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I. INTRODUCTION

Entanglement plays a central role in many-body quantum
systems as it can be used to understand the structure of the
quantum states that appear in nature. In systems governed
by short-range interactions, low energy states possess very
little entanglement. In contrast, states evolved after quenches
display large amounts of entanglement. These different be-
haviors, which are supported by abundant numerical evidence,
have been recently established on solid grounds in one spatial
dimension.1 In particular, ground states of gapped (critical)
Hamiltonians fulfill an area law, in which the entanglement
entropy of any connected region is bounded by a constant
(diverges at most like the logarithm of the number of spins
in that region).2,3 These results immediately imply that the
ground state of a spin chain can be well approximated by
matrix product states (MPS),4,5 and thus such family of states
captures the physics in one dimension.6–8

Apart from the cases mentioned above, there exists practi-
cally no other physical situation where the existence of large or
small amounts of entanglement can be rigorously established.
In this paper we identify two scenarios in one spatial dimension
that can be connected to the presence of entanglement. We
will restrict ourselves to systems described by MPS, and thus
our results do not apply to general situations. Nevertheless,
given the fact that such family of states approximates well
one-dimensional systems, we conjecture that our results are
true in more general settings.

The first scenario corresponds to the presence of fraction-
alization, a striking phenomenon that arises whenever certain
observables, which are expected to take integer expectation
values, appear to be fractional-valued instead. The most promi-
nent example of such behavior is the celebrated fractional
quantum Hall effect.9–11 In recent years this phenomenon
has been extensively studied in many systems, including
spin chains,12,13 where the magnetization per particle is
fractionalized as a function of the external magnetic field.
In the first part of this paper we establish a lower bound for the
entanglement entropy of any (connected and sufficiently large)
region of a quantum spin chain in terms of the fractionalized
magnetization.

The second scenario corresponds to a situation where the
area law does not apply, namely when studying a spin chain
with long-range interactions. Intuitively, one can expect that
such interactions give rise to large amounts of entanglement

since any specific region will be correlated to any other part
of the chain. However, it is very subtle to transform this
intuitive idea into a rigorous result. The main reason is that the
ground state of the Hamiltonian containing long-range inter-
actions may coincide with (or be very similar to) the ground
state of another Hamiltonian containing short-range ones and,
therefore, fulfilling the area law. For instance, if we have an
Ising model with decaying interactions (in the absence of
a transverse magnetic field), the ground state will be still a
product state, which in turn is also the ground state of the Ising
model with nearest-neighbor couplings. Such state does not
display any entanglement at all. Hence we can only expect to
have large amounts of entanglement whenever such examples
do not exist; that is, whenever our state is (in some sense) not
close to any other state corresponding to the ground state of
a Hamiltonian with short-range interactions. In fact, we will
prove a theorem that formalizes this statement in the second
part of this paper.

In order to rigorously prove our statements, we will have to
further develop the theory of MPS, extending previous results
presented in Refs. 4,14, and 15, and deriving new ones. Some
of them are very intuitive, although the rigorous proofs are
somewhat complicated. We will present in the main text of
this paper the main steps and their intuitive interpretation, and
leave for the Appendices the technical details.

II. MATRIX PRODUCT STATES

This family of states describes a chain of N spins J , with
d = 2J + 1, and can be written as

|ψ〉 =
d∑

i1,...,iN=1

tr
[
Ai1 [1] · · ·AiN [N ]

]|i1 · · · iN 〉. (1)

Here Ai[n] are D × D matrices associated with the spin in the
nth site of the chain. Our results, unless specifically mentioned,
concern translationally invariant states, where Ai[n] = Ai

independently of the site n. We will call the corresponding
state |ψA〉.

Let us recall some known properties of such states (see, for
instance, Refs. 4 and 5). MPS can be classified into injective
and noninjective. An MPS is called injective if there exists an
L such that for regions of size L or larger, different boundary
conditions give rise to different states; that is, the map �(X) =∑

i1,...,iL
tr[XAi1 · · · AiL]|i1 · · · iL〉 is injective. This is known
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to be equivalent to the fact that, after a suitable transformation
of the form Ai �→ XAiX

−1, one obtains a canonical form
fulfilling the following conditions (that we will always assume
for injective MPS): (i)

∑
i AiA

†
i = 1, (ii)

∑
i A

†
i �AAi = �A

for a diagonal positive full rank matrix �A, and (iii) the cp
map EA defined as

EA(X) =
∑

i

AiXA
†
i (2)

has 1 as its unique nondegenerate eigenvalue of maximal
modulus. This canonical form is unique in the following sense:
If A and B are matrices giving rise to different canonical
representations of the same MPS, then they must be related by
a unitary U according to eiθAi = UBiU

†. Noninjective MPS
also possess a canonical form where the matrices are block
diagonal and the cp map associated to each block verifies
conditions (i), (ii), and (iii) above, except for the existence of
other eigenvalues of modulus 1.

III. LARGE FRACTIONAL MAGNETIZATION IMPLIES
LARGE ENTANGLEMENT

Fractional magnetization in a spin chain occurs whenever
we have U (1) symmetry (generated in this case by an operator
Jz), and the expectation value of the generator m = 〈Jz〉/N,

the magnetization per particle, fulfills that J − m = q/p,
where p and q are coprime. When we change some external
parameter, such as a magnetic field, the value of m generally
changes in discrete steps, giving rise to typical plateaus in the
magnetization. Our aim is to show that whenever a transla-
tionally and U (1) invariant MPS displays this phenomenon,
the entanglement entropy of any sufficiently large region is
greater than log(p). That is, the value of p imposes some
lower bound on the entanglement present in the system. We
will start out with a trivial example that will help us build an
intuition about this statement, and then we will generalize this
claim to arbitrary states.

