE}):

() = Bz{t + T} — =(2);}, (15)

where f = A — og — p, strictly positive for (12). In analyzing the stability of the
ADE (15) we build upon similar arguments as in Section 3.2.1.

Proposition 6 z(t) = x constani, for oll t > 0, is the only stable solution of (15)

Proof. The characteristic equation is 7 — # &7 + 8 = 0 and defining z = —3T we
can easily obtain Hayes’ form with p = §T" = —g. This implies a stability condition
AT < 1 which it can be easily checked it is equivalent to ¢’(T') > 0. Note this result
is obtained for —z so that all the roots but Z = 0 have strictly positive real parts. #

Moreover, since (t) has to converge to (y — )7, Proposition 6 implies ©(t) =
(y — )77 for all £ > 0. Detrended consumption is also constant and equal to
e(t) = ¢ = £~4°. The value of ¢ is determined by the initial conditions. The
optimality of this result is straightforward. The block recursive structure of the
problem allows the planner to choose detrended consumption without any restriction
other than (14). It seems obvious that, from concavity of the utility function, he
must prefer a constant detrended consumption path. Observe that, irrespective of
the value of the intertemporal elasticity of substitution, the planner always chooses a
constant detrended consumption, as it does in the standard AK model. However, in
our model he needs to let the saving rate to fluctuate to compensate for fluctuations
in output due to echo effects.

To analyze the transitional dynamics of detrended production and investment,
we need to solve equations (1) and (10) jointly with the definition of 2(f) and the
solution z(£) = z. Before doing that, let us define 7(2) = y(¢) e and i(t) = i(¢)
&%, By combining (1) and (10), the definition of z(t) and Proposition 6 , we can
show that the dynamics of detrended investment are given by:

13



i) =-get(A—g)ilt)-Ae? it - T) 116)
with initial conditions #(t) = 4g(t) e for all ¢t € [T, 0{ and #(0) = y(0} — ¢. where
0
y() = A/ to{z) dz.
Jor

Since the constant ~ge adds only constant partial solutions, the stability of de-
trended investment depends upon the homogeneous part of equation {16).

Proposition 7 Any siable solution of the DDE (16) has the form:

W) =ity e

reb,

where 7 = ﬁfﬁr_ﬂ” E, is the set of siable roots of the characteristic function of
the homogenous part of the DDE (16), end ¢, are constant terms determined by the
nitiol conditions.

The general solution form stated above is merely an application of the superpo-
sition principle $o the non-homogenous DDE (16). i is a constant solution of the
DDE and s, are the roots of f(z) = z— (A —g)+ A e™¥7 &~** which turns out to be
the characteristic function of the homogenous par{ of the DDE (16). The expansion
representation of the stable sotutions of the homogenous part of (16) is an applica-
tion of Theorem 3.4 in Bellman and Cooke (1963). Note that the expansion involves
constant terms ¢, because the roots of f(z) are all simple. Indeed, a mmltiple root
arises if and only if f(z} = f'(z) = 0. R is trivial to show that this sitnation cannat,
ocour in our case. On the other hand, one can pué the characteristic function f{z)
into the form of Hayes with p = (4 — g)T and —¢ = ATe 9T, Since equation (13)
can be rewritten as {A — 2T = ATe™T = —gq, it turns out that p > —g as far as
the long run saving rate is strictly lower than one. Henee, one of the two necessary
and sufficient conditions of Hages theorem does not hold and the characteristic func-
tion admits generally both stable and unstable roots. For stability requirements (of
detrended investment}, we rule out the unstable roots. But still the constant terms
¢ and the consuwmption term ¢ cannot be fully determined if no initial function
ip(), t € [T, 0] is specified. But even if the latter function was specified, we would
not be able to compute analytically the solution paths since this would reguire the
computation of the entire set of the stable roots of function f(z), which is typically
infinite. So we resort to numerical resolution.

