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Abstract. The confined propagation of slow neutrons along waveguides of a small cross
section (fibres), discussed theoretically some time ago and demonstrated experimentally by
other authors later, is analysed further. Motivated by those experiments, a three-dimensional
quantum-mechanical treatment of the associated bending losses is presented. An
approximate (two-parameter) formula is derived for the transmission coefficient ϒ of the
curved fibre, which displays its explicit dependence on the curvature radius Rcu, for
0 < Rcu < +∞. By adjusting one of the parameters (b), consistently with the theoretical
analysis, and by fitting the other, the approximate formula describes all measured data for ϒ .
The parameter b (which accounts for the experimental data for ϒ at large Rcu) allows the
estimation of the number of effectively excited modes in the fibre.

1. Introduction

Hollow guides of a suitably large cross section allow for
the transport of slow neutron beams along relatively long
distances, by multiple internal reflection (see, for instance,
Jacrot 1970). Bending losses of the waveguide (associated
to radiation due its curvature) stand as one of the main
mechanisms responsible for a decrease in the flux transmitted
along it. Studies of bending losses in neutron guides of an
adequately large cross section can be found, for instance,
in Jacrot (1970) and Schaerpf and Eichler (1973). On the
other hand, confined propagation of slow (say, thermal)
neutrons along waveguides of a small cross section (fibres),
and a quantum-mechanical formulation through propagation
modes, have been described theoretically (Alvarez-Estrada
and Calvo 1984, Calvo and Alvarez-Estrada 1986). The
corresponding bending losses in two-dimensional neutron
fibres have already been analysed (Calvo and Alvarez-
Estrada 1986).

A very important experimental implementation of
neutron fibres has been achieved (Kumakhov and Sharov
1992, Chen et al 1992). In these works, bundles of
polycapillary glass fibres were employed for the confined
propagation and focusing of thermal and cold neutrons.
Each polycapillary glass fibre contains many hollow capillary
channels. A single hollow capillary channel is conceptually
analogous to the single neutron fibre discussed theoretically
in Alvarez-Estrada and Calvo (1984), and Calvo and Alvarez-
Estrada (1986). Such capillary fibres were not straight, and
important issues were an experimental determination of the
bending losses and an understanding of them (Chen et al
1992).

Motivated by these experimental findings, a quantum-
mechanical analysis of bending losses in a curved neutron

fibre in three spatial dimensions seems in order. It will
be the main subject of this present work. We shall also
treat the physical features related to the neutron modes and
beam propagation. The treatment of bending losses to be
presented here will generalize, in a new setting, a previous
study about electromagnetic radiation due to curvature in an
optical fibre (Calvo and Alvarez-Estrada 1987). This last
reference gave various formal details, not to be repeated
here, for the similar (but not quite identical) electromagnetic
case. This work also provides references to various studies
about optical waveguides and their bending losses (see, in
particular, Marcuse 1972, 1974, 1976, Snyder and Love 1983
and Marcatili 1969).

Section 2 will discuss some physical features of the
devices employed in Kumakhov and Sharov (1992) and Chen
et al (1992), so as to motivate the present theoretical analysis.
Section 3 will summarize essentials about propagation modes
for neutrons in thin straight waveguides. Section 4 will
deal with curved fibres and the neutron wave function.
In section 5, the probability fluxes for the incoming
beam and for an emitted one (due to curvature) will be
computed. In section 6, an approximate formula for the
transmission coefficient of the curved fibre, as a function
of the curvature radius Rcu, is given and compared to
the measured experimental data. Section 7 contains the
conclusions and discussions.

2. Physical features

In the experiments described in Kumakhov and Sharov
(1992) and Chen et al (1992), multicapillary fibres were
employed. Any of such polycapillary fibres has, typically,
a diameter dpf = 0.4 mm and a length between, say, 150
mm and 200 mm and it contains more than Npf = 1000
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individual parallel capillary channels. In turn, each single
hollow capillary channel has an internal diameter dhcc =
6 µm and can be regarded as a hollow waveguide of a very
small cross section, along which the neutrons propagate.
Throughout this work, whenever we refer to a neutron fibre,
we shall always deal with one of these individual hollow
capillary channels with a small cross section. To avoid
confusion, neither a polycapillary fibre nor a bundle thereof
(which have much larger cross sections) will be called neutron
fibres. The average distance, dnhc, between two neighbouring
(parallel) hollow capillary channels can be estimated from
d2

pf � d2
nhcNpf . One finds dnhc � 5 to 10 µm. The fibres may

be straight or bent: in the latter case, they have curvature
radius Rcu � 0.1 m (metres). Each polycapillary fibre is
made of lead–silica glass (Kumakhov and Sharov 1992, Chen
et al 1992, Kumakhov and Komarov 1990). Accordingly,
each of the above hollow capillary channels is surrounded by
a lead–silica clad: the latter has a width of about 5 µm, so
that, beyond such a distance, the cladding region ends and
another neighbouring parallel hollow channel is found.