Let us consider J = 1/2, any two numbers q, p coprime,
and construct a state of N = np (n integer) spins as follows.
We consider first a p-particle state of the form |a〉 = |↑ ↑
· · · ↑↓↓ · · · ↓〉, where q is the number of spins down. Then,
we take n = N/p copies of such state, and build an equal
superposition of the p possible different translations of |a〉⊗n,

|ψ〉 = 1√
p

p−1∑
m=0

τm|a〉⊗n, (3)

where τ is the translation operator. This state is translationally
invariant, has U (1) symmetry generated by Jz = ∑

sz
n, where

sz is the single-spin operator 2sz = |↑〉〈↑| − |↓〉〈↓|, that is
Jz|ψ〉 = N (1/2 − q/p)|ψ〉, and thus exhibits fractional mag-
netization. Following the prescriptions of Oshikawa et al.,12

this example contains “periodic components” in order to
display such a phenomenon. As one can see by simple
inspection, if we take any region A of size L = kp, with
k ∈ {1, . . . ,n}, the reduced density operator can be written as

ρL = 1

p

p−1∑
m=0

|ϕm〉〈ϕm|, (4)

where ϕm are mutually orthogonal. Thus, the entropy of ρL

(and, consequently, the entanglement entropy) between the
region A and the rest is log(p). This toy model presenting
such entropy is connected to the fact that, in this case, fractional
magnetization arises because the ground state is a linear super-
position of p-particle states which are both locally orthogonal
(i.e., fully distinguishable) and related through a translation.

In what follows, we will consider the richer family of MPS
in order to prove a related result. Note that the previous toy
example is contained in the family of MPS just by considering
the matrices

A↓ =
q∑

i=1

|i〉〈i + 1|, A↑ =
p∑

i=q+1

|i〉〈i + 1|. (5)

However, general cases of MPS possess several difficulties. In
particular, (i) finding a characterization of all MPS displaying
fractional magnetization and (ii) the fact that, even if an MPS
is a superposition of states related by a translation, nothing
ensures that the reduced states will be sums of few pure and
mutually orthogonal states. In any case, we are able to prove
the following theorem.

Theorem 1. Let |ψ〉 be a translational and U (1) invariant
MPS of spin J , with magnetization per particle m and
verifying J − m = q

p
(p and q coprime). Then there exists a

constant γ ∈ N such that the entropy of the reduced density
matrix of any region of size L = kγp (∀k ∈ N) verifies
S(ρL) � log(p), up to a exponentially small correction in
N − L and in k.

In order to prove this, we proceed as follows.
Proof. Let |ψ〉 be an MPS, which is translational and U (1)

invariant. We also impose that this MPS has spin J and
magnetization per particle m, verifying J − m = q

p
(p and

q coprime) and consider its canonical form. If it has a single
block, due to Lemma 8 in Appendix A, it must be γp periodic,
where γ ∈ N. This means that all the eigenvalues of magnitude
one corresponding to the cp map EA are the γp roots of unit.
Consequently, if we block γp spins, then we can write the new
matrices Ai as block diagonal, with each block being injective
and different (see Lemma 5 in Appendix A). We have now
that the state |ψ〉 can be written as linear combination (with
equal coefficients) of γp different injective MPS, each of them
being a translation of each other. In Lemma 3 of Appendix A
we show that different injective MPS are orthogonal in the
thermodynamic limit. Let L = kγp (k ∈ N), using Jensen’s
inequality we have that S(ρL) � − log[tr(ρ2

L)], which by
Lemma 4 in Appendix A implies S(ρL) � log(γp) � log(p),
up to an exponentially small correction in N − L and k, as in
the example proposed above.

If the MPS has many blocks in its canonical form, we will
show that one can treat each of these blocks as in the single
block case, obtaining an extension of the last result. Lemma 8
gives us γ ∈ N such that all the blocks of the canonical form of
|ψ〉 have period γp. Let L = kγp, where k ∈ N. We observe
that the reduced density operator of a region comprising L

sites verifies

ρL = ⊕n
i=1μiρi, (6)

up to a correction exponentially small in N − L and k (see
Lemma 4 in Appendix A). The ρi’s are the reduced density
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matrices corresponding to single blocks, where repeated
blocks are simply reflected in the μi’s. Using the single block
case, we can ensure again that S(ρi) � log(p) for all i. It
is clear from (6) and the subaditivity of the entropy that
S(ρL) � log(p) up to another exponentially small correction
in N − L and k, yielding the desired result. �

To prove the crucial Lemma 8, it will be enough to consider
the characterization of symmetries for injective MPS,14 as
well as an extension of the Lieb-Schutz-Mattis theorem for
U (1) symmetry which is explained in Lemma 6. The first14

will allow us to assert that all injective MPS corresponding
to blocks must have the same symmetry and the same
magnetization m. The later, that all these blocks should have
a period multiple of p. Moreover, Lemma 5 in Appendix
A ensures that states corresponding to different blocks are
necessarily different.

IV. LARGE INTERACTION LENGTH IMPLIES
LARGE ENTANGLEMENT

Now we turn to the other situation where one can prove
the appearance of entanglement. For that, let us consider
again a translationally invariant MPS |ψA〉 which is not the
ground state of any short-range (gapped and frustration-free)
Hamiltonian. Furthermore, let us assume that it is also far
away (as specified below) from any other state with this
property for any given interaction length. We will show that,
as a consequence, its entanglement entropy will be large and,
indeed, will scale with the range of the interaction.

