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Abstract

We represent QCD at the hadronic scale by means of an effective Hamiltonian,H , formulated
in the Coulomb gauge. As in the Nambu–Jona-Lasinio model, chiral symmetry is explicitly broken,
however our approach is renormalizable and also includes confinement through a linear potential with
slope specified by lattice gauge theory. This interaction generates an infrared integrable singularity
and we detail the computationally intensive procedure necessary for numerical solution. We focus
upon applications for theu,d, s and c quark flavors and compute the mass spectrum for the
pseudoscalar, scalar and vector mesons. We also perform a comparative study of alternative many-
body techniques for approximately diagonalizingH : BCS for the vacuum ground state; TDA and
RPA for the excited hadron states. The Dirac structure of the field theoretical Hamiltonian naturally
generates spin-dependent interactions, including tensor, spin–orbit and hyperfine, and we clarify the
degree of level splitting due to both spin and chiral symmetry effects. Significantly, we find that
roughly two-thirds of theπ–ρ mass difference is due to chiral symmetry and that only the RPA
preserves chiral symmetry. We also document how hadronic mass scales are generated by chiral
symmetry breaking in the model vacuum. In addition to the vacuum condensates, we compute meson
decay constants and detail the Nambu–Goldstone realization of chiral symmetry by numerically
verifying the Gell-Mann–Oakes–Renner relation. 2002 Elsevier Science B.V. All rights reserved.

PACS: 12.39.Pn; 12.40.Yx
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1. Introduction

In a series of publications [1–5] an ambitious QCD program has been initiated to com-
prehensively investigate hadron structure. The theoretical formulation entails renormaliza-
tion and utilizes established many-body techniques to approximately diagonalize an ef-
fective confining Hamiltonian. This paper, a detailed exposition of our recent letters [3,5],

1 Current address: Departamento de Física Teórica I, Universidad Complutense, 28240 Madrid, Spain.

0375-9474/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0375-9474(01)01237-4



304 F.J. Llanes-Estrada, S.R. Cotanch / Nuclear Physics A 697 (2002) 303–337

focuses upon the quark sector and reports numerical results for mesons complementing our
previous gluon study [1].

Over the years there have been many meson investigations, from the early, simple
non-relativistic constituent quark model calculations to more involved relativistic, field
theoretical approaches implementing current quarks and spontaneous chiral symmetry
breaking. A common shortcoming of these analyses is an inability to fully understand
and consistently reproduce the physical mass spectrum of the scalar and pseudoscalar
mesons. Our paper addresses this issue and significantly extends the pioneering work of
the Orsay group [6], Adler and Davis [7], and the Lisbon investigators [8]. In our approach
the exact QCD Hamiltonian in the Coulomb gauge is modeled by an effective, confining
Hamiltonian,H , that is fully relativistic with quark field operators and current quark
masses. However, before approximately diagonalizingH , a similarity transformation is
implemented to a new quasiparticle basis having a dressed, but unknown constituent mass.
As described in Section 2, this transformation entails a rotation which mixes the bare
quark creation and annihilation operators. By then performing a variational calculation
to minimize the ground state (vacuum) energy, a specific angle and corresponding
quasiparticle mass is selected. In this fashion chiral symmetry is dynamically broken and a
non-trivial vacuum with quark condensates emerges. This treatment is precisely analogous
to the Bardeen, Cooper, and Schrieffer (BCS) description of a superconducting metal
as a coherent vacuum state of interacting quasiparticles combining to form condensates
(Cooper pairs). Excited states (mesons) can then be represented as quasiparticle excitations
using standard many-body techniques which in this work will be the Tamm–Dancoff
(TDA) and random phase approximation (RPA) methods. The two treatments are truncated
at the one quasiparticle, one quasihole level and then numerically compared. Our RPA
analysis confirms and extends the early work of Ref. [9] which utilized an extended
Nambu–Jona-Lasinio mean field approach.

Three other comments are in order before proceeding. First, there are several reasons
for choosing the Coulomb gauge framework. As discussed by Zwanziger [10], the
Hamiltonian is renormalizable in this gauge and, equally as important, the Gribov problem
(∇ · A = 0 does not uniquely specify the gauge) can be resolved (see Refs. [2,10] for
further discussion). Related, there are no spurious gluon degrees of freedom since only
transverse gluons enter. This ensures all Hilbert vectors have positive normalizations
which is essential for using variational techniques that have been widely successful in
atomic, molecular and condensed matter physics. Second, due to Fock space truncations
our analysis is not Lorentz invariant. However, we only plan to use one frame and do
not compute hadron form factors with this method. Interestingly, Lorentz non-invariance
implies a preferred reference frame, which, as selected by chiral symmetry breaking, is the
condensate rest frame. Third, since our focus is upon improved diagonalization treatments
we adopt an established but simple linear confining potential, with slope determined by
lattice gauge results, which we recognize is incomplete. We therefore do not expect detailed
agreement with observation for our predicted hadron static properties. Our intent is to
gain new qualitative hadronic insight while documenting the power and utility of our
comprehensive approach.
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This paper consists of six sections and two appendices. The next section introduces our
effective, QCD inspired Hamiltonian and develops the BCS vacuum treatment leading to
the quasiparticle mass gap equation. We also compare our approach to the classic Nambu–
Jona-Lasinio model. In Section 3 we detail our numerical, supercomputer solution of the
gap equation along with the quark condensate and constituent mass values. Sections 4.1
and 4.2 describe the TDA and RPA, respectively, while Section 4.3 addresses weak de-
cays and Section 4.4 presents a derivation of the Gell-Mann–Oakes–Renner relation. The
TDA and RPA meson spectra are compared and discussed in Section 5. This section also
includes results from a simpleSUf (3) flavor mixing analysis for theη–η′ system and
our predictions for the charmed mesons. Conclusions and future work are summarized in
Section 6. Finally, Appendix A provides further details regarding the BCS transformation
and vacuum state while Appendix B presents the most general TDA equation for arbitrary
angular momentum.

2. Hamiltonian and mass gap equation

2.1. Effective Hamiltonian

By introducing a phenomenological confining potential,VL, the QCD Coulomb gauge
Hamiltonian [2] for the quark sector can be replaced by an effective Hamiltonian

H =
∫
d �x Ψ †(�x)(−i �α · �∇ + βm)Ψ (�x)− 1

2

∫
d �x d �y ρa(�x)VL

(|�x − �y|)ρa(�y), (1)

whereΨ , m and ρa(�x) = Ψ †(�x)T aΨ (�x) are the current (bare) quark field, mass and
color density, respectively (for a more complete discussion, especially for the heavy
quark sector, consult Refs. [10,11]). For notational ease the flavor subscript is omitted
(sameH for each flavor) and the color index runsa = 1, . . . ,8. Motivated by lattice
gauge studies we adopt a linear confining interaction,VL = σ |�x − �y|, with slopeσ =
0.18 GeV2 also specified by lattice and Regge phenomenology. In our analysis we have
also performed calculations with and without the leading QCD canonical or Coulomb
(one-gluon exchange) interaction,VC = −αs/|�x − �y|, with αs = g2/4π ∼= 0.4. For most
observables, especially the meson mass spectrum, the Coulomb interaction is not important
and can be omitted. This can be understood by noting that in momentum space, where we
perform all calculations, the two interactions have the same sign, i.e.,

V
(
r = |�x − �y|)= VC + VL,

V̂ (k)=
∫
d�r V (r)e−i�k·�r = −4π

αs

k2 − 8π
σ

k4 . (2)

Because the meson wavefunctions have a finite momentum distribution, most static meson
properties are predominantly governed by the infrared (IR), or low, momentum region
where the confining potential dominates. Including the Coulomb interaction is then roughly
equivalent to using a slightly larger string tension,σ . There are certain observables, and
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in particular the gap equation detailed below, for which the Coulomb interaction is ultra-
violet (UV) divergent. In such cases we regularize with a cut-off parameter and then could
renormalize to remove cut-off sensitivity using one of our renormalization procedures
detailed in Refs. [2,4] for the gluon sector. In this paper we only present unrenormalized
results since this program is still in progress [12,13] and has not yet been completed for
the quark sector. This is an additional reason for omitting the Coulomb interaction. Hence,
with the exception of the current quark masses (we usemu =md = 5 MeV,ms = 150 MeV,
mc = 1200 MeV), our approach entails only one pre-determined parameter which also
sets the hadronic scale,

√
σ = 424 MeV. We further note that even though the confining

potential is IR divergent, this singularity is cancelled (see Ref. [7]) in both the mass gap
equation and all calculations for associated observables. Hence, the problem is the delicate
numerical evaluation of this integrable singularity which we discuss in Section 3.

Finally, we stress that in constituent quark models free quarks can exist which requires
imposing color confinement. However, as demonstrated in Refs. [6–8] the Lorentz structure
of our Coulomb gauge density–density confining interaction only permits stable solutions
for color singlet states. Therefore, confinement naturally emerges in our approach.