We suppose that the average energy of one neutron in a
typical beam may be about 10−2 eV (for thermal neutrons)
or about 10−4 eV (for cold neutrons), so that the average
neutron velocity v is about 103 or 102 m s−1, respectively.
If 
 denotes a typical neutron flux (for instance, 
 = 1015

neutrons cm−2 s−1), the average smallest separation between
two neighbouring neutrons propagating in the beam is about
dn−n = (v
−1)1/3. For both thermal and cold neutrons,
dn−n is of the order of 100 Å. For both thermal and cold
neutrons, the beam is not monochromatic so that, in each
case, a spectrum of wavelengths is met: for instance, it
ranged between 2 Å and 9 Å in the experiments in Chen
et al (1992). Since these intervals are smaller than dn−n, one
can reasonably neglect the overlaps between the wave packets
associated to different neutrons in the beam and regard each
confined neutron as propagating independently.

A priori, one could entertain the possibility that one
neutron, propagating initially confined along a certain hollow
capillary channel (denoted by hcc1), could escape, by
transmission through the surrounding clad due to a quantum-
mechanical tunnel effect, to one of the neighbouring parallel
hollow capillary channels. Let d be the radial distance from
the internal surface limiting the hcc1 to some point in its
surrounding clad, so that 0 � d � 5 µm. As estimated
in a previous work (Calvo and Alvarez-Estrada 1986), the
probability for such a tunnel effect is exponentially small for
values of the number of nuclei per cm3 and of the neutron–
nucleus scattering amplitude typical of those in the lead–
silica clad, provided that d � 0.5 µm = dtu (dtu being some
characteristic tunnel effect length). Consequently, since dnhc

is about one order of magnitude larger than dtu, one concludes
that such a tunnel effect is negligible (absence of ‘cross-talk’).
Equivalently, one could simply say that neutrons propagate
confined along any individual hollow capillary channel as if
the latter were surrounded by a clad of infinite width (say, as
if dnhc = ∞), which will simplify the analysis. This will be
the point of view adopted here.

Figure 1. Unbent three-dimensional waveguide (fibre) with a
(small) transverse cross section T . In this, and in figures 2 and 3, O
represents the origin of coordinates, which lies far from the fibre.

3. Unbent fibre: essentials about propagation
modes

Imagine, in three-dimensional space, a straight fibre with
infinite length and vanishing curvature, and a finite transverse
cross section T , in principle, with arbitrary shape (see
figure 1). The z-axis is parallel to (any axis of) the fibre so
that T lies in the (x, y)-plane. Three- and two-dimensional
vectors will be represented by arrows and boldface symbols,
respectively. Thus, the position vector is �x = (x, y, z) =
(x, z). The z-axis and the origin �x = (0, 0, 0) lie outside
the fibre. The confined propagation of neutrons along the
fibre can be modelled through the (z-independent) potential
V (�x) = V (x): V (x) = Vc = 2πh̄2bcρc/mn if x lies inside
the inner part of T (the core, represented by the subscript c),
while V (x) = Vcl = 2πh̄2bclρcl/mn for x outside T (the
infinite outer medium or clad, with subscript cl). Here, h̄
denotes Planck’s constant, mn is the neutron mass, bi is the
average coherent amplitude for the low-energy scattering of
a neutron by an atomic nucleus belonging to i=c or cl and
ρi is the number of nuclei per cm3 in them. For confined
neutron propagation along the fibre to occur, it is necessary
that Vc < Vcl.

We shall deal with a neutron beam (coming, say, from a
nuclear reactor), which, in general, has an energy spectrum
and propagates confined along the fibre, with constant flux
(at least, in some average sense). Let any neutron in the beam
be described by a time(t)-dependent wave functionψ(�x; t)in,
which is a linear superposition of stationary wave functions
ψ(�x;E)in exp(−iEt/h̄), where E(> Vcl) is the total neutron
energy. ψ(�x;E)in satisfies, for any �x inside or outside the
fibre, the time-independent Schrödinger equation:

[
− h̄2

2mn

[
�T +

∂2

∂z2

]
+ V (�x)

]
ψ(�x;E)in = Eψ(�x;E)in

(1)
where �T = ∂2/∂x2 + ∂2/∂y2. Physically, ψ(�x;E)in

should be chosen to be a propagation mode φ(x)α exp(iβαz)
with propagation constant βα (Re βα > 0, Re denoting
the real part). Since there is an energy spectrum
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(Vcl < Emin � E � Emax), one has, for any x:

ψ(�x; t)in =
∑
α

∫ Emax

Emin

dEc(E)αφ(x)α

× exp(iβαz) exp(−iEt/h̄) (2)

where c(E)α is a given amplitude, characterizing that
incoming beam. The description through equation (2) will be
revised later. α denotes a set of additional quantum numbers,
also required in order to specify uniquely (together with either
E or βα) the propagation mode. Equation (1) yields:

