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ABSTRAeT 

This papel' analyzes the equilibrium dynamics of an AK-type endogenous growth model 
with vintage capital. The inclusion of vintage capital leads to oscillatory dynamics go­
verned by replacement echoes, which additionally influence the intercept of the balanced 
growth path. These features, which are in sharp contrast to those from the standard AK 
model, can contribute to explaining the short-run deviations observed bctween investment 
and growth rates time series. To characterize the convergence properties and the dynamics 
of the model we develop analytical and numencaJ rnethods that should be of ¡nterest fOl 
the general resolution of endogenous growth models with vintage capital. 

RESUMEN 

En este artículo se analiza la dinámica de uu modelo de crecimiento endógeno de la clase 
AK en presencia de cosechas de capital (vintage capital). La inclusión en el modelo de una 
estructura vintage da lugar a una dinámica oscilatoria, vinculada a lo que se conoce como 
ecos de reemplazo, los cuales a su vez tienen efectos sobre el nivel de la senda de crecimiento 
equilibrado. Esta propiedad contrasta marcadamente con el comportamiento del modelo 
AK estándar, y puede contribuir a explicar las desviaciones a corto plazo, que se observan 
en los datos, ent.re las tasas de inversión y las tasas de crecimiento. Para caracterizar las 
propiedades de convergencia y la dinámica del modelo se desarrollan métodos analíticos y 
numéricos que son de interés para la resolución de modelos de crecimiento endógeno con 
cosechas de capital. 

Keywords: Endogenous growth, Vintage capital, AK model, Difference-differential equa­
tions 
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1 Introduction 

This papel' facuses Oil the equilibrium dynamics of an AK-typf~ elldogl'llOIl~ growth 
model with vintage capital and non-linear utility. Several import.ant cOllsiderations 
warrant the analysis of vintagc capital growth modcls. First, vintage capital has 
become a key feature to be incorporated in gTOwth models toward a satisfactory 
account of the postwar growth experience of the United St.atcs.1 Second, most of 
the thcoreticalliterature Oil this ground [e.g. Aghion and Howitt (1994), Pru'ente 
(1994)] only focuses Oil the analysis of balanced growth paths. One of the main rea-
30ns underlying this circumstance is that dynamic general equilibrium models with 
vintage technology aften callapse iuto a mixed delay differcntial equation system, 
which cannot in general be solved either mathematically or numerically.2 Final1y, it 
has been of sorne concern to liS how vintages determine the long-term growth of an 
economy and the transitional dynamics to a given balanced growth path. A precise 
characterization of the role of vintages in the determination of thc grawth rate is 
still an open question in modern growth theory. 

This paper proposes a first attempt towards the complete resolution of endoge­
nous growth models with vintage capital. In doing so we incorporate a simple 
depreciation rule iuto the simplest approach to endogenous growth, namely the AK 
modeL More precisely, by assuming that machines have a finite lifetime, the onc­
hoss shay depreciation assumption, we add to the AK model the mínimum structure 
needed to make the vintage capital technology economically relevant. This small de­
parture fram the standard model of exponential depreciation modifies dramatically 
thc dynamics of the standard AK class of models. Indeed, convergence to the bal­
anced growth path is no longer monotonic and the initial reaction to a shock affects 
the position of the balanced growth path. 

The finding of persistent oscillations in investment is somewhat an expected 
result once non-exponential depreciation structures are incorporated into growtb 
models. However, a complete model specification is needed to precisely characterize 
how the endogenous growth rate is affected by the determinants of the vintage struc­
ture of capital as well as to analyze the role of replacement echoes for the 8hort-run 
dynamics. To achieve these results it turns out to be useful to proceed in two stages. 
vVe start by specifying a Solow-Swan version of the model where explicit results can 
be brought about. Then, we incorporate our technology assumptions into an oth-

1 For a rcccnt revicw see Greenwood and Jovanovic (1998). Of CQurse a similar growth experience 
should be found in most OBCD countries, but it appears that still there are no systematic studics 
of the rclevant evidence. 

2Therc exist sorne well-Imown exceptions. First of all, Arrow (1962) proposes a vintage capital 
model in which learning-by-doing aUows for a capital aggregator. Thus, integration with respect 
to time can be substituted by integration with respect to knowledge and explicit results can be 
brought out. A second example is provided by Solow (1960), where each vintage technology has a 
Cobb--Douglas specification. Under this assumption, it is also possible to derive an aggregator for 
capital. 
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envise standard optimal growth framework. Tilere are important iILSights we get. 
from the Solow-Swan version of the model tItat \Ve apply and extcnd in character­
izing analytically the dynamics in the opt.imal g,rowth version.:¡ In solving for the 
Solow-Swan version of the model we are dose to thc strategy proposed by Benhabib 
and Rustichini (1991) since tbe vintage ca.pital structurc can be reduced to delayed 
differential equations with constant delays. However, t.he optimal grawth vcrsion 
of the modp] rp.quires an alternative strategy since t.hc dynamic system augment.s 
t.o a mixed delayed-differential equation system. "\Ve have the advantage that some 
st.ability results can be proved in our setting though. In light. uf l-hese results we me 
able to overcome the ¡;úmultaneous occurrence of state dependent ¡ea.c1s and lags by 
operating directly on the optimizat.ion problem without using the optimality condi­
t.ious. "Ve develop a numerical procedure that allows us in additiol1 to deal with the 
important issue of the indetermination in levels that <trises in an endogenous growth 
framework. Consequently, the analytical and l1umerical met,hods we present should 
be of interest in related applications. 

