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Abstract. We complete the canonical quantization of the vacuum Bianchi I model within the
improved dynamics scheme of loop quantum cosmology, characterizing the Hilbert structure
of the physical states and providing a complete set of observables acting on them. In order to
achieve this task, it has been essential to determine the structure of the separable superselection
sectors that arise owing to the polymeric quantization, and to prove that the initial value prob-
lem obtained when regarding the Hamiltonian constraint as an evolution equation, interpreting
the volume as the evolution parameter, is well-posed.

1. Introduction

Loop quantum cosmology (LQC) [1, 2, 3] adapts the techniques of loop quantum gravity [4]
in the quantization of models with high degree of symmetry, such us homogeneous models.
Remarkably, the quantization of (homogeneous and isotropic) Friedman-Lemaitre-Robertson-
Walker models within (the improved dynamics of) LQC succeeds in solving the singularity
problem: the classical big bang turns out to be replaced by a quantum bounce happening at
Planck scales, and no observable diverges in the quantum theory, as shown for the first time in
the seminal work of reference [5].

In order to extent this quantization to (homogeneous but anisotropic) Bianchi models, we
have focused our attention in the simplest case: the vacuum Bianchi I model. Our interest in
this model also comes from the necessity of including inhomogeneities in LQC. Actually, with
that aim we have analyzed from the LQC perspective the simplest inhomogeneous cosmologies:
the linearly polarized Gowdy model with three-torus topology [6, 7]. This model can be regarded
as a homogeneous Bianchi I background with three-torus topology filled with linearly polarized
gravitational waves traveling in a single direction. The above quantization of the Gowdy model
employs the polymeric quantization of the Bianchi I model when representing the homogeneous
background and, therefore, first we need to have under control the Bianchi I model itself.
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The quantization of the Bianchi I model in LQC is subject to several ambiguities. One of
them concerns the representation of the curvature tensor of the connection in the quantum
theory. Different definitions of this object lead to different schemes of quantization, being
the most satisfactory one the improved dynamics put forward in Ref. [8], where although the
Hamiltonian constraint was constructed, no further analysis of the physical solutions was carried
out.

In this note we further study this quantization of the Bianchi I model. It summarizes some
results already presented in [6, 7]. We will start by adopting a different factor ordering of that
of [8] when symmetrizing the Hamiltonian constraint operator. With our factor ordering the
operator is well-defined in the octant of R3 given by the positive eigenvalues of the operators
representing the coefficients of the densitized triad. In this way our model displays sectors
of superselection that are simpler than those of [8]. We will analyze the structure of the
superselection sectors (aspect not studied in [8]) and see that they are separable.

The Hamiltonian constraint provides a difference equation in the volume. Then, it seems
natural to interpret it as an internal time and the constraint as an evolution equation with
respect to it. We will see that this interpretation is valid inasmuch as the corresponding initial
value problem is well-possed: physical solutions are completely determined by a countable set
of data given in the initial section of the volume (which displays a non-vanishing minimum
value). The previous result allows us to identify the physical Hilbert space with the Hilbert
space of initial data, whose inner product is determined by imposing reality conditions in a
(over) complete set of physical observables.

2. Quantization of the model

We consider the vacuum Bianchi I model with three-torus spatial topology. Then, we use global
coordinates {¢,0, 0,5}, with 0, 0,8 € S'. In order to prepare the model for its loop quantization,
we describe it in the Ashtekar-Barbero formalism [4]. Using a diagonal gauge, the nontrivial
components of the densitized triad are p;/472, with i = 0, 0,6, and ¢;/2m are those of the su(2)
connection. They satisfy {c¢;,p;} = 87G~Jd;;, where v is the Immirzi parameter and G is the
Newton constant. The spacetime metric in these variables reads

ops| (0>  do?  ds?
[pepops| (+0+>‘

ds? = —dt* + =220
42 I -

(1)
The phase space is constrained by the Hamiltonian constraint

2 pyc?py + pecps + < pecdps
Cgr = *? % =0. (2)

In this expression, V = /|pgpsps| is the volume of the compact spatial sections.