[
− h̄2

2mn
�T + V (x)− Vcl

]
φ(x)α = − h̄2

2mn
χ2
αφ(x)α (3)

E = Vcl +
h̄2

2mn
β2
α − h̄2

2mn
χ2
α . (4)

Notice that Reχα > 0. If both bcl and bc are real, then
so are βα and χα: this will be the case for a hollow fibre
with negligible absorption of neutrons by the clad, to be
assumed in this work. There is a finite set of real negative
eigenvalues −χ2

α of equation (3), fully determined by this
equation. Then, for given E, there is only a finite set of
values of βα determined by equation (4) (for the finite set of
allowed values of χ2

α ). φ(x)α are normalized so that:
∫

d2xφ(x)(∗)α φ(x)α′ = δα,α′ (5)

where δα,α′ denotes a Kronecker delta and the integration is
carried out over the whole infinite x-plane. Upon integrating
in equation (5), equation (3) implies:

χ2
α

∫
d2x |φ(x)α|2 +

[
−

∫
d2xφ(x)(∗)α �T φ(x)α

]

= 2mn

h̄2

∫
d2x [−V (x) + Vcl] |φ(x)α|2 .

The second integral in the left-hand-side of the last equation
is never negative (as an integration by parts shows) and
V (x)−Vcl = 0 if x lies outside T . Then, using equation (5),
one gets readily the useful bound:

χα � [4π(bclρcl − bcρc)]
1/2 ≡ χmax. (6)

The fundamental mode corresponds to the largest possible
value of χα(> 0) compatible with the bound in equation (6).
As one proceeds to higher modes, the associated values of
χα(> 0) decrease in magnitude.

The total number of allowed propagation modes in the
actual unbent fibre, namely, the total number of independent
solutions of equation (3) as α varies, can be estimated, in
quasi-classical approximation, as: Npm = 2A(T )(bclρcl −
bcρc), where A(T ) is the area of T . Similarly, the number
of propagation modes having χ2

α in the range 0 � χ2
0 �

χ2
α � χ2

max is estimated to be (also in quasi-classical
approximation) Npm(χ

2
0 ) = (2π)−1A(T )χ2

0 . Then, the
fraction of propagation modes with 0 � χ2

0 � χ2
α � χ2

max
over the total number of them isχ2

0 /χ
2
max (Martin 1972, Berry

and Mount 1972, Calvo and Alvarez-Estrada 1986). It is
not warranted, a priori, that all allowed propagation modes
will be effectively excited. Neutrons, as they enter into
the hollow capillary channel, may find a greater difficulty

to propagate into a mode, the smaller χα is for the latter.
An estimate of the number of propagation modes which do
get excited effectively stands as an interesting open problem.
The set of quantum numbers α over which the summation in
equation (2) runs, corresponds to all modes which effectively
propagate.

For the actual hollow capillary channel (bcρc = 0) and
values of the number of nuclei per cm3 and of the neutron–
nucleus scattering amplitude bcl (>0) (Bacon 1962), typical
of those in the clad, one expects that the right-hand side of
equation (6) ranges from about 10−3 Å to about 10−2 Å. Then,
for typical values of βα ranging from, say, 0.7 Å−1 to 3 Å−1,
χα/βα for the highest modes (say, the fundamental one and
the first few above it) varies from 10−2 to 10−4. On the other
hand, Npm varies between 4.5 × 102 and 4.5 × 104.

In spite of the relatively large number of allowed
propagation modes, and even if the inner diameter of a hollow
capillary channel (dhcc = 6 µm) is about three orders of
magnitudes larger than the average de Broglie wavelength
of a neutron, a quantum-mechanical description for neutrons
propagating confined (after having entered into the fibre from
outside) should be allowed as another possible approach in
principle, instead of disregarding it from the outset, as if it
were an academic undertaking. Thus, for certain effectively
propagating modes (namely, the fundamental one and a
subset of higher modes above it), χα(dhcc/2) may be of order
unity and even larger and, hence, quantum effects may be
important. In fact, for values typical of the actual hollow
capillary channel, equation (6) implies that χαdhcc has an
upper bound which varies between 2.8 and 28.

The reliability of the quantum mechanical description
will also be justified a posteriori, since it will allow the
treatment of bending losses through a method different from
the geometrical optics one presented by Kumakhov and
Komarov (1990). In particular, it will lead to an estimate
of the number of effectively propagating modes.

