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Abstract. We discuss on recent results concerning the asymptotics near blow-up of nonnega-
tive solutions of

Ut = Uge + f(u) 3 —o0 <z < oo, t>0
u(z,0) = uo(z) ; —oo <z < oo,
where f(u) = u? with p > 1 or f(u) = €%, and uo() is continuous, nonnegative and bounded.
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1. Introduction. We shall consider one-dimensional equations of the type

(1.1) uy = ugy + f(u),

where f(u) = u? (p>1) or f(u)=¢e",

which arise in many problems in continuum mechanics. For instance, combustion
of a one-dimensional solid fuel is described by the set of equations (cf [BE])

T-1
Ty = Tyy + bcc exp <—T>
€

T-1
¢y = —eléc exp <—T> ,
€

where T' and c represent respectively the fuel temperature and concentration, and
§,I',e are (positive) physical constants. Typically, ¢ represents the inverse of the

activation energy, and if we assume 0 < ¢ < 1, and look for solutions in the form
T=14+eu+--+ , c=1—eC;+---

one is led to

Uy = Ugy + 6, (C;)r =Tée”

and the first equation reduces to (1.1) with f(u) = de*.



Solutions of (1.1) are known to develop singularities in finite time, regardless of
the smoothness of their initial and boundary conditions. For spatially homogeneous
(i.e., space independent) solutions, this is readily seen by integrating the first order
PDE obtained by dropping the diffusion term u,, in (1.1). In the case of general
solutions, it is interesting to understand the role of diffusion in the onset and char-
acter of singularities. We will say that a nonnegative solution u(z,t) of (1.1) blows

up at a time T' < +oc if

li t)) = .

tlT%“l sup (sup u(z,t)) = oo
Assume that u(z,t) blows up at ¢ = 7. We then say that z¢ is a blow-up point of
u if there exist sequences {z,}, {t,}, such that lim =z, ==z, lim ¢, =T, and

n—00 n—00

nlgnoo w(@p,tn) = +00 .

The set of blow-up points of u is usually referred to as the blow-up set. suffi-
cient conditions for blow up have been extensively discussed in the literature (cf.
[Fu],|Lel],|AW],[W],[L],[Be],...). Furthermore, the structure of the blow-up set,
and the asymptotic behaviour of solutions near blow-up points have received consid-
erable interest (cf [GP2],[GK1],[GK2],[FM],[CF],[BBE],[CM],[FK],...). These are
precisely the questions we want to discuss upon herein. In doing so, we shall follow
the approach adopted in [HV1], [HV2], [HV3]. The reader is referred to these papers
for additional details.

Consider first the question of the asymptotics near blow-up, and for definiteness,

let us consider solutions of the Cauchy problem

(1.2a)  uy=wugz, + f(u) ; z€R, t>0, f asin(1.1),

(1.2b)  wu(z,0) =uo(z) ; wuo -continuous, nonnegative and bounded.

Assume that u(z,t) blows up in a finite time (in view of the results in [Fu|,[AW],...
this is certainly the case if uo(z) £ 0 and f(u) =" or f(u = u? with 1 <p < 3, or
if uo(z) is large enough when p > 3 in this last case). Suppose also that z =01is a

blow up point for u. Then a basic asymptotic result states that
(13a) if flw)=w (p>1), Bm(T — )7Tuly(T — )%, 1) = (p— 1) 77
1
uniformly on sets |y |[< C with C >0,

(1.3b)  if f(u) = e*, lim(u(y(T —t)*/2,t) +log(T —t)) =0 ,

+1



u(z,t) behaves near blow up as the explicit self-similar solutions
(1.4a) (1) = (p— (T — 1)) 77
(1.4b) u(z,t) = —log(T — 1)

along suitable backward parabolae centered at blow-up points.