2.2. BCS transformation and gap equation

We now wish to solveHΨ =EΨ as accurately as possible. In this subsection we focus
on the ground state and introduce the Bogoliubov–Valatin, or BCS, transformation. We
begin by recalling the plane wave, spinor expansion for the quark field operator

Ψ (�x) =
∑
c

Ψc(�x)êc,

Ψc(�x) =
∑
λ

∫
d �k
(2π)3

[
uλ
(�k )bcλ(�k )+ vλ

(−�k )d†
cλ

(−�k )]ei�k·�x (3)

with free particle, antiparticle spinorsuλ, vλ and bare creation, annihilation operators
bcλ, dcλ for current quarks, respectively. Here the spin state (helicity) is denoted byλ and
êc are the three-element column color unit vectors with color indexc = 1,2,3 (which is
hereafter suppressed). Because we can expandΨ in terms of any complete basis we may
equally well use a new quasiparticle basis

Ψ (�x)=
∑
λ

∫
d �k
(2π)3

[
Uλ
(�k )Bλ(�k )+ Vλ

(−�k )D†
λ

(−�k )]ei�k·�x (4)

entailing quasiparticle spinorsUλ,Vλ and operatorsBλ,Dλ. The Hamiltonian is equivalent
in either basis and the two are related by a similarity (Bogoliubov–Valatin or BCS)
transformation. The transformation between operators is given by the rotation

Bλ
(�k ) = cos

θk

2
bλ
(�k )− λsin

θk

2
d

†
λ

(−�k ),
Dλ
(−�k ) = cos

θk

2
dλ
(−�k )+ λsin

θk

2
b

†
λ

(�k ) (5)

involving the BCS angleθk = θ(k). Similarly the rotated quasiparticle spinors are
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Uλ
(�k ) = cos

θk

2
uλ
(�k )− λsin

θk

2
vλ
(−�k )= 1√

2

[ √
1+ sinφ(k)χλ√

1− sinφ(k) �σ · k̂ χλ

]
,

Vλ
(−�k ) = cos

θk

2
vλ
(−�k )+ λsin

θk

2
uλ
(�k )= 1√

2

[−√
1− sinφ(k) �σ · k̂ χλ√

1+ sinφ(k)χλ

]
, (6)

whereχλ is the standard two-dimensional Pauli spinor. We have also introduced the gap
angle,φk = φ(k), which is related to the BCS angle,θ/2, by φ = θ + α whereα is the
current, or perturbative, mass angle satisfying sinα =m/Ek with Ek = √

m2 + k2. Hence

sinφk = m

Ek
cosθk + k

Ek
sinθk,

cosφk = k

Ek
cosθk − m

Ek
sinθk.

Similarly, the perturbative, trivial vacuum, defined bybλ|0〉 = dλ|0〉 = 0, is related to the
quasiparticle vacuum,Bλ|Ω〉 =Dλ|Ω〉 = 0, by the transformation

|Ω〉 = exp

(
−
∑
λ

∫
d �k
(2π)3

λ tan
θk

2
b

†
λ

(�k )d†
λ

(−�k ))|0〉. (7)

In this paper we will denote the BCS vacuum by|Ω〉 (in Section 4 we introduce the
RPA vacuum labeled|ΩRPA〉). Expanding the exponential and noting that the form of
the operatorb†d† is designed to create a current quark/antiquark pair with the vacuum
quantum numbers, clearly exhibits the BCS vacuum as a coherent state of quark/antiquark
excitations (Cooper pairs) representing2S+1LJ = 3P0 condensates. One can regard
tanθk/2 as the momentum wavefunction of the pair in the center of momentum system.

We now seek an approximate ground state for our effective Hamiltonian by minimizing
the BCS vacuum expectation,〈Ω |H |Ω〉. We do this variationally using the gap angle,φk ,
(not the BCS angle) which leads to the gap equation,δ〈Ω |H |Ω〉 = 0. After considerable
mathematical reduction, the nonlinear integral gap equation follows

k sinφk −mcosφk = 2

3

∫
d �q
(2π)3

V̂
(�k − �q)[sinφk cosφqk̂ · q̂ − sinφq cosφk

]
. (8)

The angular integrals can be analytically evaluated (see Appendix B) to give

k sinφk −mcosφk = 2

3

1

(2π)2

∞∫
0

q2dq
[
cosφq sinφkV̂1 − cosφk sinφqV̂0

]
, (9)

where

V̂0 = −16πσ

(k2 − q2)2
,

V̂1 = 2πσ

k2q2

[
ln

(
k + q
k − q

)2

+ (
k2 + q2)( −4qk

(k2 − q2)2

)]
corresponding to the linear potential above. Similar expressions for the Coulomb potential
are given in Appendix B.
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There are several alternative ways to derive this same gap equation. One is through
the Ward identities. Another is by requiring cancellation of the anomalous Bogoliubov
terms in the 2-body part of the newly normal ordered Hamiltonian. The latter is necessary
to stabilize the vacuum and is also equivalent to minimizing the 0-body constant energy
splitting the BCS and trivial vacua (see Ref. [8]). Numerically we actually solve a different
form of the gap equation, originally obtained by Adler and Davis [7], that is more familiar
to the solid state community. They use the functionψk =ψ(k) related to our gap angle by

sinφk = 2ψk
1+ψ2

k

,

cosφk = 1−ψ2
k

1+ψ2
k

with corresponding gap equation

kψk − m

2

(
1−ψ2

k

)= 2

3(2π)2

∞∫
0

q2dq
V̂1ψk

(
1−ψ2

q

)− V̂0ψq
(
1−ψ2

k

)
1+ψ2

q

. (10)

Examination of Eqs. (9), (10) reveals that the divergence atk = q is an integrable
singularity for the linear potential since for allk the integrands vanish atk = q . This is
not the case for the Coulomb potential UV singularity. However, since it naturally emerges
from the canonical QCD Hamiltonian (one gluon exchange), we retain the option of
including this potential for selected calculations and use a cut-off to regulate its ultraviolet
(UV) divergence.

The solution of the gap equation (see Section 3) leads to a vacuum quark–antiquark
condensate given by

〈q̄q〉 ≡ 〈Ω |�Ψ (0)Ψ (0)|Ω〉 = − 3

π2

∫
k2 sinφk dk, (11)

which is quadratically divergent for non-zero current quark massm �= 0. We regulate this
by subtracting the trivial condensate contribution giving

〈q̄q〉reg= − 3

π2

∫
k2
(

sinφk − m

Ek

)
dk. (12)

Our model is color confining and does not permit free solitary particles since the self-
energy or dispersion relation

εk = msinφk + k cosφk

− 2

3

∫
d �q
(2π)3

V̂
(�k − �q)(sinφk sinφq + k̂ · q̂ cosφk cosφq

)
(13)

obtained from the 1-body part ofH , Eq. (1), is divergent (now there is no cancellation
at the singular point�k = �q). Further, this divergence is also cancelled in the bound state
equation but only for color singlet states (see below). Even though the self-energy diverges
it is still useful to introduce the concept of an effective quasiparticle (constituent) mass,Mq ,
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which can be extracted from the low momentum behavior of the gap angle. We introduce
a running, dynamical mass,M(k), by an effective Dirac spinor in canonical form

Ueff
λ

(�k )=N

[
χλ

�σ ·�k
E+ M(k)

χλ

]
(14)

with normalizationN and E = √
M2(k)+ k2. Then using this equation and Eq. (6)

we equate the two relative normalizations between upper and lower spinor components
yielding a relation between the running dynamical mass and gap angle

√
1+ sinφ(k)√
1− sinφ(k)

= E + M(k)

k
, (15)

or

sinφ(k)= M(k)

E
= 1− k2

2M2(k)
+ ϑ(k4). (16)

We identify the dressed quark or quasiparticle mass asMq = maximaM(k) and extract
it from the low momentum behavior of the gap angle (essentially inverse of the slope
near zero momentum). The value ofMq characterizes the degree of chiral symmetry
breaking and can be loosely regarded as the constituent quark mass associated with
phenomenological quark models.

Note that our expression for the running mass is functionally identical to the perturbative
expression tanα = m/k. Related, since the rotated quasiparticle spinors have a running
momentum dependence, they no longer rigorously provide a representation of the Lorentz
group. Our form of dynamical chiral symmetry breaking violates Lorentz invariance which
implies a preferred reference frame, namely the condensate rest frame. For most static
observables such as masses, condensates and decay constants, Lorentz symmetry is not
important. However, for some observables, such as electromagnetic form factors, care is
necessary and boost corrections may be important. This issue is under investigation and
will be reported in a future communication.

2.3. Comparison to the Nambu–Jona-Lasinio model

It is useful to make contact with related but alternative hadronic approaches. There
are several other formalisms which have similar features yet different strengths and
calculational advantages such as the Dyson–Schwinger (DSE)/Bethe–Salpeter (BS) (see
Ref. [14] for implementation), Global Color Model (GCM) [15] and the Nambu–Jona-
Lasinio (NJL) model (see description in Ref. [16] as well as Ref. [17] which reviews the
GCM and compares to the DSE and NJL). Because of its wide recognition and numerous
applications, here we compare our method to the NJL. Consult Ref. [7] for details relating
our gap equation to the DSE and Ref. [9] for the connection between the RPA and BS.