Besidcs the methodological contribution there are sorne features we can leam 
hom the AK vintage capital growth model, notwithstanding its simplicity as a theory 
of endogenous growth. First, with respect to the relevance of the AK model for the 
endogenous growth literature it iB worth to say that the more precisely empirical 
evidence is revised the more tbe theory does not appear to be inconsistent with 
available data..4 Second, and related, in particular for vintage capital we can build 
a. case in favor of AK theory as far as deviations in trends of investment rates and 
growth rates are consistent with tbe patterns in postwar data, a t.est.able predict.ion 
of our model specification. Finally, more elaborated theories of endogenous growth 
might be discussed as having constant social returns to capital as a limiting case. A 
lot of OUT procedures should be at work when reducing the level of aggregation by 
thinking more carefully abont the economics of technology and knowledge. 

Tbe paper is organized as follows. "Ve fust specify in Section 2 the AK onc­
hoss shay depreciat.ion technology. In Section 3, we solve for the constant saving 
rate growth model, we characterize tbe balanccd growth path and we prove non­
monotmúc convergence. An example is pravided to explain the maiu economic 
properties of this type of model In Section 4, the same type of analyscs is canied 
out. in the context of an optimal growth model. In Section 5, we show that a model 
with vintages of physical and human capital has the same reduced form t.hat the 

:lAs emphasized in Boucekkine, Germain and Licandro (1997), there are important differences 
between a Solo\V and a Ramsey formulation of the vintage capital exogenous growth model, at 
least in the short-meclium run. 

4 The Al( class of models has bcen cl'iticized as having little empirical support its main as­
sumption: the absence of diminishing returns. This critique vanishcs once technological knowledge 
is dSsumed to be part of an aggregate of different sorts of capital goods. T'v1orc serious critiques 
anaLyze the testable predictions of this type of models [e.g. Jones (1995)1. Howcvcr, such criti­
cisrns are themselves difficult to support when versions of the model and thc data are comparcd 
appropriately [cL McGrattan (1998)1. 
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simple AK model, but it provides an explanaüon of grmvth in tenus of cmbodied 
tedmologic:a.l progress. Section 6 condudes. 

2 The technology 

Vle propose a very simple AK tcchnology with vintage ca pi tal: 

y(t) ~ Al' i(z) dz, 
'-T 

(1) 

where y(t) represents production at time t and i(z) represents investment at time 
z, which corresponds to the vintage z. As in the AK model, the productivity of 
capital A is constant and strictly positive, and only capital goods are required to 
produce. Machines depreciate suddenly after T > O unit8 of time, the one-hos8 shay 
depreciation assumption. As we show below, the introduction of an exogcnous life 
time for machines changes dramaticaHy the behavior of the AK model. 

Technology (1) has sorne interesting properties. First, let us denote by k(t) the 
integral in the right hand side of (1). It can be interpreted as the stock of capital. 
Differentiating with respect to time, we have 

k'(t) ~ i(t) - 8(t)k(t), 

where ó(t) = i(!("tP' In the standard AK model, the depreciation rate is assumed to 
be eonstant. However, in the orre-hoss shay version, the depreciation rate depends 
on delayed investment, willch shows the vintage capital nature of the model. In­
deed, non-exponential depreciation schemes should be seen as a generalization of the 
classica\ view of capital Tills view is related to the standard model of exponcutial 
depreciation and dramaticaUy reduces fohe possible dynamics that an optimal growth 
model can describe. 

SecondlYl this specification of the production functíon doea not introduce any 
type oftechnological progress. However, as in the standard AK model, the fact that 
returns to capital are constant results in sustained growth. Consequently, we have an 
endogenous gTowth model of vintage capital without (embodied) technical change. 
Notice that, even if vintage capital ls a natural technological environment for the 
analyses of embodied technical progress these are two distinct concept8. Scction 5 
provides an interpretation of equation (1) in terms of human capital accumulation, 
that gives place to sorne type of embodied technological progress. 
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3 A constant saving rate 

Let us start by analyzing au economy of the Solow-Swan (vpc. where t-he s;wiug 
mte, o < s < 1, i8 supposed to be constant. Tite equilibrinm for this cconomy can 
be written as a clelayed integral equation on i(t), 1.e., 'lit ;::: O, 

(2) 

witIt initial conditions i(t) = io(t) ;::: O for aH tE f-T,O[. By differentiating (2), 
\Ve can rewrite thc equilibrium of this econorny as a dela.yed differential eqnation 
(DDE) on i(t), 'di 2: O, 

i'(t) ~ sA (i(t) - i(t - T)) (3) 

with i(t) ~ io(t) 2: O fo, all t E [-T,O[ and 

i(O) ~ sA rO io(Z) dz. 
J-T 

(4) 

From the definition of technology in (1), we know that changes in ontput depend 
linearly on the difference between creation (current investment) and destruct¿.on (de­
layed investment). Since investment ls a constant fraction of total ontput, changes 
in investment are also a linear function of creation minus destruction, as specified 
in equation (3). This type of dynamics are expected to be non monotonic and to be 
governed by echo effects. 