14
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4.2.2 Numerical resolution of the dynamics

The computational procedure that we use to find the equilibrium paths of the apti-
mal growth model is of the cyclic coordinate descent type (see Luenberger 1973)
p. 188) and operates directly on the optimization problem. It is an extension
of the algorithm proposed hy Boucekkine, Germain, Licandro and Magnus (1999).
The Appendix contains a description of the algorithm used to compute the opti-
mal soluticn. Roughly, it consists of finding a fixed point vector i(t) by sequentially
maximizing the objective with respect to coordinate variables at time . We perform
a comparable experiment to that of the Solow-Swan version of the model and pa-
rameter values are chosen correspondingly. This implies parameter values as those
reported in Table 2.

Table 2: Parameter values

I p A T i o g
80 006 030 15 1 (0282 | 0.0296

We set o and p that correspond at the BGP value for s (0.2751) used in Section
3. Notice that the implied value of o is relatively high. Tt can be easily checked that
this quantitative peculiarity comes from the AK model and it is not a result of the
one-hoss shay depreciation assumption.

Figures 5 and 6 are plotted in the same scale as Figures 3 and 4 above, respec-
tively. They depict the solution path for output and the growth rate, which behave
very similar as in the constant saving rate model. From Proposition 6, we know that
the planner optimally chooses to have a constant detrended consurnption. For this
reason, the saving rate rises at the beginning, increasing the growth rate {with re-
spect to the Solow-Swan case) and therefore allowing ouiput to converge to a higher
long-run level. As a consequence, the planmer generates longer lasting Auctuations
than those that were obtained in the constant saving rate model. Tndeed, in the
optimal growth modet it is the saving rate that bears most of the adjustment to the
BGP.

As stated in Proposition 6, detrended consumption should be constant from

= {, but its level shouid be determined by initial conditions. Figure 7 compares
the numerical sofution obtained for detrended consumption in both models, the
dashed line corresponds to the optimal growth sclution and the solid line to the
constant saving rate model. Tn the optimal growth rmodel our numerical procedure
illustrates on the fact that the planner is optimally choosing the stable solution, and
the algorithm succeeds in calculating the constant detrended consumption level. In
order to have a constant detrended consumption, the saving rate must increase at the
beginning and fluctuate around its BGP solution afterward, as it is shown in Figure
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Figure 5: Optimal growth model: Detrended output
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Figure 6: Optimal growth model: The growth rate
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Figure 7: Consumption: optimal growth vs constant saving rate

8. Alternatively, in the Solow-Swan version of the model detrended consumption is

just a constant fraction of cutput and fluetuates Hkewise.

Finally, in the context of our simple model, we can further derive implications
in terms of the empirical relevance of the AK class of medels. In particular, in-
corporating vintage capital into an otherwise standard optimal AK growth model
contributes to break the close connection between investment and growth in the
short-medium run. This is a feature of the data which has been stressed the AK
model contradicts [cf. Jones (1995)).% Figure 8 summarizes the short-run dynamics
of the investment share (dashed line) and the growth rate (solid line): investment
rates do not move in lock step with growth rates. The intuition is straightforward.
Compared with the standard version of the model we move from g(t) = A i{£)/y(f) -6
to g(t) = A(t)/y{f) — &(¢) being 6(t) = At — T}/y(t). The growth rate depends
not only upon the current investment rate but also on delayed investment. Tempo-
rary changes in investment will imply temporary changes in growth rates from their
long-run trend. Thus, the sort of fluctuations the model penerates is not merely a
mathematical property but derives testable implications for the AK theory.

A further analyzes on stability can be achieved by computing numerically a
subset of the infinite roots of the homogeneous part of (16), those with a negative
rea} part near to zero [cf. Engelborghs and Roose (1999)). We have found that this
subset is non empty and therefore supports the convergence by osciliations result in
Figures 5 and 6. For the optimal growth model and the parameter values in Table
2, Figure 9 shows the real parts in the x axe and the imaginary parts in the y axe.

¥Tor a review see McGrattan (1998}, Considering evidence over longer time periods and more
countries that Jones does she finds the long-run trends that AK theory predicts and that our
model aconomy preserves. McGrattan also provides examples suggesting that the relationship
which forms the basis of Jones' (1995) time series tests does not generally hold for the AKX model.
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Figure 8 The growth and the saving rates

Figure 10 does the same for the constant saving rate model and parameters in Table
1. We can evaluate the convergence speed of the economy using the computed rocts:
the closer to zero is the smallest real part of the nonzero computed eigenvalues, the
slower is convergence. These figures confirm that the Solow-Swan version of the
model converges more rapidly.