The NJL entails various Lagrangian formulations, a common one being

L = i�Ψ/∂Ψ +G[( �ΨΨ )( �ΨΨ )− ( �Ψγ5Ψ
)( �Ψγ5Ψ

)]
, (17)

whereG is a constant. It is customary to introduce the approximations�Ψγ5Ψ ≈ 0 and
�ΨΨ ≈ 〈�ΨΨ 〉vacuum to linearize the equations of motion and then extract a constituent
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quark mass from the NJL mass gap equation. In this fashion chiral symmetry breaking is
achieved.

Our formulation extends beyond the NJL model in several important ways.
(1) Our approach is more general and permits explicit gluonic degrees of freedom

(see Refs. [1,2,4]). The unification of the quark and glue sectors is crucial for a
comprehensive treatment of hadron structure, especially for glueball and hybrid
meson systems.

(2) Our formulation includes confinement and is renormalizable while the NJL model
has neither. The NJL pointlike interaction would be recovered in the limit
V (�x − �y)→Gδ(�x − �y) which removes all important nonlocalities.

(3) Our model has a density–density interaction kernel with a different Lorentz
structure,γ0γ0, which is the product of four-vector time components. As discussed
in Ref. [12], a density–density (vector–vector) interaction is superior to the scalar-
pseudoscalar displayed by the NJL model.

(4) The chiral symmetry breaking mode of the NJL is extremely restrictive yielding

a constant quasiparticle mass,mdyn, and simple dispersionE =
√
m2

dyn + k2.

Related, the NJL limit of our model also yields a more restricted gap angle

since sinφ = mdyn/
√
m2

dyn + k2. Our method has a running mass and different

quasiparticle dispersion which yields more realistic TDA and RPA hadron masses.

3. Numerical solution of the gap equation

The gap equation (9) has been previously solved for the harmonic oscillator potential,
where it takes its simplest form as a differential equation (see Refs. [6,8]), and also for
the linear potential (see Refs. [7,8]). Here we summarize our analysis which confirms and
extends the latter results.

To numerically treat the integrable IR singularity a regularization must still be imple-
mented even though the final results are independent of this procedure. We considered
several different regularizations. We first tried an analytical regulator (equivalent to a de-
confining correction to the potential). This was an unstable algorithm and convergence
could not be achieved. We next examined the method of Ref. [7] which off-sets theq-
discretization by half a step in the kernel with respect to thek-discretization. This proce-
dure was also rejected as it was less amenable for documenting the regulator sensitivity. We
finally adopted the simplest method of omitting the singular pointk = q . This also facili-
tated a controlled sensitivity study by just increasing the number of mesh points. Related,
we adopted a variable mesh size to integrate more efficiently and mapped the integration
variableq to v

q = v2qmax

1+ qmax(1− v)
for N points uniformly distributed in the intervalv ∈ (0,1).
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Following Ref. [7] we elected to solve the gap equation in form specified by Eq.
(10) and also utilized the Gauss algorithm as described there. The Gauss method assures
convergence but is rather inefficient for extensive sensitivity studies in parameter space. We
therefore modified our numerical approach by first finding a good approximate solution,
ψ0
k , to the non-linear gap equation and then obtained a linear equation for the desired

correction,δk, giving the final solution

ψk =ψ0
k + δk (18)

to arbitrary accuracy. Substituting Eq. (18) in the gap equation, Eq. (10), and dropping
higher powers ofδk yields the approximate linear equation

δk

[
(k +m)ψ0

k − 2

3(2π)2

∞∫
0

q2dq

1+ψ02
q

[
V̂1
(
1−ψ02

q

)+ 2V̂0ψ
0
qψ

0
k

]]

+ 2

3(2π)2

∞∫
0

q2dq

1+ψ02
q

[
V̂0

(
1− 2ψ02

q

1+ψ02
q

)(
1−ψ02

k

)+ 4V̂1
ψ0
k ψ

0
q

1+ψ02
q

]
δq

= −kψ0
k + m

2

(
1−ψ02

k

)
− 2

3(2π)2

∞∫
0

q2dq

1+ψ02
q

[
V̂0ψ

0
q

(
1−ψ02

k

)− V̂1ψ
0
k

(
1−ψ02

q

)]
.

This equation is of the form∫
dqA(k, q)δ(q)= B(k), (19)

which can be solved forδk by matrix inversion. We found the Gauss algorithm sufficient
for obtaining the initial approximate solutionψ0

k . To achieve full convergence required up
to 12 000 mesh points, a factor of 60 more than the early calculations of Ref. [7].

We checked our computer codes by calculating two different toy kernels

V̂0 = k

q2(1+ q2)
, V̂1 = 0 and V̂0 = 0, V̂1 = k

q2(1+ q2)
,

each designed to yield a known constant value forψk . We then performed a series of cut-off
sensitivity runs and mapped out the convergence rate as a function of mesh point number
N which ranged from 100 to 12 000. We used the quark condensate as a test observable and
also performed calculations for zero and non-zero current quark mass,m, with and without
the Coulomb potential usingαs = 0.4. Form= 0,αs = 0, we determined the sensitivity to
N (the effective cut-off parameter) was slightly higher than previously reported [7,12] and
given by〈�ΨΨ 〉� −

[(
113− 1400

N

)
MeV

]3

. (20)
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Fig. 1. Quasiparticle energies for theu/d, s quarks and the gluon [1].

Note that this number is somewhat smaller than the commonly accepted lattice value of
about−(250 MeV)3. Including the Coulomb potential only increases the condensate to
−(119 MeV)3. We therefore conclude an improved model ground state is needed which
can be provided by including additional terms in the Hamiltonian, such as the quark–gluon
minimal coupling (hyperfine) interaction. This point is also affirmed below in our RPA
treatment which does yield a more realistic condensate value.

Our other key result, which will be of interest in connection with chiral perturbation
theory [18,19], is for the constituent quark mass and the BCS condensate as a function of
the u, d quark mass. Now it is necessary to use Eq. (12) and also impose an additional
integration cut-off limit (qmax around 10 GeV). This yields

−〈�ΨΨ 〉1/3 = 2.03m+ 113.1,

Mq = 1.6m+ 77.9,

where the units are MeV. A precision calculation forMq with m = 0 yields the slightly
higher valueMq = 80.5 MeV (all values for the linear potential only).

Finally, we note that our Hamiltonian isSUf (3) flavor symmetric, broken only by
the small current flavored quark mass term. However, and quite significant, the vacuum
properties and gap angle exhibit substantialSUf (3) violations as evidenced by our strange
quark calculations using a current mass of 150 MeV. Important violations occur even for a
strange quark mass as low as 50 MeV. While this result may be model dependent it does
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suggest that certain chiral symmetry arguments in the literature regarding the strange quark
sector should be taken with care.

4. Many-body techniques

We now formulate mesons as excited states consisting of quasiparticles and seek
approximate eigensolutions of our Hamiltonian. We first develop the TDA and then treat
the RPA in the next subsection. Of the two, only the RPA preserves chiral symmetry, as
we detail below. It is therefore more closely related to the Bethe–Salpeter formalism [20]
incorporating the Schwinger–Dyson quark propagator using an instantaneous interaction
in the rainbow approximation (equivalent to our gap equation). We will document this
connection more formally in a future publication.

4.1. TDA equation of motion

The principle advantage of the TDA is that it is a controllable approximation which
truncates the Fock-space expansion for a chosen level of calculational effort and resources.
In terms of the quasiparticle operators introduced in Section 2, we introduce the TDA
meson creation operator

Q
†
nJP (TDA)=

∑
γ δ

∫
d �k
(2π)3

Ψ nJPγ δ

(�k )B†
γ

(�k )D†
δ

(−�k ). (21)

A meson with quantum numbersnJP (radial-node number,n, total angular momentumJ ,
and parity,P ) is then represented by the Fock space expansionΨ nJPTDA

〉=Q
†
nJP (TDA)|Ω〉 (22)

containing a quasiparticle and quasihole excited from the BCS vacuum. The Hamiltonian
equation is then projected onto this 1p–1h truncated Fock sector giving the TDA
equation〈

Ψ nJPTDA

[H,B†
αD

†
β

]|Ω〉 = (EnJP −E0)Ψ
nJP
αβ . (23)

In evaluating the commutator we note[
H0,B

†
αD

†
β

]= 0,〈
Ψ nJPTDA

[H2,B
†
αD

†
β

]|Ω〉 = (εk + εk)Ψ nJPαβ

and for the two body potential〈
Ψ nJPTDA

[H4,B
†
αD

†
β

]|Ω〉 = 4

3

∑
γ δ

Ψ nJPδγ V̂
(�kδ − �kγ

)
U†
αUδV

†
γ Vβ,

where εk is the BCS gap energy given by (13) andHN is the Hamiltonian compo-
nent containingN field operators (after normal ordering with respect to the BCS vac-
uum).
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We can exploit the rotational invariance of our Hamiltonian and reduce the linear
TDA equation to a one-dimensional, nonlocal equation by an angular momentum
decomposition. Introducing the orbital and spin angular momenta�L and�S, respectively, the
meson state vector can be expanded in partial-waves involving a one-dimensional (radial)
wavefunctionΨ nJPLS

Ψ nJPδγ

(�k )=
∑

LSmLmS

〈LmLSmS |JmJ 〉(−1)
1
2+γ

〈
1

2
δ

1

2
− γ

SmS〉YmLL (k̂)Ψ nJPLS (k),

(24)

where again the color index is omitted. Note the phase factor and negative magnetic
substate sign in the Clebsch–Gordan coefficient due to the transformation properties of
antiparticles under theSU(2) rotation group. A thorough discussion is given in Ref. [21].

