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Abstract This paper focuses on the numerical analysis of a discrete version of
a nonlinear reaction-diffusion system consisting of an ordinary equation cou-
pled to a quasilinear parabolic PDE with a chemotactic term. The parabolic
equation of the system describes the behavior of a biological species, while
the ordinary equation defines the concentration of a chemical substance. The
system also includes a logistic-like source, which limits the growth of the bi-
ological species and presents a time-periodic asymptotic behavior. We study
the convergence of the explicit discrete scheme obtained by means of the Gen-
eralized Finite Difference method and prove that the non-negative numerical
solutions in two dimensional space preserve the asymptotic behavior of the
continuous ones. Using different functions and long-time simulations, we illus-
trate the efficiency of the developed numerical algorithms in the sense of the
convergence in space and in time.
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1 Introduction

In this paper we use a meshless method called Generalized Finite Difference
Method (GFDM) to study the discretization of the nonlinear system of differ-
ential equations

∂U

∂t
= ∆U − div(χU∇V ) + µU(1 + f(x, t)− U), x ∈ Ω, t > 0,

∂V

∂t
= h(U, V ), x ∈ Ω, t > 0,

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ Ω,
∂U

∂n
=
∂V

∂n
= 0, x ∈ ∂Ω, t > 0

(1)

in a smooth bounded domain Ω ⊂ R2 with positive constant chemotaxis χ and
µ > 0. The logistic-like source limits the growth of the biological species and
it presents a time-periodic asymptotic behavior in the sense: f is a bounded
given function fulfilling

‖f(x, t)− f∗(t)‖L∞(Ω) → 0, as t→∞,

with f∗(t) being a time-periodic function independent of the space variable
“x”. The parabolic equation describes the behavior of a biological species “U”
and the ordinary differential equation patterns the concentration of a chemical
substance “V ”. The regular function h increases as “U” increases and states
the production of the chemical species. In the recently published article [16],
the authors prove that for all sufficiently smooth initial data U(x, 0) = U0(x),
V (x, 0) = V0(x), x ∈ Ω, the problem possesses a unique global-in-time clas-
sical solution that is bounded in Ω × (0,∞), with Ω ⊂ Rn, for n ≥ 1. We
prove that the convergence in space and in time of the classical solution is
maintained for the discrete model.
The system arises in chemotaxis, the phenomenon whereby living organisms
respond to a chemical substance by motion and rearrangement (taxis). If they
move toward the higher concentration of the chemical substance one is refer-
ring to positive taxis and otherwise, away from it, to negative taxis, i.e., they
may aggregate, or they may disperse.
Mathematical models for chemotaxis have been studied since 1970s when
Keller and Segel proposed a model that leads to aggregation of certain types
of bacteria [8]–[9]. The first model involved the density distribution of the bac-
teria and the chemical concentration in a coupled system of partial differential
equation. Since then, other models have been proposed and studied in order to
understand the mechanism that causes the aggregation of myxobacteria; for
instance, Othmer and Stevens in [17] derived the following system of partial
differential equations

∂U

∂t
= div(∇U − Uχ(V )∇V ), x ∈ Ω, t > 0,

∂V

∂t
= h(U, V ), x ∈ Ω, t > 0,

(2)
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where χ(V ) is the chemotactic sensitivity of the bacteria. Functions χ(V ) and
h(U, V ) depend on the nature of the interaction between the bacteria and the
chemical stimulus.
Chemotaxis is an important process in many medical and biological applica-
tions including bacteria/cell aggregation, pattern formation mechanisms, the
movement of human blood neutrophils and tumor growth. The tumor secretes
chemical species that attract the nearby endothelial cells, which form the sur-
face of capillary blood vessels. In this way new blood vessels sprout towards the
tumor and begin to provide it with additional nourishment. The phenomenon
of sprouting of new blood vessels is called angiogenesis. The models could in-
volve several diffusing populations and several chemical species. Many models
of angiogenesis with one diffusing population and two nondiffusing ones were
studied by Anderson and Chaplain in [1].
There are several examples in the nature of species with periodic behavior,
for instance, in the movement of the amebas Dictyostelium discoideum to-
wards its center of aggregation, the medium velocity is periodic (see Steinbock,
Hashimoto and Müller [18]), in Dunn and Zicha [6] it is observed periodicity
in the chemotaxis of the human neutrophils and also it is referred in Zusman,
Scott, Yang and Kirby [21] in the movement of the Myxococcus xanthus.
In a mathematical view, global existence and behavior of solutions are funda-
mental theme. However, problem (1) has some difficult points caused by the
logistic term and by generalization of function h. To overcome the difficulty,
Negreanu, Tello and Vargas [12,13], [16] (see also the references therein) built
a technical way to prove global existence and asymptotic behavior of solutions
of (1).
Throughout the article we use the notation Ωt = Ω× (0, t), for t ∈ (0,∞] and
we work under the following hypotheses (see [16] for more details):

