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Abstract

The art and science of asking questions

is the source of all knowledge.

Thomas Berger

Squeeziness is an information theoretic measure designed to quantify the
likelihood of a form of fault masking called failed error propagation. It has
been shown that Squeeziness correlates strongly with failed error propagation
in white-box scenarios. In this thesis, we adapt Squeeziness to a black-box
scenario and show how it can be used to estimate the likelihood of failed
error propagation.

Key Words: Squeeziness, Failed Error Propagation (FEP), Fault Masking,
Testing, Correction, Black-box, Finite State Machine (FSM), Information
Theory.
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Resumen

La ciencia y el arte de hacer preguntas

es la fuente de todo conocimiento.

Thomas Berger

Squeeziness es una medida de Teoría de la Información diseñada para
cuantificar la probabilidad de una forma de enmascaramiento de errores lla-
mada fallo en la propagación de errores. Se ha demostrado que Squeezinees
correlaciona fuertemente con el fallo en la propagación de errores en esce-
narios de caja blanca. En este TFG, adaptamos Squeeziness a un escenario
de caja negra y mostramos como puede usarse para estimar la probabilidad
de un fallo en la propagación de errores.

Palabras Clave: Squeeziness, Fallo en la Propagación de Errores (FEP),
Enmascaramiento de Errores, Testing, Corrección, Caja Negra, Máquina de
Estados Finita (FSM), Teoría de la Información.
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Part I

Thesis

This first part of the document presents the work performed during the
thesis, the methodology, the obtained results and our conclusions.





Chapter 1

Introduction

Every story has a beginning, a middle,

and an end. Not necessarily in that

order.

Tim Burton

This chapter presents an introduction to our work and briefly sketches our
design decisions during the development of the thesis. The idea of this thesis
comes from previous work (Clark and Hierons, 2012) showing the application
of elements from Information Theory to the detection of FEP (Failed Error
Propagation) in software testing. The authors proposed a measure of FEP
called Squeeziness. They developed and tested the usefulness of the work in
a white box scenario. In our work, we start with the theoretical development
of the Squeeziness measure adapted to a black box scenario and test it over
both simulated and real cases. In the theoretical development, in addition to
define Squeeziness in a black box scenario, we prove several properties of this
measure. In the practical part, we develop a simulation and four real case
testing, which give us different insights about what this measure is capable
of.

The rest of the chapter is structured as follows. Section 1.1 presents
an explanation of the motivations that lead us to the development of this
work. Section 1.2 enumerates our goals. Finally, in Section 1.3 we review
the structure of the rest of the document.

1.1 Motivation

Software testing (Ammann and Offutt, 2017; Myers et al., 2011) is the main
validation technique used to increase the reliability of complex software sys-
tems. Software testing has traditionally been considered to be an informal
technique (Gaudel, 1995). However, it is now known that testing activ-

3



4 Chapter 1. Introduction

ities can have a formal basis. Formal testing is an active research area
(Binder et al., 2015; Cavalli et al., 2015; Hierons et al., 2009) and the exis-
tence of several tools that support formal testing has led to the recognition
that the combination of formal methods and testing facilitates test automa-
tion (Shafique and Labiche, 2015).

FEP is the situation in which a faulty statement in the SUT (System
Under Test) is executed during testing, the fault corrupts the internal state
of the SUT, but the expected output is observed. Naturally, in order for a
statement to be a fault there must be at least one input under which FEP
does not occur. FEP is a form of fault masking and can reduce the effec-
tiveness of testing: we might fail to find a fault despite executing the faulty
statement in testing. Empirical studies have shown that many systems suffer
from FEP (Androutsopoulos et al., 2014; Masri et al., 2009). For example,
Masri et al. (2009) found that in 13% of the programs that they examined, a
total of 60% or more of tests suffered from FEP. Previous work introduced
the notion of Squeeziness (Androutsopoulos et al., 2014; Clark and Hierons,
2012) to capture this FEP, with Squeeziness being a measure of the infor-
mation (entropy) lost by a channel (the SUT) that takes input and returns
output. In experiments, there was a rank correlation of close to 0.95 between
measures of Squeeziness and the likelihood of FEP (Androutsopoulos et al.,
2014). In addition, it has been found that the likelihood of FEP more
strongly correlates with Squeeziness than with the DRR (Domain to Range
Ratio) (Clark and Hierons, 2012). There are two practical reasons for the
interest in measures associated with FEP. First, such measures might be
used to estimate testability; we might expect it to be particularly difficult
for testing to find a fault in an SUT with high Squeeziness. Second, there
may be potential to generate test cases that achieve a given test purpose,
such as covering part of the SUT or a model, and that have a low probability
of FEP.

There is a significant body of work on FEP and fault masking for white-
box testing (Apiwattanapong et al., 2006; Masri et al., 2009; Woodward and Al-Khanjari,
2000; Wang et al., 2009a) and black-box testing (Guo et al., 2006; Petrenko,
2001; Petrenko et al., 2004; Wang et al., 2009b). As mentioned, previous
work has also defined Squeeziness in a white-box scenario (Androutsopoulos et al.,
2014; Clark and Hierons, 2012). However, we are not aware of any work that
uses an information theory foundation for addressing FEP in a black-box
context, so we decided to explore this way.

1.2 Goals

The main goal of our work is to adapt the notion of Squeeziness to a black
box testing scenario and using FSMs (Finite State Machines). Although
the FSM (Finite State Machine) formalism is relatively simple, we establish
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the basis of a framework to test in more complex black-box contexts because
the basis of testing is similar: we apply a sequence of inputs and decide
whether the observed sequence of outputs is consistent with the specification
of the system. In addition to extending the notion of Squeeziness to a black
box scenario, we evaluated its usefulness through experiments. Importantly,
we found that there was an extremely high rank correlation between our
proposed measures and the probability of FEP. As a result, the proposed
measures could act as testability measures for state-based testing and have
the potential to help direct testing.

There are several differences between the original scenario (Clark and Hierons,
2012) and ours. First, we have to reshape the actual definition of Squeezi-
ness because inputs and outputs have a different treatment in each scenario.
In the previously considered white-box case, a program receives an input
(a tuple of values) and returns an output (again, a tuple of values). In the
scenario that we consider in our work, an input is a sequence of input actions
while an output is also a sequence, in this case of output actions. Therefore,
the first adaption is that a uniform distribution over the sets of inputs and
outputs is not suitable because, for example, a prefix of a sequence should
have a higher probability than the whole sequence. Second, in white-box
testing we can follow the path that a specific execution of the program is
traversing. In black box testing we do not know the internal structure of
the SUT and, therefore, we cannot take advantage of it to guide the testing
process.

Other side goals that we pursue in this work are:

• Show that Squeeziness still holds its characteristics in this new black
box testing scenario (and look for potential new characteristics).

• Show that Squeeziness is still better than other measures in this new
black box testing scenario.

• Look for a normalization of Squeeziness that can help us to use it as a
measure.

• Determine if Squeeziness can be used over the FSM specification or it
only works over the SUT.

• Suggest how we can use Squeeziness to test and how we cannot use it.

1.3 Workplan

Our workplan tries to mimic the steps that Professors David Clark and
Robert M. Hierons followed in their work (Clark and Hierons, 2012). We
can divide the work into two main parts: a theoretical one and a practical
one.
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1.3.1 Theoretical workplan

The theoretical part consists in developing the theory around FEP detection,
using techniques from Information Theory in a black box testing scenario,
starting with the tools we will use to model systems and ending with the
proposed measure applied to this new scenario. All of this is addressed in
Chapter 2, which is divided into the following sections:

• Section 2.1: a definition of the version of FSM that we use in this
work.

• Section 2.2: a definition of our main measure, Squeeziness, and some
of its properties. Here we also explain some useful cases.

• Section 2.3: a definition of our alternative measure, Probabilistic Squeezi-
ness.

1.3.2 Practical workplan

The practical part of our work consists in testing the proposed measures.
We can distinguish two parts. First, we use simulation to test if we have a
good measure. Next, we perform experiments to test the use of the measures
in real FSMs.

1.3.2.1 Simulation

In Chapter 3 we explain the simulation that we performed to test how well
our measures work. The chapter is divided into the following sections:

• Section 3.1: a definition of DRR, a previous measure of the probability
of FEP, and a comparison with our measures.

• Section 3.2: a definition of a formal measure of FEP and a comparison
with our measures.

• Section 3.3: an explanation of the simulation, how it was done, our
conclusions and a comparison between results.

1.3.2.2 Experiments

In Chapter 4 we explain the different experiments that we performed and
what we conclude from their results. The chapter is divided into the following
sections:

• Section 4.1: an explanation of our tool to generate random FSMs.

• Section 4.2: an explanation of the first experiment, what we wanted to
prove, what results we got, and what we concluded.



1.3. Workplan 7

• Section 4.3: an explanation of the second experiment, what we wanted
to prove, what results we got, and what we concluded.

• Section 4.4: an explanation of the third experiment, what we wanted
to prove, what results we got, and what we concluded.

• Section 4.5: an explanation of the fourth experiment, what we wanted
to prove, what results we got, and what we concluded.

• Section 4.6: an overview of the results of the experiments.

The code used to perform the experiments in this work has been devel-
oped from scratch and can be found at https://github.com/Colosu/Bachelor-Thesis.

1.3.3 Conclusions

Finally, in Chapter 5 we discuss the conclusions from our work and the prac-
tical uses of our measures. The chapter is divided in the following sections:

• Section 5.1: a discussion about the results of the experiments and what
they imply.

• Section 5.2: a discussion about the practical uses of our measures, once
we saw the results from the experiments.

• Section 5.3: an overview of our work and possible lines of future work.

https://github.com/Colosu/Bachelor-Thesis




Chapter 2

Theoretical Framework

It doesn’t matter how beautiful your

theory is, it doesn’t matter how smart

you are. If it doesn’t agree with

experiment, it is wrong.

Richard P. Feynman

In this chapter we explain the theoretical framework underlying our work.
In order to develop a framework to use Squeeziness in a black box sce-
nario, we have chosen to follow the same order as the one used by Professors
David Clark and Robert M. Hierons in the original work (Clark and Hierons,
2012). In addition to adapt the existing definitions, properties and re-
sults to the new setting, we also need to develop the proofs of all this
results for the new scenario. Unfortunately, most of the proofs are not
included in Clark and Hierons (2012) and, therefore, have to be produced
from scratch.

The rest of the chapter is structured as follows. In Section 2.1 we intro-
duce the FSMs formalism. In Section 2.2 we formally define Squeeziness,
present some of its properties and explain some useful cases. Finally, Sec-
tion 2.3 includes a definition of our other alternative measure: a probabilistic
version of Squeeziness.

2.1 Finite State Machines

First of all, we need to define the formalism that we will use to model systems.
As we will work in a black box scenario, it is common in the literature to
refer to systems as FSMs. For our purposes, we take most of the concepts
from the original sources (Lee and Yannakakis, 1996), while some notation
is adapted to facilitate the formulation of subsequent definitions. Next, we
introduce some auxiliary notation.

9



10 Chapter 2. Theoretical Framework

Given a set A, we let A∗ denote the set of finite sequences of elements
of A; ǫ ∈ A∗ denotes the empty sequence. We let A+ denote the set of
non-empty sequences of elements of A. Ak denotes the set of sequences with
length k ≥ 1. We let |A| denote the cardinal of set A. Given a sequence
σ ∈ A∗, we have that |σ| denotes its length. Given a sequence σ ∈ A∗ and
a ∈ A, we have that σa denotes the sequence σ followed by a and aσ denotes
the sequence σ preceded by a.

We let I be the set of input actions and O be the set of output actions. It
is important to differentiate between input actions and inputs of the system.
In our context an input of a system will be a non-empty sequence of input
actions, that is, an element of I+ (similarly for outputs and output actions).
An FSM is a (finite) labelled transition system in which transitions are
labelled by an input/output pair. We use this formalism to define processes.

Definition 1 We say that M = (Q, qin, I, O, T ) is an FSM, where Q is a
finite set of states, qin ∈ Q is the initial state, I is a finite set of inputs, O is
a finite set of outputs, and T ⊆ Q× (I×O)×Q is the transition relation. A

transition (q, (i, o), q′) ∈ T , also denoted by q
i/o
−−→ q′ or by (q, i/o, q′), means

that from state q after receiving input i it is possible to move to state q′ and
produce output o.

We say that M is deterministic if for all q ∈ Q and i ∈ I there exists
at most one pair (q′, o) ∈ Q × O such that (q, i/o, q′) ∈ T . In our work we
consider deterministic FSMs.

We say that M is input-enabled if for all q ∈ Q and i ∈ I there exists
(q′, o) ∈ Q×O such that (q, i/o, q′) ∈ T .

We let FSM(I,O) denote the set of finite state machines with input set I
and output set O.

A process can be identified with its initial state and we can define a
process corresponding to a state q of M by making q the initial state. Thus,
we use states and processes and their notation interchangeably. An FSM
can be represented by a diagram in which nodes represent states of the FSM
and transitions are represented by arcs between the nodes. We use a double
circle to denote the initial state.

As usual, we assume that SUTs (Systems Under Test) are input-enabled:
the SUT should be able to react, somehow, to any external stimulus. In par-
ticular, if the tester applies an input action at a certain stage, then the SUT
should be able to provide a response (that is, an output action). Actually, if
an input cannot be applied in some state of the SUT, then we can assume
that there is a response to the input that reports that this input is blocked,
so that this assumption of input-enableness is not a significant restriction.
However, we do not force specifications to be input-enabled. In particu-
lar, all the definitions and results concerning Squeeziness will not assume
input-enableness.
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As stated in the previous definition, we consider the case where both
specifications and SUTs are deterministic. This is similar to the previously
explored white-box scenario that assumed that programs are deterministic.

Our main goal while testing is to decide whether the behaviour of an
SUT conforms to the specification of the system that we would like to build.

In order to detect differences between specifications and SUTs, we need
to compare the behaviours of specifications and SUTs and the main notion
to define such behaviours is given by the concept of trace.

Definition 2 Let M = (Q, qin, I, O, T ) be an FSM. We use the following
notation.

1. Let σ = (i1, o1) . . . (ik, ok) ∈ (I × O)∗ be a sequence of input/output
actions and q be a state. We say that M can perform σ from q if
there exist states q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k we have
(qj−1, ij/oj , qj) ∈ T , where q0 = q. We denote this by either q

σ
==⇒ qk

or q
σ

==⇒. If q = qin then we say that σ is a trace of M . We denote by
traces(M) the set of traces of M . Note that for every state q we have
that q

ǫ
==⇒ q holds. Therefore, ǫ ∈ traces(M) for every FSM M .

2. Let α = i1 . . . ik ∈ I∗ be a sequence of input actions and q be a state.
We define outM (q, α) as the set

{o1, . . . , ok ∈ O∗|q
(i1,o1)...(ik ,ok)

==========⇒}

Note that if M is deterministic then this set is either empty or a single-
ton. In the last case we will sometimes write outM (q, α) = o1, . . . , ok.

3. Let q ∈ Q be a state. We define domM (q) as the set

{α ∈ I∗|outM (q, α) 6= ∅}

If q = qin then we simply write domM . Similarly, we define imageM (q)
as the set

{o1 . . . ok ∈ O∗|∃i1 . . . ik ∈ I∗ : q
(i1,o1)...(ik,ok)

==========⇒}

If q = qin then we simply write imageM . We denote by domM,k the set
domM ∩ Ik. Similarly, We denote by imageM,k the set imageM ∩Ok.

Note that if M is input-enabled then for all k > 0 we have that domM,k =
Ik and, therefore, for all α ∈ Ik we have that outM (q, α) 6= ∅.

Now, an FSM M can be seen as a function transforming sequences of
input actions belonging to domM into sequences of output actions belonging
to imageM . Therefore, we could say that M receives an input (an element
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of I∗) and returns an output (an element of O∗, with the same length as the
input).

We define projections of this function: for a natural number k, we restrict
the function to the set of sequences of input actions that are of length k. In
particular, these projections will allow us to consider finite sets of inputs (all
the sequences of inputs of a certain length). We also introduce the notion of
collision: two inputs collide if they produce the same output.

Definition 3 Let M = (Q, qin, I, O, T ) be an FSM. We define fM : domM −→
imageM as the function such that for all α ∈ domM we have fM(α) = β for
β such that outM (qin, α) = {β}.

Let k > 0. We define fM,k to be the function fM ∩ (Ik × Ok), where we
use the function fM to denote the associated set of pairs. Let β ∈ imageM .
We define f−1

M (β) to be the set {α ∈ I∗|fM(α) = β}.

Let α1, α2 ∈ I∗. We say that α1 and α2 collide for M if α1 6= α2 and
fM (α1) = fM (α2).

Note that if two sequences of input actions collide then they must have
the same length (otherwise, the returned sequences of output actions would
have different length and, therefore, cannot be equal).

2.2 Squeeziness

Once we have defined the basic model to work with, we introduce some
notation for random variables and recall the concept of entropy (Shannon,
1948) associated with a random variable and the concept of Squeeziness
(Clark and Hierons, 2012) of a function.

Definition 4 Let A be a set and ξA be a random variable over A. We denote
by σξA the probability distribution induced by ξA. The entropy of the random
variable ξA, denoted by H(ξA), is defined as:

H(ξA) = −
∑

a∈A

σξA(a) · log2(σξA(a))

Let f : A −→ B be a total function. The Squeeziness of f , denoted by
Sq(f), is defined as the loss of information after applying f to A, that is,
H(A)−H(B).

As we said, Squeeziness represents the amount of information lost by a
given function. Since we have shown that FSMs can be seen as functions
from a set of sequences of input actions to a set of sequences of output
actions, we can try and adapt Squeeziness to deal with FSMs.