A question which naturally arises is how to obtain more detailed expansions
in larger regions, and in particular, what is the space profile of the singularity at
t = T (the so-called final-time analysis). It will turn out that, while first order
asymptotics as that in (1.3) is remarkably uniform, higher-order expansions will
depend on the concrete shape of the initial value -or rather, on its nodal properties
(cf. Theorem 1, 2 and 3 below). To describe precisely the relevant results, we shall
specialize from now on to the power case f(u) = u? (p > 1) in (1.2a). Following

[GP2] and [GK1], we introduce similarity variables as follows
(1.5a) w(z,t) = (T — )" = 1d(y,7),
(1.5b) y=(T — t)_1/2 , 7= —log(T —t).
We thus obtain that ® solves
(1.6) @T:¢yy—%y¢y+q)p—%;yEH,T>—logT.
In the new variables, (1.3a) reads
®(y,7) — (p— 1)_1'1_1 as 7 — oo, uniformly for

bounded y

Notice that &y = (p — 1)1'—;1 is a nontrivial stationary solution of (1.6). To

obtain more detailed expansions, it seems natural to linearize about ®, by setting

(1.8) ®(y,7) =(p—1)" 77 +9(y,7)
and then consider the equation for the error term ¥ (y, ) which reads

y¢y

(1.9) Yr =y — Y YY) =AY+ £(9),

where f(¢) = ((p— 1) 7T +9)F —(p— 1) 77 —

To analyze the evolution of ¥(y,7) one is led to take into account the linear
operator A in (1.9), and this in turn motivates our choices of functional frame. For
g>1land k=1,2,... we set

( 3\



with the standard topology. We shall denote henceforth the L2 -norm by | - ||.
The operator A in (1.9) is self-adjoint in L2 (R), having eigenvalues \,, = 1 — —

)

n =0,1,2,... with eigenfunctions H,(y) given by

—1
(1.10) H,(y) = c, H, <2> , where ¢, :<2n/2(47r)1/4(n!)1/2> :
w

and ﬁn(y) is the standard n**-Hermite polynomial
so that |H,|| =1 for any n.

As ¢¥(y,7) — 0 when 7 — oo, it is natural to assume that the linear part will

eventually dominate in (1.9). Writing ¥(y,7) as a Fourier series.

(1.11a) P(y,7) =Y ar(T)Hi(y)

we readily see that the Fourier coefficients aj(7) satisfy

(1.11b) ap(7) = (1 — g) ar(t)+ (f(¥),Hy) ; k=0,1,2,...

where (,) stands for the natural scalar product in L2 (R). By analogy with classical
ODE theory, we would then expect that

(1.12) Y(y,7) ~ ar(7)Hi(y) for some k as 7 — oo

Indeed, not all values of k are admissible in (1.12). For k = 0,1, linearizing in

(1.11b) would yield respectively
(1.13) Y(y,7) & aoe” Ho(y), $(y,7) ~ a1 e/® Hi(y) as 7— o0,

which are incompatible with the basic assumption (1.7). For k = 3,4,..., dropping
the nonlinear term in (1.11b) would give

(1.14) P(y,7) = C e(l_%)THk(y) as T — o0.
Finally, when k = 2 then linear part vanishes in (1.11b), and we obtain

a2(1) = - p(p — 1)77 as(7)?(HZ, Hy) + - -

N | =

which after integration yields

(4m)/* (p—1)"7T  Ha(y)

(1 15;\ G/!(Gl ﬂ-\C\J_ . - O p— N e




THEOREM 1. - Let u(z,t) be a solution of (1.2), where f is as in (1.3a), and
assume that u(z,t) blows up at ¢ =0, t = T. Let ®(y,7) be given in (1.5). Then

one of the following cases occurs

(2.1)  ¥(y,7)=(p—1)" 77,

o _;_1_(471_)1/4 (p_l))_p—;l‘fb(y) o 1
(2.2)  ®(y,7)=(p—1) V2 p P (7’)

as T — 00,

or

(2.3)  B(y,7r)=(p—1)) 71 —Cel=F)H,,(y) +o <e(1—%)r>

where C > 0 and m is an even number , m > 4.