1. Function h fulfills

h ∈W 1,∞
loc (R+ × R) ∩ C2(R2

+); (3)

∂h

∂U
> 0,

∂h

∂V
< 0, 0 ≤ h(0, 0) < µε/(2χ), (4)

for some positive ε > 0 and

−h(0, V ) ≤ ceχV , ∂h

∂V
+ Uχ

∂h

∂U
≤ −εv/2, with εv, c > 0. (5)

2. For a given constant C := C(u0, ‖f‖L∞(Ω), µ, χ, c} (see Lemma 2 in [16]),
for some positive ε0 > 0, h fulfills

lim sup
s→∞

h (Ceχs, s) ≤ −ε0. (6)

3. There exists a periodic function f∗ verifying

‖f(x, t)− f∗(t)‖L∞(Ω) → 0, as t→∞, (7)

inf
x∈Ω

f(x, t) < f∗(t) < sup
x∈Ω

f(x, t) (8)
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and for ε as in (4), function f checks

−1 + ε < f(x, t). (9)

The above conditions cover the examples h(U, V ) = Ue−χV − aV , with a > 0
and h(U, V ) = (Ue−χV +V )/(1+V )−V which we use in our numerical study.
We denote by U∗ and V ∗ the solutions of the ODE’s equations

U∗t = µU∗(1− U∗ + f∗), U∗(0) = U∗0 , (10)

V ∗t = h(U∗, V ∗), V ∗(0) = V ∗0 . (11)

In order to obtain the asymptotic properties of the solutions of (1), we intro-
duce (as in [15], [16]) the explicit expression of U∗

U∗(t) =
U∗0 e

∫ t
0
µ(1+f∗(s))ds

1 + U∗0

∫ t

0

µe
∫ τ
0
µ(1+f∗(s))dsdτ

, (12)

for U∗0 defined by

U∗0 :=
e
∫ T
0
µ(1+f∗(s))ds − 1

µ
∫ T
0
e
∫ τ
0
µ(1+f∗(s))dsdτ

and f∗ as in (7). Notice that U∗ satisfies equation (10) and it is homogeneous
in space and periodic in time function, [14]. In [16], the global existence and
uniqueness of the bounded solution (U, V ) of (1) is done for any nonnegative
initial data (U0, V0) ∈ (L∞(Ω) ∩W 1,s(Ω))2. Moreover, they proved that

‖U(x, t)− U∗(t)‖L2(Ω) → 0 ‖V (x, t)− V ∗(t)‖L2(Ω) → 0, as t→∞.