First, we need to define how inputs are chosen and outputs are returned.
We consider a probabilistic view where a random variable associated with
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each set of relevant inputs/outputs is taken into account. We studied two
possible alternatives:

• We associate a random variable with the whole set of inputs/outputs
(that is, a random variable induces a probability distribution over I∗

and O∗, respectively).

• We associate a random variable with the set of inputs/outputs of a
certain length (that is, there are different random variables associated
with I1, I2, . . . , O1, O2, . . . ).

In our work we consider the second approach for two main reasons. First,
it gives us an incremental procedure to compute a sequence of consecutive
values of Squeeziness so that we can analyse how the series is evolving. Sec-
ond, but strongly related to the first one, it provides us with the basis for
a stopping rule: we can compute consecutive values until the difference be-
tween them drops below a threshold. In other words, we reach a certain k
such that we test inputs of length k and consider that the costs of further
testing to locate faults will not be compensated by the likelihood of finding
these faults.

Still, we think that the first approach is also interesting. In particular,
it can be used to compare the two notions for a large sample of FSMs and
we consider this to be a line of future work.

We have that domM,k represents the possible inputs of length equal to k
that M can perform (therefore, other elements of Ik have probability equal
to zero) and imageM,k represents the possible outputs of length equal to k
that M can produce after receiving an element of domM,k. Therefore, the
difference of entropy, that is H(ξdomM,k

)−H(ξimageM,k
), represents the amount

of information destroyed by M . This is the notion of Squeeziness that we
will use in our work.

Definition 5 Let M = (Q, qin, I, O, T ) be an FSM and k > 0. Let us
consider two random variables ξdomM,k

and ξimageM,k
ranging, respectively,

over the domain and image of fM,k. The Squeeziness of M at length k is
defined as

Sqk(M) = H(ξdomM,k
)−H(ξimageM,k

)

Squeeziness for state-machines is an interesting notion that has some
unexpected properties. For example, it is not monotonic with respect to
k. That is, there exist finite state machines where using longer sequences
can solve a loss of information produced by shorter sequences. That was
something that didn’t happen in the white box testing scenario, because in
our case we have the deterministic property of the FSMs that the white box
testing scenario didn’t have.
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q0 q2 q5

q3 q1 q4 q6

i1/o1

i2/o1

i1/o1 i2/o2

i1/o3

i2/o4

Figure 2.1: Machine M

Example 1 Consider the machine M from Figure 2.1 where q0 is the initial
state. We have that Squeeziness for k = 1 is equal to log2(2) = 1 while for
k = 2 is equal to 0.

An important remark concerning random variables associated with inputs
and outputs is that given an FSM M , k > 0 and a random variable ξdomM,k

we have that the probability distribution of the random variable ξimageM,k
is

completely determined. This is so because for each element β ∈ imageM,k

we have that

σξimageM,k
(β) =

∑

α∈f−1
M

(β)

σξdomM,k
(α)

The following result is immediate from the definition of entropy and the
previous explanation concerning how the random variable associated with
outputs is determined by the one corresponding to inputs.

Lemma 1 Let M = (Q, qin, I, O, T ) be an FSM and k > 0. If fM,k is
bijective then Sqk(M) = 0.

Next, we present an alternative formulation of Squeeziness. The proof of
the following result follows from the partition property of entropy (Cover and Thomas,
2006) and the definition of σξimageM,k

in terms of σξdomM,k
. First, we give an

auxiliary result concerning conditional distributions of random variables. In
the following, ξ1|ξ2 denotes the conditional random variable ξ1 given ξ2.

Lemma 2 Let M = (Q, qin, I, O, T ) be an FSM and k > 0. Let us consider
two random variables ξdomM,k

and ξimageM,k
ranging, respectively, over the

domain and image of fM,k. We have that H(ξimageM,k
|ξdomM,k

) = 0.

Proof

Consider the entropy of the conditional random variable ξimageM,k
|ξdomM,k

,
that is,

H(ξimageM,k
|ξdomM,k

) =
∑

α∈domM,k

σξdomM,k
(α) · H(ξimageM,k

|ξdomM,k
= α)
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If we unfold the second term of the sum we have that the previous expression
is equal to

∑

α∈domM,k

σξdomM,k
(α)·





∑

β∈imageM,k

σ(ξimageM,k
|ξdomM,k

)(β|α) · log2(σ(ξimageM,k
|ξdomM,k

)(β|α))





We will prove that all the summands of the previous expression are equal
to zero. Considering that M is deterministic we have that σ(ξimageM,k

|ξdomM,k
)

can be either 0 or 1. Using this fact in the previous expression, we have two
cases:

• If σ(ξimageM,k
|ξdomM,k

)(β|α) = 0 then the result obviously holds.

• If σ(ξimageM,k
|ξdomM,k

)(β|α) = 1 then log2(σ(ξimageM,k
|ξdomM,k

)(β|α)) = 0

and, again, the result holds.

We finally conclude that H(ξimageM,k
|ξdomM,k

) = 0. �

Proposition 1 Let M = (Q, qin, I, O, T ) be an FSM and k > 0. Let us
consider two random variables ξdomM,k

and ξimageM,k
ranging, respectively,

over the domain and image of fM,k. We have that

H(ξdomM,k
) = H(ξimageM,k

)−
∑

β∈imageM,k

σξimageM,k
(β)·







∑

α∈f−1
M

(β)

σξ
f
−1
M

(β)
(α) · log2(σξ

f
−1
M

(β)
(α))







Proof

By the definition of conditional entropy (Cover and Thomas, 2006) we have
that

H(ξdomM,k
|ξimageM,k

) =
∑

β∈imageM,k

σξimageM,k
(β) · H(ξdomM,k

|ξimageM,k
= β)

Next, we apply the notion of conditional probability and consider that
ξdomM,k

restricted to ξimageM,k
= β is the random variable ξf−1

M
(β) ranging

over f−1
M (β) and whose probabilities are equal to

σξdomM,k
(β)

σξdomM,k
(f−1

M (β))

Therefore, we have that

H(ξdomM,k
|ξimageM,k

= β) = H(ξf−1
M

(β))

= −
∑

α∈f−1
M

(β)

σξ
f
−1
M

(β)
(α) · log2(σξ

f
−1
M

(β)
(α))

= −
∑

α∈f−1
M

(β)

σξdomM,k
(α)

σξdomM,k
(f−1

M
(β))

· log2(
σξdomM,k

(α)

σξdomM,k
(f−1

M
(β))

)
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Therefore, the term H(ξdomM,k
|ξimageM,k

) is equal to

−
∑

β∈imageM,k

σξimageM,k
(β) ·







∑

α∈f−1
M

(β)

σξ
f
−1
M

(β)
(α) · log2(σξ

f
−1
M

(β)
(α))






(2.1)

If we apply the Chain rule then we have

H(ξimageM,k
, ξdomM,k

) = H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
)

where H(ξimageM,k
, ξdomM,k

) is the joint probability of the two random vari-
ables. Considering that, applying again the Chain rule, we also have

H(ξimageM,k
, ξdomM,k

) = H(ξdomM,k
) +H(ξimageM,k

|ξdomM,k
)

then we obtain

H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
) = H(ξdomM,k

) +H(ξimageM,k
|ξdomM,k

)

Finally, given that by Lemma 2 we have H(ξimageM,k
|ξdomM,k

) = 0 and
given the value of H(ξdomM,k

|ξimageM,k
) from equation (2.1), we obtain the

desired reformulation of H(ξdomM,k
). �

A trivial corollary of the previous result provides an alternative definition
of Squeeziness where the value is computed in terms of the inverse images
partition of the input space considering, as previously explained, that we
have

σξimageM,k
(β) =

∑

α∈f−1
M

(β)

σξdomM,k
(α)

Therefore, we only use the probability distribution on inputs given by ξdomM,k
.

Corollary 1 Let M = (Q, qin, I, O, T ) be an FSM and k > 0. Let us con-
sider a random variable ξdomM,k

ranging over the domain of fM,k. We have
that

Sqk(M) = −
∑

β∈imageM,k







∑

α∈f−1
M

(β)

σξdomM,k
(α)






·







∑

α∈f−1
M

(β)

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
· log2

(

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))

)







2.2.1 Useful Implementations

In general, it is not possible to know the probability distribution that ranges
over the inputs. Therefore, if we want to have an estimation of the different
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values of Squeeziness for a given FSM we need to make an assumption about
this distribution. There are different possibilities. For example, we can
assume maximum entropy, that is, we choose a probability distribution that
maximizes the entropy. Another strategy considers the worst case scenario,
that is, we may suppose that the chosen probability distribution induces the
maximum loss of information, i.e., we look for a probability distribution that
maximises Squeeziness.

2.2.1.1 Maximum entropy principle

In order to consider maximum entropy, and assuming no further restrictions,
we need to use a uniform distribution (Cover and Thomas, 2006). In this
case, the weight of a single element of σξdomM,k

is 1
|domM,k|

. Thus, the weight

of the inverse image of an output β ∈ imageM,k is equal to
|f−1

M
(β)|

|domM,k|
. Fi-

nally, Squeeziness under the assumption of having a uniform distribution
over inputs is equal to

Sqk(M) = −
∑

β∈imageM,k







∑

α∈f−1
M

(β)

1

|domM,k|






·







∑

α∈f−1
M

(β)

1
|domM,k|

|f−1
M

(β)|

|domM,k|

· log2





1
|domM,k|

|f−1
M

(β)|

|domM,k|











= −
∑

β∈imageM,k

|f−1
M (β)|

|domM,k|
·

(

|f−1
M (β)|

|f−1
M (β)|

· log2

(

1

|f−1
M (β)|

))

= −
∑

β∈imageM,k

|f−1
M (β)|

|domM,k|
· log2

(

1

|f−1
M (β)|

)

=
1

|domM,k|
·

∑

β∈imageM,k

|f−1
M (β)| · log2(|f

−1
M (β)|)

2.2.1.2 Maximum loss of information

If we want to consider maximum loss of information, then we need to consider
a probability distribution such that it is uniformly distributed in the bigger
inverse image of an element of the outputs and zero elsewhere (Clark and Hierons,
2012). Formally, consider β′ ∈ imageM,k such that for all β ∈ imageM,k we

have |f−1
M (β′)| ≥ |f−1

M (β)|. Then,

σξdomM,k
(α) =







1
|f−1

M
(β′)|

if α ∈ f−1
M (β′)

0 otherwise
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Using this probability distribution, Squeeziness is defined as follows:

Sqk(M) = −







∑

α∈f−1
M

(β′)

1

|f−1
M (β′)|






·







∑

α∈f−1
M

(β′)

1

|f−1
M (β′)|

· log2

(

1

|f−1
M (β′)|

)







= −
|f−1

M
(β′)|

|f−1
M

(β′)|
·
(

|f−1
M

(β′)|

|f−1
M

(β′)|
· log2

(

1
|f−1

M
(β′)|

))

= − log2

(

1
|f−1

M
(β′)|

)

= log2(|f
−1
M (β′)|)

Let us remark that this probability distribution maximises Squeeziness
because for any other distribution ξdomM,k

we have Sqk(M) ≤ log2(|f
−1
M (β′)|).

This result is an immediate consequence of the following result (Clark and Hierons,
2012).

Lemma 3 Let us consider non-negative real numbers a1, . . . , an, p1, . . . , pn ∈
IR+. If for all 1 ≤ i ≤ n we have that a1 ≥ ai and

∑

i pi ≤ 1, then
∑

i(pi · ai) ≤ a1.

2.3 Probabilistic Squeeziness

Now that we have an upper bound for Squeeziness, we can develop a proba-
bility measure based on this notion. The idea is that Probabilistic Squeeziness
will provide a value between 0 and 1 (and therefore, similar to a probability)
associated with the probability of having FEP for a certain input.

Definition 6 Let M = (Q, qin, I, O, T ) be an FSM and k > 0. Let us
consider two random variables ξdomM,k

and ξimageM,k
ranging, respectively,

over the domain and image of fM,k. Let us consider β′ ∈ imageM,k such that

for all β ∈ imageM,k we have that |f−1
M (β′)| ≥ |f−1

M (β)|. The Probabilistic
Squeeziness of M at length k is defined as

PSqk(M) =
H(ξdomM,k

)−H(ξimageM,k
)

log2(|f
−1
M (β′)|)

Although these values are more complicated to compute, they might
be more useful at the time of comparing results and automate their use
because they can be treated as probabilities. It is immediate to reformulate
Probabilistic Squeeziness as follows: PSqk(M) =

−

∑

β∈imageM,k







∑

α∈f−1
M

(β)

σξdomM,k
(α)






·







∑

α∈f−1
M

(β)

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
· log2

(

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))

)







log2(|f
−1
M (β′)|)



Chapter 3

Simulation

In theory there is no difference between

theory and practice. In practice there is.

Yogi Berra

In this chapter we explain why we decided to do a simulation, present the
tools needed to make the simulation, and explain how we did the simulation
and what were the results. In order to test the goodness of our proposed
measures, we decided to make a first step simulating the results. By simu-
lation we mean that instead of using real FSMs we generate input/output
pairs (that is, a sequence of input actions and a corresponding sequence of
output actions). These pairs are appropriately encoded as a pair of natural
numbers. Using this trick we can work with very long, randomly gener-
ated sequences. We compare the results from Squeeziness and Probabilistic
Squeeziness with the results from DRR, another measure that has been pro-
posed before to address this problem. In order to do the comparison, we will
start by adapting DRR to our scenario and compare its properties to our
measures. Also, we need a measure that works as a formal reference, that is,
a measure returning the real probability of having FEP. This measure is the
probability of collisions: we will define it and we will compare its properties
to our measures. Finally, once we have defined all our measures, we can
proceed with the simulation and analyse the results.

The rest of the chapter is structured as follows. In Section 3.1 we define
DRR and compare it with our measures. Section 3.2 presents the definition
of a formal measure of FEP and a comparison with our measures. Section 3.3
provides an explanation of our simulation and an overview of the obtained
results.

19
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Figure 3.1: Machines M1 (up) and M2 (down)

3.1 Domain to Range Ratio

It is difficult to compare Squeeziness with other notions that can compute
fault masking because the literature is very scarce. One of the few notions
in this line is DRR (Woodward and Al-Khanjari, 2000). First we will give
the original definition of DRR.

Definition 7 Let f : I −→ O be a total and surjective function. We define
the Domain to Range Ratio of f , denoted by DRR(f), as |I|

|O| .

Next, we adapt this notion to our framework. Actually, our functions are
total and surjective because we restrict ourselves to domain and range.

Definition 8 Let M = (Q, qin, I, O, T ) be an FSM and k > 0. Let us
consider fM,k : domM,k −→ imageM,k. We define the Domain to Range

Ratio for M and k, denoted by DRR(fM,k), as
|domM,k|

|imageM,k|
.

The next result shows that this measure is inconsistent with Probabilistic
Squeeziness (the proof that this measure is inconsistent with Squeeziness can
be found in the original work on Squeeziness Clark and Hierons (2012)).

Lemma 4 There exist FSMs M1 and M2 and k > 0 such that DRR(fM1,k) =
DRR(fM2,k) but PSqk(M1) 6= PSqk(M2).

There exist FSMs M1 and M2 and k > 0 such that DRR(fM1,k) <
DRR(fM2,k) but PSqk(M1) > PSqk(M2).
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Figure 3.2: Machines M3 (up) and M4 (down)

Proof

First, let us note that in this proof we assume uniform distributions over
inputs (and outputs) of the FSMs. However, the result holds for any prob-
ability distribution: we would only need to slightly modify the definition of
the given machines.

In order to prove the first part of the result, we define two machines M1

and M2, both with initial state q0, fulfilling the conditions. Let M1 be the
machine from Figure 3.1 (up). We have

domM1,2 = {(i1, i1), (i2, i1), (i2, i2), (i2, i3), (i3, i1), (i3, i2)}

and

imageM1,2 = {(o1, o1), (o2, o2)}

On the one hand we have DRR(fM1,2) = 6/2 = 3 while, on the other hand, we

have PSq2(M1) =
(5·log2(5)+1·log2(1))/6

log2(5)
≈ 0.833. Now, let M2 be the machine

from Figure 3.1 (down). We have

domM2,2 = {(i1, i1), (i1, i2), (i1, i3), (i2, i1), (i2, i2), (i2, i3)}
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and
imageM2,2 = {(o1, o1), (o2, o2)}

We have, on the one hand, that DRR(fM2,2) = 6/2 = 3 while, on the other

hand, PSq2(M2) =
(2·3·log2(3))/6

log2(3)
= 1.

In order to prove the second part of the result, let us consider again
two machines M3 and M4, with initial state q0, and we will show that
they fulfil the required conditions. In these machines, we consider that
x1, . . . , xn/y is a shorthand for n different transitions labelled, respectively,
by x1/y, x2/y, . . . , xn/y. Let M3 be the machine from Figure 3.2 (up).
We have domM3,1 = {i0, ..., i15} and imageM3,1

= {o0, ..., o8}. Therefore,

DRR(fM3,1) = 16/9 ≈ 1.778 while PSq1(M3) = (7·2·log2(2)+2·1·log2(1))/16
log2(2)

=

0.875. Finally, let M4 be the machine from Figure 3.2 (down). We have
domM4,1 = {i0, ..., i15} and imageM4,1

= {o0, ..., o7}, so |imageM4,1
| = 8 and

DRR(fM4,1) = 16/8 = 2, PSq1(M4) =
(2·5·log2(5)+6·1·log2(1))/16

log2(5)
= 0.625. �

Finally, note that the results in this section are independent of the actual
value of k. We have used functions over inputs of different lengths to show
that the length of the sequences do not influence the computations. The
idea is that each sequence of input actions works as a single input and the
computations consider only the number of inputs of the same length.