In fact, if we denote by ρL
A the reduced density operator of

|ψ〉 for a (connected) region containing L spins, we can prove
the following theorem.

Theorem 2. Let |ψA〉 be an MPS such that every state |ψ̃〉
which is the unique ground state of a gapped frustration-free
Hamiltonian with interaction length L verifies ‖ρL

A − ρ̃L‖1 �
ε. Then, for sufficiently large regions R, we have that the
α-Renyi entropy Sα(ρR

A ) � aL + b log ε + c for α � 1
6 and

where a,b,c are constants depending only on the local physical
dimension d of |ψA〉.

This claim can be proved by contradiction. We will suppose
that for every connected region and for α � 1

6 we have that
the α-Renyi entropy is upper bounded by an expression of the
form aL + b log ε + c for α � 1

6 , where a,b,c are constants
depending on the physical dimension of |ψA〉. It will be enough
to prove that this implies the existence of a state, the unique
ground state of a gapped frustration-free Hamiltonian with
interaction length L, such that ‖ρL

A − ρ̃L‖1 < ε.

The hypothesis on Sα being small implies that we can find
another MPS with a sufficiently small bond dimension D̃ (in
particular, D̃ � d (L−1)/2) that is close enough to the original
one. In order to do this, we will rely on Lemma 216 and on a
new bound for reducing the bond dimension of an MPS. More
precisely, this bound will be of the form

∥∥ρL
A − ρL

Ã

∥∥
1 � 2

√
2dL/2

√
Lδ1/4 + (2L + 3)δ,

where ρL
Ã

will be the reduced density matrix which can be
constructed from ρL

A by substituting the Kraus operators Ai

by PAiP and � = P�P, where P = ∑D̃
i1

|i〉〈i|. It will be
explained in further detail in Appendix B.

Now, arbitrarily close to the MPS associated to the reduced
density matrix ρL

Ã
, there exists another which is the unique

ground state of a Hamiltonian with gap and interaction
length L. Taking into account that the interaction length is
closely related to the bond dimension at which the MPS
reaches injectivity, this will be deduced from proving that all
MPS (except for a set with measure zero) reach injectivity
fast enough. Standard algebraic geometry, as explained in
Lemma 11 of Appendix C and Refs. 17 and 18, reduces this
problem to finding the existence of a single MPS displaying
this property. The existence of such an example can be
obtained using quantum expanders, as explained also in
Appendix C.

A more detailed proof can be given as follows.
Proof. Let us call λi the ordered eigenvalues of ρR

A, which
can be taken as close as wanted to those of � ⊗ � by enlarging
region R, using Lemma 2.16 In this case, it is not difficult
to see that if we call μi the ordered elements of �, then∑∞

i=D̃+1 μi �
∑∞

i=D̃+1 λi =: δ.
Suppose that for α = 1

6 and for all R we can upper bound
the α-Renyi entropy by

Sα

(
ρR

A

)
� 4

5
log ε + 1

10
(L log d − log L) − log

d

4
. (7)

In Appendix C we show that we can always construct a
state that we shall call |ψ̃〉 of the form

|ψ̃〉 =
∑

i1, . . . ,iL

iL+1, . . . ,iN

tr
(
Ãi1 · · · ÃiLBiL+1CiL+2 · · · CiN

)|i1 · · · iN 〉,

(8)

where Ãi,Bj ,Ck ∈ MD̃×D̃, Ãi = PAiP (Ai being the Kraus
operators defining the original MPS), with bond dimension
D̃ � d (L−1)/2 and such that the fixed point for the associ-
ated channel is �̃ = P�P, where we are considering that
P = ∑D̃

i |i〉〈i|.
In Appendix C we also prove that all states of this form

(except a set of measure zero) reach injectivity in L − 1 sites.
Therefore, the one we have constructed in (8) is the unique
ground state of a frustration-free Hamiltonian with interaction
length L.4,5 Using a straightforward adaptation of Ref. 5, this
Hamiltonian is also gapped. Even though this state is not
exactly translational invariant, it verifies that its normalized
reduced density matrix for particles 1 · · · L is of the form

ρL
Ã

=
∑

i1, . . . ,iL

j1, . . . ,jL

⎛
⎝∑

α,β

〈α|[Ãi1 · · · ÃiL�̃Ã
†
jL

· · · Ã†
j1

]|β〉
⎞
⎠

up to a exponentially small correction (see Appendix D).
This will allow us to use a bound, which is proved in

Appendix B, which states that∥∥ρL
A − ρL

Ã

∥∥
1 � 2

√
2dL/2

√
Lδ1/4 + (2L + 3)δ

� 4
√

2dL/2
√

Lδ1/4 =: ε′,
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since the first term in the sum is clearly larger than the second.
It only remains to show that ε′ � ε, or equivalently, that δ �

ε4

210d2L
√

L
. Since we have taken R large enough, then up to a

exponentially small correction in R, we can state that

log(δ) � 1 − α

α

[
Sα

(
ρR

A

) − log
D̃

1 − α

]
.