5 A Solow (1960) interpretation

The AX model can also be seen as a reduced form of a more general economy with
both physical and human capital. This result is obtained in a one sector model
using a constant returns to scale technology in both types of capital. In such a
model output can be used on a one-for-one basis for consumption, for investment in
physical capital and for human capital accumulation. In this section we investigate
what are the implications of considering this stylized representation in a vintage
capital framework. For this purpose we aggregate over vintage technologies following
Solow (1960}.

Let us assume that the technology of a vintage z is given by
y(z) = B i{z) "h(2)", (17

where B > 0 and 0 < e < L. h(z) represents human capital associated to vintage z.
Let us assume that both physical and human capital are vintage specific and have
the same lifetime T' > . Machines use specific human capital, which is destroyed
when machines are scrapped. Thus, given the one-for-one allocation structure of
our setting the price of each type of capital would be fixed at unity. Under these
assumptions, the representative plant of vintage z solves the following problem:

18

e

0." 8
*
"b
by
*
*
+ *
2 e
+ -
. +
X
+*
-0.22,, -0.15 G.1 ~0%05
.t
R
_5 .0'
o"
0..
.. —B

Figure 9: Figenvalues of the optimal growth model

Figure 10: Eigenvalues of the constant saving rate model
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max B #{z)'"*h()" Tz} ~i(z) — hiz)
(#{z k(1)

where
z+T .
T(z) = f ety g

Given our irreversibility assumption, a plant of vintage # produces the same cutput
from z to z + T The interest rate is denoted by »(t) and T'(2) is the discounted
value of a flow of one unit of output produced during the plant life. Given that both
forms of capital face the same user cost, it is very easy to show that the optimal
ratio of physical to human eapital is

iz) l-ao

h(z) a

the same for all vintages. Substituting it in (17), and apgpregating over all operative
plants at time £, we get that aggregate production is equal to

v =4 ;f'(z) daz,

where 4 = B (12)".

Apggregate production in this model clearly reduces to the AK technology pre-
sented in the previous sections. The interest of this Solow (1860) version of our
one-hoss shay AK model is that we can interpret it in terms of embodied techno-
logical progress. On the BGP, buman and physical capital are both growing at the
positive rate g. Consequently, labor associated to the representative plant of vintage
z has h(z) as human capital, which is greater than the human capital of all previous
vintages. Under this interpretation, technical progress is embodied in new plants.”

The key difference with Solow’s paper comes from the specificity of human cap-
ital. In the Solow paper, labor is an homogeneous good and technological progress

From constant returns to scale in production, the number of plants is undetermined. Moreover,
our assumption on human capitat accumulation mekes $he number of workers undetermined also,
since we can associate any amount of human capital to any small unit of fabor. Without any loss
of generality, we can assume that the measure of firms and the measure of labor are both ore. In
this sense, a plant is always associated with one worker. Since the human capital investment of a
plant is increasing, we can interpret it as technological progress embodied in the labor resonrce.
Of course, since human capital is vintage specific and associated to a particular vintage of capital,
we could in a large sense say that technica} progress is emhodied in physical capital too, but it is
still labor saving. Arrow (1962) is an exarnple of labor saving technical progress embodied in new
machines. However, this model makes an important difference with respect to the recent literature
on embodjed technical progress, as in Greenwood, Hercowitz and Krusell {3998), which follows
Solow {1960} by assuming that technical change is capital saving.
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is embodied in the physical capital. The first assumption implies that the equi-
librium wage is the same for all vintages. From the second assumption, to restore
the equality of labor productivities across vintages, we must associate less labor to
older vintages. Under these conditions, Solow shows that the aggregate production
from adding vintage specific Cobb-Douglas technologies is also Cobb-Douglas. In
our model, human capital is vintage specific, imaplying that the capital-labor ratio
of & particular vintage is not varying over time, and it is the same for all vintages.
Under this alternative assumption, aggregate production is of the one-hoss shay AK

type.