Inserting Eq. (24) into Eq. (23) yields the TDA partial-wave equation of motion

(EnJP −E0 − 2εk)Ψ nJPLS (k)(2J + 1)

=
∑

ΛΣmΛmΣmJmLmS

〈JmJ |LmLSmS〉〈ΛmΛΣmΣ |JmJ 〉

×
∫
dΩk dΩq Y

∗mL
L (k̂)Y

mΛ
Λ (q̂)

4

3

∞∫
0

q2dq

(2π)3
Ψ nJPΛΣ (q)V̂

(�k − �q)

×
∑
αβγ δ

(−1)1+β+γ hαβγ δ (k, q)
〈
SmS

1

2
α

1

2
− β

〉〈
1

2
δ

1

2
− γ

ΣmΣ〉,
where the functionhαβγ δ (k, q) contains the gap angle from contractions involving rotated
spinors

h
αβ
γ δ (k, q) = 1

4

[
ckcq(δαδgγβ + δγβgαδ)

+ (1+ sk)(1+ sq )δαδδβγ + (1− sq)(1− sk)gαδgγβ
]

with

gαβ = χ†
α �σ · q̂ �σ · k̂ χβ.

Denoting the meson mass for statenJP byMnJP = EnJP −E0 and using the multipole
expansion formulas for the interaction yields the final TDA equation appropriate for
numerical calculation

(MnJP − 2εk)Ψ nJPLS (k)=
∑
ΛΣ

∞∫
0

KJP
LΛSΣ(k, q)Ψ

nJP
ΛΣ (q)

q2dq

12π2 . (25)

Note the Hamiltonian spin dependence generates a kernel that couples different orbital and
spin states.
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We now apply these equations to the low lying meson spectrum with quantum states
specified byIG(J PC) havingC parity, C = (−1)L+S , andG parity,G = (−1)L+S+I .
In our model we neglect the small electromagnetic (isospin violating) effects as well as
coupling to the gluon sector so thatI = 0 and 1 states are degenerate for the sameJPC . For
pseudoscalar states,JPC = 0−+, S = L= J = 0 giving only one wavefunction component
(no coupling). This is also the case for scalar mesons (L= 1, S = 1) havingJPC = 0++.
However for the vector meson sectorJPC = 1−− both(L= 0, S = 1) and(L= 2, S = 1)
waves are allowed and, in general, will be coupled. Similarly for low lying pseudovector
mesons having(L= 1, S = 0 orS = 1) and tensor mesons, with(L= 1, S = 2) and(L=
3, S = 2), there will be coupled equations. Although these equations are not difficult to
solve, we only include the lowest orbital partial-wave component and neglect all coupling
since it has been computed small for the harmonic oscillator potential [8]. There is then
only one kernelK(k,q) for each meson state with structure:

• pseudoscalar,L= S = J = 0,

K(k,q)= 2
(
ckcqV̂1 + (1+ sksq )V̂0

)
,

• scalar,L= S = 1, J = 0,

K(k,q)= 2
(
ckcqV̂0 + (1+ sksq )V̂1

)
,

• vector,L= 0, S = J = 1 (neglecting the tensorL= 2, S = J = 1 coupling),

K(k,q)= 2ckcqV̂1 + (1+ sk)(1+ sq )V̂0 + (1− sq)(1− sk)
(

4V̂2 − V̂0

3

)
,

• pseudovector,L= J = 1, S = 0 (degenerate withL= S = J = 1),

K(k,q)= ckcq
(
V̂0 + V̂2

)+ 2(1+ sksq)V̂1,

• tensor,L= S = 1, J = 2 (neglectingL= 3, S = J = 2 coupling),

K(k,q) = ckcq
(
3V̂2 − V̂0

)+ (1+ sk)(1+ sq)V̂1

+ (1− sk)(1− sq)
(

12V̂3 − 7V̂1

5

)
.

Note for the pseudovector mesons the kernels forS = 0 andS = 1 are identical which
differs from Ref. [6].

We have also applied our approach to other flavored (s andc) meson systems and have
obtained similar, but more complicated TDA equations. As a representative result, consider
the pseudoscalarD meson with au (or d) andc quark. The gap equation for thec quark
remains the same, except for current mass, now 1.2 GeV, which gives a different gap
energy,εck , and angle,sck . The TDA equation, however, has a different form and generalizes
to (

MD − εuk − εck
)
ΨD(k)

= 1

3

∫
q2dq

(2π)2
ΨD(q)

[(√
1+ suk

√
1+ suq

√
1+ sck

√
1+ scq



316 F.J. Llanes-Estrada, S.R. Cotanch / Nuclear Physics A 697 (2002) 303–337

+
√

1− suq
√

1− suk
√

1− sck
√

1− scq
)
V̂0(k, q)

×
(√

1− suq
√

1− suk
√

1+ sck
√

1+ scq

+
√

1+ suk
√

1+ suq
√

1− sck
√

1− scq
)
V̂1(k, q)

]
with obvious form for other mixed flavors. All equations are finite fork = q as the IR
divergence terms from the confining potential again cancel. We have also derived and
solved the TDA equations for other spin parity states which is further detailed in Section 5.

4.2. RPA and the quasiboson approximation

The TDA can be improved by utilizing a better vacuum with additional quasiparticle
correlations beyond the BCS. Consistent with many-body applications in other disciplines
we now formulate the RPA [22,23] and introduce a new vacuum,|ΩRPA〉, having both
fermion (two quasiparticles or Cooper pairs) and boson (four quasiparticles or meson pairs)
correlations. The RPA meson stateΨ nJPRPA

〉=Q
†
nJP (RPA)|ΩRPA〉 (26)

involves a meson creation operator which is a generalization of Eq. (21)

Q
†
nJP (RPA)=

∑
λµ

∫
d �k
(2π)3

[
XnJPλµ B

†
λ

(�k )D†
µ

(−�k )− YnJPλµ Bλ
(�k )Dµ(−�k )]. (27)

The RPA vacuum then satisfies

QnJP (RPA)|ΩRPA〉 = 0,

which, because of additional correlations from admixtures of particle-hole excitation states,
is not true for the BCS vacuum. To derive the RPA equations of motion we use Eq. (23) and
replace the BCS vacuum with|ΩRPA〉 and also substituteΨ nJPRPA for Ψ nJPTDA to generate one
equation for theX component. We then repeat, changing the commutator to[H,BαDβ ]
to obtain theY equation. Following standard treatments in other fields of physics, we
also invoke the quasiboson approximation and treat the fermion pair operatorBD as a
pure boson operator. This significantly reduces the commutator algebra complexity and
generates one of the two coupled equations for the RPA wavefunctionsX andY . For the
important pseudoscalar meson channel we obtain for the excited staten

2εkXn(k)+ 1

3

∞∫
0

q2dq

(2π)2
[
Xn(q)F (k, q)+ Yn(q)G(k, q)]=MnX

n(k), (28)

2εkY n(k)+ 1

3

∞∫
0

q2dq

(2π)2
[
Yn(q)F (k, q)+Xn(q)G(k, q)]= −MnY

n(k), (29)

where
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F(k, q)= 2cqckV̂1 + 2(1+ sqsk)V̂0, (30)

G(k,q)= 2cqckV̂1 − 2(1− sqsk)V̂0. (31)

Similar expressions directly follow for the other spin-parity states. We adopt the standard
normalization for the RPA wavefunctions

〈ν′|ν〉 = 〈ΩRPA|Qν ′Q†
ν |ΩRPA〉 = δνν ′ (32)

yielding

∞∫
0

k2dk
(
Xν

′
(k)∗Xν(k)− Y ν ′

(k)∗Y ν(k)
)= (2π)3δνν ′ .

The RPA equations, which reduce to the TDA equations in the limitY or G → 0, are
again an eigenvalue problem forMnJP which can be easily diagonalized. Related, the
matrix size can be reduced by a factor of 2 using the variablesX+ Y andX − Y . Finally,
the equations are also IR finite for the singular pointk = q .