In order to represent the phase space in the quantum theory we choose the kinematical
Hilbert space of the Bianchi I model constructed in LQC (see e.g. [8]), that we call Hyi,. We
recall that, on Hyi,, the operators p; have a discrete spectrum equal to the real line. The
corresponding eigenstates, |pg, ps, ps), form an orthonormal basis (in the discrete norm) of Hyiy,.
Owing to this discreteness, there is no well-defined operator representing the connection, but
rather its holonomies. They are computed along straight edges in the fiducial directions. The
so-called improved dynamics prescription states that, when writing the curvature tensor in terms
of holonomies, we have to evaluate them along edges with a certain minimum dynamical (state
dependent) length f1;. We use the specific improved dynamics prescription put forward in [8]:
the elementary operators which represent the matrix elements of the holonomies, called Nﬁm
produce all a constant shift in volume V. In order to simplify the analysis, it is convenient
to relabel the basis states in the form |v, A\,, As), where |v| is proportional to V' such that the



Loops 11: Non-Perturbative / Background Independent Quantum Gravity IOP Publishing
Journal of Physics: Conference Series 360 (2012) 012031 doi:10.1088/1742-6596/360/1/012031

operators Nigi cause a shift on it equal to +1, and the parameters \; are all equally defined in
terms of the corresponding parameters p;, and verify that v = 2 g\, As.

Out of the basic operators p;, Nﬁi we represent the Hamiltonian constraint as an operator
C. We choose a very suitable symmetric factor ordering such that C decouples the states of
Hyin with support in v = 0, namely, the states with vanishing volume [6, 7]. Moreover, our
operator C does not relate states with different orientation of any of the eigenvalues of the
operators p;. Owing to this property we can then restrict the domain of definition of C to e.g.
the space spanned by the states [v > 0, A\, > 0, A\s > 0). We call the resulting Hilbert space Hgn.
Remarkably, for this restriction we do not need to impose any particular boundary condition or
appeal to any parity symmetry. Note that both Hy;, and ’Hf{in are non-separable Hilbert spaces,
feature not desirable for a physical theory. This problem is overcome by the own action of the
Hamiltonian constraint operator. Indeed, C defined on H;n turns out to leave invariant some
separable Hilbert subspaces that provide superselection sectors. In concrete, they are spanned
by the states |[v = € +4n, Ay = Njwe, As = Ajwe). Here ¢ € (0,4] and n € N, and therefore v
takes support in semilattices of constant step equal to 4 starting in a minimum non-vanishing
value €. In addition, A} (a = 0,0) is some positive real number and w, runs over the subset of

R* given by
e—2\" e+ 2my \P*
We = =) ¢
€ o\ € + 2ny

where myg,ng,pr € N, and z € Z when € > 2, while z = 0 otherwise. One can check that in
deed this set is dense in R™ and countable [6]. Therefore, any of these sectors provide separable
Hilbert spaces contained in /Hljin' We denote them as He s ar = He @Hg ®7—[>\§. Note that the
removal of the states with support in v = 0 means that there is no analog of the cosmological
singularity (classically located in p; = 0) in our quantum theory. We thus solve the singularity
already at the level of superselection in a very simple way.

We then restrict the study to any of these superselection sectors, and expand a general
solution in the form (| = 3_ o+ D20, ew. 2oa e, Y(v, weAT, WA} (v, we A, (DE)\g!. One obtain

that the constraint (w}CAT = 0 leads to a recurrence equation that relates the combination of
states

4 4 2
e+ 4,20 0) =00+ 420, o ) (v 4, T s ) F (o4, P00
v+ 2 v+ 2 v

2 2 4 4 2
SENYY R WtV EYY (PP e Vet Y Y'Y Y et WG e
v v v+2 v+2 v

(3)

with data in the previous sections v and v — 4. Therefore, if we regard v as an internal
time the constraint can be interpreted as an evolution equation in it. It turns out that,
when particularized to the initial time v = e, the constraint simply gives the combination
of states ¥ (e + 4, A5, As) in terms of some initial data (e, A, \j). From the combinations
Vy(e+4, A, Ns), it is possible to determine any of the individual terms (e + 4, Ay, As), since
the system of equations that relate the former ones with the latter ones is formally invertible.
This issue is very non-trivial. Actually, both the separability of the support of A, and the fact
that it is dense in R* have been essential to show it (the details can be found in [7]). Therefore,
the initial value problem is well-posed and it is indeed feasible to make the above interpretation
of the constraint as an evolution equation in v.