3.1 Balanced growth path 

A balanced growth path solution for equation (2) is a constant growth rate 9 -# O, 
slleh that 

(5) 

In what follows, 9 = g(T) refers to the implicit EGP relatioll, in (5), between 9 
and T, for given values of s and A. 

Proposition 1 9 > O exists and is 'U.nique iif T > fr¡ 
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H(g) 

_-O~,-1-l------------=====O=,=5=================;-' g 

Figure 1: Determination of the growth rate on thc I3GP 

Proof. From (5), we can wdte for 9 > O 
1 

H(g) ~ sA' 

where H(g) == 1- ,,_g'1". By l'Hópital rule, we can prave that limy--->o+ H(g) = T. 
, y Add" aJl H'() = (1+gT) ,,-9'1"_1 < O because the 

Moreover, hmg_+<x} H(g) = O. Ibon y, 9 y2 , 2 T 

numerator h(g) =:; (1 +gT) e-yT -1 is such that h(O) = O and h'(g) = -g! e-Y .< O 
iif 9 > O. Consequently, as it can be seen in Figure 1, if T > ~ therc exlt.t; el uwquc 

9 > O satisfying (5) .• 

In what follows, we impose tIle restriction on parameters T > ~. Notice :,hat 
a machine produces AT units of output during aU its productive live. ~nd, glven 
individuals' saving behavior, produces sAT units of capital To have posltIve gro~h 
each machine must produce more than the one unit of good needed to produce tt, 

Le., sAT should be greater than one. 

Proposition 2 Under T > iA:! ~, ~ and ~ are all positive 

Proof. As we can see in Figure 1, the two first results are immediate. Notice that 

for any 9 > O }- ,,-9'1" > 1- ,,_9'1"' if T > T'. Then, we can still use Figure 1 to see 
. 'y Y 

that a proof for -U > O is immediate .• 

Therefore, as it is shown in Figure 2, there is a positive relation between the 
lifetime of machines and the growth rateo Since machines from aU generations are 
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g(T) 

SAr----------:::::::::::== 

o~----~-------------------- T 
lisA 

Figure 2: The BGP growth rate 

cqually productive, an increase on T is equivalent to a decrease in the depreciatioIl 
rate in the AK model, which is positive for growth. lndeed, as T goes to infinity, 
g(T) is bounded above by sA which is t-he limit case fol' the AK model with zero 
depreciation rate: (5) reduces to 9 = sAo It turns out to be the case that property 
~ > O is crucial for the statement of the stabilit-y results below. Finally, the p08itive 
efIect on growth oí both the saving rate and the productivity of capital are obvious 
and t-hey are present in t-he AK model as well. 

With respect to the average age of capital, let liS define it as: 

l ' i(z) 
m(t) ~ (t - z) , dz, 

'-T h-T i(z) dz 

that is, a weighted average of the ages of active vintages, the weights being equal 
to the relativo participatioIlB of the successive active vintages in the total operating 
capital. 

Under the BGP assumption that i(t) grows at the rate g, we can easily compute the 
BGP value fol' the average age: 

(6) 

and 8how that, fOl' a given T, the average age oí capital is negatively related to the 
growth rate. Notice that when T = 00, (6) reduces to thc Al( model with zero 
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depreciation rate, where m = ~. In this case, the average age of capital is ncgatively 
related to the growth rateo The reason is straightforward: given T and fol' a grcater 
gTOwth rate, the weight of new machines is larger and then thc average age of capital 
is smaller. ¡"lore in general, in the standard optimal growt.h model, if illvestment is 
growing at a constant rate on the BGP, there should be a negative relation between 
t.he average age of capital and tlle growth rate.~ 

3.2 Investment and output dynamics 

3.2.1 Theoretical results on stability 

In analyzing the stability properties of the DDE equation (3) we mak:e use of a 
result in Hayes (1950)Y Let us define dctrended investmcnt as i(t) = '¿lt) e:-gl 

From equations (3) and (5), we can show that 

í'(t) ~ (sA - g) [í(t) - í(t - T)]. (7) 

Proposition 3 Fa.,. 9 > O all the nonzero roats oi (7) are stable 

Proof. The characteristic equation associated to (7) is 

z - (sA - g) + (sA - g)e-iT ~ o. 
By defining z = 'iT we obtain Hayes form: pé -p-z eZ = O, withp::::= (sA-g)T. 
Consequently, in our case as in Benhabib and Rustichini (1991, example 4), z = O is 
a root. For the remaining roots to have strictly negative real part.s, \Ve must: prove 
p < 1. From (5), it can be easily ShOWIl that (sA - g)T = sAT e-gT . 1lIoreover, the 
first derivative of the implicit function g(T) in (5) is 

sgTe-9T 

'(T)- ~~~ 
9 - 1- sATe gT' 

which is strictly positive by Proposition 2. g'(T) > O implies p < 1, which completes 
the proof. • 

Given that the characteristic equation has only z = O as a. real root, the economy 
converges to the long-run growth trend by oscillations.7 

~Consequently, the Denison (1964) daim on the unimportance of the emboclied question is 
per-se irrelevaut. 