3.2 Probability of Collisions

In order to have a reference measure for our experiments, we need to define
the probability of collisions. In our context, fault masking (FEP) happens
when the expected and faulty input sequences produce the same sequence β
of output actions. Besides, if given an FSM M and k > 0 we have that there
exist β ∈ imageM,k such that α,α′ ∈ f−1

M,k(β), with α 6= α′, then there is a
collision and this might hide a fault. Next we provide a notion to compute
the probability of having a collision.

Definition 9 Let M be an FSM and k > 0. Let imageM,k = {β1, ..., βn}

and for all 1 ≤ i ≤ n let Ii = f−1
M,k(βi) and mi = |f−1

M,k(βi)|. We have that
d =

∑n
i=1mi is the size of the input space.

Given a uniform distribution over the inputs, the probability of α and α′

belonging to the same set Ii is equal to pi = mi·(mi−1)
d·(d−1) . We have that the

probability of having a collision in M for sequences of length k, denoted by
PCollk(M), is given by

PCollk(M) =

n
∑

i=1

mi · (mi − 1)

d · (d− 1)

The original work (Clark and Hierons, 2012) states that this can be seen
as a probability of collisions when the probability distribution over the inputs
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Figure 3.3: Machines M5 (up) and M6 (down)

is uniform, but the relationship between PCollk(M) and PSqk(M) is not, in
general, monotonic, and thus it is neither between PCollk(M) and Sqk(M)
(the proof that the relationship between PCollk(M) and Sqk(M) is not, in
general, monotonic is in the original work Clark and Hierons (2012)).

Lemma 5 There exist FSMs M1 and M2 and k > 0 such that PSqk(M1) <
PSqk(M2) but PCollk(M1) > PCollk(M2).

Proof

First, let us note again that, similar to the proof of Lemma 4, in this proof
we assume uniform distributions over inputs (and outputs) of the FSMs.
Again, if we have a different probability distribution then we only need to
adapt the definition of the machines so that the result still holds.

First, we consider M5 with initial state q0, the machine from the Fig-
ure 3.3 (up). Second, let M6, again with initial state q0, be the machine
from Figure 3.3 (down). On one hand we have PColl3(M5) = 0.5 and
PColl3(M6) = 0.4 while, on the other hand, we have PSq3(M5) = 0.75 and
PSq3(M6) = 1. �

3.3 The Simulation

In order to compare PColl, PSq, Sq and DRR we made a simulation. We
defined the four measures assuming uniform distributions over the inputs,
in terms of the sizes of the subdomains (f−1

M,k(β)). Our methodology to
perform simulations followed the approach used in the original work on
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Squeeziness (Clark and Hierons, 2012). This methodology consist on sim-
ulate an FSM by setting some parameters about the I/O correspondence of
the FSM. The firs parameter to be settled is the size of the input space (that
we will denote by d), that is, the number of inputs for the simulated FSM.
The second parameter we have to set is the maximum inverse domain size
(that we will denote by m), that is, the maximum number of inputs that can
lead to a same output. Then, we can set the fundamental parameters, the
size of the inverse domains of the outputs of the simulated FSM. In order to
do so we generate random integers between 1 and m until the values summed
to d, that is, we generated outputs with an inverse domain of a random size
(between 1 and m) until each input is on the inverse domain of an output.
Once we have those inverse domains, we can compute the four measures over
the simulated FSM.

This process was repeated 200 times for each pair (d,m), with 149 pairs
being used (d ranging between 10 and 2 · 109 and m ranging between 5 and
104). Then we computed the Pearson correlation coefficient between PColl

and the other three measures. Actually, we also computed the Spearman
Rank correlation coefficient, but the results where almost identical, so we
will not comment about these correlation coefficients.

For each pair (d,m) we performed this process twice. The complete
results can be seen in Appendix A.1. Our main conclusion is that there is
a relatively strong correlation between PColl and PSq, with all of the values
being greater than 0.89 for big sets, but getting lower correlations (with a
minimum of 0.37) for the smallest sets. Actually, the values are bigger than
0.96 for input sets with 5 ·106 or more elements. Moveover, we also obtained
a correlation bigger than 0.96 between PColl and Sq, similar to the one
obtained in Clark and Hierons (2012).

On the contrary, we obtained a not so strong correlation between PColl

and DRR, with all correlations being between 0.91 and 0.60. Interestingly
enough, in contrast to the case of PSq and Sq, the correlations deteriorate
when the size of the input space increases. This shows that this measure
is not so good at detecting fault masking, although it is certainly easy to
compute.

As a final comment, it is worth noting that standard Squeeziness has a
better correlation than Probabilistic Squeeziness. This situation is created
by the normalization that transforms Squeeziness into a probability mea-
sure. However, Probabilistic Squeeziness can be more useful than standard
Squeeziness because it gives a fixed and bounded set of values that can be
easily compared because we know that all of them belong to the interval
[0, 1]. This advantage is achieved with a small additional computational cost
because only few computations are needed to transform Squeeziness into a
probability measure.
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Experiments

No amount of experimentation can ever

prove me right; a single experiment can

prove me wrong.

Albert Einstein

In this chapter we explain all the experiments we did in order to assess the
usefulness of our measures and discuss the results. In the previous chapter
we concluded that both Squeeziness and its probabilistic version are related
to the probability of fault masking. However, our study has an obvious
limitation: we considered correlations in the context of big sets of inputs, with
their respective maximum partition values, under a uniform distribution.
Therefore, the question remains as to whether the results are similar if we
consider finite states machines, not having such a symmetric behaviour. In a
first step we evaluated our measures on 50 randomly generated FSMs, having
between 25 and 50 states, and we used different scenarios. Then, we realized
some problems of this approach and therefore evaluated our measures on
500 randomly generated input-enabled FSMs with 25 states each one. We
have not considered bigger FSMs because of resources limitation, in terms
of computational power and memory limits, but these relatively small FSMs
allowed us to extract relevant conclusions about our measures.

The rest of the chapter is structured as follows. In Section 4.1 we explain
our tool to generate random FSMs. In Sections 4.2, 4.3, 4.4 and 4.5 we
explain our four experiments, what we wanted to prove, the results that we
got, and our conclusions. Finally, Section 4.6 presents an overview of the
results of the experiments.
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4.1 FSM Generator

In order to perform our experiments we need to generate FSMs. In order to
do so, we developed an FSM generator that generates random FSMs given
some parameters.

The first issue we solved was to fix the internal representation of FSMs.
Since our work is not the first dealing with FSMs we decided to review
the literature and found the OpenFST library (Allauzen et al., 2007). This
library is intended to work with FSTs (Finite State Transducers) (as its
name indicates). These are a kind of FSMs with an input/output par in each
transition and a weight. Therefore, we simply ignore the weight. This library
also provides some shell commands that we can use, in particular, to generate
the associated binary files and to generate the topological representation of
each FSM as an image.

Once we have a proper representation for our FSMs, we developed the
tool for generating those FSMs. An important part of this tool has as goal
to generate a huge range of different FSMs fulfilling some specific properties.
In order to do so, we defined some basic parameters:

• NREP : the number of FSMs we want to generate.

• MAX_STATES: the maximum number of states an FSM can have.

• MIN_STATES: the minimum number of states an FSM must have.

• MAX_TRANSITIONS: the maximum number of transitions each
state of an FSM can have.

• MIN_TRANSITIONS: the minimum number of transitions each
state of an FSM must have.

• NINPUTS: the number of inputs.

• NOUTPUTS: the number of inputs.

After setting these basic parameters, the program can be executed. The
execution flow for each one of the NREP FSMs is:

• Create a folder to save the FSM files.

• Set a random number of states between MIN_STATES and MAX_STATES
for the FSM.

• Choose one of this states as initial state.

• For each state of the machine:

– Set a random number of transitions between MIN_TRANSITIONS
and MAX_TRANSITIONS for the state.
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– For each transition of the machine:

∗ Set a random state as an end of the transition.

∗ Set a random input label for the transition not previously
used for another transition of this state (so the FSMs are
deterministic).

∗ Set a random output label for the transition.

∗ Save this transition to the FSM file.

• Create the binary file that the OpenFST library uses to interpret FSTs
using the FSM file we created.

• Create a pdf image with the FSM topology.

In order to create input-enabled FSMs, in our tool is as simple as setting
MIN_TRANSITIONS = MAX_TRANSITIONS = NINPUTS.

4.2 First Experiment: Squeeziness vs. location of

FEP

Our first conjecture was that the Squeeziness of sequences might tell us some-
thing about where a fault masked by FEP is likely to be. In order to test it,
we develop the following experiment. For each FSM M we computed Sq and
PSq using all sequences of input actions of length k for 1 ≤ k ≤ 25. Then,
we mutated M by modifying the ending state of a randomly chosen transi-
tion, that is, we induced a transfer error1. Using a mutation test2 approach
as in Clark and Hierons (2012), we checked whether the mutant exhibited
FEP. We iterated the process until we had a total of 100 valid mutants of
M presenting FEP. Given a mutant M ′, we executed the input sequences of
length 25 on M ′ until we used an input sequence that executed the faulty
transition; the position ℓ of the faulty transition within the sequence was
said to be the position of the fault. We then computed the rank correlation
between the FEP for sequences of length k and the number of mutants that
had score k − 1 (i.e. whose faulty transition was first executed in position
k − 1).

We ran the previous procedure twice and obtained similar results: if we
consider non-trivial FSMs then there is no correlation between where the
fault is produced and the Squeeziness and Probabilistic Squeeziness obtained
for the length of the input sequence reaching the mutated transition. This

1We did not consider mutations that change the input or the output of a transition, or
the initial state of a transition because these mutations are easier to find in testing and
generate less FEP.

2The interested reader is referred to previous work (Hierons et al., 2010) on mutation
testing for additional details.
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(negative) result suggests that we cannot use the Squeeziness of input se-
quences of different lengths to determine the likely position of a fault. This
also shows that computing Squeeziness for sequences of length k when there
are sequences of length l > k could lead us to probabilities of FEP in the
FSM that are useless as the FEP produced for length k can be solved with
a sequence of length l by the detection of an invalid output3. In this way,
whenever we use Squeeziness to compute the probability of having FEP dur-
ing testing, we have to compute Squeeziness for sequences of the maximum
length we will test in order to get a proper measure of having FEP in the
test. In Table 4.1 we present the results for two FSMs showing the an-
nounced lack of correlation. The data shows both runs of the experiment.
Similar values are obtained for the 50 FSMs.

FSM Number of Pearson Spearman Pearson Spearman

states PSq PSq Sq Sq

M15 35 −0.0421031 −0.0601407 −0.0421031 −0.0601407

M15 35 −0.0429902 −0.0601407 −0.0429902 −0.0601407

M19 25 −0.0434405 −0.0601407 −0.0434405 −0.0601407

M19 25 −0.0421031 −0.0601407 −0.0421031 −0.0601407

Table 4.1: Table with some results from the first experiment.

4.3 Second Experiment: Squeeziness vs. probabil-

ity of FEP in mutants

Our second experiment studied whether Squeeziness appropriately predicts
the probability of having FEP in a mutant version of the FSM. We started
with the same 50 FSMs. In this case, we computed Squeeziness and Prob-
abilistic Squeeziness for sequences of length 15 for 10 machines. Then, we
mutated the machines by modifying, again, the state reached by one of the
transitions. We produced 1000 valid mutants for each machine (we con-
sidered both mutants with and without FEP) and computed the number
of mutants having FEP. Finally, we computed the Pearson and Spearman
correlations between the number of mutants having FEP produced for se-
quences of inputs of length equal to 15 and both Squeeziness and Proba-
bilistic Squeeziness for the 10 FSMs. We also performed all the experiments
twice.

Interestingly, we obtained again almost no correlation. This fact tell us
that both Squeeziness and Probabilistic Squeeziness have no correlation with
the probability of an FEP being produced in their mutants, even given that

3This is due to the fact that we are using deterministic FSMs, as we have previously
discussed.
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they are similar FSMs, but not the same. This is an important result, as it
shows us that we cannot rely on the Squeeziness values for the specification
FSM when testing, as it will be a value that has no correlation with the
SUT. This is due to that in the moment the SUT has a modification in
their input/output behaviour from the specification FSM, the Squeeziness
of this SUT has changed and so the probability of FEP. That will make
harder to use Squeeziness for testing, as we cannot rely on the specification.
In Table 4.2 we present the results for four FSMs showing the announced
lack of correlation. The data shows both runs of the experiment. Similar
values are obtained for the 50 FSMs.

Test Pearson Spearman Pearson Spearman

Number PSq PSq Sq Sq

7 −0.189714 0.329743 −0.189714 0.329743

7 −0.186373 0.344158 −0.186373 0.344158

12 −0.62552 −0.974084 −0.62552 −0.974084

12 −0.616673 −0.971429 −0.616673 −0.971429

25 −0.162697 −0.287494 −0.162697 −0.287494

25 −0.162697 −0.287494 −0.162697 −0.287494

37 −0.369106 −0.567857 −0.369106 −0.567857

37 −0.362629 −0.589813 −0.362629 −0.589813

Table 4.2: Table with some results from the second experiment.

4.4 Third Experiment: Squeeziness vs. probability

of FEP in the original FSM

Our first conjectures were too ambitious. Once we obtained both negative
results (given by a lack of correlation between the studied events) we decided
to check whether Squeeziness appropriately predicts the probability of hav-
ing FEP on the same machine. We started with the same 50 FSMs. In this
case, we computed Squeeziness and Probabilistic Squeeziness over the mu-
tants. First, we mutated the FSMs by modifying, again, the state reached
by one of the transitions. We produced 10 valid mutants (we considered both
mutants with and without FEP). Then, we computed the probability of an
FEP to be produced and the Squeeziness and Probabilistic Squeeziness of
input sequences of length 20. Finally, we computed the Pearson and Spear-
man correlations between the probability of the mutants of having FEP
produced for sequences of inputs of length equal to 20 and both Squeeziness
and Probabilistic Squeeziness for each mutant. We perform all this experi-
ment twice for each FSM. In order to compute the probability of producing
an FEP for an input and a mutant, we computed all the possible inputs
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(and outputs) and counted how many did/did not detect the mutation. We
used the following formula (Androutsopoulos et al., 2014):

p(FEP ) =
# tests reaching the wrong state but generating the correct output

# tests reaching the wrong state

Again, we got almost no correlation between both measures and the prob-
ability of FEP, what leads us to think about the measure we are comparing
to. In Table 4.3 we present the results for four FSMs showing the announced
lack of correlation. The data shows both runs of the experiment. Similar
values are obtained for the 50 FSMs.

FSM Numberof Pearson Spearman Pearson Spearman

States PSq PSq Sq Sq

M1 43 0.327585 0.223298 0.256473 0.223298

M1 43 −0.278164 −0.190777 −0.227735 −0.276935

M17 40 0.593344 0.69765 0.332521 0.555651

M17 40 −0.415348 −0.0747667 −0.400539 −0.0747667

M21 28 −0.121012 0.205656 −0.286948 −0.0311601

M21 28 −0.512128 −0.596973 −0.417908 −0.596973

M47 25 0.340424 0.237809 0.411806 0.310981

M47 25 −0.525826 −0.647114 −0.0576659 −0.241851

Table 4.3: Table with some results from the third experiment.

4.5 Fourth Experiment: Squeeziness vs. Probabil-

ity of Collisions

For our last experiment, we analysed what we were comparing in our pre-
vious experiments. In those experiments we compared two measures. The
first one was related to Squeeziness and it was computed on one FSM (in
some experiments it was the SUT while in others was the specification).
The other measure was the probability of FEP. This measure computes a
certain relation between the specification and the SUT, using the following
formula Androutsopoulos et al. (2014):

p(FEP ) =
# tests reaching the wrong state but generating the correct output

# tests reaching the wrong state

The problem is that we were comparing a measure obtained from one
FSM with another measure obtained from two. Consider, for example, that
we have one specification and n mutants. Our previous experiments were
trying to correlate one value with different values and the results were bad,
showing a low correlation. Therefore, we thought that we should compare
Squeeziness and a value that depends only on the FSM that we are using to
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compute Squeeziness. The other option would be to compare to probability
of FEP, but computing it over all the possible SUTs, for a given specifica-
tion, what is only feasible for small specifications, even assuming that each
faulty SUT has at most one error. We concluded that we might consider the
same measure that we used in Chapter 3:

PCollk(M) =
n
∑

j=1

mj · (mj − 1)

d · (d− 1)

where mj is the cardinal of the inverse image of the j-th output (i.e. the
number of inputs that lead to this output) and d is the cardinal of the inputs
(i.e. the total number of inputs). The only drawback of this measure is that
it can be applied only to input-enabled FSMs. Therefore, the first step is
to generate a new set of (input-enabled) FSMs.

We generated 500 machines with 25 states and 5 outgoing transitions
from each state (making them input-enabled). Then, we computed Squeezi-
ness, Probabilistic Squeeziness and PColl for each FSM. The next step was
to compute the correlation between the results for 10 different machines for
Squeeziness and PColl, and Probabilistic Squeeziness and PColl. Due to
memory limits, we computed these measures for input sequences of length 8.
This number is certainly low for a proper experiment, but it is the highest
that we could achieve with our current computation setting. We repeat this
experiment twice for each block of 10 FSMs.