6 Conclusions

Recent discussions on growth theory emphasize the ability of vintage capital models
to explain growth facts. However, there is a smail number of contributions endoge-
pizing growth in vintage models, and most of them focus on the analysis of balanced
growth paths. The model analyzed here goes part way toward developing the meth-
ods for a complete resolution of endogenous growth models with vintage capital.
For analytical convenience it is limited to a case in which the engine of growtl is
simple: returns to capital are bounded below. However, the basic properties of the
model are common to most endogenous growth models. Cur framework represents
a minimal departure from the standard model with linear technology: we impose
a constant lifetime for machines. Under this assumption we show that some key
properties of the AK model change dramatically. In particular, convergence to the
BGP is no more instantaneous. Instead, convergence is non menotonic due to the
existence of replacement echoes. As a consequence, investment rates do not move
in lock step with growth rates.

Appendix

In this appendix we prove Proposition 4 and we present an outline of the algorithm
used to compute equilibrium paths of the optimal growth model.

Proof of Proposition 4

{a} From (2) we can show that

go &%
1— eI’

g(0) = sA — (Al)
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From (5}, we can show that

ge

g=sd—y———0p

(AZ)

Since G(g) = 1‘1"‘:f;r is such that G'(g) < 0, then ¢(0) < g. Finally, from
Proposition 2, we know that the refation between ¢ and s, Lnplicit in (5), is
decreasing. Consequently, there exists a < s4, such that,

go &7

_ — a=90Ty
gp=a{l — e®) = T—

< g(D}.

{h) From (3)

o) = % - “fi(*t)T)

Differentiating with respect to time gives, for all £ € [0, T
g(8) = g(t) - go.
Since g(0) > go, ¢'(t) > 0Vt € [0, T

(c) Given that H'(g} < 0 and gg < g, from {4) and {5}, 7(0) > lim;_g- ip{i) =
From (3), #(t) has a discontinuity at ¢ =T

(d) Combining (Al) and (A2), we get
g —9(0) = Glgo) — Glg} > 0.

At given go, an increase in g rises g — g(0) since G'(g) < 0.H

Algorithm

The planner’s problem can be redefined in terms of variables for which its long-
run is known.

Let define I'(¥) = 501(.{_&):1") and z(t) = y(— then {8) reads:

j e
max f EO-U7 D) e Ptdt

1—o

subject to

2() = A /t . 1;((‘;) dz (A3)
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' @)
T(t)
given nitial conditions I (t) = Ie() = i;?it}') >0foralit<0
The numerical procedure operates on this transformation of the problem and the
optimization relies upon the objective. In line with the cyclic coordinate descent
algorithm proposed by Boucekkine, Germain, Licandro and Magnus (1899), the
unknowns are replaced by piecewise constants on intervals (0, A), (A,24), ..., and
iterations are performed to find a fixed-point g(t} (and/or state variable #{f), y(t))
vector up to tolerance parameter ‘Tol’. An ocutline of the algorithm used to compute
an approximate solution of problem above is the following:

=g(t) (Ad)

Step 1: Initialize g%(t), the base of the relaxation, with dimension K sufficiently
large. For ¢ & [K, N[, N > K and large enough, set ¢(f) = ¢ (the BGP solution).
Notice that knowing g{¢) we can cornpute I’ (t) and z (£) using (A3) and (Ad).

Step 2: Maxdmization step by step:
¢ Step 2.0: maximize with respect to coordinate gp keeping unchanged coordi-
nates g;, ¢ > 0

e Step 2.k: maximize with respect to coordinate g, keeping unchanged coordi-
nates g;, ¢ > k, with coordinates g;, 0 €1 £ k& — 1 updated

» Step 2.K: last k < K step, get g'(f)

Note that at each k& step states must be updated.
Step 3: If '(t) = ¢°(t), we are done. Else update g°(¢) and go to Step 2.

Table 3: Algorithm parameters

N K A Tol
WT 47 01 10°%
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