Using this and the fact that that D̃ � d (L−2)/2, it is enough
to prove

Sα

(
ρR

A

)
� 4α

1 − α
log ε + log d

2

(
1 − 4α

1 − α

)
L

− α

(1 − α)

(
10 + 1

2
log L

)
− log(1 − α) − log d

= 4

5
log ε + 1

10
(L log d − log L) − log

5

6
− log

d

4
,

where, in the last step, we have set α = 1
6 . This is given by

hypothesis in Eq. (7).19 Therefore, there exists a state |ψ̃〉
which is the unique ground state of a gapped frustration-free
Hamiltonian with interaction length L, such that ‖ρL

A −
ρ̃L‖1 < ε, as we wanted to prove. �

V. CONCLUSION

In this work we have shown how MPS are powerful
enough to provide formal proofs of certain believed statements
on strongly correlated spin systems that were lacking a
mathematical treatment. In particular, we have stated and
proved that, for the state of a quantum spin chain, either a
large fractionalization in the magnetization or the impossibility
of being well approximated by the ground state of a local
Hamiltonian demands large entanglement. Moreover, since
MPS seem to be the right representation for the low energy
sector of 1D systems, one may postulate the results being true
in full generality.
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APPENDIX A: TECHNICAL LEMMAS FOR THE PROOF
OF THEOREM 1

Our first aim is to state and prove a couple of lemmas
formalizing the claim “for injective MPS, different means
orthogonal.”

Lemma 3 Given two injective MPS, |ψA〉 and |ψB〉, then
‖|ψA〉‖,‖|ψB〉‖ = 1 up to an exponentially (in N ) small
correction. Moreover, either both are equal for all N , or
trN−L|ψA〉〈ψB | = 0 up to an exponentially (in N − L) small
correction. In particular, |〈ψA|ψB〉| = 0 up to an exponentially
(in N ) small correction.

Proof. It is easy to see that 〈ψB |ψA〉 = tr[EN
A,B], where

EA,B = ∑
i Ai ⊗ B̄i . Moreover, it is clear that the eigenvalues

of EA,B are the same as those of the map EA,B(X) =∑
i AiXB

†
i , which gives ‖|ψA〉‖,‖|ψB〉‖ = 1 up to a expo-

nentially small correction. To finish, it is enough to see that
all eigenvalues λ of EA,B verify that |λ| < 1. We will use the
conditions verified by the canonical form of an injective MPS,
that is, (i)

∑
i AiA

†
i = 1, (ii)

∑
i A

†
i �AAi = �A for a diagonal

positive full rank matrix �A, and (iii) the cp mapEA defined as

EA(X) =
∑

i

AiXA
†
i (A1)

has 1 as its unique nondegenerate eigenvalue of maximal
modulus.

Let us take X such that
∑

i AiXB
†
i = λX, using (i) for A

and (ii) for B we get

|λ||tr[X�BX†]| =
∣∣∣∣∣
∑

i

tr[AiXB
†
i �BX†]

∣∣∣∣∣ �
[∑

i

tr[XB
†
i �BBiX

†]

]1/2 [∑
i

tr[A†
i X�BX†Ai]

]1/2

= |tr[X�BX†]|, (A2)

where we have used the Cauchy-Schwarz inequality and
tr[X�BX†] > 0. So, if |λ| � 1, we must have an equality
and, therefore, α�

1/2
B X†Ai = �

1/2
B BiX

†. Multiplying by the
adjoint expression, summing in i, taking traces and using (i)
and (ii) again we get that |α| = 1 and, hence, α = eiθ . Finally,
since �B is invertible, we get

∑
i BiX

†XB
†
i = X†X, which,

by (iii), leads to X†X = 1 and implies that eiθAi = XBiX
†.

This means that |ψA〉 and |ψB〉 are equal up to a global phase
for all N . �

A similar proof gives the following.
Lemma 4. Given an MPS of the form |ψ〉 = ∑n

r=1 λr |ψr〉
such that the |ψr〉 are different injective MPS, then tr[ρL

r ρL
s ] ∝

δrs + O(e−L) + O(e−(N−L)), ρL
r being the reduced density

matrix for L particles associated to |ψr〉.
The next thing we need is the following modification of

Theorem 5.4

Lemma 5. Consider any MPS |ψA〉 ∈ Cd⊗N which has
only one block in its canonical form with D × D matrices
{Ai} and such that EA has β eigenvalues of modulus 1.
If β is a factor of N , then the state can be written as a
superposition of β β-periodic different and injective MPS
with equal coefficients and bonds Di (also with the property
that

∑
i Di = D). Otherwise, if β is not a factor of N , then

|ψA〉 = 0.
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Proof. The only thing to prove is that the β β-periodic states
are injective and different. In the proof of Theorem 5,4 based
on Ref. 5, one proves the existence of a set of orthogonal
projectors {Pk} with

∑
k Pk = 1 such that

Eβ

A(X) =
∑
j,k

PjE
β

A(PjXPk)Pk, (A3)

Eβ

A has 1 with degeneracy exactly β as the only eigenvalue
of modulus 1, and each block in the block-diagonal form of
the Kraus operators of Eβ

A given by (A3) corresponds to one
of the β-periodic states. Moreover, the space of fixed points
is generated by Pk and the space of fixed points of the adjoint
map is generated by Pk�Pk .