This time we obtain positive results concerning correlation but there are
some downsides. The results show a correlation between 0.7 and 1 for most
of the cases of Squeeziness vs. PColl, with similar values for Pearson and
Spearman correlations (again, in most of the cases). This shows that our
simulation was not only useful as a theory reinforcement, but also that it
is close to the results for real FSMs. Actually, we observe a similar pat-
tern between the results of this experiment and the experiments reported
in Chapter 3. So, it is safe to assume that the correlations will increase for
bigger FSMs and that the bad correlation results are due to the limited size
of the input sequences length (what limits the total number of considered in-
puts). Unfortunately, the results for Probabilistic Squeeziness are really bad,
showing a lack of correlation. However, due to the relative correspondence
between the results of this experiment and the ones in Chapter 3, we can also
assume that these bad results are due to the small size of the experiment.
We expect that the correlation will increase for bigger FSMs. After all, for
this small experiment we obtained good correlation for a reduced number of
cases.

The results of our fourth experiment can be found in three tables given
in Appendix A.2.
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4.5.1 Application Scope

The previous measures were computed on the same FSM and this fact raised
another research question. Specifically, what does happen if we compute
these values on the specification and on a slightly different SUT? In order to
reach a conclusion, we developed the following additional experiment:

1. Consider an FSM (the specification).

2. Generate 10 valid mutants and compute Squeeziness, Probabilistic

Squeeziness and PColl for each of them. We obtain three vectors
−→
Sq,

−−→
PSq and

−−−−→
PColl.

3. Compute the means of the values in each vector: Sq, PSq and PColl.

4. Subtract from each value of the vectors their corresponding mean and

obtain new vectors
−→
Sq1,

−−−→
PSq1 and

−−−−→
PColl1.

5. Compute the norm of the new vectors and divide by the mean of the
measure.

∥

∥

∥

−→
Sq1

∥

∥

∥

Sq
,

∥

∥

∥

−−−→
PSq1

∥

∥

∥

PSq
and

∥

∥

∥

−−−−→
PColl1

∥

∥

∥

PColl

This value comprises the deviation among the different values of the
measures of each set of mutants.

We did this twice with all the FSMs that we used in the fourth experi-
ment and although most of the results were around 10% or less, some of them
were up to 60% for PColl and up to 20% for Squeeziness and Probabilistic
Squeeziness. These results lead us to reinforce the idea, already deduced
from the first experiments, that a small deviation from the specification in
the SUT can lead to totally different values for Squeeziness and the other
measures.

In Table 4.4 we present the most interesting results (the highest and
lowest ones). The notation My

x denotes the y-th experiment on the x-th
machine of the set. The complete 1000 results (2 for each FSM) of this
experiment can be found in Appendix A.3.

4.6 Concluding remarks

Our experiments show that Squeezines and Probabilistic Squeeziness cor-
relate with the probability of having a collision (and therefore of having a
case of FEP) when testing from an FSM. However, and this is an inter-
esting (unfortunately negative) result, these measures are not useful when
computed over the FSM specification. In this case they are useless because
the potential differences between the specification and the SUT can lead to
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FSM PColl deviation PSq deviation Sq deviation

M1
19 0.330245 0.0437058 0.143475

M2
19 0.092328 0.0567495 0.0497149

M1
54 0.154943 0.0929899 0.0425949

M2
54 0.512515 0.0997374 0.204219

M1
178 0.502121 0.133631 0.206008

M2
178 0.0501833 0.0805334 0.0581454

M1
193 0.11518 0.050467 0.0379082

M2
193 0.319289 0.210992 0.0788463

M1
195 0.615883 0.0610384 0.191272

M2
195 0.171396 0.0678891 0.0736381

M1
217 0.0730744 0.12794 0.0280366

M2
217 0.0332924 0.00887374 0.00887374

M1
307 0.369638 0.240243 0.155753

M2
307 0.322205 0.154143 0.130664

M1
351 0.0836284 0.0349514 0.0481058

M2
351 0.550097 0.048125 0.212203

M1
373 0.331589 0.103725 0.106278

M2
373 0.531864 0.212388 0.186662

M1
411 0.113319 0.00985007 0.00705992

M2
411 0.0943745 0.0301996 0.0301996

M1
435 0.391234 0.106289 0.0983797

M2
435 0.619814 0.0821379 0.144467

M1
447 0.129423 0.0995404 0.0684297

M2
447 0.179715 0.202542 0.0483879

Table 4.4: Table with the most interesting results from the scope experiment.

different values for our two measures. Therefore, our experiments show that
our measures are valid only if computed over the SUT that we want to test.
Actually, this is a good result because we only need to apply sequences of
inputs to the SUT, observe the produced sequences of outputs, and com-
pute our measures. Note that despite the fact the SUT is a black box, and
therefore we do not have access to its internal structure, we can always apply
inputs and observe outputs. The specification will be used, during this pro-
cess, to provide the input domain that we will use to compute our measures.
In addition, the specification will be used, as usual, as an oracle to decide
whether the observed outputs are the expected ones.





Chapter 5

Conclusions

Every story has an end, but in life every

end is just a new beginning.

Annonymous

In this chapter we summarize the obtained results and discuss how we
can use our measures to test from systems whose underlying structure can
be given by an FSM.

The rest of the chapter is structured as follows. In Section 5.1 we dis-
cuss the results of the experiments and what they imply. In Section 5.2 we
discuss the practical uses of our measures after considering the results of
the experiments. Finally, in Section 5.3 we overview our contribution and
suggest some lines for future work.

5.1 Results

Our experiments have validated only one of our hypothesis: Squeeziness
and Probabilistic Squeeziness give us an estimation of the probability of
having a collision in a given SUT, indicating a probability of having a case
of FEP. Unfortunately, these measures cannot give us direct information
about the location of an FEP (what we wanted to check with our first
experiment). This negative result makes sense because the measures are not
monotonous with respect to k (the length of the sequence of inputs that we
exercise). Therefore, due to this property, one can find really high values
for one fixed length k (this is supposed to tell us that FEP is very likely)
but lower values can appear when testing with sequences of length k + 1.
Another conclusion that we obtain from the results is that the specification
of the SUT is not useful when talking about Squeeziness and Probabilistic
Squeeziness. This is so because any change in the input/output behaviour of
the specification changes the correlation between the measures and the real
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probability of having FEP in the SUT. This implies that these measures have
to be computed over the SUT itself. Actually, this makes sense given that the
measures basically rely on the input/output behaviour of an FSM. Therefore,
changes over the FSM, even the smallest ones, modify the values of the
measures. This will decorrelate the values measured over the specification
FSM and the real probability of having an FEP in the SUT. Finally, we get
a positive result when we consider the correlation between the probability of
having an FEP in a SUT and the Squeeziness and Probabilistic Squeeziness
over this SUT. This implies that, although the three initial hypothesis do
not hold, our measures do not only work in the theoretical plane (as the
simulation performed in Chapter 3 suggests) but also work in the practical
plane, when we use them to determine the likelihood of having FEP in an
SUT whose underlying internal structure is given by an FSM.

Our experiments also show that our measures are useful to decide how
testable the SUT is. This fact reinforces the idea that it makes sense to
compute these measures over the SUT itself. Note that after the use of our
measures to obtain an estimation of the likelihood of FEP, the black-box
testing process should make a proper testing that involves the specification,
in particular, to use it as an oracle (as we have already said, the specification
also plays a role in the computation of our measures because it provides the
input domain).

5.2 Practical Uses

Next we briefly discuss the practical use of our measures. In order to avoid
redundancy, we will focus on Probabilistic Squeeziness (a similar discussion
applies to Squeeziness, although it has the drawback of not being a proba-
bility measure).

One possible use of Probabilistic Squeeziness is to guide the process of
finding good input sequence lengths. Specifically, before running tests one
might calculate the Probabilistic Squeeziness for input sequences of length
k, varying k in a certain range. The resultant values could then be used to
choose a length that has a relatively low Probabilistic Squeeziness value over
the range of acceptable lengths. This makes it less likely that FEP will affect
testing. A special case appears when we find a length for which Probabilistic
Squeeziness is equal to zero: we can use this length as a checkpoint. The
idea is that we should use all the possible input sequences of this length to
test the SUT in order to know whether there are faults in this part of the
program. Note, however, that Probabilistic Squeeziness is not monotonic
(and, therefore, we might consider multiple checkpoints).

Another possible use, but this needs further work from the theoreti-
cal point of view and experimentation to validate the hypothesis, is to use
our measures when defining the specification of the system. Intuitively,
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if we compute Probabilistic Squeeziness on the specification, then we can
(re)define it in a way that we get the lowest Probabilistic Squeeziness possi-
ble, ideally 0, without drastically modifying its expected behaviour. There-
fore, any correct SUT should have almost no FEP. Although for simpler
cases it is easier to just make a 1 to 1 correspondence between inputs and
outputs, for complex cases this might not be easily achieved. Thus, produc-
ing specifications with low Probabilistic Squeeziness values can be a good
way to assure a low number of FEP in the implementation.

Finally,note that Probabilistic Squeeziness is a probability measure that
aims to estimate the probability of FEP when testing over the FSM with
input sequences of a certain length k. Since this is a probability measure, so
is its inverse: 1 − PSq. This derived measure is interesting because it gives
us the reliability of a test in the sense that it represents the probability that
a correct output denotes that no fault has being executed.

5.3 Final Considerations

It is known that failed error propagation (FEP) can have a significant effect
on testing and recent work has shown that an Information Theoretic measure
(called Squeeziness) strongly correlates with the likelihood of FEP. This
work considered a white-box scenario in which the SUT simply receives input
and returns output; there is no persistent state. In our work we have adapted
Squeeziness to work with black-box scenarios in which we are interested in
fault masking. Having devised new notions of Squeeziness, for black-box
state-based systems, we carried out experiments in order to evaluate these
measures. We found that there is a strong correlation between the likelihood
of collisions (and therefore the likelihood of having a case of FEP) and our
two measures (Squeeziness and Probabilistic Squeeziness).

The results in this thesis have two potential uses. First, our measures
might be used as measures of testability, allowing one to assess how easy
it is to test a system or part of a system. This might be used as part of
the process of deciding how much testing is required. In addition, there is
potential to use these measures to direct testing. For example, we might want
to execute a part of the system with a test case where the probability of FEP
(following this component) is relatively low. Future work will have to explore
these potential uses, develop tools, and evaluate these on case studies. Also
it will have to generalise the framework and measures to introduce data into
the models.
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Appendices





Appendix A

Results

A.1 Simulation Results

Here are the raw results from the simulation explained in Section 3.3.
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Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

10 5 0.722419 0.982492 0.912124

10 5 0.725592 0.980483 0.90151

10 10 0.383566 0.962152 0.760265

10 10 0.472533 0.956568 0.743107

20 5 0.773518 0.974509 0.870086

20 5 0.858893 0.979125 0.897943

20 10 0.605163 0.967108 0.819643

20 10 0.592223 0.964445 0.81604

50 5 0.983333 0.983333 0.925018

50 5 0.984073 0.984073 0.922599

50 10 0.761072 0.961765 0.786001

50 10 0.816325 0.972962 0.840203

100 10 0.92453 0.97571 0.868372

100 10 0.919776 0.970633 0.857886

100 20 0.729808 0.973755 0.827209

100 20 0.772328 0.965189 0.797126

100 50 0.465251 0.962363 0.741697

100 50 0.549541 0.967853 0.776547

100 100 0.489419 0.968688 0.701156

100 100 0.469358 0.965432 0.628285

200 10 0.973502 0.973502 0.858282

200 10 0.978305 0.978305 0.883113

200 20 0.850969 0.965564 0.791423

200 20 0.831395 0.966462 0.787118

200 50 0.661863 0.971746 0.806116

200 50 0.697791 0.971603 0.795561

200 100 0.468793 0.958421 0.721154

200 100 0.503831 0.968021 0.771041

500 10 0.967251 0.967251 0.818355

500 10 0.96825 0.96825 0.828994

500 20 0.96093 0.98084 0.860986

500 20 0.949305 0.969495 0.795557

500 50 0.860276 0.965889 0.764926

500 50 0.841532 0.970989 0.785379

500 100 0.776246 0.972638 0.802795

500 100 0.778458 0.97467 0.80358

Table A.1: Table with the first part of the results from the simulation.
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Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

1000 100 0.820004 0.968629 0.770524

1000 100 0.875756 0.974068 0.809386

1000 200 0.716649 0.970774 0.771857

1000 200 0.746114 0.972044 0.819073

1000 500 0.448179 0.968221 0.762177

1000 500 0.476338 0.965733 0.792384

1000 1000 0.374508 0.965005 0.611607

1000 1000 0.373547 0.964423 0.60093

2000 100 0.890084 0.970319 0.765819

2000 100 0.890027 0.969404 0.783833

2000 200 0.846704 0.974528 0.808135

2000 200 0.837518 0.971235 0.784891

2000 500 0.615086 0.975174 0.790542

2000 500 0.633549 0.965611 0.778344

2000 1000 0.506566 0.968637 0.727308

2000 1000 0.457672 0.96406 0.730815

5000 100 0.952364 0.973766 0.808192

5000 100 0.943738 0.973478 0.808059

5000 200 0.912783 0.968631 0.761656

5000 200 0.905308 0.97061 0.777158

5000 500 0.834572 0.979689 0.842386

5000 500 0.744812 0.967755 0.763411

5000 1000 0.7261 0.96982 0.782368

5000 1000 0.71995 0.966707 0.747713

Table A.2: Table with the second part of the results from the simulation.
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Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

10000 100 0.958346 0.968366 0.763623

10000 100 0.961652 0.973918 0.783759

10000 200 0.950883 0.973016 0.823959

10000 200 0.926334 0.967349 0.77492

10000 500 0.898466 0.973849 0.828911

10000 500 0.898056 0.973267 0.803445

10000 1000 0.835717 0.963235 0.744021

10000 1000 0.832637 0.973658 0.804282

10000 2000 0.729078 0.969764 0.787121

10000 2000 0.696597 0.966409 0.753929

10000 5000 0.469301 0.968639 0.778538

10000 5000 0.471505 0.968937 0.768205

10000 10000 0.427412 0.967281 0.71496

10000 10000 0.470961 0.966184 0.670497

20000 100 0.967166 0.969669 0.780648

20000 100 0.97366 0.975364 0.824959

20000 200 0.95245 0.969587 0.778449

20000 200 0.956955 0.971707 0.771526

20000 500 0.942709 0.971942 0.798243

20000 500 0.936519 0.974174 0.792043

20000 1000 0.880857 0.971248 0.786153

20000 1000 0.910427 0.967574 0.769014

20000 2000 0.861626 0.967758 0.770978

20000 2000 0.858335 0.975119 0.819613

20000 5000 0.709371 0.972733 0.823052

20000 5000 0.674096 0.970411 0.780216

20000 10000 0.415143 0.960576 0.728561

20000 10000 0.515837 0.961688 0.724022

50000 100 0.963278 0.963278 0.74568

50000 100 0.975731 0.975731 0.817716

50000 200 0.968476 0.974623 0.795574

50000 200 0.967934 0.969418 0.746002

50000 500 0.954561 0.966153 0.777624

50000 500 0.961281 0.975947 0.84295

50000 1000 0.945005 0.967855 0.76079

50000 1000 0.923576 0.967894 0.789061

50000 2000 0.880547 0.96735 0.764992

50000 2000 0.91738 0.969433 0.804356

50000 5000 0.850672 0.97278 0.797072

50000 5000 0.849898 0.971647 0.792316

50000 10000 0.721962 0.970928 0.779042

50000 10000 0.654239 0.963673 0.723346

Table A.3: Table with the third part of the results from the simulation.
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Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

100000 100 0.97475 0.97475 0.797906

100000 100 0.972203 0.972203 0.799384

100000 200 0.972457 0.972457 0.788938

100000 200 0.96889 0.969988 0.78341

100000 500 0.972534 0.980028 0.836659

100000 500 0.96534 0.972878 0.769055

100000 1000 0.955834 0.976104 0.817482

100000 1000 0.963025 0.974571 0.820023

100000 2000 0.929032 0.971424 0.779667

100000 2000 0.949671 0.975182 0.787567

100000 5000 0.8751 0.96594 0.762143

100000 5000 0.860949 0.96303 0.73042

100000 10000 0.878154 0.970134 0.757703

100000 10000 0.818777 0.96836 0.778925

200000 100 0.970841 0.970841 0.801076

200000 100 0.974049 0.974049 0.798232

200000 200 0.971829 0.971829 0.776558

200000 200 0.973847 0.973847 0.79645

200000 500 0.976077 0.978293 0.822944

200000 500 0.962437 0.96523 0.748004

200000 1000 0.962282 0.968757 0.768184

200000 1000 0.961139 0.972733 0.808345

200000 2000 0.951086 0.971834 0.798966

200000 2000 0.948132 0.969003 0.749107

200000 5000 0.930642 0.970825 0.760313

200000 5000 0.913568 0.969484 0.76873

200000 10000 0.893991 0.970044 0.792676

200000 10000 0.91019 0.972554 0.788373

500000 100 0.97668 0.97668 0.836037

500000 100 0.977493 0.977493 0.809851

500000 200 0.963671 0.963671 0.743951

500000 200 0.974121 0.974121 0.807426

500000 500 0.971054 0.971647 0.774395

500000 500 0.973503 0.973467 0.800447

500000 1000 0.972197 0.976121 0.820915

500000 1000 0.967381 0.97081 0.769445

500000 2000 0.967251 0.976695 0.803875

500000 2000 0.967249 0.973124 0.787502

500000 5000 0.926782 0.95885 0.743651

500000 5000 0.949692 0.969437 0.765643

500000 10000 0.937438 0.971292 0.786862

500000 10000 0.957172 0.975993 0.819747

Table A.4: Table with the fourth part of the results from the simulation.
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Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