GThe hasic Hayes theorem (see Theorem 13.8 in Bellman and Cooke, 1963) is a set of two 
necessary and sufficient conditions for thc real parts of all the IOotS of the characteristic equation 
to he strictly negative. See also Hale (1977, p. 109) fol' a complete hifurcation diagram for scalar 
one delay DDEs. 

7:"1ote: t,hat i = -g is also a root of the characteristic function of thc DDE describing detrended 
investmcnt dynamics. It corresponds to constant solution paths for i(t). Sinee lInder Proposition 
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3.2.2 Numerical resolution of the dynamics 

The DDE (7) can be solved using the met.hod of st.eps described in I3cllman and 
Cooke (1903, p. 45). To t-his end, we now single out a. numerical (}."'{ercise by choosing 
parameter values as reported in Table 1. In the BGP, the gTOwt-h rate is equRl t.o 
0.0296. Concerning init.ial conditions, we have assumed io(t) = pjJol fol' aH t < 0, 
,qu = 0.0282. Exponential initial conditions are consistent wit.h the econollly being in 
a. different BGP before t = O. In this sense, this exercise is equivalent to a permanent 
shock in s, A 01' T, wruch increases the BGP gTOwt.h rat.e in a. 5%. The nature of 
the shock has no effec.t on the solution, buí. it associat.es to io(t) diffcrent output 
histories. Figures 3 and 4 show the solution for dctrended output. and lhe grmvth 
rat.e. It is worth to remark t.hat alternative specifications of initial conditions should 
have consequences for the transitional dynamics. 

Table 1: Parameter values 

A 
0.2751 0.30 

T io 
15 1 

!lo I 9 
0.0282 0.0296 

A first important observation, fram Figure 4, is that the growth rate is non 
constant from t = O, as it is in the standard AK model. 1t jtunps at t = 0, 
is initially smaller than the BGP solution, increases monotonically over the first 
interval of length T and has a discontinuity in t = T. After this point. the growth 
rate converges to its BGP value by oscilIa.tions. The behavior of the growth rate 
in the interval [O, T[, observed in Figure 4, is mathematically established in the 
following proposition: 

Proposition 4 Ji go < g, then 

(a)90<9(0)<g 

(b) 9'(t) > O for all t E [O, T[ 

(e) g(t) is discontin"Uo"Us ai t = T 

(d) 9 - 9(0) is increasing in 9 

The Proposition is proved in the Appcndix. 

A permanent shock in A 01' in T makes output to jump at: t = O, thus investment 
also jumps. A permanent shock in s does affect investment directly. "Ve have a.n 
equivalent jump in the AK model: undel' the same initial conditions but T = (0) 

1, 9 > O , the latter solution paths are incompatible with the structural integral equatioIl (2). so 
that we have to disregard the this root. 
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y(t) 

y{Ql 

~~--f-~=-----------------t 
2T 3T 4T 

Figure 3: Constant saving rate: Detrended output. 

g{t) 

g 

goL-______ ~ ______________ ~ _______ t 

T 2T 3T 4T 

Figure 4: Constant saving rate: The growth rate 

Yo < 9 iif soAo < sA, then i(O) = ~ > ~ = 1 = io. Investment jumps in arder to 
YO gO 

allow the growth rate of tho capital stock to jump at t = O. 

Olltput ato t = O is totally det.ermined by initial conditions for investment. ]\IIore­
over, the level of the new BGP solution depends crucially on thc initial level of 
output. Since the adjustment is not installtaneous, the evolution uf output on the 
adjustment periad also infiuence.."i the output 10vel Oil the BGP as \Ve can observe in 
Figure 3. 

Final1y, we perform numerical exercises for different values of tho parameters. 
They indicate that the profile of both detreuded output and the growth rate do not 
depend on 90 (of course, if 90 > 9 the solution profile is inverted but symmctric) 
or Oil S, A 01' T, provided that conditioil T > ~ holOO. The speed of convergence 
is always the same. Only the initial jump on the grO\vth rate, the BGP level of 
detrended output and the amplitude of fluctuations depend on these parameters. 
As stated in part (d) of Proposition 4, the greater is 9 with respect to 90 the larger 
the distance between 9(0) and g. vVhen the permanent shock is important, the 
ecoilomy staTts relatively far from the BGP growth rate and, even if the speed of 
convergence is always the same, this initial distance reduces the level of the BGP 
Consequently, the greater is a positive shock, the larger i8 the slope of the BGP but 
the smaller is the intercepto 