Convergence in (2.2), (2.3) takes place in H. (R) as well as in C’fc’a(ﬁ) forany k > 1
and any o € (0,1).

Concerning Theorem 1, several remarks are in order. To our knowledge, the
existence of solutions behaving as in (2.2) was first conjectured in [HSS], where
(2.2) was formally derived for the case p = 3 by singular perturbation techniques.
Later, a similar expansion was formally obtained in [D] for the case f(u) = e* in
(1.1). The actual existence of solutions exhibiting the behaviour conjected in [D]
has been recently shown in [Br|, where stability properties of such solutions were
also discussed. We also refer to [GP1], [BK] for further formal analysis for the
power-like case. The flatter behaviours (2.3) seem to have been unnoticed until the
work [GHV1], where the expansions listed in Theorem 1 were formally obtained
by means of perturbative methods. On the other hand, results closely related
to Theorem 1 have been simultaneously and independently obtained in [FK]. In
that paper, the authors dealt with the higher-dimensional version of (1.1) with
f(u) =uP, p>1,and proved that if u(z,t) blows up at # =0, ¢t = T, then either
<<I>(y,7') —(p— 1))_?—;1> becomes exponentially small as 7 — oo, or the behaviour

corresponding to (2.2) holds.

In view of our preliminary discussion in Section 1, it might be thought that

Theorem 1 could be derived by a rather standard application of semilinear parabolic



On the other hand, a quick glance at (2.2), (2.3) suggest that these expansions

cannot be uniformly valid in the y-variable. For instance, for solutions satisfying

H 2
2.2), one has 2(y) ~ L for large y, and therefore the second and first term in
g
T T

2

the expansion become of the same order when Y ~ 1. This motivates introducing in
T

such external region the new variable ¢ = Y- ? This is

VT (T = t)log(T —t)])/>

precisely the “ignition kernel variable”, conjectured for instance in [D]. As a matter

of fact, we have the following classification of possible behaviours in larger regions

near blow-up (cf. [HV1], [HV2]).

THEOREM 2. Let u(z,t), = =0, and t = T be as in Theorem 1. Then one of

the following cases occurs
1

i) if (2.1) holds true, then u(z,t) = ((p — 1)(T' —t)) 7T
ii) if (2.2) holds true, then

(24) lim (T — )7 u(€((T — )| (log(T — 1)))*/%, 1)

e e (22)e)

uniformly on sets |£ |[< R for any R > 0.

iii) If (2.3) holds true, then

(25)  Bm(T — )7 Tu(E(T /") = ((p = D+ (p— )77 Cent™) 7T,

where C, ¢, are as in (2.3) and (1.10) respectively, and convergence
is uniform on sets |z |< R for any R > 0.

Let us give a quick idea of the main arguments behind the proof of Theorem 2.
To this end, we shall specialize to the case (ii) there for definiteness. A first step
consists in deriving the corresponding lower bound for u(z,t)
(2.6) (T — )7 Tu(€((T — t)| log(T — t)])*/%, 1)

1

-0 (14 (2 )@ rar-0) T s i,

uniformly on sets | |< R with R > 0.



Using (2.6), we are able to show that

W(,7)—(-1) <

C
— as T — oo.
-

Set now G =W — (p — 1). Then G satisfies

G -G, —tuag ro=_P Gy
T My T 5 Y y T _p—l'G—I—(p—l)

We use variation of constants in the equation above to write G(y,7) in the form

G(y,7) = (homogeneous term) + (nonhomogeneous term)

= Gl(y7T) + G2(y7T)
and prove that

(2.7a)
: _ (-1
lim G1(évV/T,t) = e uniformly when | |< C, C >0,
T—00 P
(2.7b)
lim G2(éy/7,t) = 0, uniformly when |¢|<C, C >0,

whence (2.4). The more delicate part in (2.7) consists in deriving (2.7b), since this
involves estimating the nonlinear term

p Gy®
p—1 G+(p—1)