4. Curved fibre: asymptotic wave function

From now on, it will be supposed that the infinite three-
dimensional fibre is perfectly straight from z = −∞ up to
some finite z = z0 and that it has a large curvature radius
Rcu for z0 < z < +∞ (see figure 2). Rcu will always be
much larger than any neutron wavelength and larger than
dhcc, say, Rcu � 0.1 m (compared with in section 6). For
those values of Rcu (which we shall qualify as ‘large’), all
mathematical operations to be performed will be valid. For
convenience, the whole fibre is taken to lie far from the origin
�x = (0, 0, 0). Let an incoming neutron propagate confined
along the fibre from z = −∞ towards z = z0, so that it
is represented by the propagation mode φ(x)α exp(iβαz),
which fulfils the various conditions treated in section 3. For
z > z0, where the thin waveguide is curved, there will be a
finite probability (actually, increasing, as z increases) for the
neutron to escape towards the infinite clad. The propagation
of the neutron for any �x, as determined by that incoming
φ(x)α exp(iβαz), is described by a (time-independent) wave
function ψ(�x)α , which also fulfils equation (1). The latter
can be transformed, through standard techniques, into the
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Figure 2. Definition of angles and reference axes in the bent three-dimensional fibre: z0, the unbent part of the fibre (z0 > 0). The part of
the fibre above z0 is curved. The axes, Os1 and Os2, which lie in the (x, z)-plane, form the angles ϕ1 and ϕ2, respectively, with the x-axis.
�ϕ = ϕ2 − ϕ1 is the angle defining the bent region, between the axes Os1 and Os2. θ is the angle between the y-axis and the vector �x. The
radius of the curvature Rcu is the distance from the origin O up to the centre of the (small) cross section T of the fibre.

following homogeneous integral equation:

ψ(�x)α = −2mn

h̄2

∫
d3 �x ′G(�x − �x ′)

[
V (�x ′)− Vcl

]
ψ(�x ′)α.

(7)
The integration is extended over the whole region occupied
by the fibre, where V (�x ′) − Vcl is non-vanishing. G is
the standard three-dimensional Green’s function, namely:
[�T + ∂2/∂z2 + k2]G(�x − �x ′) = −δ3(�x − �x ′), with k2 =
2mnh̄

−2(E − Vcl) (δ3(�x − �x ′) being Dirac’s delta function).
One has:

G(�x − �x ′) = 1

4π

exp ik|�x − �x ′|
|�x − �x ′| . (8)

Using the above properties of G(�x − �x ′), it is easy to prove
that the right-hand side of equation (7) fulfils equation (1)
(see, for example, Glauber 1959 and Sears 1989). We accept
that no inhomogeneous term (say, neither φ(x)α exp(iβαz)
nor any plane wave) should appear in the right-hand side of
equation (7), contrary to what happens in standard scattering
problems. This fact appears to be consistent with the
incoming boundary condition, namely, the reduction of
ψ(�x)α to φ(x)α exp(iβαz) at z = −∞, which always ‘sees’
the action of V (�x). The applications of this recipe to
other two- and three-dimensional cases (Calvo and Alvarez-
Estrada 1986, 1987) have led to consistent results. It is
useful to introduce spherical coordinates with respect to
�x = (0, 0, 0) and to the y-axis (instead of the z-axis), so
that �x = |�x|(cosϕ sin θ, cos θ, sin ϕ sin θ). Let |�x|, ϕ and θ

be fixed, so that |�x| � Rcu, ϕ is arbitrary and θ is close to
π/2. Then, one has the following result:

ψ(�x)α � Rcu

|�x| exp i
[
k|�x| + Rcuβα(ϕ + 2−1π)

]

× expβαRcu)α(θ)

2[2πRcuγ1,α(θ)]1/2
Bα(θ). (9)

In equation (9):

Bα(θ) = −2mn

h̄2

∫
d2x′ [V (x′)− Vcl

]
φ(x′)α exp y ′γ1,α(θ)

(10)

)α(θ) = γ1,α(θ)

βα
− 1

2
ln

[
1 + (γ1,α(θ)/βα)

1 − (γ1,α(θ)/βα)

]
(11)

γ1,α(θ) = [
β2
α − h̄−22mn(E − Vcl) sin2 θ

]1/2
(12)

where (x′ = (x ′, y ′)). The proof of equations (9) and (10)
is similar to the one presented for optical waveguides in
Calvo and Alvarez-Estrada (1987), to which we refer for
details and comparisons with other related (but not identical)
approximations by other authors. Since E − Vcl > 0 (say,
βα > χα: see equation (4)), one sees that γ1,α(θ) � χα > 0
and that 1 � γ1,α(θ)/βα . Upon expanding into a power series
in γ1,α(θ)/βα , one sees that )α(θ) < 0 holds.

Let the incoming neutron, propagating confined along
the fibre from z = −∞ towards z = z0, be represented by
the linear superposition given in equation (2). Consequently,
the propagation of the neutron for any �x (in particular, for
z > z0, outside the fibre) is described by:

ψ(�x; t) =
∑
α

∫ Emax

Emin

dEc(E)αψ(�x)α exp(−iEt/h̄) (13)

where ψ(�x)α is the solution of equation (7). Then,
equations (13) and (9) characterize the behaviour of the
neutron wave function for any fixed |�x|, ϕ and θ , such that
|�x| � Rcu, ϕ is arbitrary and θ is close to π/2.