In this paper we obtain the conditional convergence of the GDF scheme for
the discretization of (1) and we give the explicit conditions that the time in-
crement, ∆t must fulfil in order to have it. The discrete numerical solution
converges to the asymptotic periodic functions U∗(t), V ∗(t)). This means that
some environmental periodicity conditions affect the behavior of the popu-
lations’ density of a biological species, “U” and a chemical substance, “V ”,
related by a chemotactic process. We also illustrate with our experiments that
the Generalized Finite Difference Method solves this strongly coupled highly
nonlinear parabolic-ODE system efficiently and with high accuracy over regu-
lar and irregular domains. In other words, we prove that the discrete solution
obtained by applying GFD method to (1) preserves the same behavior of the
continuous one.
The GDF method was first derived by Jensen [7] and Liszka and Orkisz [10].
Benito, Gavete and Ureña [2,3,19] have studied the influence of several factors
and developed the explicit formulae and h-adaptive method for the solution
of the PDEs in 2D. The implementation of the GFDM for the Keller-Segel
chemotaxis model with parabolic-elliptic coupling was recently done in [20]
where the authors proved the convergence of the explicit method and gave the
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conditions of convergence. Recently, numerical solutions of chemotaxis systems
are being investigated. For instance, MacDonald et al. used a moving mesh
finite element method [11]. In [5] Dehghan et al. used radial basis collocation
method for solving similar systems.
The paper is organized as follows: in Section 2 we introduce some explicit
formulae using the Generalized Finite Difference method. We study the con-
vergence of the GFD explicit scheme and we prove the main result of the paper,
Theorem 1. In Section 3, extensive numerical experiments (convergence stud-
ies in space and in time, long-time simulations, etc.) are presented to illustrate
the efficiency and robustness of the developed numerical algorithms. We finally
present some conclusions.

2 GFDM explicit scheme

Consider a domain Ω ⊂ R2 and let M = {x1, . . . ,xN} ⊂ Ω be a discretization
of it with N points. For each x0 ∈ M , we define Es = {x0; x1, . . . ,xs} ⊂ M ,
where xi (i = 1, . . . , s) can be chosen in several ways, by different criteria.
We call xi = (xi, yi) and we denote by hi := xi − x0 and ki := yi − y0. Let
be F ∈ C4(Ω). Since no confusion with the initial data of F is possible, we
write in this section F0 = F (x0) = F (x0, y0) and Fi = F (xi). By Taylor series
expansion, for i = 1, ..., s, we have :

Fi = F0 + hi
∂F0

∂x
+ ki

∂F0

∂y
+

1

2

(
h2i
∂2F0

∂x2
+ k2i

∂2F0

∂y2
+ 2hiki

∂2F0

∂x∂y

)
+ ... (13)

By ignoring the third and higher order terms in (13), we obtain a second order
approximation fi of F in xi. Moreover, we take the vector

D5 =

{
∂f0
∂x

,
∂f0
∂y

,
∂2f0
∂x2

,
∂2f0
∂y2

,
∂2f0
∂x∂y

}
. (14)

In this way, we can obtain an approximation of function Fi in terms of the
coefficients of D5. In order to determine these, we minimize with respect to
the partial derivatives the following function

B(f) =

s∑
i=1

[(f0 − fi) + hi
∂f0
∂x

+ ki
∂f0
∂y

+

+
1

2
(h2i

∂2f0
∂x2

+ k2i
∂2f0
∂y2

+ 2hiki
∂2f0
∂x∂y

)]2w2
i

(15)

where wi = w(hi, ki) are positive symmetrical monotone decreasing weighting
functions. One arrives then to the following system of linear equations

A(hi, ki, wi)D
T
5 = b(hi, ki, wi, u0, ui), (16)
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where

A =


h1 h2 · · · hs
k1 k2 · · · ks
...

...
...

...
h1k1 h2k2 · · · hsks



ω2
1

ω2
2

· · ·
ω2
s



h1 k1 · · · h1k1
h2 k2 · · · h2k2
...

...
...

...
hs ks · · · hsks

 .

Some assumptions on the selection criteria of the nodes of Es must be made
in order to guarantee that A is positive definite (see [20] for more details on
the selection criteria and the weighting functions). By solving system (16), we
can find the discretization of the spatial derivatives as functions of f0 and fi:

∂f(x0, n∆t)

∂x
= −m01f

n
0 +

s∑
i=1

mi1f
n
i +O(h2i , k

2
i ), with m01 =

s∑
i=1

mi1,

∂f(x0, n∆t)

∂y
= −m02f

n
0 +

s∑
i=1

mi2f
n
i +O(h2i , k

2
i ), with m02 =

s∑
i=1

mi2,

∂2f(x0, n∆t)

∂x2
= −m03f

n
0 +

s∑
i=1

mi3f
n
i +O(h2i , k

2
i ), with m03 =

s∑
i=1

mi3,

∂2f(x0, n∆t)

∂y2
= −m04f

n
0 +

s∑
i=1

mi4f
n
i +O(h2i , k

2
i ), with m04 =

s∑
i=1

mi4,

∂2f(x0, n∆t)

∂x∂y
= −m05f

n
0 +

s∑
i=1

mi5f
n
i +O(h2i , k

2
i ), with m05 =

s∑
i=1

mi5.