L(y,7) = =Ccy g2

for some C > 0. We use (2.6) to bound above ®—(+t1) On the other hand, we
show that

(2.8) @y (EV/T,7) |

C
< — as T — o0, uniformly for |£ |[< C

VT
To obtain (2.8), we write z = |®,|, and use Kato’s inequality to arrive at

z 1 _
ey 2 (G ) e

This last equation is a linear one, and we may use variation of constants formula
there as soon as a suitable global bound for ® is available. As a matter of fact, we

prove that



3. Final time analysis. The results obtained in Section 2 lead naturally to the
question of determining the profile of u(z,T") when z ~ 0, u(,t) being a solution

of the Cauchy problem under consideration which blows up at = 0, t = T. We
then have (cf [HV3]).

THEOREM 3. Let u(z,t), = 0, and t = T be as in Theorem 1, and assume
that u(z,t) # ((p — 1)(T — t))_Pi_l. Then the blow-up point ¢ = 0 is isolated and
the following possibilities arise

a) If i) in Theorem 2 holds true, then

1

o 0 <|1c|>z||2wu>_;—l o) = ()

b) If iii) in Theorem 2 holds true, then

6 (e i) = oy ) O

z—0

where C, c,, are as in Theorem 2.

It is worth noticing that no assumption on the structure of the blow-up set
was made to obtain Theorems 1 and 2. We now stress that, under our current
assumptions, the blow-up set consists of isolated points. This was already known
for the case where ug(z) is compactly supported (cf [CM]) but our proof in [HV3]
is different, and makes no use of lap number arguments. On the other hand, we
should also mention that the upper bound corresponding to (3.1a) has been derived

in [GP2] under additional assumptions on the initial value ug(z).

The proof of Theorem 3 proceed by means of

i) A key technical result (cf. Proposition 3.1 in [HV2]).

ii) Nondimensional scaling.

Since we believe that it might be illustrative for other situations, we shall elab-
orate a little bit on part ii). Suppose that (2.4) holds. We then take £ > 0, and

consider the family of auxiliary functions

(3.3) vs(z,1) = (T — 8)7Tu(A(s) + z(T — 8)/2, s + (T — s))
where A(s) = ¢((T — s) | log(T — s) |)*/? and 0 < s < T,

It is readily seen that

(3.4) (vs)t = (Vs)ew + (vs)P whenz € R, 0 <t <1

whereas, by (2.4)



We now impose

A
(@92 < X e o< S log(T - 02

Then (3.5) yields

(3.6) (o0 < (- 1)+
small enough, uniformly on |z |< g | log(T — s)|*/2.

On the other hand, by (2.9) we have that, for T'— s <1,

bg(T;s>D_j(1—0_ﬁT

We now argue as follows. By estimates (3.6), (3.7), we can make use of the

(3.7) m@ws(@—nvﬁ+c(

technical result mentioned above (Proposition 3.1 in [HV2]) to obtain the following:
If we consider vs(z,t) in a cylinder Q,, = [-n,n] x [0,1], £ > 0 is large enough
(independently on n), and s is close enough to T', then

(3.8) vs(z,t) < M,, < +oo when (z,t) € Q> uniformly as s T 7.