1000000 100 0.976936 0.976936 0.811867

1000000 100 0.971048 0.971048 0.775681

1000000 200 0.970973 0.970973 0.782711

1000000 200 0.977552 0.977552 0.839242

1000000 500 0.972066 0.972066 0.783899

1000000 500 0.974367 0.974367 0.770392

1000000 1000 0.973512 0.973926 0.79526

1000000 1000 0.97265 0.974027 0.830407

1000000 2000 0.967017 0.969736 0.780849

1000000 2000 0.972468 0.97408 0.805192

1000000 5000 0.964892 0.970854 0.809975

1000000 5000 0.959633 0.970388 0.787131

1000000 10000 0.948137 0.967924 0.778203

1000000 10000 0.953897 0.970411 0.769844

2000000 100 0.975097 0.975097 0.814434

2000000 100 0.968371 0.968371 0.768775

2000000 200 0.974395 0.974395 0.809679

2000000 200 0.97463 0.97463 0.800698

2000000 500 0.97177 0.97177 0.790358

2000000 500 0.970945 0.970945 0.809109

2000000 1000 0.978243 0.978102 0.826712

2000000 1000 0.971267 0.971722 0.810432

2000000 2000 0.967518 0.969418 0.755382

2000000 2000 0.968874 0.970523 0.779241

2000000 5000 0.971917 0.978818 0.810967

2000000 5000 0.958095 0.964455 0.698505

2000000 10000 0.962677 0.96991 0.776906

2000000 10000 0.9506 0.963563 0.781282

5000000 100 0.971105 0.971105 0.801428

5000000 100 0.975811 0.975811 0.806359

5000000 200 0.965705 0.965705 0.734183

5000000 200 0.975194 0.975194 0.787636

5000000 500 0.965762 0.965762 0.78538

5000000 500 0.977868 0.977868 0.816896

5000000 1000 0.970797 0.970797 0.782857

5000000 1000 0.974245 0.974245 0.807752

5000000 2000 0.973331 0.973636 0.783586

5000000 2000 0.973119 0.972639 0.782383

5000000 5000 0.976515 0.977712 0.793327

5000000 5000 0.961413 0.963994 0.708333

5000000 10000 0.97076 0.972559 0.773815

5000000 10000 0.972016 0.975021 0.788634

Table A.5: Table with the fifth part of the results from the simulation.
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Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

10000000 100 0.972085 0.972085 0.801643

10000000 100 0.96267 0.96267 0.74051

10000000 200 0.973476 0.973476 0.814127

10000000 200 0.978724 0.978724 0.817254

10000000 500 0.968369 0.968369 0.755809

10000000 500 0.976646 0.976646 0.784194

10000000 1000 0.97411 0.97411 0.792697

10000000 1000 0.970658 0.970658 0.782375

10000000 2000 0.973721 0.973856 0.793005

10000000 2000 0.974843 0.974945 0.782697

10000000 5000 0.975044 0.975649 0.814614

10000000 5000 0.965039 0.9663 0.780145

10000000 10000 0.97379 0.974921 0.808942

10000000 10000 0.973747 0.974783 0.821714

20000000 100 0.976361 0.976361 0.816832

20000000 100 0.969996 0.969996 0.785402

20000000 200 0.966911 0.966911 0.773231

20000000 200 0.975891 0.975891 0.830111

20000000 500 0.975834 0.975834 0.80509

20000000 500 0.971753 0.971753 0.761665

20000000 1000 0.970692 0.970692 0.800126

20000000 1000 0.972765 0.972765 0.780929

20000000 2000 0.975548 0.975548 0.79739

20000000 2000 0.97661 0.97661 0.790627

20000000 5000 0.975629 0.975512 0.81321

20000000 5000 0.969195 0.969801 0.778989

20000000 10000 0.969188 0.97061 0.79285

20000000 10000 0.974001 0.974807 0.823849

50000000 100 0.972157 0.972157 0.775908

50000000 100 0.97394 0.97394 0.744055

50000000 200 0.977712 0.977712 0.825954

50000000 200 0.964124 0.964124 0.754767

50000000 500 0.976058 0.976058 0.824369

50000000 500 0.971696 0.971696 0.792425

50000000 1000 0.968602 0.968602 0.773925

50000000 1000 0.975643 0.975643 0.813831

50000000 2000 0.972101 0.972101 0.80533

50000000 2000 0.96896 0.96896 0.763188

50000000 5000 0.967291 0.967312 0.733459

50000000 5000 0.971166 0.970914 0.792814

50000000 10000 0.973592 0.974186 0.831489

50000000 10000 0.970302 0.97075 0.794533

Table A.6: Table with the sixth part of the results from the simulation.



48 Appendix A. Results

Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

100000000 100 0.967785 0.967785 0.791843

100000000 100 0.973939 0.973939 0.79906

100000000 200 0.970936 0.970936 0.797435

100000000 200 0.971179 0.971179 0.792618

100000000 500 0.965457 0.965457 0.764338

100000000 500 0.967388 0.967388 0.749111

100000000 1000 0.967278 0.967278 0.762974

100000000 1000 0.975128 0.975128 0.816993

100000000 2000 0.976852 0.976852 0.809661

100000000 2000 0.973916 0.973916 0.811798

100000000 5000 0.964856 0.964856 0.752126

100000000 5000 0.975177 0.975177 0.804654

100000000 10000 0.973117 0.97333 0.797859

100000000 10000 0.979059 0.979012 0.839706

200000000 100 0.974298 0.974298 0.793441

200000000 100 0.974201 0.974201 0.817327

200000000 200 0.973198 0.973198 0.79773

200000000 200 0.969628 0.969628 0.752662

200000000 500 0.979169 0.979169 0.843415

200000000 500 0.975039 0.975039 0.830218

200000000 1000 0.975452 0.975452 0.842656

200000000 1000 0.973656 0.973656 0.81612

200000000 2000 0.974498 0.974498 0.799512

200000000 2000 0.980097 0.980097 0.843219

200000000 5000 0.97596 0.97596 0.81765

200000000 5000 0.973072 0.973072 0.794025

200000000 10000 0.972613 0.972525 0.790124

200000000 10000 0.975172 0.975228 0.812101

500000000 100 0.97099 0.97099 0.788888

500000000 100 0.971083 0.971083 0.798639

500000000 200 0.967438 0.967438 0.779869

500000000 200 0.977179 0.977179 0.832308

500000000 500 0.965965 0.965965 0.778361

500000000 500 0.968144 0.968144 0.764191

500000000 1000 0.974112 0.974112 0.800833

500000000 1000 0.973997 0.973997 0.779971

500000000 2000 0.971501 0.971501 0.782711

500000000 2000 0.970228 0.970228 0.743784

500000000 5000 0.976165 0.976165 0.825479

500000000 5000 0.973031 0.973031 0.779755

500000000 10000 0.969547 0.969547 0.772517

500000000 10000 0.966348 0.966348 0.773234

Table A.7: Table with the seventh part of the results from the simulation.
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Input set Maximum Correlation of Correlation of Correlation of

lenght size PSq Sq DRR

1000000000 100 0.96974 0.96974 0.779927

1000000000 100 0.974667 0.974667 0.824957

1000000000 200 0.978771 0.978771 0.859822

1000000000 200 0.968844 0.968844 0.759952

1000000000 500 0.975528 0.975528 0.799788

1000000000 500 0.972865 0.972865 0.806221

1000000000 1000 0.966998 0.966998 0.742382

1000000000 1000 0.970395 0.970395 0.795114

1000000000 2000 0.96474 0.96474 0.784384

1000000000 2000 0.966843 0.966843 0.768588

1000000000 5000 0.966975 0.966975 0.753142

1000000000 5000 0.969392 0.969392 0.777797

1000000000 10000 0.970387 0.970387 0.78255

1000000000 10000 0.966483 0.966483 0.741448

2000000000 100 0.968286 0.968286 0.797514

2000000000 100 0.974423 0.974423 0.78976

2000000000 200 0.97463 0.97463 0.779878

2000000000 200 0.969308 0.969308 0.776731

2000000000 500 0.97068 0.97068 0.77233

2000000000 500 0.964814 0.964814 0.741365

2000000000 1000 0.977148 0.977148 0.802956

2000000000 1000 0.972999 0.972999 0.824011

2000000000 2000 0.966897 0.966897 0.756296

2000000000 2000 0.967144 0.967144 0.731439

2000000000 5000 0.970575 0.970575 0.807333

2000000000 5000 0.965495 0.965495 0.781112

2000000000 10000 0.969172 0.969172 0.79843

2000000000 10000 0.972477 0.972477 0.783512

Table A.8: Table with the last part of the results from the simulation.



50 Appendix A. Results

A.2 Fourth experiment Results

Here are the raw results from the experiment explained in Section 4.5.
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Test Number Pearson PSq Spearman PSq Pearson Sq Spearman Sq

11 0.410929 0.187879 0.776577 0.236364

12 0.410929 0.187879 0.776577 0.236364

21 −0.463929 −0.490909 0.828186 0.69697

22 −0.463929 −0.490909 0.828186 0.69697

31 0.205106 0.0909091 0.904021 0.939394

32 0.205106 0.0909091 0.904021 0.939394

41 −0.00317279 −0.0909091 0.824818 0.806061

42 −0.00317279 −0.0909091 0.824818 0.806061

51 0.169992 0.139394 0.758513 0.721212

52 0.169992 0.139394 0.758513 0.721212

61 0.172371 0.0545455 0.806167 0.818182

62 0.172371 0.0545455 0.806167 0.818182

71 0.601034 0.733333 0.81336 0.769697

72 0.601034 0.733333 0.81336 0.769697

81 0.563977 0.50303 0.850133 0.878788

82 0.563977 0.50303 0.850133 0.878788

91 −0.33581 0.139394 0.805305 0.854545

92 −0.33581 0.139394 0.805305 0.854545

101 0.351802 0.357576 0.645551 0.515152

102 0.351802 0.357576 0.645551 0.515152

111 −0.434417 −0.175758 0.863196 0.806061

112 −0.434417 −0.175758 0.863196 0.806061

121 −0.0330206 0.260606 0.935489 0.709091

122 −0.0330206 0.260606 0.935489 0.709091

131 0.195111 0.115152 0.658232 0.612121

132 0.195111 0.115152 0.658232 0.612121

141 −0.230077 −0.187879 0.487063 0.29697

142 −0.230077 −0.187879 0.487063 0.29697

151 0.553214 0.381818 0.935108 0.806061

152 0.553214 0.381818 0.935108 0.806061

161 0.17371 0.127273 0.875405 0.842424

162 0.17371 0.127273 0.875405 0.842424

171 −0.066248 0.030303 0.788795 0.806061

172 −0.066248 0.030303 0.788795 0.806061

181 0.110038 0.115152 0.778921 0.733333

182 0.110038 0.115152 0.778921 0.733333

191 0.433426 0.0181818 0.940802 0.915152

192 0.433426 0.0181818 0.940802 0.915152

201 0.614432 0.551515 0.715185 0.672727

202 0.614432 0.551515 0.715185 0.672727

Table A.9: Table with the first part of the results from the fourth experiment.
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Test Number Pearson PSq Spearman PSq Pearson Sq Spearman Sq

211 −0.00559347 0.0181818 0.931591 0.975758

212 −0.00559347 0.0181818 0.931591 0.975758

221 0.616079 0.393939 0.853011 0.90303

222 0.616079 0.393939 0.853011 0.90303

231 0.0015574 0.163636 0.837655 0.830303

232 0.0015574 0.163636 0.837655 0.830303

241 0.478062 0.345455 0.801985 0.684848

242 0.478062 0.345455 0.801985 0.684848

251 0.45871 0.29697 0.952795 0.939394

252 0.45871 0.29697 0.952795 0.939394

261 0.289878 0.430303 0.802949 0.830303

262 0.289878 0.430303 0.802949 0.830303

271 0.641054 0.490909 0.885834 0.915152

272 0.641054 0.490909 0.885834 0.915152

281 0.686382 0.660606 0.801872 0.854545

282 0.686382 0.660606 0.801872 0.854545

291 0.644446 0.624242 0.969037 0.951515

292 0.644446 0.624242 0.969037 0.951515

301 −0.119512 0.139394 0.899693 0.951515

302 −0.119512 0.139394 0.899693 0.951515

311 0.174788 0.357576 0.842033 0.806061

312 0.174788 0.357576 0.842033 0.806061

321 0.462198 0.551515 0.706882 0.624242

322 0.462198 0.551515 0.706882 0.624242

331 0.184176 0.175758 0.799839 0.757576

332 0.184176 0.175758 0.799839 0.757576

341 0.341318 0.393939 0.812711 0.757576

342 0.341318 0.393939 0.812711 0.757576

351 0.137284 0.127273 0.219772 −0.0181818

352 0.137284 0.127273 0.219772 −0.0181818

Table A.10: Table with the second part of the results from the fourth exper-
iment.
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Test Number Pearson PSq Spearman PSq Pearson Sq Spearman Sq

361 0.205909 0.175758 0.911315 0.878788

362 0.205909 0.175758 0.911315 0.878788

371 0.343904 0.381818 0.861319 0.890909

372 0.343904 0.381818 0.861319 0.890909

381 −0.447221 −0.0181818 0.329793 0.490909

382 −0.447221 −0.0181818 0.329793 0.490909

391 0.146021 0.175758 0.696415 0.612121

392 0.146021 0.175758 0.696415 0.612121

401 0.179521 0.309091 0.815152 0.842424

402 0.179521 0.309091 0.815152 0.842424

411 0.609291 0.284848 0.951844 0.733333

412 0.609291 0.284848 0.951844 0.733333

421 0.489005 0.406061 0.8339 0.854545

422 0.489005 0.406061 0.8339 0.854545

431 0.0843827 0.0666667 0.715362 0.830303

432 0.0843827 0.0666667 0.715362 0.830303

441 −0.289384 0.0787879 0.919747 0.842424

442 −0.289384 0.0787879 0.919747 0.842424

451 0.772454 0.490909 0.920541 0.939394

452 0.772454 0.490909 0.920541 0.939394

461 0.148455 0.272727 0.768264 0.878788

462 0.148455 0.272727 0.768264 0.878788

471 0.583788 0.684848 0.867355 0.806061

472 0.583788 0.684848 0.867355 0.806061

481 0.490787 0.345455 0.894378 0.878788

482 0.490787 0.345455 0.894378 0.878788

491 0.496066 0.139394 0.950662 0.842424

492 0.496066 0.139394 0.950662 0.842424

501 0.529419 0.539394 0.927733 0.90303

502 0.529419 0.539394 0.927733 0.90303

Table A.11: Table with the last part of the results from the fourth experi-
ment.



54 Appendix A. Results

A.3 Scope experiment Results

Here are the raw results from the experiment explained in Section 4.5.1.
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FSM PColl deviation PSq deviation Sq deviation

M1
1 0.0950789 0.0703332 0.0387082

M2
1 0.0749958 0.0952356 0.039985

M1
2 0.182275 0.147906 0.0812145

M2
2 0.0859465 0.102554 0.0257775

M1
3 0.200358 0.031253 0.031253

M2
3 0.122406 0.0956112 0.0576035

M1
4 0.1108 0.0619166 0.0407203

M2
4 0.116017 0.0879653 0.0538548

M1
5 0.167367 0.0566661 0.0556639

M2
5 0.121117 0.0341017 0.0435675

M1
6 0.247408 0.104176 0.110493

M2
6 0.116842 0.0200062 0.0295791

M1
7 0.0909035 0.0391091 0.0313132

M2
7 0.320194 0.0391855 0.0913402

M1
8 0.279118 0.0849884 0.0981586

M2
8 0.146865 0.0463582 0.0632131

M1
9 0.0948726 0.0842807 0.0665105

M2
9 0.307571 0.0900623 0.0402301

M1
10 0.138399 0.0548657 0.0618528

M2
10 0.32039 0.0737068 0.12743

M1
11 0.0534865 0.0773609 0.0305317

M2
11 0.0715425 0.116987 0.032441

M1
12 0.221791 0.0771733 0.069286

M2
12 0.113286 0.0429015 0.0493155

M1
13 0.194512 0.149577 0.0487627

M2
13 0.271059 0.130015 0.0529391

M1
14 0.10515 0.0678593 0.0265715

M2
14 0.101342 0.0833349 0.0443392

M1
15 0.109012 0.0491771 0.0491771

M2
15 0.107724 0.0571589 0.0371638

M1
16 0.100109 0.0876177 0.0380637

M2
16 0.366246 0.0476176 0.0638289

M1
17 0.334802 0.0590221 0.0972634

M2
17 0.189753 0.102213 0.085375

M1
18 0.160188 0.0865485 0.0726993

M2
18 0.0981993 0.133009 0.0632623

M1
19 0.330245 0.0437058 0.143475

M2
19 0.092328 0.0567495 0.0497149

M1
20 0.228133 0.138484 0.0942126

M2
20 0.211442 0.137835 0.0886251

M1
21 0.113524 0.0617106 0.0404871

M2
21 0.0971766 0.0813695 0.0573164

M1
22 0.0818868 0.0663257 0.0321921

M2
22 0.163391 0.0926745 0.0733553

M1
23 0.0733843 0.0799325 0.0464522

M2
23 0.144326 0.102849 0.0984305

M1
24 0.09066 0.0222337 0.0277946

M2
24 0.0836259 0.094271 0.0343725

M1
25 0.200682 0.0600333 0.0832204

M2
25 0.222674 0.0990115 0.0557218

Table A.12: Table with the first part of the results from the scope experiment.
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FSM PColl deviation PSq deviation Sq deviation

M1
26 0.146452 0.0425276 0.0500004

M2
26 0.111927 0.0750084 0.0618829

M1
27 0.180839 0.0634458 0.0663702

M2
27 0.344779 0.0745289 0.105688

M1
28 0.205471 0.0576941 0.0266888

M2
28 0.141235 0.0500264 0.0560682

M1
29 0.161485 0.027813 0.044236

M2
29 0.150032 0.0456817 0.0467421

M1
30 0.170951 0.0788736 0.0894238

M2
30 0.416569 0.15985 0.15939

M1
31 0.130102 0.024334 0.0300059

M2
31 0.233224 0.0240878 0.0602772

M1
32 0.173543 0.0501073 0.0699508

M2
32 0.0519373 0.0340297 0.0250512

M1
33 0.0993003 0.0632115 0.057719

M2
33 0.0845636 0.0853346 0.0600748

M1
34 0.0757057 0.0785033 0.0369472

M2
34 0.0540204 0.0504756 0.0282128

M1
35 0.228355 0.041907 0.0584282

M2
35 0.051329 0.0289019 0.0277161

M1
36 0.405388 0.116162 0.114474

M2
36 0.154361 0.140656 0.045513

M1
37 0.226829 0.103107 0.0635126

M2
37 0.202945 0.0579514 0.064849

M1
38 0.247621 0.0548181 0.0952067

M2
38 0.141167 0.0740156 0.0395652

M1
39 0.118233 0.0780228 0.0217101

M2
39 0.153248 0.120387 0.048356

M1
40 0.193821 0.124717 0.0723519

M2
40 0.10875 0.0486825 0.070881

M1
41 0.0734413 0.0729073 0.0226361

M2
41 0.160393 0.0600171 0.0533946

M1
42 0.410768 0.1285 0.137999

M2
42 0.0894848 0.0711071 0.0711071

M1
43 0.188865 0.0608428 0.0623437

M2
43 0.16824 0.0837024 0.0493667

M1
44 0.0628875 0.0321204 0.0285181

M2
44 0.0590902 0.031853 0.0359773

M1
45 0.343608 0.0751338 0.137585

M2
45 0.228277 0.0752557 0.0736208

M1
46 0.100331 0.0406228 0.0348343

M2
46 0.303122 0.125679 0.0458033

M1
47 0.125738 0.0758148 0.0592544

M2
47 0.0990768 0.0305855 0.0335061

M1
48 0.0844205 0.0469336 0.0367617

M2
48 0.0747392 0.050212 0.0429968

M1
49 0.273759 0.098691 0.0332833

M2
49 0.179445 0.108899 0.06261

M1
50 0.208328 0.0600992 0.0543456

M2
50 0.211534 0.105022 0.0686775

Table A.13: Table with the second part of the results from the scope exper-
iment.