(17)

Remark 21 For simplicity, for the discretization of the laplacian operator,
we write

∆f(x0, n∆t) = −m00f
n
0 +

s∑
i=1

mi0f
n
i ,

where m00 = m03 +m04 and mi0 = mi3 +mi4.

The time derivative is approximated by

∂f(x0, y0, n∆t)

∂t
=
fn+1
0 − fn0
∆t

+O(∆t). (18)

Hence, we obtain the following 2-dimensional GFD explicit scheme:

un+1
0 =un0 +∆t

[
−m00u

n
0 +

s∑
i=1

mi0u
n
i − χun0

(
−m00v

n
0 +

s∑
i=1

mi0v
n
i

)]

− χ∆t

(
−m01u

n
0 +

s∑
i=1

+mi1u
n
i

)(
−m01v

n
0 +

s∑
i=1

mi1v
n
i

)

− χ∆t

(
−m02u

n
0 +

s∑
i=1

+mi2u
n
i

)(
−m02v

n
0 +

s∑
i=1

mi2v
n
i

)
+∆tµun0 [1− un0 + f(x0, n∆t)]

vn+1
0 =vn0 + h(un0 , v

n
0 )∆t.

(19)
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The main result regarding the convergence of the proposed numerical scheme
(19) is as follows:

Theorem 1 Let U, V be the exact solution of (1). Let be ∂h
∂V (U, V ) < 0, then

the GFDM explicit scheme (19) is convergent if

1

α− ∂h
∂V

< ∆t <
3

α− ∂h
∂V

(20)

where

α : =

∣∣∣∣∣−m00(1 + χV n0 )− χ[(m01)2 + (m02)2]vn0

+ χm01

s∑
i=1

mi1v
n
0 + χm02

s∑
i=1

mi2v
n
0 − χ

s∑
i=1

mi0v
n
i

+ µ[1− (un0 + Un0 ) + f(x0, n∆t)]

∣∣∣∣∣+∆t

(
s∑
i=1

|mi0|

+ χ|m01|V n0
s∑
i=1

|mi1|+ χ

∣∣∣∣∣
s∑
i=1

mi1v
n
i

∣∣∣∣∣
s∑
i=1

|mi1|

+ χ

∣∣∣∣∣
s∑
i=1

mi2v
n
i

∣∣∣∣∣
s∑
i=1

|mi2|+ χ|m02|V n0
s∑
i=1

|mi2|

)
.

(21)

Proof Let unj be the approximated u–solution at time n∆t (similarly vnj ) and
Unj the value of the exact U– solution (similarly V nj ). Also, we call ũnj = unj−Unj
and ṽnj = vnj − V nj . Let us take the difference between the GFD scheme (19)
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and the expression for the exact solution. We obtain the following:

ũn+1
0 = ũn0 +∆t

[
−m00ũ

n
0 +

s∑
i=1

mi0ũ
n
i − χ[(m01)2+

+ (m2
02)][ũn0 v

n
0 − Un0 ṽn0 ] + χm01ũ

n
0

s∑
i=1

mi1v
n
i +

+ χm01U
n
0

s∑
i=1

mi1ṽ
n
i + χm01ṽ

n
0

s∑
i=1

mi1u
n
i

+ χm01V
n
0

s∑
i=1

mi1ũ
n
i −

(
s∑
i=1

mi1ũ
n
i

)(
s∑
i=1

mi1v
n
i

)

−

(
s∑
i=1

mi1U
n
i

)(
s∑
i=1

mi1ṽ
n
i

)
+ χm02ũ

n
0

s∑
i=1

mi2v
n
i

+ χm02U
n
0

s∑
i=1

mi2ṽ
n
i + χm02ṽ

n
0

s∑
i=1

mi2u
n
i + χm02V

n
0

s∑
i=1

mi2ũ
n
i

−

(
s∑
i=1

mi2ũ
n
i

)(
s∑
i=1

mi2v
n
i

)
−

(
s∑
i=1

mi2U
n
i

)(
s∑
i=1

mi2ṽ
n
i

)

+ µũn0 [1− (un0 + Un0 ) + f(x0, n∆t)]

]
.