Notice that (3.8) implies that blow-up points are isolated. Indeed, setting
z =0, % = Ms) and t = s + ¢(T — s), we see that for t € [0,1] and

) ~
s € [T —6,T — 5] with § > 0 small enough, (3.8) provides a bound for u(z,t) in

- = ~ 6 ~ .
cylinders S = {(w,t): o1 <|z <0y, T-— 3 <t < T} with ¢; > 0 and 71,09

sufficiently small. Furthermore, (3.8) yields at once Schauder estimates in sub-
[—g, g] x [6,1], uniformly as s T T for any § € (0,1). This
(and a typical barrier argument to control the behaviour when ¢ &~ 0) enables us to

cylinders Qs =

conclude that there exists a subsequence (also denoted by v,(z,t)), and a function
v,(z,t) such that

(3.9a) vs(z,t) = vy(z,t) as s T T, uniformly on Q,, s for any

5€(0,1),



By allowing n to go to infinity while repeating the previous argument at any
step, we deduce that there exists a subsequence, still denoted by vs(z,t), and a

function v(z,t) such that

(3.10a) vs(z,t) — v(x,t) as s T T, uniformly on compact sets
of B x (0,1)
(3.10b) Vi = Vyy + 0P in R2(0,1)

(3.10¢) lim 5(z, ¢) = (p — 1) 71 (1 + (E> g2>_"__1 ,

10

(3.10d) v(z,t) < M(1— t)_r'—;l for some M > 0.

From all the statements contained in (3.10), only (3.10d) is new with respect to
(3.9). Actually, (3.10d) holds for any solution of (3.4) which blows up at t = 1 and
has smooth and bounded initial values (cf [GP2]), and this last restriction is easily

removed by application of classical parabolic theory.

It then follows from (3.10) that v(z,?) is unique, and

o ey (s () )

We are ready now to conclude the proof of (3.1). We just make use of (3.10a) and
(3.11) to write

R . PRy — NE] p— NINT /O



whence

T o (3 (log ly)) ) as s 1T
which, after substitution in (3.12), yields

(ﬂ<|1o'§'|yu>m);_1“<”>* (@4—71)1)>_ @yt

which is the desired result. The proof of (3.2) is similar; cf. [HV3] for details.

We refer to [HV1] and [HV4] cf. also [BB]) for results alike to Theorems 1-3
when f(u) = e" in (1.1).

4. On the occurrence of different blow-up behaviours. The results in
Section 2 and 3 provide a classification of all possible behaviours of the solution
u(z,t) of (1.2) when f(u) = w?, p > 1, near a blow-up point. However, the
question of the actual existence of solutions exhibiting such behaviours has not
been addressed yet. A close look at Theorem 1 reveals that, if u(z,¢) blows up as
indicated in (2.2) (resp. as indicated in (2.3) there) then a single maximum in the

scaled variable y arrives to the blow-up point y = 0 as 7 — oo (resp. exactly <%>

maxima arrive to y = 0 as 7 — o0). This is a consequence of the very structure of

the Hermite polynomials

This suggests at once that the different blow-up behaviours listed in Sections 2
and 3 depend on the number of maxima which collapse exactly at blow-up. As a

matter of fact, we have

THEOREM 4. Let u(z,t), * = 0 andt = T be as in Theorem 1. Then there
holds

9) Tf al,\(m\ Loa o ctomeda v mvrrrr119v 1ot o cctrmmartnter ol avregsan



Let us remark briefly on Theorem 4. Part a) is quite natural, since the number
of maxima of solutions of parabolic equations cannot increase in time. This basic
fact has been repeatedly and independently used by many authors; cf. for instance
[M], [A], [AF],..... As to b), we need to obtain a solution which has two maxima
collapsing at blow-up. To this end, we proceed by considering initial values ug gr(z)

consisting of two symmetric bumps a distance R apart,

As R > 0 varies, intuition suggests that

i) For R small there is blow-up at a single point,

ii) For R large there is blow-up at two points.