4.3. Weak decay constants

A crucial test of any approach is the ability to describe hadronic decays. In this paper
we compute weak decays and defer our analysis of hadronic decays to a subsequent
publication. For a pseudoscalar mesonP with momentumpµ, energyEP , massMP , the
weak decay constant,fP , is defined for our normalization by

〈Ω |Aµ(0)
P( �p )〉= 1√

EP
fPpµ. (33)

Here Aµ(�x) = �Ψ (�x)γµγ5Ψ (�x) is the axial current which specifies the chiral charge
operator

Q5 =
∫
d �x A0(�x)=

∫
d �x Ψ †(�x)γ5Ψ (�x). (34)

Simplifying Eq. (33) for a meson at rest yields

fP = 1√
MP

〈Ω |Ψ †(0)γ5Ψ (0)
P(0)〉. (35)

Applying this result for the TDA pion wavefunction gives the TDA pion decay constant

f TDA
π = 1

π
√
(2π)3Mπ

∞∫
0

ΨπTDA(q)sqq
2dq. (36)

Similarly, for the RPA pion wavefunction we obtain

f RPA
π = 1

π
√
(2π)3Mπ

∞∫
0

sq
(
Xπ(q)+ Yπ(q))q2dq. (37)
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Our results easily generalize to theSUf (3) flavor nonet. Now there are nine axial charges
given by

Qa5 =
∫
d �x Aa0(�x)=

∫
d �x Ψ †(�x)γ5

λa

2
Ψ (�x),

where the eight Gell-Mannλa matrices are supplemented byλ0 =
√

2
3 I to obtain both

the octet and the singlet underSUf (3) transformations. The appropriate generalizations of
Eq. (36) are then:

f TDA
K = 1

2π
√
(2π)3MK

∞∫
0

q2dq ΨKTDA(q)
(√

1+ ssq
√

1+ suq −
√

1− ssq
√

1− suq
)
,

f TDA
η8

= 1

3π
√
(2π)3Mη8

∞∫
0

Ψ
η8
TDA

(
suq + 2ssq

)
q2dq,

f TDA
η0

= 1

3π
√
(2π)3Mη0

∞∫
0

Ψ
η0
TDA

(
2suq + ssq

)
q2dq.

We will use the above results in the next subsection to derive a generalized Gell-Mann–
Oakes–Renner relation and also in Section 5 were we report numerical results.

4.4. Chiral symmetry and the Gell-Mann–Oakes–Renner relation

Chiral symmetry is a significant element of hadronic QCD and should be present in
all realistic models. Even though our vacuum properly exhibits dynamic chiral symmetry
breaking, our model Hamiltonian does indeed respect this symmetry since the commutator

[H,Q5] =m

∫
d �x Ψ †(�x)Ψ (�x)� 0

essentially vanishes, consistent with the smallu, d quark mass. Related, our RPA states
also preserve chiral symmetry as the RPA meson creation operator commutes with the
chiral charge in the chiral limit (m→ 0)[

Q†(RPA),Q5
]= 0.

However, the TDA operator, Eq. (21) above, does not commute withQ5 and violates
chiral symmetry since it is not fully symmetric in operator structure (only containsB†D†

and notBD). This can also be documented by chiral transforming the TDA meson state
verifying thatB†D† rotates to combinations ofB†B, DD† andDB. Hence, the TDA
ansatz is not closed under a chiral rotation and Goldstone bosons will not appear in the
TDA spectrum. We therefore expect significant, but unphysical, chiral symmetry violations
in the TDA calculations and anticipate the TDA pion mass to be much larger than in the
RPA which is confirmed in Section 5 as only the RPA calculations yield a Goldstone pion
in the chiral limit.
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On the other hand, the RPA ansatz, Eq. (27), is chirally invariant since it is closed
under this rotation in the chiral limit (|X| = |Y |). Hence the mechanism of spontaneous
symmetry breaking is present and the pion mass is zero according to its Goldstone boson
nature as we numerically verify in the next section. With these results we now follow and
incorporate the work of Refs. [24,25] to derive two different Gell-Mann–Oakes–Renner
(GMOR) relations, one based upon exact model eigenstates while the other relates RPA
states and the BCS vacuum. Assume we have the complete set of exact eigenstates,|n〉, to
our QCD model Hamiltonian, including the vacuum ground state|Ωexact〉. Evaluating the
double commutator

〈Ωexact|
[
Q5, [Q5,H ]]|Ωexact〉 = 4m〈q̄q〉exact (38)

then generates the exact quark condensate. Evaluating the double commutator again, but
now invoking twice the completeness relation, 1=∑

n |n〉〈n|, and identifying the decay
constant relation, Eq. (35), leads to the generalized GMOR relation

−2m〈q̄q〉 =
∑
n

M2
nf

2
n (39)

summed over all (ground and excited) pseudoscalar meson states with massMn and decay
constantsfn.

This can be extended to flavor using two of the nineSUf (3) axial charge operators,Qa5
andQb5, to derive the following GMOR relations:

• a = b= 1, 2, or 3

−2mu〈ūu〉 =
∑
πn

M2
πnf

2
πn,

• a = b= 4, 5, 6, or 7

−
(
mu +ms

2

)
〈ūu+ s̄s〉 =

∑
Kn

M2
Knf

2
Kn,

• a = b= 8,

−
(

2

3
mu〈ūu〉 + 4

3
ms〈s̄s〉

)
=
∑
ηn8

f 2
ηn8
M2
ηn8
,

• a = b= 0

−
(

4

3
mu〈ūu〉 + 2

3
ms〈s̄s〉

)
=
∑
ηn0

f 2
ηn0
M2
ηn0
.

Because the exact eigenstates will generally not be available, these equations are of
limited value. However, they do provide testing criterion for approximation solutions.
Further, since decay constants are suppressed for excited statesn we can drop higher terms
to obtain more useful relations involving ratios such as(

MKfK

Mπfπ

)2

= mu +ms
2mu

( 〈ūu+ s̄s〉
2〈ūu〉

)
,

which we will use in Section 5 in connection with our discussion of the kaon mass
calculation.
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Next we utilize Thouless’ theorem [25] applied to the chiral charge operator

〈Ω |[Q5, [Q5,H ]]|Ω〉 = 2
∑
n

〈Ψ nJPRPA

Q5|ΩRPA〉
2
(En −E0)RPA (40)

to immediately derive the RPA GMOR relation

−2m〈q̄q〉BCS = (
M2
πf

2
π

)
RPA, (41)

where we have again dropped the excited state decay constants. Note that the left-hand side
entails the BCS vacuum while the right-hand side involves the RPA states and energies.
This relation clearly predicts the RPA pion is a Golstone boson in the chiral limit (i.e.,
Mπ → 0 form→ 0) which we numerically confirm in the next section.

Finally, calculating the RPA meson mass spectrum does not require obtaining the RPA
vacuum (see Eq. (28)), but computing the RPA decay constants does. Determining|ΩRPA〉
is actually quite difficult, however, the leading correction can be approximately calculated
using another theorem by Thouless [22]

|ΩRPA〉 � |Ω〉 + (
F †)2|Ω〉, (42)

whereF † is a TDA type operator given by

F † =
∑
αβ

∫
d �q fαβ(�q)∗B†

α(�q)D†
β(−�q)

with the fermion pair operatorB†D† now obeying bosonic commutation relations. Here
f ∗ is an unknown amplitude assumed to be small (this is not true in the chiral limit as
discussed in the next section). The approximate RPA vacuum is thus described as a mixture
of the BCS vacuum having Cooper pairs (Eq. (7)) and two quasibosons (mesons) coupled
to vacuum quantum numbers (0++). Since, as shown in the next section, the RPA is of
importance for mainly the low-lying pseudoscalar states, we assume that only these states
contribute to|ΩRPA〉 and neglect all others. Our result easily generalizes to scalar or other
mesons (appropriately coupled toJP = 0++). Within this approximation we obtain an
improved quark condensate to be compared with Eq. (11)

〈q̄q〉RPA � 〈q̄q〉BCS+ 8
∑
αβ

∫
d �q sq |fαβ(�q)|2

1+ 2
∑
αβ

∫
d �q |fαβ(�q)|2 .

To obtainfαβ , we imposeQπ(RPA)|ΩRPA〉 = 0 and use Eq. (42) neglecting higher order
terms corresponding to Fock states with more than two pions. We also only retain ground
state meson (pion) contributions fromX andY yielding

fαβ(q)=N−1Y (q)(−1)
1
2+α+β

〈
1

2
− α1

2
β

00

〉
(43)

with a normalization constant depending on both RPA wavefunction components

N2 = 2
∫

d �q
(2π)3

Y (q)X(q).
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The improved RPA quark condensate is

〈q̄q〉RPA � 〈q̄q〉BCS+ c
∞∫

0

sqY (q)
2q2dq, (44)

where the constant c is given by

c= 2
∫
Y (q)2q2dq(∫

Y (q)X(q)q2dq
)2 + 1

2

(∫
Y (q)2q2dq

)2 .
Also the improved pion decay constant to this vacuum is

fπ � 1

π
√
(2π)3Mπ

∫
sq
(
X(q)+ cπ2N2Y (q)

)
q2dq (45)

in contrast to Eq. (37). We have found that for meson masses above 800 MeVY is very
small and there is no essential difference between RPA and TDA. We now comprehensively
apply the above formulas and conduct a comparative analysis of the TDA and RPA
approaches.