In conclusion, the physical solutions of the Hamiltonian constraint are completely determined
by the set of initial data {¥(e, Ao, As) = (€, we Ay, @W=A}), we,we € We}, and we can identify
solutions with this set. We can also characterize the physical Hilbert space as the Hilbert space
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of the initial data. In order to endow the set of initial data with a Hilbert structure, one can take a
complete set of observables forming a closed algebra, and impose that the quantum counterpart
of their complex conjugation relations become adjointness relations between operators. This
determines a unique (up to unitary equivalence) inner product.

Before doing that, it is most convenient changing the notation. Let us introduce the variables
zq = In(Ag) = In(As) + pe. Note that p. takes values in a dense set of the real line, given by the
logarithm of the points in the set WW.. We will denote that set by Z.. Then, a set oﬁgbservables
acting on the initial data 1;(:60, xg5) := (e, xy, Ts) is that formed by the operators e« and ﬁap“,
with p, € Z. and a = 7,9, defined as

it (2y, 15) = €T (x, 25),  ULY(x0,75) = V(2o + pos T5), (4)

—

and similarly for e**s and ﬁ(sp ?. These operators provide an overcomplete set of observables and
are unitary in Hys ® Hyy, according with their reality conditions. Therefore, we conclude that
this Hilbert space is precisely the physical Hilbert space of the vacuum Bianchi I model.

3. Conclusions

Adopting the improved dynamics of reference [8], we have completed the quantization of the
Bianchi I model in LQC providing the physical Hilbert space and a complete set of physical
observables, task so far not achieved.

With that aim, first we have needed to determine the structure of the superselection sectors
that arise in the quantum model owing to the polymeric representation of the geometry. These
sectors display an involved structure concerning the anisotropies, as a consequence of the
complicated action of the Hamiltonian constraint on those variables, inherent to the adopted
improved dynamics. Actually, the values of the anisotropies run over a dense set of the positive
real line that turns out to be countable. In contrast, the volume takes values in simple
semilattices of constant step. As a result, the superselection sectors are separable.

The Hamiltonian constraint provides a difference equation in the volume, and can be
interpreted as an evolution equation, being the volume the variable playing the role of the
internal time. The separability of the support of the anisotropies and the fact that it is dense in
R are essential to show that the associated initial value problem is well-posed, and therefore the
above interpretation is valid. Since the initial data determines the solution, we can characterize
the physical Hilbert space as the Hilbert space of the initial data. The physical inner product
can be determined by imposing reality conditions on a complete set of observables. The result
is that the physical Hilbert space coincides with the tensor product of the superselection sectors
of the two anisotropy variables.

Acknowledgments
This work was in part supported by the Spanish MICINN Projects No. FIS2008-06078-C03-03,
No. FIS2011-30145-C03-02, and the Consolider-Ingenio Program CPAN No. CSD2007-00042.

=

References

Bojowald M 2008 Loop quantum cosmology Living Rev. Rel. 11 4

Ashtekar A and Singh P 2011 Loop quantum cosmology: a status report Preprint arXiv:1108.0893

Banerjee K, Calcagni G and Martin-Benito M 2011 Introduction to loop quantum cosmology Preprint
arXiv:1109.6801

Thiemann T 2007 Modern canonical quantum general relativity (Cambridge: Cambridge University Press)

Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang: improved dynamics, Phys. Rev.
D 74 084003

Garay L J, Martin-Benito M and Mena Marugdn G A 2010 Phys. Rev. D 82 044048

Martin-Benito M, Mena Marugan G A and Wilson-Ewing E 2010 Phys. Rev. D 82 084012

Ashtekar A and Wilson-Ewing E 2009 Phys. Rev. D 79 083535

JEENSN

S

ENESHEN