Taking the infimum of such R for which (ii) above holds we obtain a value R*
such that the corresponding solution arrives at (0,7") with two maxima. This is
the natural candidate for the initial value in part b) in Theorem 4, and this is the
way we proceeded to derive such a result. However, we should point out that a
rigorous proof needs to overcome some technical problems. In particular we need
to establish

(4.1) Continuity of the blow-up time with respect to the initial
data,
(4.2) Continuity of the location of blow-up points with respect

to the initial values

While (4.1) is comparatively easy, (4.2) requires in our approach of rather so-
phisticated techniques (in particular, we rely on Proposition 3.1 in [HV2], which
was already an ingredient in the proof of Theorem 3). See also [GK3] for a related
argument. Similar results hold when f(u) = €® in (1.2); cf. [HV4].

One may expect solutions satisfying (2.3) to exist for any value m = 6,8,10,....
There would be characterized by collapse of 3,4,5,... maxima at blow-up. We have

been unable to prove existence of such solutions so far.



Let R > 0 be given, and let u(z,t) be a positive solution of
(5.1) Up = Ugy + uP when =—-R<z <R, t>0,
with p > 1, such that

(5.2) u(z,0) = ug(z) when —R < z < R, where ug(z) is as in
(1.2b).

Notice that no boundary conditions are prescribed. It is first shown in [V] that
all our previous analysis carries through if blow up occurs at the interior of (— R, R).

More precisely, we have

THEOREM 5. Let u(z,t) be a solution of (5.1), (5.2) which blows up at
=17 € (—R,R) and t = T. Assume that the blow-up set is contained in an
interval [—6,8] with 0 < § < R. Then the asymptotic behaviour of u(z,t) as
(z,t) — (%,T) is given by Theorem 1 (with y = (¢ — Z)(T — t)~/2 in (1.4b)).

Moreover, the results of Theorems 2 and 3 also hold true.

We point out that the separation assumption on the blow-up set made above is

known to hold in many cases, as for instance,

(5.3a) When homogeneous Dirichlet (or Neumann) conditions are added
to (5.1), (5.2),
(5.3b) In general, whenever the number of maxima is a priori

bounded.

(cf. [FM], [GK1], [CM],...). Actually, violation of (5.3b) leads to an example in

which new behaviours arise and the blow-up set reaches the boundary.

THEOREM 6. For any R > 0, there exists § > 0 small enough and a solution

u(e,t) of the equation
U =Ugy +u¥ in (—R,R)x (T —-6T),p>1

such that u(z,t) # ((p — 1)(T — t))_r'—;l and u blows up in the whole interval
(—R,R) x (T — 6,T). Moreover, we have that

(5.4) @z, 1)(T — )7 — (p— 1) 77 — (T — ) w(iz, T — 1)



the number of maxima increases as ¢t T T'. In particular, if {; < t; < T we have a

situation as that depicted below.

6. General blow up patterns. Let us return now to the study of the Cauchy
problem considered in Sections 2 to 4. So far, we have obtained a classification of
all possible blow-up behaviours, and have shown that the H2(y) and H4(y) patterns
actually occur (cf. Theorem 4). We have also seen that it is reasonable to expect
the existence of H,,(y) behaviours for m = 6,8,10,... although no proof of such

fact is known to us as yet. We next set out to examine the following question
which of these behaviours is likely to be observedI’
or, in another words

which of the previous behaviours is stable under small

perturbationsI’

Again, it is easy to guess what the logical answer should be. Indeed, the H»(y)
pattern in (2.2) looks stable, whereas those in (2.3) do not. The reason is that any
H,,(y) behaviour (m = 4,6,8,...) would correspond to | — ) maxima coalescing
exactly at blow up, a delicate balance likely to be destroyed by a slight change in
the initial value ug(z). Any such change however, would lead to a new datum still
having one maximum if that was the case for the original value uo(z), and this

strongly indicates the stability of the H;(y)-profile.

We next proceed to state these results in a precise way. Let u(z,?) be a solution



and assume that
u(z,t) blows up at points z1,...,2r (k >1) at time ¢t = T

We then have

THEOREM 7. a) Suppose that uo(xz) is continuous, nonnegative and compactly
supported, ug(z) € Co(R). Then, for any € > 0 there exists ug(z) € Co(R) such
that

(6.3) Ifea[é( | wo(z) — up(z) |< €

and the solution u(z,t) of (6.1) with initial value uo(z) blows up at a single point
T and (2.2) (with y = (¢ — @)(T — t)"'/%, T being the new blow up time) holds.