(22)
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After rearranging the terms, it yields:

ũn+1
0 = ũn0

[
1−∆t

(
−m00(1 + χV n0 )− χ[(m01)2 + (m02)2]vn0

+ χm01

s∑
i=1

mi1v
n
0 + χm02

s∑
i=1

mi2v
n
0 − χ

s∑
i=1

mi0v
n
i

+ µ[1− (un0 + Un0 ) + f(x0, n∆t)]

)]
+

+ ṽn0χ∆t

[
− [(m01)2 + (m02)2]Un0 +m01

s∑
i=1

mi1u
n
i +

+m02

s∑
i=1

mi2u
n
i +m00u

n
0

]
+∆t

[
s∑
i=1

mi0ũ
n
i +

+ χm01V
n
0

s∑
i=1

mi1ũ
n
i − χ

(
s∑
i=1

mi1ũ
n
i

)(
s∑
i=1

mi1v
n
i

)

− χ

(
s∑
i=1

mi2ũ
n
i

)(
s∑
i=1

mi2v
n
i

)
+ χm02V

n
0

s∑
i=1

mi2ũ
n
i

]

+ χ∆t

[
m01U

n
i

s∑
i=1

mi1ṽ
n
i −

(
s∑
i=1

mi1U
n
i

)(
s∑
i=1

mi1ṽ
n
i

)

−

(
s∑
i=1

mi2U
n
i

)(
s∑
i=1

mi2ṽ
n
i

)
+m02U

n
i

s∑
i=1

mi2ṽ
n
i

]
.

(23)
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We now take bounds and call ũn = maxi=0,...,s{|ũni |} (the same applies for
ṽn). Then, we get

ũn+1 ≤ ũn
[∣∣∣∣∣1−∆t

(
−m00(1 + χV n0 )− χ[(m01)2 + (m02)2]vn0

+ χm01

s∑
i=1

mi1v
n
0 + χm02

s∑
i=1

mi2v
n
0 − χ

s∑
i=1

mi0v
n
i

+ µ[1− (un0 + Un0 ) + f(x0, n∆t)]

)∣∣∣∣∣+∆t

(
s∑
i=1

|mi0|

+ χ|m01|V n0
s∑
i=1

|mi1|+ χ

∣∣∣∣∣
s∑
i=1

mi1v
n
i

∣∣∣∣∣
s∑
i=1

|mi1|

+ χ

∣∣∣∣∣
s∑
i=1

mi2v
n
i

∣∣∣∣∣
s∑
i=1

|mi2|+ χ|m02|V n0
s∑
i=1

|mi2|

)]
+

+ ṽnχ∆t

[∣∣∣∣∣−[(m01)2 + (m02)2]Un0 +m01

s∑
i=1

mi1u
n
i

+m02

s∑
i=1

mi2u
n
i +m00u

n
0

∣∣∣∣∣+ |m01|Uni
s∑
i=1

|mi1|

+

∣∣∣∣∣
s∑
i=1

mi1U
n
i

∣∣∣∣∣
s∑
i=1

|mi1|+

∣∣∣∣∣
s∑
i=1

mi2U
n
i

∣∣∣∣∣
s∑
i=1

|mi2|

+ |m02|Uni
s∑
i=1

|mi2|

]
.

(24)

For the second equation of (1) we have

ṽn+1
0 = ṽn0 +∆t

∂h

∂U

∣∣∣∣∣
(ξ,vn0 )

ũn0 +∆t
∂h

∂V

∣∣∣∣∣
(un0 ,η)

ṽn0 , (25)

where we have applied the Mean Value Theorem twice for some ξ ∈ (un0 , U
n
0 )∩

(Un0 , u
n
0 ), η ∈ (vn0 , V

n
0 ) ∩ (V n0 , v

n
0 ). Hence, by taking again the maximum for

all indices i = 0, ..., s, we reach the expression

ṽn+1 ≤ ũn
∣∣∣∣∣ ∂h∂U

∣∣∣∣∣+ ṽn

∣∣∣∣∣1 +∆t
∂h

∂V

∣∣∣∣∣. (26)