A.3. Scope experiment Results 57

FSM PColl deviation PSq deviation Sq deviation

M1
51 0.135969 0.072216 0.03921

M2
51 0.14765 0.0610611 0.0485349

M1
52 0.179811 0.13086 0.0425712

M2
52 0.109345 0.0700381 0.0496059

M1
53 0.287159 0.0401924 0.101824

M2
53 0.171377 0.0642315 0.0832322

M1
54 0.154943 0.0929899 0.0425949

M2
54 0.512515 0.0997374 0.204219

M1
55 0.164112 0.100697 0.089606

M2
55 0.0805172 0.0389442 0.0521739

M1
56 0.258327 0.0746952 0.0486011

M2
56 0.221498 0.0604876 0.0830078

M1
57 0.102095 0.0678515 0.0485712

M2
57 0.116065 0.0571252 0.0493827

M1
58 0.222202 0.0445676 0.100461

M2
58 0.160713 0.0648392 0.0339851

M1
59 0.0922697 0.114325 0.0392836

M2
59 0.152339 0.0779662 0.0534211

M1
60 0.0964332 0.0316583 0.0338506

M2
60 0.197632 0.0312328 0.0845141

M1
61 0.120822 0.0672468 0.041812

M2
61 0.235578 0.079051 0.040635

M1
62 0.136279 0.0518537 0.0426184

M2
62 0.14009 0.0544163 0.0563986

M1
63 0.20426 0.048189 0.0368091

M2
63 0.0618376 0.0261753 0.0134116

M1
64 0.239645 0.100136 0.0698116

M2
64 0.264125 0.0387124 0.0603139

M1
65 0.143398 0.0849325 0.0648596

M2
65 0.18349 0.0702123 0.140543

M1
66 0.088535 0.0583747 0.0299715

M2
66 0.0953912 0.0685813 0.0462366

M1
67 0.140132 0.0344606 0.0452552

M2
67 0.0923699 0.0363215 0.026999

M1
68 0.154591 0.110447 0.0561131

M2
68 0.082975 0.0850383 0.0387928

M1
69 0.167507 0.0829327 0.0894642

M2
69 0.137595 0.10085 0.0336023

M1
70 0.122308 0.0712289 0.0601406

M2
70 0.139632 0.0472891 0.0366607

M1
71 0.216472 0.0658322 0.0619258

M2
71 0.225876 0.0672275 0.0609915

M1
72 0.110128 0.0422674 0.0513186

M2
72 0.101456 0.0417108 0.0280167

M1
73 0.0754773 0.0665834 0.0452809

M2
73 0.09956 0.0736397 0.0391385

M1
74 0.187389 0.061739 0.0962819

M2
74 0.154081 0.0633079 0.0759063

M1
75 0.0767824 0.0282065 0.0340653

M2
75 0.148949 0.0817115 0.0460042

Table A.14: Table with the third part of the results from the scope experi-
ment.
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FSM PColl deviation PSq deviation Sq deviation

M1
76 0.0974253 0.0649437 0.0383996

M2
76 0.13086 0.0803395 0.0371369

M1
77 0.126834 0.046984 0.047322

M2
77 0.0666589 0.0567481 0.0306047

M1
78 0.142421 0.0728291 0.0657716

M2
78 0.135484 0.0413574 0.059526

M1
79 0.0787972 0.0698102 0.0319994

M2
79 0.132023 0.0707939 0.0686297

M1
80 0.129335 0.0563609 0.0864538

M2
80 0.124183 0.121535 0.0773668

M1
81 0.0858395 0.0854437 0.0263411

M2
81 0.248318 0.0772831 0.0894451

M1
82 0.145843 0.0499052 0.0844324

M2
82 0.128471 0.0425901 0.0449232

M1
83 0.144199 0.0817007 0.0611257

M2
83 0.144874 0.0604773 0.0573113

M1
84 0.0509486 0.0628944 0.0350917

M2
84 0.0503543 0.0539001 0.0536369

M1
85 0.28953 0.102085 0.0505757

M2
85 0.269303 0.0245646 0.0754339

M1
86 0.0943483 0.0929761 0.0504982

M2
86 0.10225 0.0519837 0.0480473

M1
87 0.115419 0.0696148 0.0155263

M2
87 0.0841211 0.0493197 0.0371748

M1
88 0.313459 0.0956848 0.10059

M2
88 0.143479 0.105883 0.0374557

M1
89 0.199046 0.0587595 0.0702325

M2
89 0.0328137 0.0417776 0.0185168

M1
90 0.08223 0.0494104 0.0631411

M2
90 0.0805961 0.0307027 0.0375822

M1
91 0.203895 0.0611912 0.0996128

M2
91 0.130726 0.0272775 0.0517429

M1
92 0.0686052 0.0576632 0.0359208

M2
92 0.0758512 0.0517596 0.0387012

M1
93 0.165626 0.0565454 0.0492374

M2
93 0.132438 0.0471261 0.0461808

M1
94 0.0772225 0.0787881 0.0546716

M2
94 0.072251 0.103199 0.0240037

M1
95 0.147509 0.0431311 0.0455822

M2
95 0.158812 0.036126 0.0596151

M1
96 0.110288 0.0431687 0.0531826

M2
96 0.103719 0.0442854 0.0395455

M1
97 0.108832 0.0567255 0.0398672

M2
97 0.121799 0.0575606 0.0331824

M1
98 0.0673777 0.0806132 0.0384923

M2
98 0.0872107 0.138243 0.0409666

M1
99 0.156639 0.0402293 0.0565971

M2
99 0.117663 0.08772 0.0782389

M1
100 0.108151 0.056286 0.0588551

M2
100 0.305576 0.112265 0.0611045

Table A.15: Table with the fourth part of the results from the scope experi-
ment.
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FSM PColl deviation PSq deviation Sq deviation

M1
101 0.0844766 0.0599709 0.0378957

M2
101 0.283562 0.0629163 0.0649796

M1
102 0.146074 0.0372933 0.0447525

M2
102 0.0814218 0.0681172 0.0473272

M1
103 0.220781 0.0678471 0.0828049

M2
103 0.185511 0.11293 0.0728425

M1
104 0.20145 0.0431116 0.0960818

M2
104 0.135999 0.0738722 0.0417661

M1
105 0.0483363 0.0309682 0.0309682

M2
105 0.104292 0.0693117 0.0466864

M1
106 0.143024 0.0305789 0.0316344

M2
106 0.141118 0.105002 0.0308516

M1
107 0.216426 0.0867799 0.0548562

M2
107 0.0702437 0.0723491 0.0603433

M1
108 0.130258 0.0501329 0.0618744

M2
108 0.13563 0.0739941 0.0739941

M1
109 0.164022 0.0710539 0.0723892

M2
109 0.12791 0.0645337 0.0378852

M1
110 0.0689555 0.0524927 0.0406613

M2
110 0.0428473 0.0280002 0.0280002

M1
111 0.191615 0.11031 0.0376163

M2
111 0.117217 0.0357249 0.0287088

M1
112 0.0840409 0.0997353 0.0309793

M2
112 0.0940412 0.107968 0.0433

M1
113 0.153921 0.0584838 0.0588077

M2
113 0.145272 0.062362 0.0623388

M1
114 0.121859 0.0394848 0.0428094

M2
114 0.21876 0.0926631 0.0893885

M1
115 0.0912794 0.0444315 0.0450249

M2
115 0.149166 0.0785472 0.0745509

M1
116 0.0790619 0.0523054 0.0251431

M2
116 0.108893 0.0601722 0.0507019

M1
117 0.0855776 0.0425228 0.0365365

M2
117 0.117766 0.173615 0.0413291

M1
118 0.172183 0.0317841 0.0481532

M2
118 0.0839136 0.0486966 0.0433486

M1
119 0.107837 0.113698 0.0320349

M2
119 0.16574 0.102346 0.0632889

M1
120 0.047391 0.0153894 0.0178296

M2
120 0.13007 0.0426523 0.0450756

M1
121 0.105565 0.027227 0.027227

M2
121 0.188941 0.0492386 0.0763803

M1
122 0.198102 0.0327492 0.095699

M2
122 0.219453 0.0640321 0.0684748

M1
123 0.209157 0.0740377 0.0865089

M2
123 0.352057 0.0765253 0.0967276

M1
124 0.117708 0.0276473 0.0387273

M2
124 0.0704975 0.119532 0.0257229

M1
125 0.104222 0.0653418 0.041436

M2
125 0.148375 0.0554637 0.0607576

Table A.16: Table with the fifth part of the results from the scope experi-
ment.
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FSM PColl deviation PSq deviation Sq deviation

M1
126 0.0914777 0.0486279 0.0556591

M2
126 0.205364 0.0414176 0.0820369

M1
127 0.153284 0.0419661 0.0693078

M2
127 0.191255 0.0551535 0.0578123

M1
128 0.221614 0.0888669 0.0356835

M2
128 0.145147 0.0774874 0.0757351

M1
129 0.124546 0.105355 0.0558905

M2
129 0.108438 0.0602756 0.026914

M1
130 0.15936 0.0828102 0.0891357

M2
130 0.0917881 0.0353718 0.0387383

M1
131 0.17467 0.0694708 0.0597348

M2
131 0.21275 0.035971 0.0676661

M1
132 0.248657 0.0779216 0.0913048

M2
132 0.153046 0.0550511 0.036208

M1
133 0.120863 0.0777568 0.0519288

M2
133 0.329576 0.110945 0.0622509

M1
134 0.155251 0.10644 0.0671676

M2
134 0.123067 0.0449835 0.0366785

M1
135 0.171237 0.0921647 0.0611379

M2
135 0.166176 0.0862205 0.059389

M1
136 0.130262 0.0327552 0.0406223

M2
136 0.183263 0.0660345 0.0619106

M1
137 0.221797 0.0512838 0.0392418

M2
137 0.128104 0.0916466 0.0629577

M1
138 0.191807 0.0887032 0.0741373

M2
138 0.0906809 0.0416269 0.0318906

M1
139 0.0919258 0.0510027 0.0479386

M2
139 0.137183 0.0682062 0.0443962

M1
140 0.0814515 0.0628999 0.0308023

M2
140 0.212336 0.0357221 0.034821

M1
141 0.307923 0.0361928 0.0161623

M2
141 0.202717 0.0293458 0.0567415

M1
142 0.151375 0.0620119 0.043868

M2
142 0.14693 0.0375828 0.0574405

M1
143 0.268605 0.0849222 0.0632926

M2
143 0.457164 0.0553189 0.0731294

M1
144 0.119884 0.0503527 0.0291856

M2
144 0.122672 0.0575767 0.0403385

M1
145 0.147728 0.0465539 0.0619068

M2
145 0.165448 0.0856024 0.0605216

M1
146 0.117272 0.0569028 0.0666924

M2
146 0.263706 0.0698919 0.0681954

M1
147 0.132541 0.0580681 0.0531744

M2
147 0.151678 0.0799734 0.0661626

M1
148 0.199553 0.130119 0.0846456

M2
148 0.10609 0.0489163 0.0552963

M1
149 0.286599 0.0529339 0.0486027

M2
149 0.164176 0.0336856 0.0606288

M1
150 0.124621 0.0562229 0.0602435

M2
150 0.0557401 0.0320024 0.0300159

Table A.17: Table with the sixth part of the results from the scope experi-
ment.
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FSM PColl deviation PSq deviation Sq deviation

M1
151 0.214628 0.0641455 0.0576588

M2
151 0.130729 0.0668157 0.0526234

M1
152 0.164004 0.0432369 0.021959

M2
152 0.120287 0.0266032 0.0452402

M1
153 0.184779 0.092577 0.062778

M2
153 0.185171 0.0820205 0.0533398

M1
154 0.119267 0.0575744 0.0610703

M2
154 0.0624143 0.0299985 0.0299985

M1
155 0.160098 0.027385 0.0466827

M2
155 0.127626 0.0496865 0.0481561

M1
156 0.189844 0.105244 0.0723777

M2
156 0.115825 0.0446958 0.0461897

M1
157 0.155123 0.095274 0.0601376

M2
157 0.0630051 0.0326579 0.0257701

M1
158 0.277997 0.0681601 0.0677518

M2
158 0.338781 0.0504093 0.0693117

M1
159 0.0716252 0.0294645 0.0294645

M2
159 0.101058 0.0367766 0.0365479

M1
160 0.052383 0.0526103 0.0356691

M2
160 0.131927 0.0727986 0.0516599

M1
161 0.147549 0.0432905 0.0376181

M2
161 0.126864 0.0392231 0.0172616

M1
162 0.293867 0.057867 0.12441

M2
162 0.10452 0.0597394 0.0408131

M1
163 0.244765 0.128352 0.0918792

M2
163 0.0807147 0.0353725 0.0225102

M1
164 0.0727915 0.0531881 0.0255815

M2
164 0.187796 0.0724204 0.0290426

M1
165 0.128891 0.0815746 0.0323515

M2
165 0.207986 0.0876257 0.0660454

M1
166 0.124718 0.0777503 0.0614897

M2
166 0.106747 0.030559 0.0638959

M1
167 0.0645015 0.0677384 0.0488024

M2
167 0.145528 0.0771552 0.0687874

M1
168 0.239777 0.0684283 0.0918159

M2
168 0.530166 0.127631 0.163047

M1
169 0.126251 0.128943 0.0369049

M2
169 0.0808908 0.13323 0.0361135

M1
170 0.255709 0.0772762 0.080373

M2
170 0.14729 0.0826296 0.0327279

M1
171 0.110855 0.0459751 0.0414488

M2
171 0.10475 0.0823686 0.0378294

M1
172 0.0704059 0.0979399 0.0368073

M2
172 0.13277 0.0572174 0.0455056

M1
173 0.107222 0.0353752 0.0498633

M2
173 0.146257 0.0727018 0.0693078

M1
174 0.0854459 0.0544993 0.0475668

M2
174 0.0877968 0.109689 0.0438812

M1
175 0.0777855 0.0671701 0.0630091

M2
175 0.102247 0.0524518 0.0368952

Table A.18: Table with the seventh part of the results from the scope exper-
iment.
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FSM PColl deviation PSq deviation Sq deviation