The cp maps associated to the β-periodic states are then
Ek(X) = PkEβ(PkXPk)Pk (restricted to inputs with X =
PkXPk). It is clear that Pk is its only fixed point, Pk�Pk

is the only fixed point of the adjoint map, and there is no other
eigenvalue of modulus 1, which shows that all β-periodic states
are injective. Now, if two of them were equal, we would reach a
contradiction in the following way. For simplicity we reason in
the case of 2 2-periodic states but the argument can be adapted
straightforwardly to the general case. E2

A has block-diagonal
Kraus operators of the form Bi ⊗ |0〉〈0| + Ci ⊗ |1〉〈1|. By
the hypotheses and the uniqueness of the canonical form
for injective MPS, Bi = eiθUCiU

† for all i. Then, apart
from 1 ⊗ |0〉〈0| and 1 ⊗ |1〉〈1|, we also get U ⊗ |0〉〈1| as an
eigenvector of Eβ

A with eigenvalue of modulus 1; the desired
contradiction. �

Finally, we need the following version of the Lieb-Schultz-
Mattis theorem for U (1) symmetry. It is interesting to note
that it does not use any MPS structure, so it is valid in full
generality and for any spatial dimension. Let us recall that in
Lemma 1720 we showed that any quantum state with a U (1)
symmetry given by the canonical generator of spin S(J )

z verifies
that

u⊗N
g |ψ〉 = eigNm|ψ〉 (A4)

with ug = eigS
(J )
z and a magnetization per particle m.

Lemma 6. Let m be any rational number and p ∈ N such
that there exist two quantum states of (local spin J and) pN

and (N + 1)p particles, respectively, for some N, having both
of them magnetization per particle m. Then p(J − m) = q

with q integer.
Proof. By expanding equation (A4) in the canon-

ical basis, we get
∑

k1···kpN
ck1···kpN

eig
∑

j kj |k1 · · · kpN 〉 =∑
k1···kpN

eigpNmck1···kpN
|k1 · · · kpN 〉. Since it is a basis and the

state is not zero, there must exist k1, . . . ,kpN ∈ {−J, − J +
1, . . . ,J − 1,J } such that

∑
j kj = Npm. For the same reason

there must exist k′
1, . . . ,k

′
pN+p ∈ {−J, − J + 1, . . . ,J − 1,J }

such that
∑

j k′
j = (Np + p)m. Subtracting we get that mp =∑

j k′
j − ∑

j kj has the same character (integer or semi-
integer) as pJ . �

With this at hand, if we consider an MPS |ψ〉 of spin J and
pN particles with a U (1) symmetry, given by the canonical
generator of spin S(J )

z , we have the following lemma.
Lemma 7. Let p be the smallest integer such that, after

blocking p sites together, |ψ〉 has a block-diagonal represen-

tation with injective blocks. Then p(J − m) = q, with q an
integer.

To see it we consider blocks of p sites. From Theorem 514

we know that each block is an injective MPS with the same
symmetry. Since by Lemma 3 states corresponding to different
blocks are equal or linearly independent, all of them must
have also magnetization m. Now, by the characterization of
symmetries for injective MPS,14 we know that the matrices
defining each block inherit the symmetry and therefore the
associated MPS has magnetization m for all system sizes that
are multiple of p. Lemma 6 finishes the argument.

We also get a reciprocal.
Lemma 8. Let us assume that J − m = q

p
with gcd(p,q) = 1

in a U (1) symmetric MPS, then there exists γ ∈ N such that
the MPS has only γp-periodic blocks. Moreover (trivially from
Lemma 5), states belonging to blocks of different periods are
different.

Proof. As above, all injective MPS corresponding to
the blocks must have the same symmetry and the same
magnetization m. Therefore, Lemma 6 shows that only blocks
of period multiple of p can appear. �

We are finally ready to prove Theorem 1.
Proof. Let |ψ〉 be an MPS, which is translational and U (1)

invariant. We also impose that this MPS has spin J and
magnetization per particle m, verifying J − m = q

p
(p and

q coprime) and consider its canonical form. Lemma 8 gives
us γ ∈ N such that all the blocks of the canonical form of
|ψ〉 have period γp. Consequently, if we block γp spins, then
we can write the new matrices Ai as block diagonal, with
each block being injective and different (see Lemma 5). Using
Lemma 3, the injective and different MPS associated to the
blocks are also orthogonal in the thermodynamic limit.

Let L = kγp, where k ∈ N. We observe that the reduced
density matrix of size L, verifies

ρL =
n∑

i=1

μiρi, (A5)

up to a correction exponentially small in N − L, where we
have used Lemma 3. Here the ρi’s are the reduced density
matrices corresponding to single blocks (giving rise to different
states) and repeated blocks in this sum are simply reflected in
the μi’s.

Analyzing the single block case, we can ensure that
S(ρi) � log(γp) � log(p) for all i, up to an exponentially
small correction in N − L and in k. This is deduced by
using Jensen’s inequality so that S(ρi) � − log[tr(ρ2

i )], and
recalling Lemma 4. Using (A5) and the concavity of the Von
Neumann entropy, it is clear that, if we have several blocks
then S(ρL) � mini S(ρi) � log(p) up to another exponentially
small correction in N − L and k, yielding the desired result. �

APPENDIX B: BOUNDS ON MPS APPROXIMATION

Let Ai ∈ MD be the canonical Kraus operators defining
an injective MPS, with � as its fixed point. We define the
normalized reduced density matrix for L particles ρL

A up to a
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correction exponentially small in N − L by

ρL
A=

∑
i1, . . . ,iL

j1, . . . ,jL

tr
[
A

†
jL

· · ·A†
j1
�Ai1 · · · AiL

]|i1 · · · iL〉〈j1 · · · jL|.

(B1)

We will also define ρL
Ã

as the normalized density matrix
resulted of projecting the Kraus operators (and the fixed point)
into a subspace of dimension D̃ � D, that is, Ãi = PAiP

and �̃ = P�P with P = ∑D̃
i=1 |i〉〈i|. E will be the cp map

associated to Ai and Ẽ the one associated to Ã. Taking all this
into account, we can state and prove the following theorem.