5. Probability fluxes

The quantum-mechanical probability current determined by
a wave function ,(�x; t) (like those in equations (2) or (13)),
is

�J (�x; t) = h̄

mn
Re

[
,(�x; t)∗(−i �∇),(�x; t)

]
. (14)
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First, we shall treat the quantum-mechanical probability
flux Fin of the incoming wave given in equation (2) across
the whole (x, y)-plane, for any z in −∞ < z < z0.
Equation (14) (with ,(�x; t) = ψ(�x; t)in) and equation (5)
yield:

Fin = m−1
n h̄

∑
α

∫ Emax

Emin

dE
∫ Emax

Emin

dE′βα(E)

×c(E)αβα(E′)c(E′)∗α exp
[
i(E′ − E)t/h̄

]
(15)

which is not constant, but time-dependent. In order to
have neutron fluxes which are both non-monochromatic and
constant (at least, in some average sense), we shall describe
any neutron by statistical mixtures (Messiah 1961) of wave
functions ,(�x; t) like those in equations (2) and (13). Here,
such statistical mixtures will be characterized by statistical
averages (〈 〉) of physical quantities bilinear in ,(�x; t) and
,(�x; t)∗, to be evaluated using

〈c(E)αc(E′)∗α′ 〉 = δ(E − E′)e(E)α,α′ (16)

where δ(E−E′) denotes Dirac delta functions and e(E)α,α′ is
some spectral density, characterizing the beam. Probability
fluxes will be understood and evaluated as statistical averages.
This statistical description agrees conceptually with typical
averaging procedures over the source energy spectrum and
with other descriptions (say, Maxwellian distributions),
previously employed for free thermal neutrons produced in
nuclear reactors (see, for instance, Schaerpf and Eichler
1973). That description of a neutron also plays a role entirely
analogous to that of partially coherent light (compare with
Born and Wolf 1999). Then, equations (15) and (16) yield
the incoming probability flux as:

〈Fin〉 = h̄

mn

∑
α

∫ Emax

Emin

dEβαe(E)α,α. (17)

Next, we shall evaluate 〈 �J (�x; t)〉 = 〈 �j(�x)〉 when ,(�x; t)
is given in equation (13), for |�x| � Rcu, arbitrary ϕ and θ

close to π/2. Upon expressing �∇ in spherical coordinates
and retaining only the leading contribution, one finds:

〈 �j(�x)〉 � �x
|�x|

∣∣∣〈 �j(�x)〉
∣∣∣ (18)

∣∣∣〈 �j(�x)〉
∣∣∣ = Rcu

|�x|2
∑
α,α′

∫ Emax

Emin

dE

× exp [Rcu(βα)α(θ) + βα′)α′(θ))]Dα,α′(θ) (19)

Dα,α′(θ) = kh̄

8πmn

Re[e(E)α,α′Bα′(θ)(∗)Bα(θ)]

[γ1,α(θ)γ1,α′(θ)]1/2
(20)

where 〈 �j(�x)〉 is essentially concentrated in the following solid
angle2 about (cosϕ, 0, sin ϕ). 2 is determined by the angles
π/2−θ0 < θ < π/2+θ0 andϕ1 < ϕ < ϕ2, where θ0 is small.
ϕ1 and ϕ2 are, respectively, the values of ϕ at which the fibre
starts to bend (which corresponds to z = z0) and terminates—
a large value of z, as Rcu is large compared to dhcc (see figure
2). We shall evaluate the probability flux (〈Floss〉) of 〈 �j(�x)〉
across the finite surface 3, determined by the intersection of
the spherical surface of large radius |�x| � Rcu and centre at
�x = (0, 0, 0) and the solid angle 2. 〈Floss〉, which describes

how the neutron could escape far outside the curved fibre,
reads (d2 = sin θdθdϕ):

〈Floss〉 = |�x|2
∫

d2
�x

|�x| 〈
�j(�x)〉 � |�x|2C̃

∫ ϕ2

ϕ1

dϕ (21)

C̃ =
∫ π/2+θ0

π/2−θ0

dθ sin θ
∣∣∣〈 �j(�x)〉

∣∣∣ . (22)

The integral over d2 in equation (21) has been extended
over the solid angle 2. Notice that |〈 �j(�x)〉| in equation (19)
is independent of ϕ and so is C̃. The probability flux lost per
unit length of the curved fibre is 〈Floss〉/[Rcu(ϕ2 − ϕ1)]. The
average bending loss coefficient (with dimension (length)−1)
is:

τav = 〈Floss〉
Rcu(ϕ2 − ϕ1)〈Fin〉 = |�x|2C̃

Rcu〈Fin〉 . (23)

We shall give the leading contribution to τav for suitably large
Rcu. Details of the computation appear in the appendix. One
finds (with γ1,α(π/2) = χα):

τav � 1

R
1/2
cu Fin

∑
α,α′

∫ Emax

Emin

dE

× exp [Rcu(βα)α(π/2) + βα′)α′(π/2))]

× π1/2

[γ1,α(π/2) + γ1,α′(π/2)]1/2
Dα,α′(π/2). (24)

We now consider the transverse cross section of the fibre
at z and let 〈F(z)〉 be the probability flux of 〈 �j(�x)〉 across
that cross section (see the appendix and figure 3). One has
〈F(z0)〉 � 〈Fin〉. As shown also in the appendix, one gets
the approximate formula for z � z0:

〈F(z)〉 � 〈Fin〉 exp[−τav(z − z0)]. (25)

Equation (25) describes the decrease of the probability flux
of the confined neutron propagating along the curved fibre,
due to curvature, and it also justifies the physical meaning
of τav. As the curved fibre is not infinite but it ends at some
(finite, but large) z1 > z0, so that z1 − z0 = l can be regarded
as its length, then ϒ = 〈F(z)〉/〈Fin〉 � exp[−τavl] can be
interpreted as its transmission coefficient.

The case with N (more or less) parallel hollow capillary
channels (with N � 1), which occurs in reality with the
polycapillary fibre (so that N = Npf ) and with bundles
thereof, can be treated similarly, and leads, approximately,
to the same τav and ϒ . In fact: (i) the incoming flux can
be taken as N〈Fin〉 and the radiated probability flux due to
bending can be approximated as N〈Floss〉 (upon neglecting,
as a first approximation, the possibility that the probability
radiated by one hollow capillary channel could be trapped by
another one and, then, propagate confined along the second
hollow capillary channel); (ii) equation (25) is also multiplied
by N .

6. The transmission coefficient of the curved fibre
as a function of Rcu

6.1. An approximate two-parameter formula for Υ

We shall study how τav and ϒ vary with Rcu. Notice that
)α(π/2) = (χα/βα)−2−1 ln[(1+(χα/βα))(1−(χα/βα))

−1].
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Figure 3. The infinitesimal solid angle ω and the surface σ are displayed. The solid angle ω is limited laterally by the surface σ(ω). The
surface, in turn, is formed by four (triangle-like) surfaces σ(ω; 1), σ(ω; 2), σ(ω; 3) and σ(ω; 4). Notice that neither σ(ω) nor σ(ω; i),
i = 1, 2, 3, 4, are displayed for simplicity. The vector �x starts at O and ends at the surface σ (|�x| � Rcu).

For values χα/βα � 10−2 (which always holds in the cases
studied in this work), one can approximate )α(π/2) �
−3−1[χα/βα]3.

As Rcu becomes very large, the behaviour of τav

is dominated by exp[−bRcu], b being the minimum of
(2/3)βα[χα/βα]3(> 0) as βα and χα vary (for the minimum,
one sets α = α′). Recall that βα is determined by
equation (4) in terms of χα (which takes on a finite set of
values, determined by equation (3)) and of E (which varies
in Vcl < Emin < E < Emax). Then, the minimum b is met
when E = Emax and χα ≡ χ0 are the smallest in the set of all
χα which are excited effectively in the unbent part of the fibre:
hence, the correspondingβα ≡ β0 is the maximum. Thus, we
expect that all modes such thatχ0 � χα � χmax do get excited
effectively. Upon recalling section 3, the number of modes
which propagate effectively is Npm(χ

2
0 ) = (2π)−1A(T )χ2

0
and the fraction of such modes over the total number of them
is χ2

0 /χ
2
max.

There is some Rcu = Rcu,0 such that, for Rcu <

Rcu,0, the factors exp[Rcu(βα)α(π/2)+βα′)α′(π/2))] cease
to determine the behaviour of τav, since the values of
Bα′(θ)(∗)Bα(π/2)—and those for the other factors—become
more important, for any effectively excited mode α (see the
appendix). Then, for Rcu < Rcu,0, the behaviour of τav is
determined by the overall factor R−1/2

cu .
From the above analysis, it may be reasonable to

approximate τav by the following formula containing two
parameters, a and b:

τav � a exp[−bRcu]

R
1/2
cu

. (26)

The parameter b = (2/3)β0[χ0/β0]3 (>0) governs the
behaviour of τav for very large Rcu. It is not so easy to
give an equally precise formula for a. The latter describes
the overall influence of the fraction in the right-hand side

of equation (24) (×R1/2
cu ) in Rcu � Rcu,0: the summations

over α, α′ and the integration over E are extended over some
set or subset of effectively propagating modes, which is not
easy to specify in a more precise way. In spite of this,
the overall parameterization in terms of a seems physically
meaningful. Thus, we arrive at the announced approximate
formula displaying how ϒ depends on Rcu:

ϒ � exp[−al exp[−bRcu]/R1/2
cu ]. (27)

Let Rcu become very large. Then, ϒ tends quickly towards
unity. As Rcu tends to zero, ϒ goes quickly to zero.