M1
176 0.0493413 0.0240178 0.0240178

M2
176 0.236384 0.0273177 0.0273177

M1
177 0.105683 0.0545788 0.051499

M2
177 0.126939 0.0366448 0.0821855

M1
178 0.502121 0.133631 0.206008

M2
178 0.0501833 0.0805334 0.0581454

M1
179 0.177361 0.0470784 0.0422568

M2
179 0.160599 0.106426 0.0914263

M1
180 0.09533 0.0747299 0.0344199

M2
180 0.12197 0.114166 0.0673058

M1
181 0.161714 0.0283374 0.0600085

M2
181 0.161786 0.087904 0.0724184

M1
182 0.164747 0.0908708 0.0856854

M2
182 0.176832 0.0721107 0.0730407

M1
183 0.0721706 0.0385128 0.0339832

M2
183 0.119977 0.0342654 0.044556

M1
184 0.0961821 0.0326587 0.0208317

M2
184 0.22682 0.0581899 0.0649652

M1
185 0.0745854 0.0256854 0.0308005

M2
185 0.0573968 0.073575 0.0314416

M1
186 0.0732334 0.0621747 0.0292452

M2
186 0.261301 0.0125969 0.114724

M1
187 0.0900539 0.0366144 0.0382513

M2
187 0.249333 0.0397538 0.116899

M1
188 0.18575 0.0791632 0.0403864

M2
188 0.0897354 0.0595534 0.0355252

M1
189 0.22324 0.102414 0.0481084

M2
189 0.16201 0.0588293 0.0420487

M1
190 0.139711 0.162801 0.0434869

M2
190 0.161427 0.171295 0.0593966

M1
191 0.0784647 0.0456441 0.0456441

M2
191 0.142741 0.0433893 0.0880112

M1
192 0.156988 0.0709328 0.0546674

M2
192 0.106701 0.119741 0.0522467

M1
193 0.11518 0.050467 0.0379082

M2
193 0.319289 0.210992 0.0788463

M1
194 0.054047 0.0442058 0.0158442

M2
194 0.162021 0.0570734 0.0223556

M1
195 0.615883 0.0610384 0.191272

M2
195 0.171396 0.0678891 0.0736381

M1
196 0.147129 0.0666865 0.0645558

M2
196 0.176868 0.0694785 0.0738782

M1
197 0.174025 0.0769187 0.0844488

M2
197 0.145666 0.0769659 0.101004

M1
198 0.0533901 0.0756466 0.0271886

M2
198 0.0472839 0.0884422 0.0227125

M1
199 0.122917 0.0490675 0.0518688

M2
199 0.469743 0.0419683 0.132432

M1
200 0.232111 0.0584861 0.114169

M2
200 0.160918 0.0758837 0.0585696

Table A.19: Table with the eight part of the results from the scope experi-
ment.
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FSM PColl deviation PSq deviation Sq deviation

M1
201 0.320929 0.0915174 0.135178

M2
201 0.194944 0.0668596 0.0623401

M1
202 0.10212 0.048118 0.0280015

M2
202 0.123118 0.121849 0.0403971

M1
203 0.172405 0.10761 0.0683857

M2
203 0.109712 0.045899 0.036106

M1
204 0.109296 0.063936 0.0495415

M2
204 0.0517274 0.0781413 0.0200832

M1
205 0.14869 0.0520621 0.0542438

M2
205 0.092611 0.0460969 0.0359107

M1
206 0.25462 0.0645227 0.111061

M2
206 0.119139 0.102157 0.0476853

M1
207 0.0826792 0.132486 0.0451183

M2
207 0.0610272 0.0845023 0.0297433

M1
208 0.248716 0.180631 0.07764

M2
208 0.23923 0.16745 0.0921881

M1
209 0.106599 0.112782 0.0340541

M2
209 0.0956643 0.0675092 0.0235404

M1
210 0.0922222 0.0323893 0.0319545

M2
210 0.158093 0.0501029 0.0653496

M1
211 0.183116 0.0902302 0.0692288

M2
211 0.0654867 0.0478722 0.0421683

M1
212 0.107668 0.0595185 0.0423966

M2
212 0.0459012 0.107833 0.0260634

M1
213 0.27448 0.0544305 0.194911

M2
213 0.181899 0.0995511 0.0770211

M1
214 0.0655072 0.054067 0.0175885

M2
214 0.131063 0.0803329 0.0454991

M1
215 0.0823683 0.0311878 0.0386226

M2
215 0.123834 0.0997431 0.058712

M1
216 0.132688 0.0391275 0.0418114

M2
216 0.0835506 0.109981 0.0384653

M1
217 0.0730744 0.12794 0.0280366

M2
217 0.0332924 0.00887374 0.00887374

M1
218 0.127101 0.0812361 0.07276

M2
218 0.148913 0.0706796 0.0752447

M1
219 0.210453 0.0662656 0.073793

M2
219 0.161557 0.035145 0.0584149

M1
220 0.12434 0.0837517 0.0796094

M2
220 0.103494 0.0283263 0.0355821

M1
221 0.083641 0.03849 0.0426046

M2
221 0.103591 0.0560226 0.0546263

M1
222 0.115356 0.122027 0.0691752

M2
222 0.0724865 0.127237 0.0384954

M1
223 0.147823 0.0523881 0.0545882

M2
223 0.208935 0.0703411 0.0894422

M1
224 0.0845362 0.101135 0.0297763

M2
224 0.1436 0.0907659 0.0458298

M1
225 0.0729032 0.0537017 0.0489775

M2
225 0.13208 0.0583676 0.0637316

Table A.20: Table with the ninth part of the results from the scope experi-
ment.
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FSM PColl deviation PSq deviation Sq deviation

M1
226 0.066675 0.0627817 0.0378335

M2
226 0.0728061 0.0661461 0.0235176

M1
227 0.0949713 0.0505226 0.0308543

M2
227 0.191036 0.0450683 0.0649042

M1
228 0.0474001 0.0371107 0.0165736

M2
228 0.133401 0.0617278 0.0439212

M1
229 0.122374 0.0665126 0.0697959

M2
229 0.146647 0.0384612 0.0479638

M1
230 0.250148 0.0873959 0.104082

M2
230 0.194104 0.0594211 0.0717124

M1
231 0.0699153 0.0401544 0.0378323

M2
231 0.11857 0.0517308 0.0333014

M1
232 0.171835 0.0620839 0.111005

M2
232 0.057153 0.0409218 0.042117

M1
233 0.0783016 0.0351236 0.0351236

M2
233 0.183598 0.0521553 0.0733566

M1
234 0.157199 0.0637758 0.0700709

M2
234 0.273699 0.0915263 0.0441587

M1
235 0.0877706 0.11889 0.0322514

M2
235 0.0792891 0.0676074 0.0382468

M1
236 0.105288 0.0404291 0.0504072

M2
236 0.194898 0.0800489 0.0930063

M1
237 0.202047 0.0617091 0.0601799

M2
237 0.124543 0.0590402 0.0494177

M1
238 0.180059 0.132252 0.0627432

M2
238 0.153479 0.0515442 0.0515442

M1
239 0.0622773 0.0413479 0.0332475

M2
239 0.126171 0.0245162 0.0297151

M1
240 0.285131 0.0426491 0.0252248

M2
240 0.0439781 0.0479556 0.0257062

M1
241 0.275297 0.072067 0.121074

M2
241 0.0684916 0.0571739 0.0272044

M1
242 0.123954 0.115977 0.0433023

M2
242 0.243066 0.107125 0.145532

M1
243 0.120974 0.0508181 0.0530273

M2
243 0.273139 0.0707985 0.042744

M1
244 0.113722 0.101112 0.0348508

M2
244 0.107245 0.0968577 0.0458462

M1
245 0.329358 0.0893511 0.127548

M2
245 0.0585442 0.0717083 0.0262594

M1
246 0.212828 0.0686336 0.053447

M2
246 0.210154 0.102289 0.080989

M1
247 0.131076 0.0431643 0.0368589

M2
247 0.106718 0.0635396 0.0421269

M1
248 0.125279 0.0296497 0.0462179

M2
248 0.116739 0.0479715 0.0420898

M1
249 0.175949 0.105557 0.0686419

M2
249 0.210539 0.0801715 0.0427538

M1
250 0.197716 0.0589633 0.0778028

M2
250 0.287449 0.0900582 0.051427

Table A.21: Table with the tenth part of the results from the scope experi-
ment.



A.3. Scope experiment Results 65

FSM PColl deviation PSq deviation Sq deviation

M1
251 0.141094 0.0390183 0.0530638

M2
251 0.200839 0.0619043 0.071959

M1
252 0.193962 0.094042 0.0593573

M2
252 0.250122 0.0944683 0.0910919

M1
253 0.17476 0.0725549 0.0608294

M2
253 0.102149 0.0548417 0.0326269

M1
254 0.120707 0.0506427 0.04314

M2
254 0.079319 0.0220406 0.0338622

M1
255 0.102217 0.100945 0.0300436

M2
255 0.0561279 0.10956 0.0283264

M1
256 0.153464 0.0828614 0.0513759

M2
256 0.0864712 0.0904432 0.0301399

M1
257 0.104343 0.0836763 0.0578935

M2
257 0.0773851 0.0593843 0.0491363

M1
258 0.12008 0.0384007 0.0528518

M2
258 0.0877601 0.073502 0.0389848

M1
259 0.0865356 0.0574114 0.0442272

M2
259 0.0941158 0.0679937 0.0460864

M1
260 0.0755704 0.0561131 0.029871

M2
260 0.154404 0.0661945 0.0670694

M1
261 0.177111 0.130211 0.0558384

M2
261 0.14893 0.123687 0.0466886

M1
262 0.0717966 0.0287465 0.0366246

M2
262 0.142686 0.108111 0.0735273

M1
263 0.155672 0.0561821 0.0587316

M2
263 0.326915 0.0834482 0.126096

M1
264 0.256933 0.06243 0.0680333

M2
264 0.242616 0.121227 0.0635987

M1
265 0.125309 0.0748321 0.0999525

M2
265 0.134289 0.0899432 0.0418623

M1
266 0.101069 0.0723155 0.0412336

M2
266 0.0945022 0.0447822 0.0420619

M1
267 0.123137 0.0982478 0.0493803

M2
267 0.0654703 0.0400264 0.0400264

M1
268 0.0646455 0.0519324 0.0266544

M2
268 0.194833 0.0759964 0.0822875

M1
269 0.0823866 0.0725328 0.0734576

M2
269 0.0779122 0.0815766 0.0796027

M1
270 0.107371 0.0925702 0.0368406

M2
270 0.111394 0.0437777 0.0524355

M1
271 0.11469 0.0718492 0.0262581

M2
271 0.161362 0.0792488 0.0500438

M1
272 0.0866802 0.0883648 0.0315621

M2
272 0.126543 0.0619064 0.0331612

M1
273 0.102331 0.151158 0.0452948

M2
273 0.0877833 0.139118 0.0455388

M1
274 0.28912 0.0580955 0.0396037

M2
274 0.0676413 0.0599489 0.0607064

M1
275 0.15168 0.0714352 0.0502067

M2
275 0.153309 0.0502463 0.0520937

Table A.22: Table with the eleventh part of the results from the scope ex-
periment.
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FSM PColl deviation PSq deviation Sq deviation

M1
276 0.114089 0.0468405 0.0509689

M2
276 0.126059 0.0640334 0.0640334

M1
277 0.170807 0.0911448 0.0553544

M2
277 0.133738 0.0467839 0.0596847

M1
278 0.460824 0.0721443 0.140621

M2
278 0.104701 0.0484774 0.0321138

M1
279 0.0715977 0.0976689 0.0531812

M2
279 0.0877401 0.087235 0.0343681

M1
280 0.223377 0.136102 0.100698

M2
280 0.169629 0.12194 0.0553103

M1
281 0.160667 0.0571535 0.0551783

M2
281 0.128525 0.0438124 0.0468212

M1
282 0.0756296 0.0554665 0.0301116

M2
282 0.118087 0.058236 0.0690887

M1
283 0.163026 0.0759389 0.0453445

M2
283 0.20086 0.0740739 0.0841777

M1
284 0.203357 0.114661 0.0632884

M2
284 0.147056 0.0818511 0.0774341

M1
285 0.13755 0.0890331 0.0520915

M2
285 0.133881 0.0498661 0.0317864

M1
286 0.241841 0.0735911 0.0766967

M2
286 0.464048 0.0919057 0.162669

M1
287 0.0794803 0.0951128 0.0472314

M2
287 0.0912918 0.0801973 0.054496

M1
288 0.239192 0.036179 0.140227

M2
288 0.110172 0.0855756 0.0367742

M1
289 0.146085 0.058392 0.0619317

M2
289 0.196843 0.0771836 0.079418

M1
290 0.101416 0.0365206 0.0487504

M2
290 0.119859 0.0456012 0.0571958

M1
291 0.116864 0.0512095 0.0379064

M2
291 0.132937 0.0573584 0.0543407

M1
292 0.0696089 0.0792931 0.0330109

M2
292 0.278049 0.103569 0.0797214

M1
293 0.0817073 0.107813 0.042053

M2
293 0.0828152 0.120854 0.0332964

M1
294 0.204715 0.0971958 0.0264607

M2
294 0.225482 0.0922726 0.0659926

M1
295 0.12685 0.0400457 0.0400457

M2
295 0.197612 0.134747 0.0740774

M1
296 0.0741113 0.0486154 0.0369114

M2
296 0.217722 0.0664447 0.0848397

M1
297 0.0831666 0.126505 0.0365954

M2
297 0.0963664 0.126616 0.0452842

M1
298 0.118118 0.0841297 0.103975

M2
298 0.142703 0.0773154 0.084301

M1
299 0.0567002 0.129978 0.0238967

M2
299 0.0751478 0.110387 0.0230378

M1
300 0.109327 0.0475481 0.0377559

M2
300 0.0637104 0.024211 0.024211

Table A.23: Table with the twelfth part of the results from the scope exper-
iment.
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FSM PColl deviation PSq deviation Sq deviation

M1
301 0.0751681 0.0524621 0.0962008

M2
301 0.133811 0.135539 0.0460798

M1
302 0.0668363 0.0459721 0.0356969

M2
302 0.0831301 0.119463 0.0649339

M1
303 0.172878 0.0697953 0.0443404

M2
303 0.133333 0.0406836 0.0636144

M1
304 0.117497 0.0974513 0.0855335

M2
304 0.224033 0.0723179 0.0746368

M1
305 0.119178 0.0600124 0.0741318

M2
305 0.105727 0.0744419 0.0369787

M1
306 0.0766761 0.0631881 0.043166

M2
306 0.0928634 0.0616329 0.0304961

M1
307 0.369638 0.240243 0.155753

M2
307 0.322205 0.154143 0.130664

M1
308 0.0822149 0.0786954 0.0377644

M2
308 0.21697 0.0472925 0.0468029

M1
309 0.220095 0.0762443 0.0930257

M2
309 0.118008 0.0222871 0.0347949

M1
310 0.162176 0.104122 0.110252

M2
310 0.131121 0.0721127 0.0438206

M1
311 0.265844 0.0289179 0.099689

M2
311 0.120044 0.0550444 0.0456639

M1
312 0.127871 0.0473808 0.0534978

M2
312 0.162177 0.0673043 0.0583468

M1
313 0.125053 0.0610038 0.0538287

M2
313 0.130294 0.104705 0.0740913

M1
314 0.192956 0.0413812 0.065064

M2
314 0.153958 0.0721573 0.0669193

M1
315 0.119924 0.0593274 0.0523888

M2
315 0.112644 0.0476461 0.0461444

M1
316 0.127743 0.0577492 0.0700978

M2
316 0.108994 0.10072 0.0762818

M1
317 0.16051 0.0438569 0.0592306

M2
317 0.537285 0.0888464 0.161864

M1
318 0.100738 0.0596298 0.051539

M2
318 0.112013 0.0669545 0.0468428

M1
319 0.402804 0.0569587 0.101492

M2
319 0.186568 0.0801016 0.0850162

M1
320 0.309091 0.100051 0.11344

M2
320 0.0922557 0.0206979 0.034221

M1
321 0.166701 0.0692682 0.0497086

M2
321 0.112431 0.0756044 0.0756044

M1
322 0.0765915 0.0585519 0.0422726

M2
322 0.154693 0.0864722 0.0773978

M1
323 0.0776518 0.0700687 0.0467002

M2
323 0.0571436 0.0475374 0.0307321

M1
324 0.0538892 0.0327226 0.0187711

M2
324 0.0862029 0.0398414 0.0398414

M1
325 0.213891 0.0909445 0.0607545

M2
325 0.0707111 0.047537 0.0432804

Table A.24: Table with the thirteenth part of the results from the scope
experiment.
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FSM PColl deviation PSq deviation Sq deviation

M1
326 0.0761087 0.0622327 0.0328955

M2
326 0.312854 0.0409126 0.0514986

M1
327 0.102209 0.0504517 0.0551573

M2
327 0.0759197 0.0463023 0.0341025

M1
328 0.29064 0.0944766 0.0876885

M2
328 0.102291 0.101437 0.0417158

M1
329 0.0701764 0.0309814 0.0211304

M2
329 0.223266 0.0859622 0.0866693

M1
330 0.33104 0.0346499 0.0360339

M2
330 0.18361 0.0530497 0.0700259

M1
331 0.0542238 0.0238366 0.0192802

M2
331 0.125369 0.0524815 0.0460164

M1
332 0.107805 0.0812237 0.0431844

M2
332 0.0998742 0.0680644 0.0665239

M1
333 0.182451 0.0663325 0.0566946

M2
333 0.305706 0.0969381 0.0979802

M1
334 0.108633 0.0382457 0.0361673

M2
334 0.119153 0.0618699 0.0243992

M1
335 0.131964 0.0466529 0.0265864

M2
335 0.0669222 0.0227871 0.0227871

M1
336 0.103491 0.0975119 0.0402406

M2
336 0.122469 0.0752941 0.0343733

M1
337 0.157223 0.0888566 0.0485888

M2
337 0.106672 0.0343578 0.0373323

M1
338 0.120631 0.0645693 0.059336

M2
338 0.272746 0.0911368 0.086843

M1
339 0.0673564 0.0316809 0.0240207

M2
339 0.171634 0.100511 0.0716773

M1
340 0.173846 0.0955557 0.102227

M2
340 0.156648 0.0875052 0.066874

M1
341 0.114633 0.0544761 0.0402432

M2
341 0.119136 0.0707378 0.0608722

M1
342 0.0824055 0.0433543 0.0671879

M2
342 0.145991 0.0793014 0.0456787

M1
343 0.083107 0.0702971 0.0318762

M2
343 0.100442 0.075337 0.0518129

M1
344 0.141198 0.0693642 0.0550409

M2
344 0.108963 0.128529 0.0361771

M1
345 0.564628 0.0781958 0.125438

M2
345 0.405552 0.0834236 0.102949

M1
346 0.175331 0.0618822 0.0605833

M2
346 0.261561 0.0894602 0.127099

M1
347 0.135733 0.0547477 0.0612163

M2
347 0.10666 0.0655543 0.0523571

M1
348 0.130657 0.0425918 0.039

M2
348 0.323741 0.0508387 0.0318503

M1
349 0.122895 0.081154 0.0553859

M2
349 0.178349 0.0730933 0.0537257

M1
350 0.329279 0.0677303 0.139809

M2
350 0.081584 0.0627299 0.0218783

Table A.25: Table with the fourteenth part of the results from the scope
experiment.