Theorem.

∥∥ρL
A − ρL

Ã

∥∥
2 � 2tr[�̃1/2]

√
Lδ1/4 + (2L + 3)δ,∥∥ρL

A − ρL
Ã

∥∥
1 � 2

√
2D̃

√
Lδ1/4 + (2L + 3)δ,

where δ = tr[� − �̃].
In order to do this we must prove the following two Lemmas

as preliminary results.
Lemma 9. ‖ẼL(�) − �‖1 � 2Lδ. In particular, tr[ẼL(�)]

� 1 − 2Lδ.
Proof. Using both the definition of δ and that E is

contractible for the 1-norm, we get that ‖� − E(P�P )‖1 � δ.

The map P • P is also contractible for the 1-norm, so

‖� − PE(P�P )P ‖1

� ‖� − P�P ‖1 + ‖P�P − PE(P�P )P ‖1

� 2δ.

This means that ‖� − Ẽ(�)‖1 � 2δ since Ẽ(�) =
PE(P�P )P. However, Ẽ is also contractible respect to the
1-norm, so

‖� − Ẽ2(�)‖1 � ‖� − Ẽ(�)‖1 + ‖Ẽ(�) − Ẽ2(�)‖1

� 4δ.

The result can be obtained by induction. �
We will now define, under the previous notation for the

Kraus operators and the fixed point, the following operators:

σA =
∑

i1, . . . ,iL

j1, . . . ,jL

tr
[
A

†
jL

· · · A†
j1
�̃Ai1 · · ·AiL

]

× |i1 · · · iL〉〈j1 · · · jL|,

σA,P =
∑

i1, . . . ,iL

j1, . . . ,jL

tr
[
PA

†
jL

· · ·A†
j1
�̃Ai1 · · · AiLP

]

× |i1 · · · iL〉〈j1 · · · jL|,
where it is important to note that σA,P is a positive operator.

Lemma 10. ‖ρA − ρÃ‖2 � ‖σA,P − φÃ‖2 + (2L + 3)δ,
where φÃ = tr[ẼL(�)]ρÃ is the not normalized reduced
density matrix generated by Ãi . The same holds changing
the 2-norm by the 1-norm in both sides of the inequality.

Proof. By using the triangular inequality and the fact that
‖·‖2 � ‖·‖1,

‖ρA − ρÃ‖2 � ‖ρA − σA‖1 + ‖σA − σA,P ‖1

+‖σA,P − φÃ‖2 + ‖φÃ − ρÃ‖1.

The first term can be calculated exactly

‖ρA − σA‖1 =
∑

i1,...,iL

tr
[
A†

iL · · · A†
i1 (� − �̃)Ai1 · · · AiL

] = δ.

The first equality holds because the operator is positive and
the 1-norm can be replaced by a trace and the second one
holds because E is trace preserving. The second term can be
bounded in a similar way:

‖σA − σA,P ‖1 = tr

[
P ⊥ ∑

i1,...,iL

A
†
iL

· · · A†
i1
�̃Ai1 · · ·AiLP

⊥
]

� δ + tr

[
P ⊥ ∑

i2,...,iL

A
†
iL

· · ·A†
i2
�Ai2 · · · AiL

]
.

This holds because ‖� − E(�̃)‖1 = ‖E(� − �̃)‖1 = δ since
E is trace preserving andE(�) = �. Therefore, ‖σA − σA,P ‖1

� δ + tr[P ⊥�] = 2δ.
Finally, the last term can be bounded using Lemma 9

because

‖φÃ − ρÃ‖1 = −1 + tr[ẼL(�)] � 2δL.

We obtain the result by collecting all bounds above. �
Now

‖σA,P − φÃ‖2
2

� ({tr[Q(E∗)L(�̃ ⊗ �̃)ELQ] − tr[Q(F∗)L(�̃ ⊗ �̃)FLQ]}
+ {tr[Q(F∗)L(�̃ ⊗ �̃)FLQ] − tr[Q(Ẽ∗)L(�̃ ⊗ �̃)ẼLQ]}),

where E = ∑
i Ai ⊗ Āi , Q = P ⊗ P , and F = (1 ⊗ P )

E(1 ⊗ P ).

We have now all the necessary tools to prove the main
theorem.

Proof of the Theorem. We start by bounding the term μ =
|tr[Q(E∗)L(�̃ ⊗ �̃)ELQ] − tr[Q(F∗)L(�̃ ⊗ �̃)FLQ]|. This
can be done by adding and subtracting terms such that they
differ in one projector, that is,

μ �
L−1∑
r=1

|tr[FLQ(F∗)r−1E∗(1 ⊗ P ⊥)(E∗)L−r (�̃ ⊗ �̃)]|

+
L−1∑
s=1

|tr[E s(1 ⊗ P ⊥)EFL−s−1Q(E∗)L(�̃ ⊗ �̃)]|

=
∑

r

μr +
∑

s

νs .
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Let us bound the first family of terms. By applying the Schwarz inequality |tr[∑i AiBi]| � |tr[∑i A
†
i Ai]| 1

2 |tr[∑i BiB
†
i ]| 1

2 ,

μr =

∣∣∣∣∣∣∣∣∣∣∣
tr

⎡
⎢⎢⎢⎢⎢⎣

∑
k1, . . . ,kL

i1, . . . ,ir
j1, . . . ,jL−r

(√
�̃Ak1 · · · AkL

PA
†
i1

· · · A†
ir
A

†
j1

· · · A†
jL−r

�̃1/4 ⊗ �̃1/4
)