We rewrite the last expression in matrix form, in the following sense(
ũn+1

ṽn+1

)
≤
(
|1−∆t · α| B

C |1 +∆t∂V h|

)(
ũn

ṽn

)
. (27)
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The characteristic polynomial of the square matrix has, at most, two roots
fulfilling ∣∣∣∣∣|1−∆t · α|+ |1 +∆t∂V h|

∣∣∣∣∣ ≤ |λ1 + λ2| ≤ |λ1|+ |λ2| < 1. (28)

If we impose ∣∣∣∣∣2−∆t
(
α− ∂h

∂V

)∣∣∣∣∣ < 1, (29)

then (28) is verified. Therefore, the LHS inequality leads us to

∆t <
3

α− ∂h
∂V

, (30)

whereas the second one

∆t >
1

α− ∂h
∂V

. (31)

Notice that the denominator in (30)–(31) is positive due to assumption (4),
i.e., ∂V h < 0. So ∆t can be always chosen such that the GFD explicit scheme
(19) is convergent.

ut

Remark 22 Observe that (4) is enough to guarantee the convergence without
adding extra assumptions on the problem.

3 Numerical examples

In this section we show the numerical results obtained by solving the system
(1), using two irregular clouds of points as seen in Figure 1 (441 nodes in each
one) in the domain Ω = [0, 1]× [0, 1]. We use an 8-node scheme, chosen by the

distance criterion together with weight function w =
1

dist4
. For all numerical

examples we put ∆t = 0.001.

Remark 31 Note that in the following examples we compare the numerical
solution of the problem with the asymptotic solution (not the exact one, since
there is no explicit known solution). This explains the possible difference be-
tween our numerical values and the continuous ones at small times. Also notice
that we may choose a very distant initial data (computed in l∞ norm) from
the asymptotic limit, provided enough regularity, and this may result in a dif-
ference between the discrete and continuous values at small times. The aim of
this paper is to obtain the numerical validation of asymptotic convergence of
the solution of the problem to the periodic functions U∗(t) and V ∗(t), which is
clearly observed in the following subsections.
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We divide the section into two different cases, depending on the choice of
function h. For each case, we provide two examples where we consider two
different functions f(x, t):

1. Firstly, we take

f(x, t) =
cos t

4 + sin t
+
x− y
1 + t2

, (32)

in (x, y) ∈ Ω = [0, 1] × [0, 1]. Therefore, we can find the 2π−periodic
function

f∗(t) =
cos t

4 + sin t
,

and then the asymptotic limit is

U∗(t) =
4 + sin(t)

4− cos(t)
2 + sin(t)

2

.

2. Secondly, we consider

f(x, t) = f∗(t) =
2 cos(2t)

2 + sin(2t)
+

sin2(t) + 2 sin(2t)

1 + cos2(t)
(33)

in (x, y) ∈ Ω = [0, 1]× [0, 1]. Hence, this time the π−periodic non-constant
steady state is

U∗(t) =
2 + sin(2t)

1 + cos2(2t)
.

Fig. 1 Irregular clouds of points

3.1 Case 1

In this first case, we choose function h(U, V ) to be

h(U, V ) = Ue−χV − V, (34)

which fulfils all assumptions made in [16], i.e., (3)–(6).
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T(s) 3.72 6.86 13.14 16.28
‖U − U∗(t)‖l∞(Ω) 0.0436 0.0014 5.5900e-04 1.5783e-04

‖V − V ∗(t)‖l∞(Ω) 0.1023 0.0088 3.9862e-04 2.1900e-04

Table 1 Values of ‖U −U∗(t)‖l∞(Ω) and ‖V − V ∗(t)‖l∞(Ω) in the Example 1 and Case 1

3.1.1 Example 1

We select the following initial data

U0(x, y) = e−10[(x−0.1)
2+(y−0.1)2] + e−10[(x−0.9)