4 The optimal growth model 

In the previous section, we have fully characterized the dynamics of the one-hoss 
shay AK model under the assumption of a constant saving rateo U nder the 8ame 
technologicaI assumptions, in this section we generalize these results for an aptimal 
growth modeL Let a planner solve the following probIem: 

Max c _____ e-pI dt 
[ 

(t)1--
o 1- (T 

(8) 

s.t. 

y(t) ~ Aj" i(z) dz, 
'-T 

(1) 

c(t) + i(t) ~ y(t), (9) 

0<: i(t) <: y(t) 

and given i(t) = io(t) ;::-: O fOl' all t E [-T,O[, with parameters p > O and (1 > O. 
IT -1- 1. c( t) represents consumption. The optimaI conditions for this problem are: 
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(y(t) - i(t)fU ~ ~(t) (10) 

(11) 

where cf;(t) 18 the Lagrangian multiplier associated to the feasibility COILstraÍnt. 

Equation (11) says that at the optimum the cast ofinvestment should be equal to 
it.s discounted fim.v oí benefits, both evaluated at the marginal valne of consumption. 

4.1 Balanced growth path 

From the previous equations, and assuming that y(t) = y e'lt and i(t) = i C
91

, y > O 
and i > O, we obtain: 

(12) 

(13) 

Notice that equation (13) i8 equivalent to (5) if ~ = s. However, 9 lS determined in 
equation (12), given the parameters 0", p, A and T, and (13) determines the ratio 
i. In what follows, we still use the notation 9 = g(T) to refer to the equilibriurn , 
rclation betwcen 9 and T implicit now in equation (12). 

Proposition 5 Jf H(p} > ~, then 9 > O. 

Praof. Using the function H(x) == (1- :_"'T) , whose properties were analyzed in 
the proof of Proposition 1, we can easily show that this proposition is true .• 

From equation (13), we know that if (Y and pare such that 1; = s in the BGP, for 
s defined in the previous section, the BGP of the optimal growth model IS identical 
to the BGP ofthe constant saving rate modeL Moreover, as a direct consequence of 
Proposition 2, it can be easily checked that g'{T) > O, as in the Solow-Swan version 
of the modeL 

The condition (1 - a)g < p is needed for utility to bo bounded along the BGP. 
Under thls condition, it can be shown that ~ < L Along the BGP the saving rate 
should be strictly smaner than one. 
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4.2 Investment and output dynamics 

4.2.1 Theoretical results on stability 

Notica that condition (ll) only depends on the Lagrangian multiplier rjJ(t), which 
grows at the rate -(jg on the BGP. Let us define :¡;(t) :::= cp{t) e",gl and re\vrite (11) 
RB 

j '+T 
:¡;(t) e-(".g+p)t = A 1 x{z) e-(<19 +P)z dz. (14) 

This advanced integral equation is forward looking and forms a top block of the 
system, implying that the detrended marginal value of consumption, x(t), can be 
solved first. By differentiating (14), we get the following advanced differential equa­
tion (ADE): 

x'(t) ~ f3 (x(t + T) - x(t)) , (15) 

where f3 := A - (Y9 - p, strictly positive for (12). In analyzing the stability of the 
ADE (15) we build upon similar arguments as in Section 3.2.1. 

Proposition 6 x(t) = x constant, for all t ¿ O, is the only stable solution oi (15) 

Proof. The characteristic equation is z - f3 é T + f3 = O and defining z = - 2T we 
can easily obtain Hayes' forro with p == f3T == -q. This implies a stability condition 
f3T < 1 which it can be easily checked it is eqwvalent to g'(T) > O. Note this result 
i8 obtained for - z so that all the roots but 2 = O have strictly positive real parts .• 

Moreover, since x(t) has to converge to (y - i)-"', Proposition 6 iTnplies x(t) = 
(y - i)-'" for al! t ;::: O. Detrended consumption is also constant and equal to 
c(t) = c == X-l/o. The value of e is determined by the initial conditiollS. The 
optimality of this result is straightforward. The block recursive structure of the 
problem allows the planner to choose detrended consumption without any restriction 
other than (14). It seems obvious that, frem concavity of the utility function, he 
must prefer a constant detrended consumption path. Observe that, irrespective of 
the value of the intertemporal elasticity of suhstitution, the plarnler always chooses a 
constant detrended consumption, as it does in the standard AK modeL However, in 
OUT model he needs to let the saving rate to fluctuate to compensate for fluct.uations 
in output due to echo effects. 

To analyze the transitional dynamics of detrended production and investment, 
we need to solve equations (1) and (10) jointly with the definition of x(t) and the 
solution x(t) = x. Before doing that, let us define y(t) = y(t) e-gt and i(t) = i{t) 
e-gt. By combining (1) and (10), the definition of x(t) and Proposition 6, we can 
show that the dynamics of detrended investment are given by: 
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i',t) ~ -g c+ (A - g) i(t) - A e-,T i(l. - T) ,lu) 

with initial cOllditions i(t) = io(t) e-gt for an t E [-T,O[ amI i(O) = y(O) - (; where 

y(O) = A .[~r io(Z) dz 

Since the constallt -gc adds only constant partíal solutions, the stability oI de­
trended invcstment depends upan the homogeneous part oI equation (l6). 