A.3. Scope experiment Results 69

FSM PColl deviation PSq deviation Sq deviation

M1
351 0.0836284 0.0349514 0.0481058

M2
351 0.550097 0.048125 0.212203

M1
352 0.0471564 0.0408441 0.0227483

M2
352 0.0761967 0.0661829 0.0387159

M1
353 0.163491 0.0607554 0.0562085

M2
353 0.104802 0.0379616 0.0463602

M1
354 0.239421 0.150116 0.0876759

M2
354 0.140764 0.0369418 0.0380205

M1
355 0.23592 0.106742 0.0629564

M2
355 0.210657 0.154168 0.120769

M1
356 0.128 0.0827749 0.0531082

M2
356 0.0850102 0.0616042 0.0353366

M1
357 0.362391 0.0929328 0.117951

M2
357 0.259907 0.128006 0.0699086

M1
358 0.190927 0.069121 0.0523219

M2
358 0.163931 0.0516221 0.0437683

M1
359 0.106474 0.0453301 0.0451783

M2
359 0.191318 0.0445829 0.0529826

M1
360 0.110314 0.043088 0.0467028

M2
360 0.223985 0.0435378 0.0819951

M1
361 0.0642159 0.0412445 0.0308292

M2
361 0.160141 0.0311946 0.0243725

M1
362 0.0899054 0.0305344 0.0471437

M2
362 0.115703 0.0710943 0.0363133

M1
363 0.114217 0.105174 0.0454555

M2
363 0.100206 0.0591558 0.0509891

M1
364 0.137278 0.0451219 0.061306

M2
364 0.0594534 0.074755 0.0269188

M1
365 0.135136 0.075151 0.0622594

M2
365 0.164412 0.071188 0.0574075

M1
366 0.129829 0.071539 0.0624924

M2
366 0.0571338 0.0415076 0.0298653

M1
367 0.389936 0.0815426 0.131336

M2
367 0.0736867 0.100805 0.0309125

M1
368 0.161012 0.0342738 0.0342738

M2
368 0.126231 0.161266 0.0453221

M1
369 0.0712348 0.0262131 0.0253254

M2
369 0.287443 0.107644 0.115839

M1
370 0.195486 0.0519293 0.0699072

M2
370 0.184579 0.0592937 0.0615913

M1
371 0.149858 0.0601982 0.0776519

M2
371 0.103234 0.0648942 0.0335496

M1
372 0.233383 0.111732 0.199478

M2
372 0.246185 0.0983152 0.114257

M1
373 0.331589 0.103725 0.106278

M2
373 0.531864 0.212388 0.186662

M1
374 0.0721423 0.129319 0.0258241

M2
374 0.157147 0.0503036 0.0546872

M1
375 0.124403 0.0608135 0.0540222

M2
375 0.0939925 0.0752171 0.0415776

Table A.26: Table with the fifteenth part of the results from the scope ex-
periment.



70 Appendix A. Results

FSM PColl deviation PSq deviation Sq deviation

M1
376 0.444925 0.0968971 0.178013

M2
376 0.123667 0.105442 0.0680788

M1
377 0.154677 0.0398125 0.0407833

M2
377 0.11623 0.0549689 0.057883

M1
378 0.187577 0.120065 0.0871466

M2
378 0.078331 0.0434595 0.0358646

M1
379 0.165974 0.125887 0.0513576

M2
379 0.256659 0.0315625 0.0300735

M1
380 0.0936601 0.113404 0.0496139

M2
380 0.345818 0.0592775 0.067112

M1
381 0.121309 0.035956 0.0662846

M2
381 0.139307 0.0437941 0.0438243

M1
382 0.0815675 0.0677259 0.057582

M2
382 0.224799 0.074479 0.100606

M1
383 0.104524 0.0397682 0.0397682

M2
383 0.134564 0.100412 0.038286

M1
384 0.325631 0.0596833 0.116221

M2
384 0.263611 0.0847591 0.0974182

M1
385 0.142313 0.0727891 0.0646429

M2
385 0.0904769 0.0739292 0.0318913

M1
386 0.116867 0.068131 0.0391321

M2
386 0.0926798 0.0948024 0.133598

M1
387 0.143974 0.117427 0.0551444

M2
387 0.131348 0.03251 0.0427484

M1
388 0.0986484 0.0932067 0.0524849

M2
388 0.0832164 0.0597179 0.0481906

M1
389 0.107204 0.0485843 0.0622109

M2
389 0.114703 0.0389334 0.0400975

M1
390 0.172982 0.0815252 0.0490546

M2
390 0.0909663 0.0423376 0.0189775

M1
391 0.156726 0.0680384 0.0596362

M2
391 0.153416 0.10335 0.051864

M1
392 0.0503849 0.128545 0.0287593

M2
392 0.0590931 0.0261697 0.0257582

M1
393 0.174925 0.0708429 0.0768881

M2
393 0.181906 0.036552 0.0610408

M1
394 0.218717 0.154259 0.0911816

M2
394 0.119315 0.056808 0.0466747

M1
395 0.0454145 0.053361 0.0157583

M2
395 0.254073 0.108671 0.139066

M1
396 0.258569 0.102085 0.108523

M2
396 0.175645 0.0268714 0.0754326

M1
397 0.213471 0.0844783 0.0790643

M2
397 0.125871 0.128276 0.0773134

M1
398 0.312753 0.0370443 0.0952464

M2
398 0.143189 0.103731 0.0246615

M1
399 0.197057 0.0875514 0.0718046

M2
399 0.15241 0.110996 0.0777289

M1
400 0.206807 0.0770429 0.0846217

M2
400 0.302098 0.0641582 0.0556008

Table A.27: Table with the sixteenth part of the results from the scope
experiment.
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FSM PColl deviation PSq deviation Sq deviation

M1
401 0.183755 0.0955607 0.0542751

M2
401 0.192876 0.0998242 0.0613003

M1
402 0.0746597 0.0406848 0.0323447

M2
402 0.0935185 0.0393443 0.0393443

M1
403 0.419875 0.115111 0.126829

M2
403 0.119129 0.0532776 0.0532776

M1
404 0.114869 0.0449811 0.049377

M2
404 0.108814 0.0664134 0.0414634

M1
405 0.06945 0.0576064 0.0676418

M2
405 0.238402 0.068933 0.0617063

M1
406 0.197062 0.0977264 0.0632494

M2
406 0.191327 0.0545338 0.0582374

M1
407 0.117061 0.02056 0.02056

M2
407 0.110962 0.0210372 0.0519275

M1
408 0.114483 0.056631 0.056631

M2
408 0.0864762 0.0382932 0.0382113

M1
409 0.335769 0.0495142 0.0914708

M2
409 0.0811428 0.0680475 0.0313734

M1
410 0.291736 0.0455228 0.109149

M2
410 0.132525 0.0336724 0.0399123

M1
411 0.113319 0.00985007 0.00705992

M2
411 0.0943745 0.0301996 0.0301996

M1
412 0.0794742 0.0721892 0.0345698

M2
412 0.0741632 0.0843467 0.0248976

M1
413 0.289244 0.104897 0.0864094

M2
413 0.109083 0.0898442 0.056836

M1
414 0.101575 0.0699479 0.0472249

M2
414 0.249285 0.0512601 0.0512601

M1
415 0.153262 0.049352 0.0511312

M2
415 0.180821 0.097483 0.0809946

M1
416 0.162886 0.0834759 0.0609642

M2
416 0.172094 0.149126 0.0547632

M1
417 0.0681675 0.107257 0.0392274

M2
417 0.0783026 0.0624943 0.059158

M1
418 0.116726 0.0381089 0.0334993

M2
418 0.116937 0.0524779 0.047273

M1
419 0.29639 0.116795 0.139957

M2
419 0.0877382 0.0317133 0.0317133

M1
420 0.107736 0.0870905 0.0459494

M2
420 0.112504 0.0506987 0.0470694

M1
421 0.0798043 0.0407228 0.0455216

M2
421 0.222901 0.0661685 0.081242

M1
422 0.100643 0.0334949 0.0519131

M2
422 0.149788 0.0794397 0.0760595

M1
423 0.0763796 0.0533704 0.0450418

M2
423 0.0990287 0.0501531 0.0674163

M1
424 0.315723 0.0368914 0.046862

M2
424 0.131669 0.0610594 0.0445548

M1
425 0.13802 0.0835154 0.0344518

M2
425 0.070792 0.0533706 0.0351079

Table A.28: Table with the seventeenth part of the results from the scope
experiment.
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FSM PColl deviation PSq deviation Sq deviation

M1
426 0.17418 0.0623736 0.0587066

M2
426 0.117425 0.0732803 0.0492233

M1
427 0.15393 0.146825 0.0692913

M2
427 0.0892417 0.135324 0.0224043

M1
428 0.222607 0.168566 0.0729746

M2
428 0.265194 0.0744542 0.0961472

M1
429 0.0853569 0.0576549 0.0409419

M2
429 0.107962 0.122511 0.0518288

M1
430 0.133292 0.0728919 0.0727617

M2
430 0.106112 0.0783533 0.0849503

M1
431 0.0820761 0.0911038 0.05445

M2
431 0.111693 0.0755448 0.041594

M1
432 0.202884 0.106852 0.05833

M2
432 0.108716 0.0261364 0.045964

M1
433 0.135571 0.0850128 0.0858141

M2
433 0.315308 0.0702448 0.0595782

M1
434 0.0991729 0.0468744 0.0485342

M2
434 0.153356 0.0521722 0.0642107

M1
435 0.391234 0.106289 0.0983797

M2
435 0.619814 0.0821379 0.144467

M1
436 0.278715 0.045039 0.045039

M2
436 0.155101 0.0550049 0.0466262

M1
437 0.120705 0.100806 0.148855

M2
437 0.246964 0.0927485 0.0382826

M1
438 0.128945 0.0646041 0.036106

M2
438 0.117892 0.0991066 0.0654311

M1
439 0.210998 0.0296153 0.0457495

M2
439 0.113494 0.0482783 0.0558286

M1
440 0.0957174 0.0372594 0.0372309

M2
440 0.110521 0.0909291 0.0322345

M1
441 0.0710094 0.0492488 0.0377337

M2
441 0.284966 0.0382828 0.0431509

M1
442 0.15132 0.0519909 0.0519905

M2
442 0.213244 0.0646813 0.0709869

M1
443 0.0935582 0.0595822 0.0425131

M2
443 0.123917 0.0404854 0.0410097

M1
444 0.162475 0.12577 0.0485455

M2
444 0.125883 0.0851943 0.0365871

M1
445 0.275712 0.175338 0.0818909

M2
445 0.134816 0.0788528 0.036318

M1
446 0.149046 0.0601671 0.0525369

M2
446 0.116598 0.0792754 0.0845513

M1
447 0.129423 0.0995404 0.0684297

M2
447 0.179715 0.202542 0.0483879

M1
448 0.110003 0.0335075 0.03667

M2
448 0.30762 0.129075 0.118897

M1
449 0.0783556 0.0458239 0.0299148

M2
449 0.114831 0.0859966 0.0540543

M1
450 0.0744275 0.0307327 0.0374451

M2
450 0.1274 0.039806 0.0409177

Table A.29: Table with the eighteenth part of the results from the scope
experiment.
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FSM PColl deviation PSq deviation Sq deviation

M1
451 0.172109 0.107416 0.0637079

M2
451 0.229686 0.0872642 0.109568

M1
452 0.194135 0.0546759 0.0907398

M2
452 0.158362 0.0782163 0.0793955

M1
453 0.0946186 0.035641 0.0192598

M2
453 0.21465 0.128038 0.0558248

M1
454 0.172598 0.0312893 0.06166

M2
454 0.327203 0.0442363 0.0550292

M1
455 0.100162 0.0269496 0.0413906

M2
455 0.272833 0.0396243 0.0664567

M1
456 0.124775 0.0476603 0.0693977

M2
456 0.147411 0.0512621 0.0584165

M1
457 0.044753 0.0272291 0.0272291

M2
457 0.273165 0.0295533 0.135075

M1
458 0.201697 0.0513578 0.0652211

M2
458 0.211088 0.0868692 0.0650304

M1
459 0.162094 0.0744186 0.0578904

M2
459 0.305166 0.0981819 0.105881

M1
460 0.092666 0.0643304 0.042764

M2
460 0.402984 0.0628259 0.165882

M1
461 0.156496 0.0741491 0.0649429

M2
461 0.113452 0.070708 0.0321607

M1
462 0.0756857 0.0537255 0.0528709

M2
462 0.107118 0.0369478 0.0480374

M1
463 0.0537231 0.061891 0.0268152

M2
463 0.0974989 0.0787348 0.0384853

M1
464 0.20478 0.0499588 0.0874904

M2
464 0.0853001 0.0436542 0.0347427

M1
465 0.0832011 0.0661142 0.0469648

M2
465 0.0689071 0.132847 0.0318667

M1
466 0.125299 0.0285004 0.0581205

M2
466 0.140061 0.0689732 0.0568135

M1
467 0.165538 0.0349194 0.0826046

M2
467 0.0986379 0.0307522 0.0342973

M1
468 0.111623 0.0964002 0.0250033

M2
468 0.0739879 0.0479931 0.0192117

M1
469 0.212829 0.0731508 0.060327

M2
469 0.155654 0.072375 0.069009

M1
470 0.102161 0.095448 0.0307732

M2
470 0.23967 0.0627344 0.0385126

M1
471 0.167334 0.0890129 0.0836267

M2
471 0.200108 0.0624693 0.0932158

M1
472 0.459428 0.0622839 0.165674

M2
472 0.0773292 0.0526575 0.0482867

M1
473 0.0838033 0.0387941 0.036914

M2
473 0.204815 0.0295913 0.0713772

M1
474 0.0579302 0.0405324 0.0343476

M2
474 0.153993 0.0448958 0.0630911

M1
475 0.298292 0.0474572 0.0857004

M2
475 0.155505 0.0576917 0.0596003

Table A.30: Table with the nineteenth part of the results from the scope
experiment.
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FSM PColl deviation PSq deviation Sq deviation

M1
476 0.0820727 0.0424962 0.0411647

M2
476 0.145468 0.0775201 0.0594205

M1
477 0.100945 0.0497889 0.0476427

M2
477 0.239191 0.0789397 0.0893663

M1
478 0.277511 0.137918 0.139281

M2
478 0.0475261 0.0396001 0.0187881

M1
479 0.0693619 0.0880308 0.045945

M2
479 0.239564 0.0645304 0.0845268

M1
480 0.370271 0.127175 0.134167

M2
480 0.351924 0.160024 0.125015

M1
481 0.0745895 0.0899464 0.0323777

M2
481 0.0910752 0.0886294 0.0478593

M1
482 0.106205 0.0742103 0.0568929

M2
482 0.059604 0.02957 0.0222431

M1
483 0.083845 0.0971641 0.0235318

M2
483 0.148673 0.124305 0.0446923

M1
484 0.131703 0.0798524 0.0491

M2
484 0.0960528 0.065247 0.0411868

M1
485 0.0731827 0.0334442 0.0279392

M2
485 0.219637 0.109743 0.0676613

M1
486 0.0799472 0.0727899 0.0324964

M2
486 0.10982 0.0730745 0.0475322

M1
487 0.179289 0.0855079 0.0620036

M2
487 0.215766 0.034421 0.0854916

M1
488 0.17113 0.10345 0.0835216

M2
488 0.181537 0.0373203 0.0483895

M1
489 0.106505 0.0342126 0.0403732

M2
489 0.0824679 0.0401266 0.0349669

M1
490 0.119606 0.0670987 0.0458904

M2
490 0.0932935 0.0740722 0.0393758

M1
491 0.128965 0.0513455 0.0658652

M2
491 0.0705518 0.0293303 0.0353849

M1
492 0.0962019 0.0675422 0.0223416

M2
492 0.123132 0.0473203 0.0473203

M1
493 0.188326 0.0656698 0.0777106

M2
493 0.265494 0.0483581 0.0391683

M1
494 0.231715 0.128679 0.128679

M2
494 0.256345 0.172227 0.0849967

M1
495 0.164598 0.140646 0.119249

M2
495 0.0998203 0.0880942 0.0945619

M1
496 0.117457 0.0589744 0.0589744

M2
496 0.314809 0.0562019 0.06904

M1
497 0.287765 0.100214 0.155774

M2
497 0.138707 0.0805146 0.073442

M1
498 0.0988358 0.094019 0.0384221

M2
498 0.166828 0.07395 0.0612405

M1
499 0.16444 0.186858 0.0675427

M2
499 0.215986 0.086802 0.0990668

M1
500 0.237172 0.0663631 0.0749768

M2
500 0.237097 0.0663329 0.0915869

Table A.31: Table with the twentieth part of the results from the scope
experiment.
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