2+(y−0.9)2],

V0(x, y) = 0.7e−10[(x−0.5)
2+(y−0.5)2],

and parameters µ = 1, χ = 0.3. Table 1 shows the ‖ · |l∞ norm of the dif-
ference between the numerical solution and the asymptotic values U∗, V ∗ at
several times. In Figure 2 and 3 we sketch the graphs of the periodic functions
U∗(t), V ∗(t) (solid lines) and the most distant values of the discrete solution
(that is to say, the value of the approximate solution where the greatest er-
ror in l∞ norm is performed) at different times. As expected, the numerical

Fig. 2 The solid line corresponds to the graphic of the function U∗(t), the stars to the
value of the approximate solution u where we obtain the greatest error at 3.72, 5, 6.86, 8.5,
10, 11.5, 13.14, 15, 16.28, 18.5 and 19.42 in Example 1 and Case 1.
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Fig. 3 The solid line corresponds to the graphic of the function V ∗(t), the stars to the most
distant value of the approximate solution v at 3.72, 5, 6.86, 8.5, 10, 11.5, 13.14, 15, 16.28,
18.5 and 19.42 in Example 1 and Case 1.

results shown in Tables 1 and Figures 2 and 3, respectively, confirm the theo-
retical result of this paper (and also the ones in [16]). The numerical solution
given by GFD scheme converges to the periodic asymptotic limit of system (1).
In accordance with the theory, the approximate solution inherits the periodic
behavior of the function f∗ at large times.



Generalized Finite Difference Method for solving a chemotaxis system 15

T(s) 3.72 13.14 19.42
‖U − U∗(t)‖l∞(Ω) 0.0339 3.4624e-04 3.4304e-04

‖V − V ∗(t)‖l∞(Ω) 0.0634 9.0783e-04 3.9845e-04

Table 2 Values of ‖U −U∗(t)‖l∞(Ω) and ‖V − V ∗(t)‖l∞(Ω) in the Example 2 and Case 1

3.1.2 Example 2

We consider now the function given by (33) and initial data

U0(x, y) = e−10[(x−0.2)
2+(y−0.2)2], V0(x, y) = e−10[(x−0.8)

2+(y−0.8)2]

together with the parameters µ = 1, χ = 0.3.
As before, we illustrate in Table 2 the maximum difference between the limit
value and the numerical solutions. Figure 4 and 5 reflect the periodic functions
U∗(t), V ∗(t) (solid lines) and the values of the discrete solution at the node
where the greatest error is achieved (stars) at different times.

Fig. 4 The solid line corresponds to the graphic of the function U∗(t), the stars to the
value of the approximate solution, u, with the greatest error at times 3.72, 5, 6.86, 8.5, 10,
11.5, 13.14, 15, 16.28, 18.5 and 19.42 in Example 2 and Case 1.

As stated before, the convergence of the GFD scheme is clearly seen in the
above figures. The numerical solution given by the explicit scheme behaves as
the periodic functions (U∗, V ∗) at t increases.
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Fig. 5 The solid line corresponds to the graphic of the function V ∗(t), the stars to the
value of the approximate solution, v, with the greatest error at times 3.72, 5, 6.86, 8.5, 10,
11.5, 13.14, 15, 16.28, 18.5 and 19.42 in Example 2 and Case 1.

3.2 Case 2

We consider now the function to describe the growth rate of the chemical
substance

h(U, V ) =
Ue−χV + V

1 + V
− V. (35)

It is easily checked that h fulfils assumptions(3)–(6) ( see also [16]). We provide
two more examples with different functions f(x, t).

3.2.1 Example 3

Assume now that the initial data of this example are of the form

U0(x, y) = 2e−10[(x−0.5)
2+(y−0.5)2], V0(x, y) = e(x−0.5)

2+(y−0.5)2 ,

and choose the parameters as µ = 1, χ = 0.5.
As previously mentioned, Table 3 shows the l∞ norm of the difference be-

tween the solution given by the GFD scheme and asymptotic solution. Figure
6 and 7 present the behavior of the periodic functions U∗(t), V ∗(t) (solid lines)
and the most distant values of the discrete solution at different times.
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T(s) 3.72 6.86 10 16.28
‖U − U∗(t)‖l∞(Ω) 0.0093 0.0010 5.4652e-04 1.6059e-04

‖V − V ∗(t)‖l∞(Ω) 0.0357 0.0026 4.1827e-04 6.6184e-05

Table 3 Values of ‖U −U∗(t)‖l∞(Ω) and ‖V − V ∗(t)‖l∞(Ω) in the Example 3 and Case 2

Fig. 6 The solid line corresponds to the graphic of the function U∗(t), the stars to the
value of the approximate solution, u, performing the greatest error at times 3.72, 5, 6.86,
8.5, 10, 11.5, 13.14, 15, 16.28, 18.5 and 19.42 in Example 3 and Case 2.