Moreover, ug(z) can be selected so that, for any fixedt =1,...,k
(6.4) ey —Z2|—0 as e—0

b) Suppose now that u(z,t), blows up at a single point z and (2.2) (with
y = (z — Z)(T —t)"'/?)) holds. Then there exists ¢ > 0 small enough, depending
on ug(z), such that for any uo(z) € Co(R) which satisfies (6.3), the corresponding
solution u(z,t) blows up at a single point Z, and (2.2) (with y = (¢ —z)(T —t)~*/?)
holds. Moreover (6.4) is also satisfied with z; replaced by . In another words

Generic blow-up = Single point blow-up of H»(y)-type, i.e.,
such that (2.4) holds

Before proceeding any further, a few remarks are in order. We do not really
need ug(z) to be compactly supported. All that is required is blow-up to occur in
a compact set, and this indeed happens if u(z) decays rapidly enough at infinity
(cf. [GK3]). On the other hand, the existence of solutions which blow up at exactly
k points (with k arbitrary) has been recently proved in [M] for Dirichlet problems
in bounded intervals; cf. in this context our discussion in Section 5 above. Finally,
generic properties have been discussed for higher-dimensional versions of (1.1) in

some cases. Consider for instance the problem

ur = Au + e when z €, ¢t >0
u(z,0) =uo(z) for z €, t=0,

u(z,t) =0 for £ €0Q, 7>0



Theorem 7 is proved in [HV5]. We shall here restrict ourselves to stress the
main ideas in the proof of part a). As indicated by the very nature of the result,

our approach is a perturbative one. Suppose that u(z,t) solves (6.1), (6.2). We set
(6.3) uo(e) = uo o(z) = To(e) + eRo()

where 0 < ¢ < 1, and Eg(w) will be selected later. Let u.(z,t) be the solution of
(6.1) with initial value uo(z) s in (6.3). Then, formally

(6.4) ue(z,t) = Uz, t) + eR(z,t) + - --
where R satisfies

(6.5a) R, = Ew + pﬂp_lﬁ

(6.5b) R(xz,0) = Ro(z)

Notice that (6.5a) is linear, but the potential pi? ~! becomes singular at ¢ = 7.

A key point in the proof consists in deriving the following result
Let z; be a blow-up point of u. Then, forz =1,...,k

g ¥

(6.6) R(z,t) ~ a1(T —t)”»-1T uniformly on sets |z — z; |< C(T — 1)1/2

where the o are generically arbitrary. More precisely, for

any given set of constants 31,...,0;, and any 6 > 0, we may
pick Eg(w) such that (6.6) holds with | a; — ;1 |< 6 for any
1=1,...,k.

Consider now the perturbed solution u.(z,t) (cf. (6.4)). By (1.3a), we know
that

1

(6.7) ue(z,t) =((p— 1)(Te —¢)) 7T +---

T. being the new blow-up time. On the other hand, by (6.4) and (6.6), we have
that

(6.8) we(@t) = (p— 1T =) 7T +eay(T —t) 77 +---



we deduce from such a result that
(6.9) AT, ~ —¢ ay(p— 1)1

Once (6.6) and (6.9) have been obtained, our strategy goes as follows. We pick
one of the blow-up points of u, say z;, and select then Eg(w) so that (6.6) holds
with @1 < 0 when ¢ # j and «; > 0. Recalling (6.9), blow-up is postponed near
z; (1 # j) and it is anticipated near z;. Since the number of maxima of u is finite by
our assumptions on ug(z), repetition of the previous argument leads to the situation
where there is a single point blow-up at, say, # = 0 with perhaps several maxima
collapsing there. For simplicity, we shall just consider the case of two maxima, so

that the rescaled space profile looks like

We then derive a refinement of (6.6). Namely, we prove that Eg(w) can be
selected such that