5. Applications and numerical results

In this section we first present and discuss our TDA spectra for the pseudoscalar and
vector mesons and then in Section 5.2 we compare to our RPA results for both meson
masses and the decay constants. Section 5.3 treats mixing for theη andη′ mesons while
Section 5.4 details applications to charmed mesons, especiallyJ/Ψ states.

5.1. Tamm–Dancoff spectrum

Solving the TDA eigenvalue problem is straightforward. The diagonal part of the matrix
contains the IR singularity that is rigorously controlled by cancellation, again permitting
numerical regulation by simply skipping the pointq = k as in the gap equation solution.
Due to the linear nature of this system, results are convergent for a mesh as sparse as 700
points. Tables 1, 2 summarize the resulting TDA meson spectrum corresponding to the five
JLS kernels specified in Section 4.1.

The energy difference between pseudoscalar and vector states is about 200 MeV for the
u/d quark mesons, 80 MeV for the open flavored (K, K∗) and only 50 MeV for the pure
strange composites (φ). Our one parameter model can not accurately describe the entire
observed splitting indicating additional dynamics beyond simple spin interactions from a
Dirac spinor field is needed. In general, the masses are in good agreement with the PDG
[26] accepted values for the vector mesons, but the TDA low-lying pseudoscalar sector
is deficient. This is expected since in this channel vacuum (chiral symmetry) effects are
most prominent. In the scalar channel the situation is more confusing, since other hadron
states, some with explicit gluonic structure, can more easily mix. Since our unified model
allows us to treat glueballs, mesons and hybrids comprehensively, future work will further
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Table 1
TDA ground and first excited states in MeV. Linear potential only,σ = 0.18 GeV2

m1 m2 0−+ 0++ 1−− 1+±

E1 E2 E1 E2 E1 E2 E1 E2

0 0 586 1473 817 1667 798 1602 1076 1818
5 5 612 1494 850 1675 800 1615 1093 1835
5 10 624 1503 861 1703 803 1619 1100 1843
5 150 877 1679 1086 1873 957 1743 1273 1988

150 150 1002 1808 1297 2044 1044 1849 1416 2116

Table 2
TDA u/d mesons (L= S = 1, noL= 3) in the chiral limit

JπC E1 E2 E3

0++ 817 1667 2301
1++ 1076 1818 2411
2++ 1767 2281 2749

address understanding this channel. Interestingly, our lightestf0 mass, which has a P wave
orbital excitation, is below 1 GeV. We also find that the computed TDA masses are not
very sensitive to details of the vacuum that enters via the gap function characterizing the
BCS ground state.

As described above, we may also use a simplified TDA equation to extract a constituent
quark mass. In the chiral limit, the mass obtained is 51 MeV and this dressing is roughly
constant, consistent withSUf (3) symmetry, up to current masses of 150 MeV, where the
generated constituent mass is 203 MeV. We are therefore dealing with light dressed quarks,
even for strange quarks which may prove a deficiency when calculating electromagnetic
form factors. We shall also address this issue in the near future.

Another important feature of our relativistic effective Hamiltonian is that it naturally
includes the kinematical and spin dependent interactions (e.g., spin–spin, spin–orbit,
tensor). These effects are very important in the light quark sector even after chiral
symmetry breaking, because the light quark constituent mass generated in our scheme,
around 80 MeV, is still small as compared to our interaction scale (424 MeV). In particular,
notice in Table 2 the spin splitting between the 0++, 1++ and 2++ mesons, all having the
sameL andS quantum numbers (also observe the large radial excitation in each channel).
The level spacing is consistent with Ref. [6] but very different from the naive expectations
from the constituent quark model. The is due to the confining (nonperturbative)�L · �S
coupling, which is only of orderαs in the constituent quark model. The spin spacing is
governed by the matrix element

〈LSJ | �L · �S|LSJ 〉 = 1

2

[
J (J + 1)−L(L+ 1)− S(S + 1)

]
,
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Table 3
TDA fits to the spin–orbit splitting,EJ+1 −EJ =AJ(J + 1), for L= S = 1
as a function of the current quark mass

m1/m2 5/5 150/150 5/1200 150/1200 1200/1200

A (MeV) 162 77 74 40 10

which, forL= S = 1, reduces to−2+J (J + 1)/2. The−2 in this expression describes the
light scalar meson, whereas theJ (J + 1) contribution explains the splittings in Table 2.
The calculated 2++ mass is much heavier than the lightest observedf2 at 1270 MeV.
Including coupling to theL = 3, S = 1 channel as well as multiquark Fock states and
omitted spin interactions (discussed below) should improve our prediction. In particular,
there are additional quark–gluon interaction terms that should also be included in our
Hamiltonian which have a different Lorentz spin structure. In our model this would
generate a weaker hyperfine interaction of orderαs . This would also provide additional
splitting betweenS = 0 andS = 1 levels that would improve our TDA, and especially RPA,
π–ρ mass under prediction. Such an analysis would fully clarify the relative importance of
chiral symmetry versus spin interactions as the latter is generally attributed the dominant
effect in conventional constituent quark models having color magnetic, effective one gluon
exchange potentials (see Ref. [27]). We are currently examining this issue and will report
results in a future paper.

Finally and also related is the spin–orbit splitting for other flavors which is summarized
in Tables 1 and 3. In Table 3 we illustrate the familiarJ (J + 1) dependence by fitting the
TDA spectrum for different flavors.

5.2. RPA spectrum and decay constants

We now present our RPA results and compare with both TDA and observation. Table 4
and Figs. 2 through 7 highlight our key results. In general the RPA and TDA masses agree
except for the light pseudoscalar mesons where the RPA provides a better description.
This is because, as discussed above, only the RPA correctly implements chiral symmetry

Table 4
Chiral symmetry breaking in the RPA: scalar vs. pseudoscalar spectrum

m1 m2 E0++
1 E0++

2 E0−+
1 E0−+

2

0 0 729 1652 0 1435
5 5 775 1679 300 1463
5 10 794 1641 350 1475

14 14 838 1719 441 1502
150 150 1288 2042 978 1805
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Fig. 2. Chiral symmetry in the RPA. Form→ 0 the pseudoscalar (solid) but not scalar (dotted) meson
mass vanishes.

Fig. 3. Chiral behavior of the kaon and first radial excitation. Light quark mass is 0 MeV.

as illustrated in Fig. 3 where the lightest scalar and pseudoscalar masses are plotted as
a continuous function of the current quark mass. Note that only the pseudoscalar mass
approaches zero in the chiral limit consistent with Goldstone’s theorem (the observed pion
mass is reproduced for au quark mass of about 2 MeV).

The kaon system reveals the largest model deficiency (see Table 1). Even the RPA in
the chiral limit produces a too massive kaon, about 850 MeV. As indicated by Fig. 4, to
reproduce the observed kaon requires a strange quark mass of about 50 MeV. A detailed
analysis reveals that the explicit contribution of the current quark mass to the RPA
equation — through its appearance inε(k) — is only additive. It is the gap angle,
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Fig. 4. Pseudoscalar and vector(L = 0) TDA and RPA meson spectra. Only the RPA provides the
correct chiral limit for the pion.

introducing an implicit flavor dependence, which inhibits a lighter kaon mass. We could fit
both pion and kaon masses by adjusting the current quark masses, but we prefer awaiting
improvements from renormalizing the quark gap equation (work in progress and will be
subsequently publish). The gap angle for a non-zero current quark mass is very sensitive
at high momentum to the dominating Coulomb potential and sizeable corrections are
expected. Also for higher lying excited meson states there is also the issue of two particle,
two hole Fock state contributions.

In Fig. 5 we compare our scalar, pseudovector and tensor meson TDA and RPA
predictions to data. In general there is qualitative agreement. Note that for the higher
excited states above 1 GeV the TDA and RPA results are identical and it is clear that these
systems are not governed by chiral symmetry. This is also true for the heavier flavored
quark systems and we hereafter only present RPA results when there is a noticeable
numerical difference from the computationally simpler TDA.

We also illustrate the behavior of various wavefunctions. In Fig. 6 we detail the
difference between TDA wavefunctions for thef0 andπ mesons. Fig. 7 compares the
TDA and RPA wavefunctions for the pion.