6.2. Application of the approximate formula to the
measured data

The behaviour in equation (27), as Rcu varies, appears to
be consistent with the data in Chen et al (1992) for a
suitable adjustment of b and a fit of al. More specifically,
equation (27) with either al � 0.95 m1/2 and b � 0.51
m−1 or al � 1 m1/2 and b � 0.55 m−1 is approximately
consistent with figure 3 in Chen et al (1992) for, say, 0.1 m
< Rcu < 13 m. Figure 4 displays our plot for one of those
choices of parameters. The value of b has not been predicted,
but its order of magnitude seems physically reasonable and
essentially consistent with the arguments in the previous
subsection (and with estimates of (2/3)βα[χα/βα]3), for
typical average values of βα about 1 Å−1 and of χα/βα
between 10−3 and 10−4). For b � 0.51 m−1 and a maximum
propagation constant for the effectively propagating modes
(namely, β0) about 3 Å−1, one gets χ0/β0 � 2.9×10−4. The
total number of effectively excited modes is, then, estimated
to be: Npm(χ

2
0 ) � 340.

As the right-hand side of equation (6) ranges from about
10−3 Å to about 10−2 Å, so thatNpm varies between 4.5×102

and 4.5 × 104, one finds that the ratio Npm(χ
2
0 )/Npm varies
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Figure 4. Plot of ϒ (equation (27)) as a function of Rcu (in
metres), for al � 0.95 m1/2 and b � 0.51 m−1. For comparison
and in order to show the approximate consistency of the former,
the experimental data (for a 167 mm fibre) taken from figure 3 in
Chen et al (1992) are also displayed (the point corresponding to
8.5 m < Rcu < 9 m is a reasonable interpolation of their data).

from 0.8 to 8 × 10−3. The behaviour of the data in figure 3
in Chen et al (1992) changes at Rcu,0 � 3 m. From the
analysis in the appendix, we use, in a semi-quantitative sense,
Rcu,0 � (3λα/2)(βα/χα)2dhcc � 3 m with λα < 1 (but
not too small), for some average α. Then, one estimates
χα/βα � 10−3, which is essentially consistent with the above
results.

A better assessment of a would require not only further
information about e(E)α,α′ , but also about the effectively
excited modes and a more refined evaluation ofBα(π/2) and,
so, it lies outside the scope of this work. We have not tried to
get either the best fit or to set proper errors for the approximate
values of al and b. Neither have we tried to assess the
sensitivity of our approximate fits to slight variations of l
since, as Chen et al (1992) remark, their data do not display
variations as they increase the length of fibre l from 167 mm
to 200 mm.

7. Conclusions

The motivation for this work has been triggered by the
experiments, previously cited, in which slow neutrons
have been guided along thin waveguides (hollow capillary
channels). The quantum-mechanical treatment of the
confined neutron propagation, proposed earlier, has been
justified further and extended so as to provide a three-
dimensional analysis of curvature losses.

The neutron is represented, in general, by a statistical
mixture of wave functions, so as to describe a non-
monochromatic beam with constant total flux. Then, our
definition of the average bending loss coefficient τav is more
general than the ones employed in Snyder and Love (1983),
or Calvo and Alvarez-Estrada (1987), since all those authors
restricted to only one propagation mode. The behaviour of
our τav, as the curvature radius Rcu varies, is fully consistent
with that for the analogous coefficient for a bent optical fibre
when only one propagation mode is considered (compared,
for instance, with Snyder and Love 1983, Calvo and Alvarez-
Estrada 1987). For other related studies, also for optical
fibres, see Marcuse (1972, 1976) and references therein. If

the neutron would have, approximately, a definite energy E

(instead of an energy spectrum, still with constant flux), then,
all our results are also valid, provided that one omits

∫ Emax

Emin
dE,

and replaces e(E)α,α′ by c(E)αc(E)∗α′ .
We stress that the quantum-mechanical formulation has

yielded an approximate explicit formula for the transmission
coefficient ϒ of the curved fibre as a function of Rcu, for
0 < Rcu < +∞ and, thus, it provides an alternative to the
geometric optics treatment employed in Chen et al (1992).

The approximate formula for ϒ , with some adequate
adjustment for the parameterb (consistent with the theoretical
analysis) and a fit of the other parameter, is consistent with
the measured experimental data.