Rz, t) xaz (T — t)_r'f;l , uniformly on sets
|z |< C(T —t)'/? , where o # 0
Recalling (6.8) and (2.3), we obtain

(6.10) ue(z,t) = ((p— 1)(T — 1)) 771 — C(T — )" 71 Hy(y)
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z(t) is the level line described by the maximum located to the left of z = 0, we see
that

(6.11) ue(z(t),t) < (p—1)(T —1))" 71 for t~T

Since M(t) = u.(x(¢),t) satisfies M(t) < M(t)?, it follows from (6.11) that z(¢)
cannot reach the blow up point at blow up time, whence the desired result. The

case where a < 0 is similar

7. Related evolution problems. The approach sketched above applies to a
variety of problems of the type

Uy = Ugy + fu), f nonnegative

For instance, it can be used to analyze the extinction or dead core case ([K]|,

[EK], [BS], [FH], [CMM], [GHV2],...). Consider the Cauchy problem

(7.1) Ut = Ugy — uP when z € R, t>0,0<p<1

(7.2) u(z,0) = ug(z) when z € R,

where wo(z) is as in (1.2b). It is known that the solution u(z,t) of (7.1), (7.2)
vanishes in a finite time, in the sense that there exists T* € (0,00) such that
u(z,t) = 0 for t > T*. The infimum of such times 7™ is then called the extinction
time T of w. A point zy is named an extinction point if there exist sequences
{zn}, {tn} such that im =z, =9, lim ¢, =T and u(z,,t,) > 0 for any n.

n—00 n—00

On the other hand, solutions may develop dead cores, i.e., regions where u(z,t) =
0 for ¢t < T, even when wug(z) is everywhere positive. The sets where v > 0 and

u = 0 are separated by interfaces or free boundaries. The following results have
been proved in [HV6].

THEOREM 8. Assume that uo(z) is as in (1.2b) and has a single maximum.
Then u(z,t) vanishes at some time t = T' at a single extinction point z¢. Moreover,
we have

(7.3) lim (T — £) "= (o + E(T = 1)) | log(T — 1) [)*,1)



im &) = (4_})) or v =
(74b) T g =0 \1-p) =12

The reader will notice the analogy between (7.3) and (2.4), the role of (1.4a)
being played now by the explicit solution

1

u(z,t) = ((L—p)(T —1)) """

However interfaces cannot appear in (1.2), and need to be dealt with by means
of new suitable techniques in the extinction case. On the other hand, as in (1.2),

flatter asymptotics are indeed possible. In particular, we have

THEOREM 9. There exists an initial value uo(z) and a constant C > 0 such
that the corresponding solution of (7.1), (7.2) has a single extinction point at

x = xzg, t =T, and satisfies

im(7T — _P—;luw — )Y/
(7.5) (T — 1) #Tu(e + £ — )41

= (1 - p)7(1 - O

uniformly on sets | |[< R with R > 0.

Moreover, there exist continuous curves S1(t), S2(t) such that, fort ~ T,

(7.6a)
uw(z,t) > 0in I = (zg — 61(¢), @0 + 62(t)), u(z,t) =0ifz ¢ 1.
(7.6b)
. 1/4
121‘%“1 % = (%) for t=1,2, whereC is asin (7.5).

When p < 0 in (7.1), the absorption term there becomes singular when v = 0,
and one is led to the so-called quenching problems (usually written in the variable
v = 1—wu), which have been extensively studied after reference [Ka| appeared; see for
instance [Le2] for a comprehensive survey on that problem. An interesting question
there is that of describing the asymptotic profile of solutions near quenching points,
i.e., near points where u becomes zero. We refer to [FG] for recent results in such

direction.
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