Finally we discuss decay constants. Both the TDA and RPA pion decay constants are too
small, about 17 MeV, in contrast to the observed value of 93 MeV. This is consistent with
the Orsay [6] results. We again attribute this to the model Hamiltonian and vacuum as the
BCS angle does not have sufficiently high momentum components. However, if we use the
approximate RPA vacuum in the quasiboson approximation (see Eq. (4.25)) the improved
RPA decay constant increases to 57 MeV. Appropriately, the condensate also significantly
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Fig. 5. Scalar, pseudovector and tensor (L= 1) meson spectra. Above 1 GeV, the TDA (dots) and
RPA (dashes) are essentially identical.

Fig. 6. Ground state TDA wave functions for the pseudoscalarπ and scalarf0.
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Fig. 7. TDA and RPA ground state pion wavefunctions.

increases to−(320 MeV)3, in much better agreement with lattice results≈ −(250 MeV)3.
The latter result is consistent with applications in nuclear physics where the RPA tends to
overcorrelate the ground state.

Since we have only approximately evaluated the RPA vacuum by truncating at the
two pion level it is not surprising thatfπ does not agree with measurement (or chiral
perturbation theory results) and therefore needs further refining. We expect the truncation
to the two pion level, Eq. (42), to be reasonable provided we are not in the chiral limit,
since thenY �X. However, we would like to be able to calculate in that regime. Further,
the calculation in Ref. [28] points to a necessary decrease of the BCS condensate when
including coupled channels. They argue that for a pure chiral pion, coupling additional
channels would decrease its mass which might even become negative, destabilizing the
vacuum. This argument seems sound and since we are above the chiral quark mass limit,
at a model valuem= 5 MeV where our pion is too massive (277 MeV), this decrease is a
welcome improvement. We defer further discussion until publication by our collaborative
effort with the Lisbon group which will also clarify pionic correlations in the ground state
of our approach.

Recalling that our computed condensates require renormalization except in the chiral
limit, we can only test the GMOR relation form= 0 which is trivially satisfied in the
RPA. However, we note that the decay constants for excited pion states are much smaller
and rapidly approach zero in the chiral limit. Hence the GMOR relation is satisfied with
predominatly the first state. This is not true for heavier quarks and to numerically satisfy
the GMOR requires including several eigenstates.
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5.3. η–η′ mixing

An extremely challenging but still not understood problem is theη, η′ system and
attending flavor mixing of the light quarks. Although our effective Hamiltonian has an
explicit flavor dependence through the current quark masses, it still conserves flavor.
However, if the gluon sector is included, such as through the hyperfine, minimal coupling
interaction, an effective flavor dependence naturally emerges though higher order quark–
glue–quark effects and dynamic mixing of flavor states is possible. We are currently
deriving such a term which is similar, but more rigorous than the ’t Hooft interaction
based upon instantons (classical glue). This will be reported in a future communication,
however, it is still of interest to perform a simpleη, η′ mixing analysis by introducing a
flavor off-diagonal interaction as we now detail.

With no dynamic flavor mixing, theη andη′ are (poorly) modeled asSUf (3) octet,η8,
and singlet,η0, states respectively given by (we adopt the convention used in Refs. [29,30])

η ≈ η8 =
√

1

3
nn̄−

√
2

3
ss̄ = cosθSUf (3)nn̄− sinθSUf (3)ss̄, (46)

η′ ≈ η0 =
√

2

3
nn̄+

√
1

3
ss̄ = sinθSUf (3)nn̄+ cosθSUf (3)ss̄ (47)

involving the isoscalarnn̄ = (uū+ dd)/
√

2 andss̄ states and pureSUf (3) mixing angle
θSUf (3) = 54.74◦. We have computed the TDA masses of the purenn̄ andss̄ meson states to
beMn = 612 MeV andMs = 1002 MeV, respectively. Hence the predicted, pureSUf (3),
η, η′ masses are

Mη ≈ Mη8 = cos2 θSUf (3)Mn + sin2 θSUf (3)Ms = 872 MeV, (48)

Mη′ ≈ Mη0 = sin2 θSUf (3)Mn + cos2 θSUf (3)Ms = 742 MeV. (49)

For the RPA,Mn = 290 MeV andMs = 978 MeV, yieldingMη = 749 MeV andMη′ =
519 MeV. Similarly theSUf (3) η, η′ decay constants are given in terms of theu/d
isoscalar,fn, and strange quark,fs , decay constants

fη ≈ fη8 = cos2 θSUf (3)fn + sin2 θSUf (3)fs, (50)

fη′ ≈ fη0 = sin2 θSUf (3)fn + cos2 θSUf (3)fs . (51)

Note the quadratic dependence on angles due to expressing both the axial current and
meson states in theirSUf (3) representations. Using the TDA computed values offn =
17 MeV andfs = 75 MeV, yieldsfη8 = 56 MeV andfη0 = 40 MeV. The RPA values are
fn = 57 MeV andfs = 75 MeV, givingfη8 = 68 MeV andfη0 = 63 MeV.

We can now improve these results by generalizing our Hamiltonian, which is diagonal
in flavor space, to have off-diagonal matrix elements. The simplest prescription is to just
add a constant,〈qq̄|H ′|qq̄〉 = λ, to both diagonal,〈nn̄|H ′|nn̄〉 = 2λ, 〈ss̄|H ′|ss̄〉 = λ, and
off-diagonal〈nn̄|H ′|ss̄〉 = √

2λ, terms giving
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H =
(
Mn + 2λ

√
2λ√

2λ Ms + λ
)
. (52)

DiagonalizingH leads to the new, mixed mass eigenvalues

Mη = Mn +Ms + 3λ

2
− 1

2

√
M2
n +M2

s + 9λ2 + 2(λMn −MsMn −Msλ), (53)

Mη′ = Mn +Ms + 3λ

2
+ 1

2

√
M2
n +M2

s + 9λ2 + 2(λMn −MsMn −Msλ) (54)

and eigenstates

η = cos(θSUf (3) + θP )nn̄− sin(θSUf (3) + θP )ss̄ = cosθP η8 − sinθP η0, (55)

η′ = sin(θSUf (3) + θP )nn̄+ cos(θSUf (3) + θP )ss̄ = cosθP η0 + sinθP η8 (56)

involving rotation by an additional angleθP that is a function ofλ. The mixed, presumably
more physical, decay constants are then

fη = cosθP fη8 − sinθP fη0, (57)

fη′ = cosθP fη0 + sinθP fη8. (58)

Performing a least squares fit to the observed masses (Mη = 547 MeV,Mη′ = 958 MeV),
yieldsλ = −33 MeV (θP = −61◦) for the TDA, which in turn producesMη = 541 MeV,
Mη′ = 974 MeV,fη = 62 MeV andfη′ = −30 MeV. For the RPA,λ = 82 MeV (θP =
−44◦) generatingMη = 433 MeV,Mη′ = 1081 MeV,fη = 93 MeV andfη′ = −3 MeV.
It is interesting that while the simple mixing provides improvement, the TDA masses are
in better agreement than the RPA. We could also improve the decay constants utilizing a
two angle mixing formalism [31] but refrain since clearly a more sophisticated treatment
is necessary which will be provided by our quark–gluon coupling formulation in the near
future.

5.4. Heavy mesons

The constituent quark models and non-relativistic expansions of QCD offer more reli-
able results for heavy quark systems where physical intuition from Quantum Mechanical
bound states is more appropriate. Hence the charmed mesons afford a good limiting testing
for our relativistic approach. We again calculate the spectrum of the charmed mesons (see
Figs. 8, 9) and of charmonium (Fig. 10) using our many-body model. The TDA is now
sufficient since chiral symmetry, crucial for the light mesons, is not a constraint and the
RPA will produce the same results. Using a charmed quark mass of 1200 MeV, the general
features of the spectra are well reproduced and the radial excitations,Ψ (2S) andηc, are
adequately described. We therefore expect our predictions for the remaining unconfirmed
states to be reasonable.

The angular momentum splittings of these systems are known to be dominated by the
one gluon exchange potential (OGE) which we have not included in this calculation. Hence
there will be improvement from future calculations based upon our renormalized effective
interaction project. A general feature reflected by our charmed spectra is the near vanishing
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Fig. 8.D mesons (L= 0 andL= 1). Charmed quark mass is 1200 MeV, light quark is 5 MeV.

of the spin–spin interaction, leading to degenerate 0−+ and 1−− states. Since the 100–
150 MeV hyperfine splittings in these systems will presumably be recovered when we
include the perturbative OGE, we do not comment further. As for the spin–orbit splittings,
our results are too large for theD mesons and too small for theχc mesons. These splittings
are adequately explained in non-relativistic quark models (see Ref. [32]) where the absence
of a large spin–orbit effect for light quark masses is attributed to the cancellation between
the Thomas precession in the confining potential and the one gluon exchange effective
potential, although it is a bit concerning that the actual splitting between theχc0 and the
χc1 is twice the size of theχc1–χc2 splitting, when according to the spin–orbitJ (J + 1)
rule, it should be a half.