PropositiOl1 7 Any stable solution oi the DDE (16) has the form: 

í(t) = i + ¿ Cr eSrl., 

rEE. 

where í = A 9 q~e 9] , Es is the set 01 stable mots 01 the characieristic function 01 
the homogenous part ofthe DDE (16), and Cr aTe constant terms determined by the 
initial conditions. 

The general solution forro stated aboye is mcrely an application of t.he superpo­
sitian principIe to the non-homogenous DDE (16). i 18 a constant solution of the 
DDE and sr are the roots oI fez) = z- (A- .1) + A e-gT e-zT , which turns out to be 
the characteristic function ofthe homogenous part ofthe DDE (16). The expansion 
representation of the stable solutions of the homogenous part of (16) is an applica­
tion of Theorem 3.4 in BeUman and Cooke (1963). Note that the expansion involves 
constant terms Cr because the roots of f(z) are all simple. Indeed, a multiple root 
arises if and only if f(z) = f(z) = O. It is trivial to show that this situation cannot 
occur in our case. On the other hand, one can put the characteristic functíon fez) 
into the form of Hayes with p ==" (A - g)T and -q == ATe-gT . Since equation (13) 
can be rewritten as (A - !1f-)T = ATe-gT = -q, it turns out that p > -q as far as 
the long run saving rate is stríctly lower than one. Benee, oue of the two uecessary 
and sufficient conditions of Rayes theorem does not hold and the characteristic nmc­
tion admits generally both stable and lUlstable roots. For stability requirements (of 
detrended investment), we rule out the unstable roots. But still the constant t.erms 
Cr and the consumption term e cannot be fully determined if no initial function 
io(t), t E [-T, O[ lS specified. But even if the latter function was specified, we would 
not be able to compute analytically the solution paths since this would require the 
eomputation of the entire set of the stable roots of fundian f(z), which is typically 
infinite. So we resort to numerical resolutíon. 
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4.2.2 Numerical resolution of the dynamics 

The computational proeedure that we use to find the equilibrium pnJ-hs of t.he opti­
mal gl'Owtb model is of the cyclic coordinat.e descent type (~ee Lucnherger (IOn) 
p. 158) ami operates directly on the optimization problem. It is un extension 
of t,he algorithm proposcd by Boucekkine, Germain, Licandro and rvbgnus (1999). 
The Appeudix contains a description of the algorithm lL.'>ed t.o compute t.he opti­
mal solution. Roughly, it consists of finding a fixed point vector i(t) hy sequcntially 
maximizing thc objcctive with respect to coordinate variables at time f .. "Ve perform 
a comparable experiment to that of the Solow-Swan version of the model and pa­
ramet.er values are choseo correspondingly. This implies parameter values as t,hose 
reported in Table 2. 

Table 2: Pararncter values 

a p A 
8.0 0.06 0.30 

T io 
15 1 

90 I g 
0.0282 0.0296 

"Ve set rT and p that correspond at the BGP value for s (0.2751) liSro in Section 
3. Notice that the implied value of a is relal:ively high. It can be easily checked that 
this quantitative peculiarity comes from the AK rnodel and it. is not a result of the 
one-hoss shay depreciation assumption. 

Figures 5 and 6 are plotted in the same scale as Figures 3 and 4 above, re..'lpec­
tively. They depict the solution path for output and the growth rate, which behave 
very similar as in the constant saving rate model. From Proposition 6, we know that 
the planner optimally chooses to have a constant detrended consumption. For this 
reason, the saving rate rises at the beginning, increasing the gTowth rate (with re­
spect to the Solow-Swan case) and therefore allowing output to converge to a higher 
long-run level. As a consequence, the planner generates longer lasting fluctuations 
than those that were obtained in the constant saving rate mode!. Indeed, in the 
optimal growth model it is the saving rate that bears most of the adjustment to the 
BGP. 

AB statcd in Proposítion 6, detrended consumpt.ion should be Constant. from 
t = 0, but its level should be determined by initial conditions. Figure 7 compares 
the numerical solution obtained for detrended consumption in bot.h models, the 
dashed Hne corresponds to the optimal growth solution and the solid hne to the 
COIlstant saving rate model. In the optimal growth model our numerical procedure 
illustrat.es Oil t.he fact that the planner is optimally choosing the stable solution, and 
the algorithm succeeds in calculating the constant detrended consumption leveL In 
order to have a constant detrended consumption, the sa.ving rate mllst increasc at the 
bcginning and fiuctuate around its BGP solution afterward, as it is shown in Figure 
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Figure 5: Optimal growth model: Detrended output 
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Figure 6: Optimal growth model: The growth rate 
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Figure 7: COl1sumption: optimal gro-wth vs eonstant saving rate 

8. Alternatively, in the Solow-Swan version of the model detrended consumption is 
just. a constant fraetion of output and fluduates likewise. 