The behaviour of ϒ at large Rcu allows to estimate
(through b) the number of effectively propagating modes.
Such a number is not small, but it is less than the total number
of allowed modes.
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Appendix

Proof of equation (24). We shall sketch the approximate
evaluation of the integral over θ in C̃. The largest contribution
to it comes from the factor exp[Rcu(βα)α(θ) + βα′)α′(θ))],
since Rcu is large. The following steps will be performed
successively in C̃:

(a) we set θ = π/2 in all factors, except in
exp[Rcu(βα)α(θ) + βα′)α′(θ))];

(b) we extend the integration over θ from θ = 0 up to θ = π ;
(c) we evaluate the resulting integral by employing

Laplace’s method (see, for instance, Snyder and Love
1983). The fact that Rcu is large justifies these
approximations. The result appears in equation (24).

Proof of equation (25). We consider an infinitesimal solid
angle ω determined by the angles π/2 − θ0 < θ < π/2 + θ0

and ϕ, ϕ + dϕ, dϕ being small. Let σ be the intersection of
ω and the spherical surface of large radius |�x| (� Rcu), the
centre of which lies at �x = (0, 0, 0) (see figure 3). Clearly,
σ is a small (or infinitesimal) part of the finite surface 3

considered before, when evaluating Floss. We consider the
closed surface formed by σ and the surface σ(ω)which limits
laterally the solid angle ω, as |�x| varies from 0 up to the large
radius which determines the intersection of ω with σ . In
turn, σ(ω) is formed by the four lateral surfaces σ(ω; i),
i = 1, 2, 3, 4, corresponding, respectively, to the constant
values ϕ, θ = π/2 − θ0, ϕ + dϕ and θ = π/2 + θ0. Notice
that, for large Rcu, ϕ and ϕ + dϕ correspond, approximately,
to the transverse cross sections of the fibre at z and z + dz,
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respectively. Let 〈F(z)〉 be the probability flux of 〈j̄ (x̄)〉
acrossσ(ω; 1). Since the statistical average of the probability
associated to the actual statistical mixture of wave functions
is time-independent, 〈 �j(�x)〉 is conserved ( �∇ · 〈 �j(�x)〉 = 0).
Then, total probability flux conservation applied to the closed
surface formed by σ and σ(ω) yields:

〈F(z + dz)〉 − 〈F(z)〉 � − 〈Floss〉
Rcu(ϕ2 − ϕ1)

dz = −〈Fin〉τavdz.

(A.1)
Notice that 〈F(z + dz)〉 and 〈F(z)〉 are, respectively, the
probability fluxes across σ(ω; 3) and σ(ω; 1), while the
fluxes across σ(ω; 2) and σ(ω; 4) have not been written
in equation (A.1) (as they are negligible, by virtue of
equation (16)). By using 〈F(z0)〉 � 〈Fin〉, and integrating
equation (A.1) approximately for z � z0, one gets
equation (25).

An estimate of Bα(π/2). Let us turn to Bα(π/2)
(equation (10)), with γ1,α(π/2) replaced by the χα
corresponding to the effectively propagating modes. Using
the factor exp y ′χα , one estimates that the main contribution
toBα(π/2) comes from a region near x′ = (x ′, dhcc/2), (as x ′

varies inside the allowed integration region in equation (10)).
The size of that region appears to decrease as χα decreases
towards χ0, by virtue of the angular dependences of the
propagation modes. A rather crude estimate would yield
that Bα(π/2) is proportional to exp[2−1λαχαdhcc], λα < 1.
The magnitude of λα is largest for the fundamental mode and
decreases as one proceeds to higher excited modes . This
estimate appears to be roughly consistent with the results
of some detailed related calculations in the two-dimensional
case (see Calvo and Alvarez-Estrada 1986). Although the
behaviour of τav for very large Rcu is not influenced by the
factorBα′(π/2)(∗)Bα(π/2), the latter does play an increasing
role in τav as Rcu decreases. The dominant contribution
to Bα(π/2) expRcuβα)α(π/2) is roughly proportional to
q ≡ expχα[2−1dhccλα − (1/3)[χα/βα]2Rcu]. Notice
that, for given dhcc and χα , the exponent of q changes
sign, from positive to negative, when Rcu decreases below

Rcu,0,α = (3λα/2)(βα/χα)2dhcc. The last equation is difficult
to apply, in practice, in a precise way (as it would hold for any
or most α characterizing an effectively propagating mode)
but it seems to be some sort of analogue of the condition
Rcu,0θ

2
c (2dhcc)

−1 � 1, θc being the critical angle, derived
in the framework of geometrical optics (see equation (23)
in Kumakhov and Komarov 1990). The above discussion
suggests that there is someRcu = Rcu,0 (Rcu,0 being some sort
of average of theRcu,0,α , as α runs over the effectively excited
modes) such that, for Rcu < Rcu,0, exp[Rcu(βα)α(π/2) +
βα′)α′(π/2))] is overcome by Bα′(π/2)(∗)Bα(π/2).
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