Finally, we note that by including D waves in the charmonium spectrum we reconfirm
the resolution [33] of the “overpopulation” problem ofJ/Ψ states relative to observation.
This is clearly illustrated in Fig. 10. Originally, the deficiency in number of predicted
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Fig. 9.Ds mesons (L= 0 andL= 1). Charmed (strange) quark mass is 1200 (150) MeV.

cc̄ states (only S waves) had been characterized as evidence for glueballs and/or hybrid
mesons because theJ/Ψ system is believed to be gluon rich. Our result reaffirms that
simple level counting may not be effective in identifying hadrons with explicit gluonic
degrees of freedom.

6. Outlook and summary

Before summarizing our results we comment on the strengths and weaknesses of our
many-body approach as well as some attending, open hadronic physics issues. Beginning
with our Hamiltonian,H , the current–current (density–density) color interaction forbids
free, isolated colored objects in the theory. For the vacuum this is realized in the BCS
by an infinite shift in the free quark self-energy due to the integral ofV̂ (|�k − �q|).
Similarly for hadrons in both TDA and RPA, colored composite objects (e.g., diquarks)
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Fig. 10. Charmonium system (L= 0 andL= 1). Charmed quark mass is 1200 MeV.

are precluded by the appearance ofV̂ (0) which is divergent, whereas in the singlet channel
this divergence is removed by vanishing color factors. Next we note thatH conserves
chiral symmetry yet our BCS vacuum properly exhibits dynamic chiral symmetry breaking.
Further, our RPA pion emerges as a Goldstone boson in the chiral limit. This is not
true for the TDA pion since only the RPA excitation operator commutes with the chiral
charge. Another, significant model feature is that Fock state truncation is a controllable
approximation amenable to systematic improvement. Thus our Hamiltonian many-body
approach is an attractive, promising method for comprehensively investigating hadronic
structure as it embodies confinement, chiral symmetry breaking and orderly construction of
multiparticle Fock states. It also provides an excellent vehicle for testing more fundamental
effective Hamiltonians as well as affording a powerful phenomenological framework for
hadron structure. Considering the form ofH , with only a single predetermined dynamical
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parameter, it is encouraging that the chiral limit is adequately reached in the RPA and
that the meson spectrum is in qualitative agreement with experiment. To achieve detailed,
quantitative descriptions will require further improvements in both the Hamiltonian and
effects from including higher Fock space components. In particular, both the high energy
behavior (Coulomb potential) and quark–gluon coupling effects (effectively instantons)
will be incorporated and reported in a future publication. Finally, our current study is
similar, but more extensive than the Orsay analysis [6] due to our application to multiflavor
systems. Our results are also more realistic (and numerically more difficult) than that
work since we have utilized a linear confining interaction, determined by lattice and
Regge phenomenology, which generates complicated nonlocal integral equations, rather
than solving a simpler differential equation for a harmonic oscillator potential.

Summarizing, we have performed approximate, but large-scale diagonalizations of an
effective Coulomb gauge Hamiltonian utilizing standard many-body techniques. Using the
BCS, a non-linear gap equation has been derived and accurately solved to provide vacuum
properties (quasiparticles and condensates). Incorporating only predetermined parameters
(string tension,σ , and reasonable current quark masses), we have qualitatively reproduced
the low energyu,d, s andc meson spectra. Most importantly, we have obtained a chiral
pion, detailed that chiral symmetry is responsible for the largeπ–ρ mass splitting and
resolved the problem of overpopulation of theoreticalJ/Ψ states.

Future work will address the full Hamiltonian in the combined quark and gluon sectors.
In particular, we will obtain improved spin (hyperfine) and flavor (’t Hooft) interactions
from quark–glue coupling. This should provide a better description of vacuum properties
and the scalar/pseudoscalar masses, especially theπ,K,η andη′. We will also include
more complex 2-quasiparticle–2-quasihole Fock states for heavieru/d mesons as well as
3 quasiparticles for baryons and hybrids. Much of this work is in progress and will soon be
reported.
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Appendix A. BCS vacuum state

We further discuss the relation between the BCS rotated,|Ω〉, and the trivial or
perturbative,|0〉, vacua. We first note that the BCS vacuum state given by Eq. (7) is not
a unitary transformation and does not have a finite normalization. This is because the
operator in the exponential is not antihermitian. It is therefore necessary to normalize
matrix elements by dividing with〈Ω |Ω〉 and this is implicit in our presentation.
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Alternatively, and equivalently,|Ω〉 can be represented by a norm preserving unitary
transformation of the form

|Ω〉 = eA
†−A|0〉,

where

A† =
∑
λ1λ2

∫
d �k tanθkMλ1λ2b

†
λ1

(�k )d†
λ2

(−�k )
and all flavor and color indices are suppressed. HereMλ1λ2 are matrix elements of the Pauli
matricesM = �σ · k̂

Mλ1λ2 =
∑
µ

(−1)µk̂µσ−µ
λ1λ2

= √
8π (−1)

1
2−λ2

∑
µν

〈
1

2
λ1

1

2
− λ2

1ν

〉
〈1µ1ν|00〉Yµ1

(
k̂
)
.

It is interesting to note that the BCS vacuum state is orthogonal to the trivial vacuum,
〈0|Ω〉 = 0, in the infinite volume limit. Further, the Hilbert space vectors constructed from
the two different vacua are also orthogonal provided the BCS angle is nonzero (vacuum
condensates are present). Because of this property the BCS rotation has been called a
pseudounitary transformation [8]. Consult this reference for further details (note they have
a different phase convention and useM = �σ · k̂(iσ2)).

Appendix B. General TDA equation

Using the phase convention of Ref. [34], the general TDA meson equation for arbitrary
angular momentum is

(MnJP − 2εk)Ψ
nJP
ΛΣ (k) =

∞∫
0

q2dq

π2

[
(1+ sk)(1+ sq)

12
V̂Λ(k, q)Ψ

nJP
ΛΣ (q)

+
∑
lLSf

ckcq

2
Ψ nJPLS (q)V̂l(k, q)

∏
1

+
∑

lLSfghL1L2

3(1− sq )(1− sk)V̂l(k, q)Ψ nJPLS (q)
∏
2

]
where the angular momentum products are∏

1

= 〈10L0|l0〉〈10Λ0|l0〉(2f + 1)
√
(2Σ + 1)(2S + 1)(2Λ+ 1)(2L+ 1)

×W
(
Σ

1

2
S

1

2
; 1

2
f

)
W

(
1

2
1

1

2
1; 1

2
f

)
W(L1Λ1; lf )

×W(LSΛΣ;Jf )(−1)J+L+1(1+ (−1)S+Σ)
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and ∏
2

= (2f + 1)(2g+ 1)(2h+ 1)

×√
(2L1 + 1)(2L2 + 1)(2L+ 1)(2Λ+ 1)(2Σ + 1)(2S + 1)

× (−1)(1+2(f−h)+L−Λ+l−J )〈1010|L10〉〈1010|L20〉〈L10Λ0|0〉〈L20L0|l0〉

×W
(

1

2

1

2
1L1;1f

)
W

(
f

1

2

1

2

1

2
;1Σ

)
W

(
L21

1

2

1

2
;fg

)
W

(
1

2

1

2
g

1

2
;1S

)

×W(L2LL1Λ; lh)W(SLΣΛ;Jh)W
(
fΣgS; 1

2
h

)
W

(
L2gL1f ; 1

2
h

)
.

These formulas have been applied to several different meson spin, parity states as presented
in Section 4.

The moments of the angular integrations for the linear potential are obtained from

V̂ Ln = −8πσ

1∫
−1

1

|�k − �q|4x
n dx,

wherex = k̂ · q̂ . These can be calculated using the recurrence relation

V̂ Ln = k

q
V̂ Ln−1 − 4πσ

q

d

dk

(
− 1

2qk

1∫
−1

xn−1dx

x − k2+q2

2qk

)

or by explicit integration

V̂ Ln = k

q
V̂ Ln−1 − 4πσ

2q2

d

dk

[
1

k

(
xn−1

n− 1
+ ωxn−2

n− 2
+ · · · + xωn−2

)1

−1

+ωn−1 log

(
ω− 1

ω+ 1

)]
,

whereω ≡ k2+q2

2qk . Evaluating the first three moments yields

V̂ L0 = −16πσ

(k2 − q2)2
,

V̂ L1 = 2πσ

k2q2

[
ln

(
k + q
k − q

)2

+ (k2 + q2)

( −4qk

(k2 − q2)2

)]
,

V̂ L2 = 3πσ
k2 + q2

k3q3
ln

(
k + q
k − q

)2

− 8πσ

k2q2

k4 + q4

(k2 − q2)2
.



336 F.J. Llanes-Estrada, S.R. Cotanch / Nuclear Physics A 697 (2002) 303–337

For the Coulomb potential,VC = −αs/|�x − �y|, V̂C = −4παs/|�k− �q|2, and the angular
integrals are

V̂ C0 (k, q)=
−2παs
qk

ln

((
k + q
k − q

)2
)
,

V̂ C1 = 4παs
qk

+ k2 + q2

2qk
V̂ C0 ,

V̂ C2 = k2 + q2

2qk
V̂ C1 .
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