Finally, in the context of OUT simple model, we can further derive implications 
in terms of the empírical relevance of the AK class of models. In particular, in­
cOTporating vintage capital iuto an otherwise standard optimal AK gTowth model 
contributes to break the clase connection between investment and grO\vth in the 
short-medium runo This is a feature of the data w hich has been st.ressed the AK 
model eontradicts [ef. Jones (1995)J.8 Figure 8 summarizes the short-run dynamies 
of the investment share (dashed line) and the growth rate (salid line): investment 
rates do not move in lock step with growth rates. The intuition is straightforward. 
Compared with the standard version ofthe model wcmove fromg(t) = A i(t)Jy(t)-ó 
to 9(t) ~ Jl i(t)/y(t) - 15(t) being 15(t) '" Jl i(t - T)/y(t). The growth rate depends 
not only upon the current investment rate but also on delayed Ínvestment. Tempo­
rary ehanges in investment will imply temporary changes in growt.h rates fram their 
long-run trend. Thus, the sort of fiuctuations the model generates is not merely a 
mathematical propert.y but derives testable implications for the AK theory. 

A further analyzes on stability can be achieved by computing numerically a 
subset of the infinite roots of the homogeneous part of (16), those with a negative 
real part near to zero [er. Engelborghs and Roose (1999)J. We have found that this 
subset is non empty and therefore supports the convergence by oscillations rcsult in 
Figures 5 and 6. For the optimal growth model and the parameter values in Table 
2, Figure 9 shows the real parts in the x axe and the imaginary parts in the y axe. 

~For a review see McGrattan (1998). Considering evidence over langer time periods and more 
countries that .Jones does she finds the long-run trends tbat AK theüry predicts >l.nd that. om 
model economy preserves. lVIcGrattan also provides examples suggesting that the relat.ionship 
which forms the basis of Jones' (1995) time series tests does not generally hold for tilo AK modeL 
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Figure 8: The growth and tIte saving rates 

Figure 10 does the same for the constant saving rate model and parameters in Table 
1. We can evaluate the convergence speed of the economy using the computed roots: 
the closer to zero is the smallest real part of the nonzero computed eigenvalues, the 
slower is convergence. Thcse figures confirm that the Solow-Swan version of the 
model (;onverges more rapidly. 

5 A Solow (1960) interpretation 

The AK model can also be seen as a reduced form of a more general economy with 
both pl1ysical and human capitaL This result is obtained in a one sector model 
using a constant returns to scale technology in both types of capitaL In such a 
model output can be used on a one-for-one basis for consumption, for investment in 
physical capital and for human capital accumulation. In this sect.ion we investigate 
what are t,he implications of considering this stylized representation in a vintage 
capital framework. For this purpose we aggregate over vintage tcchnologies following 
Solow (1960). 

Let us assume that the technology of a vintagc z is given by 

y(z) ~ B i(z)'-"h(z)", (17) 

where B > O and O < Q' < 1. h(z) represents human capital associated tú vintage z. 
Let us assume that both physical and human capital are vintage specific and have 
the same lifetime T > O. Machines use specific human capital, which i8 destroyed 
when machines are scrapped. Thus, given the one-íor-one allocation structme of 
our setting the price of cach type of capital would be fixed at unity. Under these 
assumptions, the representative plant of vintage z solves the following problem: 
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Figure 10: Eigenvalues of the constant saving rate model 
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",here 

1
"+T 

f{z) = z e- r: dv dv rlT. 

Given OUT irreversibility assumption, a plant of vintage z produces the same output, 
from z to z + T. The interest rate Ís denoted by T(t) and r(z) is tIle discountcd 
value of a fiow of one unit of output produced during tIle plant life. Given that both 
torms of capital face the same user cost, it is very easy to show that lhe opthnal 
ratio of physical to human capital is 

i(z) 1-a 
h(z) a 

the same for aH vintages. Substituting it in (17), and aggregating over aH operative 
plants at time t, we get that aggregate production is equal to 

where A == B (l~o:r. 

y(t) ~ A (' i(z) dz, 
Jt-T 

Aggregate production in this model clearly reduces to the AK technology pre­
sented in the previous sections. The interest of this Solow (1960) version of our 
one-hoss shay AK roodel is that we can interpret it in terms of embodiecl techno­
logical progress. On the BGP, human and physical capital are both growing at the 
positive rate g. Consequently, labor associated to the representative plant. of vintage 
z has h(z) as human capita.l, which is greater than the human capital of aU previous 
vintages. Uncler this interpretation, technical progress is embodied in new plants. u 

The key difference with 8010w's paper comes from the spccificit.y of human cap­
itaL In the Solow paper, labor is an homogeneous good and technological progress 