× (
�̃1/4 ⊗ �̃1/4Ãk1 · · · ÃkL

Ã
†
i1

· · · Ã†
ir−1

A
†
ir
P ⊥A

†
j1

· · · A†
jL−r

√
�̃

)
⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣

�

∣∣∣∣∣∣∣∣∣∣∣
tr

⎡
⎢⎢⎢⎢⎢⎣

∑
k1, . . . ,kL

i1, . . . ,ir
j1, . . . ,jL−r

�̃1/4AjL−r
· · · Aj1Air · · ·Ai1PA

†
kL

· · · A†
k1

�̃Ak1 · · · AkL
PA

†
i1

· · · A†
ir
A

†
j1

· · · A†
jL−r

�̃1/4 ⊗ �̃1/2

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣

1
2

×

∣∣∣∣∣∣∣∣∣∣∣
tr

⎡
⎢⎢⎢⎢⎢⎣

∑
k1, . . . ,kL

i1, . . . ,ir
j1, . . . ,jL−r

�̃1/2 ⊗ �̃1/4Ãk1 · · · ÃkL
Ã

†
i1

· · · Ã†
ir−1

A
†
ir
P ⊥A

†
j1

· · · A†
jL−r

�̃AjL−r
· · ·Aj1P

⊥Air Ãir−1 · · · Ãi1Ã
†
kL

· · · Ã†
k1

�̃1/4

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣

1
2

.

The first term is equal to

tr[�̃1/2]1/2tr[PEL(�̃)P ẼL(�̃1/2)]1/2 � tr[�̃1/2].

The second term is equal to

tr[�̃1/2]1/2tr[Ẽr−1 ◦ E(P ⊥EL−r (�̃)P ⊥)ẼL(�̃1/2)]1/2

� δ1/2tr[�̃1/2],

where we have used that �̃ � � (hence, tr[P ⊥EL−r (�̃)P ⊥] �
δ), and that both E and Ẽ are contractible for the trace norm.
Therefore, μr � tr[�̃1/2]2

√
δ. The result for the νs is exactly

the same, so it follows that μ � 2Ltr[�̃1/2]2
√

δ.
The other term can be calculated in the same way, by

replacing E → F and F → Ẽ , and it gives exactly the same
estimate.

The second inequality follows from the first one, tr[�̃1/2] �√
D̃tr [�], and the fact that σA,P − φÃ has rank � 2D̃, which

then gives

‖σA,P − φÃ‖1 �
√

2D̃‖σA,P − φÃ‖2. �

APPENDIX C: INJECTIVITY CAN BE REACHED FAST

We will prove here the following technical lemma.
Lemma 11. Every MPS (with the exception of a zero-

measure set) of the form

|ψ̃〉 =
∑

i1, . . . ,iL
iL+1, . . . ,iN

tr
(
Ai1 · · ·AiLBiL+1CiL+2 · · · CiN

)|i1 · · · iN 〉,

(C1)

where Ai,Bj ,Ck ∈ MD×D and L � 2 log D

log d
reaches injectivity

in every region of length L − 1.

Proof. Since the set of MPS failing this property is clearly
a projective algebraic subvariety of (CD ⊗ CD ⊗ Cd )⊗3,
standard algebraic geometry tells us that, if this set is nonempty
since (CD ⊗ CD ⊗ Cd )⊗3 is irreducible then both projective
varieties must be equal.21 Therefore, it is enough to find a
single MPS reaching injectivity as stated in this lemma, which
has been verified numerically up to D = 200 and d = 50, and
also analytically in the next lemma of this Appendix using
quantum expanders.22 �

It is proven in Ref. 23 that for all d � 4 there exists a
Hermitian trace-preserving completely positive map

E(X) =
d∑

i=1

A
†
i XAi

such that |λ2| � ( 2
√

d−1
d

){1 + O[log(D)D
−2
15 ]}, where Ai ∈

MD .
Take the MPS |ψ〉 generated by the matrices Ai and

consider the map

�n(X) =
∑
i1···in

tr
[
XAi1 · · · Ain

] |i1 · · · in〉.

We want to show
Theorem 12. Assuming D is large enough, �n is an injective

map for24

n �
[
k log(D)

log(d)

]
+ 1, K = 8, d > 16.
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FIG. 1. (Color online) Given the tensor A = (〈α|Ai |β〉)iαβ which
defines the MPS, and with the usual convention that rotating means
complex conjugation, we can represent the map �∗

n�n as the map in
the figure from systems ac to systems bd and the map En as the same
figure but now mapping systems cd to systems ab.

This will be a consequence of the following.
Lemma 13.

sup
tr[X†X]=1

∣∣∣∣�n(X)†�n(X) − 1

D
tr[X†X]

∣∣∣∣ � D|λ2|n.

Proof. Considering in MD the usual Hilbert-Schmidt
Hilbert structure, it is easy to see that the left-hand side is
equal to ∥∥∥∥�∗

n�n − 1

D
1

∥∥∥∥
op

for the usual operator norm on the Hilbert space MD .
Moreover, in coordinates, calling E = ∑

i Ai ⊗ Āi , we
have that

�∗
n�n − 1

D
1 =

∑
abcd

(
〈cd|En|ab〉 − 1

D
δabδcd

)
|bd〉〈ac|

just identifying MD = CD ⊗ CD and calling |ij 〉 to the
canonical (matrix) basis there (Fig. 1).