Tables 3 and Figure 6 and 7 show that, for any initial data, the discrete
solution of (1) presents the same asymptotic periodic behavior of the contin-
uous model, proved in [16]. For small times, the numerical solution may differ
from the functions (U∗, V ∗) since these represent the limit of the continuous
solution and not the solution itself.

3.2.2 Example 4

Now we consider again

U0(x, y) = e−10[(x−0.2)
2+(y−0.2)2], V0(x, y) = e−10[(x−0.8)

2+(y−0.8)2],

and µ = 1, χ = 0.5 over the second cloud of points of Figure 1. In Table 4 we
resume the maximum difference between the theoretical values U∗, V ∗ and the
numerical solution. Figure 8 and 9 show the asymptotic limits of the problem
(solid lines) and the values of the numerical solution (stars).
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Fig. 7 The solid line corresponds to the graphic of the function V ∗(t), the stars to the
value of the approximate solution, v, where we obtain the greatest error at times 3.72, 5,
6.86, 8.5, 10, 11.5, 13.14, 15, 16.28, 18.5 and 19.42 in Example 3 and Case 2.

T(s) 3.72 10 19.42
‖U − U∗(t)‖l∞(Ω) 0.0326 3.4328e-04 3.4302e-04

‖V − V ∗(t)‖l∞(Ω) 0.0464 1.9974e-04 7.0348e-05

Table 4 Values of ‖U −U∗(t)‖l∞(Ω) and ‖V − V ∗(t)‖l∞(Ω) in the Example 4 and Case 2

4 Conclusions

We have derived the discretization of the modified Keller-Segel system (1) by
means of the GFD explicit scheme (19). Also, we have proved the conditional
convergence of this scheme to the continuous model of the system and we have
given the explicit conditions that the time increment, ∆t must fulfil in order
to obtain convergence of the method. An interesting remark from this proof is
the fact that the condition for convergence relies strongly in the assumption of
the continuous model, ∂V h < 0. In order to illustrate the convergence of the
Generalized Finite Difference Method for solving this PDE-ODE problem, and
also the validity of the results stated in [16], we have provided four examples
with different functions f and h, in the conditions [16], and tested the GFD
method over two irregular cloud of points. As stated for the continuous model,
and expected once we have proved the conditional convergence of the scheme,
the discrete numerical solution converges to the asymptotic periodic functions
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Fig. 8 The solid line corresponds to the graphic of the function U∗(t), the stars to the
value of the approximate solution, u, with the greatest error at times 3.72, 5, 6.86, 8.5, 10,
11.5, 13.14, 15, 16.28, 18.5 and 19.42 in Example 4 and Case 2.

U∗(t), V ∗(t). This means that some environmental periodicity conditions af-
fect the behavior of the populations’ density of a biological species, “U” and
a chemical substance, “V ”, related by a chemotactic process.

The Generalized Finite Difference Method solves this strongly coupled
highly nonlinear parabolic-ODE system efficiently and with high accuracy over
regular and irregular domains. This means that this meshless method is an ef-
ficient tool for obtaining the numerical solution of this chemotaxis system
appearing in Biology and Medicine.

Compliance with Ethical Standards:

Funding: the authors acknowledge the support of the Escuela Técnica Su-
perior de Ingenieros Industriales (UNED) of Spain, project 2020-IFC02, and
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Fig. 9 The solid line corresponds to the graphic of the function V ∗(t), the stars to the
value of the approximate solution, u, performing the greatest error at times 3.72, 5, 6.86,
8.5, 10, 11.5, 13.14, 15, 16.28, 18.5 and 19.42 in Example 4 and Case 2.
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