UFrom constant returns to scale in production, the uumber of plants is uudetermined. Moreover, 
our assumption on human capital accumulation makes the number of workers undetermined also, 
since we can associate any amount of human capital to any small unit of labor. vVithout any 10s15 
oí generality, we can assume that the measure of firms and the measure of labor are both one. In 
this sonso, a plant is always as150ciated with one worker. Since the human capital invE".stment. of a 
plant is increasing, we can interpret it as tecbnological progress embodied in the labor resource. 
Of course, sínce human capital is vintage specific and associated to a particular vintage oí capital, 
\Ve could in a large sense 15ay that technical progres15 is embodied in phY15ical capital too, but it is 
stilllabor saving. Arrow (1962) is an example of labor saving technical progress embodied in new 
maclúnes. However, this model makes an important difference with respect to the recent literature 
on embodied technical progress, as in Greenwood, Hercowitz and Krusell (1998), which follows 
Solo\V (1960) by assuming that technical change is capital saving. 
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is cmbodied in the physical capital. TIlo first llssumption implies I,hat the equi­
librium wage i8 the same for aU vintages. From the second assumption, to restore 
\.he equality of labor productivities across vintages, we must associate less labor to 
older vintages. Under these conditions, Solo\\' shows that the aggregate production 
from adding vintage specific Cobb-Douglas technologies is also Cobb-Douglas. In 
our model, human capital is vintage specific, implying that the capital-labor ratio 
of a particular vintage lS not varying over time, and it ls the same fOl" all vintages. 
Vnder this alternative assumption, aggregate production is of the one-hoss shay AK 
type. 

6 Conclusions 

Recent discussions on growth theory emphasize the ability of vintage capital models 
to explain growth facts. However, there is a small number of contributions endoge­
nizing growth in vintage models, and most of them focus on t.he analysis of balancad 
growth paths. The model analyzed here goes part way toward developing the meth­
ods for a complete resolution of endogenous growth models wilh vintagc capital. 
F'or analytical convenience it 18 limited to a case in wmch the eugiue uf gwwtiJ i~ 

simple: returllS to capital are bounded below. However, the baslc properties oí the 
model are cornmon to most endogenous growth models. Our framework represents 
a minimal clepal'ture from the standard model with linear technology: we impose 
a COIlstant lifetime for machines. Under this assumption we show that some key 
properties of the AK model change draroatically. In particular, convergence to the 
BGP is no more instantaneous. Instead, convergence is non monotonic due to the 
existence of replacement echoes. As a consequence, investment rates do not move 
in lock step with growth rates. 

Appendix 

In this appendix we prove Proposition 4 and we present an out.line of the algorithm 
used to compute equilibrium pa.ths of the optimal gTowth modelo 

Proof of Proposition 4 

(a) From (2) we can show that 

(Al) 
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From (5), we can show that 

9 e-g1' 
g=sA- 191'" - e . (A2) 

Since C(g} == l~",~:';T is such that CI(g} < O, then g(O) < g. Finally, from 
Proposition 2, \Ve know that the relation between.1 and s, implicit in (5), is 
decreasing. Consequently, there exists a < sA, such that 

90 ~ 0(1 -
-goT 

e-901') = a _ 90 e < .1(0) 
1 - e gol' 

(b) From (3) 

(t) ~ i'(t) ~ A _ i(t - T) 
9 - i(t) s i(t)· 

Differentiating with respect to time gives, for all t E [O, T[ 

g'(t) ~ g(t) - go. 

Sinee g(O) > go, g'(t) > O If t E [O, T[. 

(e) Given that H'(g) < O .nd go < g, fram (4) and (5), i(O) > lim,~o- io(t) ~ 1. 
From (3), il(t) has a discontinuity at t = T. 

(d) Cambining (Al) and (A2), we get 

9 - g(O) ~ G(go) - G(g) > o. 

At given 9o, an increase in grises 9 - .1(O} since CI(.1) < O .• 

Algorithm 

The planner's problem can be redefined in terms of variables fol' which its lOllg­
run is lmown. 

Let define I'(t} = ;o~~~) and z(t) = ~g?, then (8) reads: 

subject to 

z(t)~AL~~!dZ (A3) 
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(A4) 

givcn mitial conditions r (t) = ro(t} = i:(~t~) :;::: O for aU t < O 

The numcrical procedure operates on this transformation of the problem and the 
optimization relies upon the objedive. In line with the cyclic coordinate descent 
algorithm proposed by Boucekkine, Germain, Licandro and Magnus (1999), the 
unknowns are replaced by piecewise constants on intervals (O, .6.), (.6.,2.6.), ... , and 
itcrations are performed to find a fixed-point g(t} (aud/or state variable i(t), y(t)) 
vector up to tolerance parameter 'Tol'. An outline of the algorithm used to compute 
an approximatc solution of problem above i8 the following: 

Step 1: Initialize gO(t), the base of the relaxation, with dimension K sufficiently 
large. For t E [K, N[, N > K and large enough, set g(t) = g (the BGP solution). 
Notice that knowing g{t) we can compute r (t) and z (t) using (A3) and (A4). 

Step 2: Maximization step by step: 

• St.ep 2.0: maximize with respect to coordinate go keeping UIlchanged coordi­
nates gi, i > O 

• Step 2.k: maximize with respect to coordinate 91;; keeping unchanged coordi­
nates gí, i > k, with coordinates gl, O:::; l :::; k - 1 updated 

• Step 2.K: last k < K step, get gl(t) 

Note that at each k step states must be updated. 

Step 3: If gl(t} = gO(t), we are done. Else update gO(t) and go to Step 2. 
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