Since for each operator on an n dimensional Hilbert space,
‖·‖op � ‖·‖2 � √

n‖·‖op, being ‖·‖2 the Hilbert-Schmidt
norm, and using that the Hilbert-Schmidt norm is invariant
under arbitrary rearrangements of the coordinates, we get that∥∥∥∥�∗

n�n − 1

D
1

∥∥∥∥
op

� D

∥∥∥∥∥
∑
abcd

(
〈cd|En|ab〉 − 1

D
δabδcd

)
|ab〉〈cd|

∥∥∥∥∥
op

= D‖En − 1

D
|1〉〈1|‖op = D‖En − E∞‖op

= D‖En − E∞‖op = D|λ2|n,
where we have used in the last step that E is Hermitian and
|1〉 denotes the unnormalized vector

∑D
i=1 |ii〉. �

Proof of Theorem 12. �n must be injective as long as

|λ2|n <
1

D2
. (C2)

Otherwise, taking a (normalized) X such that �n(X) = 0, we
would get a contradiction to Lemma 13. Since we know from

Ref. 23 that |λ2| � ( 2
√

d−1
d

){1 + O log(D)D
−2
15 )} it suffices to

take n such that(
2
√

d − 1

d

)n{
1 + O

[
log(D)D

−2
15

]}n
<

1

D2
.

Taking logarithms

2 log(D) + n log

((
2
√

d − 1

d

){
1 + O

[
log(D)D

−2
15

]})
< 0,

which is equivalent to

n >
2 log(D)

log
[(

d

2
√

d−1

)] − log
{
1 + O

[
log(D)D

−2
15

]} .

It is clear that taking D large enough we can upper bound the
right-hand side by {

2 log(D)

log
[(

d

2
√

d−1

)]
}

+ 1.

But now
2 log(D)

log
[(

d

2
√

d−1

)]= 4 log(D)

2 log(d)− log(4)− log(d − 1)
� 4K log(D)

log(d)

as long as 1
K

� 1 − 2
log d

, which finishes the proof of the
theorem. �

APPENDIX D: SOME RESULTS FOR
NONTRANSLATIONAL INVARIANT MPS

Lemma 14. Let Ai,� ∈ MD , then there exist Bi,Ci ∈ MD

such that if we consider the state

|ψ〉 =
∑

i1, . . . ,iL
iL+1, . . . ,iN

tr
(
Ai1 · · · AiLBiL+1CiL+2 · · ·CiN

) |i1, . . . ,iN 〉

(D1)

then the normalized reduced density matrix for L particles
(particles 1–L) is

ρ1···L =
∑

i1, . . . ,iL
j1, . . . ,jL

tr
(
A

†
jL

· · · A†
j1
�Ai1 · · · AiL

)

× |i1, . . . ,iN 〉〈j1, . . . ,jL|. (D2)

Proof. We consider the channel defined as

E(X) =
d∑

i=1

ViXV
†
i , (D3)

where V1

√
D is a diagonal unitary matrix with different

incommensurable eigenvalues (such that V k
1 still has different

eigenvalues for all k ∈ N), V2

√
D is a random unitary

matrix with nonzero entries, and Vi = 0D,i ∈ {3, . . . ,d}. This
channel is trace preserving and unital. On the one hand, it
is trivial to see that the only matrices that commute with
V1 are diagonal matrices. On the other hand, to find which
of these diagonal matrices commute with V2, it is enough
to consider the algebraic system of equations in coordinates
for [V2,X] = 0 from where we get that since (V2)ij �= 0, and
(X)ij = 0 if i �= j, then (X)ii − (X)jj = 0 for all i �= j. From
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this we deduce that the only matrices that commute with all of
the Kraus operators for our channel are multiples of the identity
matrix. Lüders’ theorem25 guarantees that our channel has the
identity as its unique fixed point. Since E is an irreducible
channel,26 all its eigenvalues of modulus 1 are k roots of
unity, where k ∈ {1, . . . ,D2}. Let Y be such that E(Y ) = αY

for |α| = 1. It is clear that Ek(Y ) = Y and, again by Lüders’
theorem, [V k

1 ,Y ] = 0 = [V2V
k−1

1 ,Y ]. Reasoning as above, Y

is a multiple of the identity, which implies that α = 1; hence,
the channel is primitive.26

We can define now

Bj = √
�Vj , Ck = Vk, (D4)

where Vi are the Kraus operators for our channel. If we
consider the state

|ψ〉 =
∑

i1, . . . ,iL
iL+1, . . . ,iN

tr
(
Ai1 · · · AiLBiL+1CiL+2 · · · CiN

)|i1, . . . ,iN 〉 (D5)

and compute the normalized reduced density matrix for particles 1 · · · L, we obtain

ρL =
∑

i1, . . . ,iL
j1, . . . ,jL

⎛
⎝∑

α,β

〈α|[Ai1 · · · AiLEBE
N−(L+1)
C (|α〉〈β|)A†

jL
· · · A†

j1

]|β〉
⎞
⎠ .

It is clear that EN−(L+1)
C (|α〉〈β|) = δαβ1, up to an exponentially small correction. This leads us to

ρL =
∑

i1, . . . ,iL
j1, . . . ,jL

⎛
⎝∑

α,β

〈α|[Ai1 · · · AiLEB(1)A†
jL

· · · A†
j1

]|β〉
⎞
⎠ =

∑
i1, . . . ,iL
j1, . . . ,jL

⎛
⎝∑

α,β

〈α|[Ai1 · · · AiL�A
†
jL

· · ·A†
j1

]|β〉
⎞
⎠

once again, up to a exponentially small correction, just as we wanted to prove. �
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