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Meson-meson interactions in a nonperturbative chiral approach
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A nonperturbative method which combines constraints from chiral symmetry breaking and coupled channel
unitarity is used to describe the meson-meson interaction up to about 1.2 GeV. The approach uses theO(p2)
andO(p4) chiral Lagrangians. The seven free parameters of theO(p4) Lagrangian are fitted to the data. The
results are in good agreement with a vast amount of experimental analyses. The amplitudes develop poles in
the complex plane corresponding to thef 0 , a0 , r, K* , f, s, andk resonances, the latter two being very
broad. The total and partial decay widths of the resonances are also well reproduced. Further extensions and
applications of this chiral nonperturbative scheme are also discussed.@S0556-2821~99!05003-1#

PACS number~s!: 12.39.Fe, 11.80.Et, 13.75.Lb, 14.40.2n
m

o

ie
ec
n

r
o-
e
ts
rfu

ra
h
p
e
r

-
th
.

, b
he

in

se
o
ch

o-

s
en-

ce
-
n-
els
am-
of
sful

ately
-
,
re-

g
es

t

ver,
e
hat
he
e
ed

this

e
,

I. INTRODUCTION

The meson-meson interaction has been the key proble
test chiral perturbation theory~xPT!, which has proved
rather successful at low energies@1,2#. The underlying idea
is that an expansion in powers of the meson momenta c
verges at sufficiently low energy, which in practice isAs
<500 MeV. However, the convergence at higher energ
becomes progressively worse. Even more, one of the p
liar features of the meson-meson interaction is the prese
of resonances such as thes, f 0 , or a0 in the scalar secto
and ther, K* , or f in the vector channels. These res
nances will show up in theT matrix as poles that cannot b
obtained using standardxPT. Nevertheless, the constrain
imposed by chiral symmetry breaking are rather powe
and not restricted to the region wherexPT is meant to con-
verge@3#.

Two independent approaches of a nonperturbative cha
ter have extended the use of chiral Lagrangians to hig
energies and have been rather successful, reproducing im
tant features of the meson-meson interaction including s
eral resonances. Although these two approaches look in p
ciple rather different, they share a common feature which
the imposition of unitarity. One of them@4,5#, based upon
the inverse amplitude method~IAM !, first suggested in@6#,
makes use of the lowest order,O(p2), as well as the next to
leading order,O(p4), Lagrangians. Elastic unitarity is im
posed and thus no mixture of channels is allowed. Then,
coefficients of theO(p4) Lagrangian are fitted to the data
The absence of coupled channels has obvious limitations
in spite of them, the IAM is able to generate dynamically t
r, K* , ands resonances, and to reproducepp scattering in
the (I ,J)5(0,0), (1,1), (2,0) partial waves, as well as
the ~3/2,0!, ~1/2,1!, and ~1/2,0! channels ofpK scattering.
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The results are very successful up to 1 GeV in all the
channels but the~0,0!, where it only yields good results up t
700 MeV. The limitations of this single channel approa
become evident, for instance, in thef 0(980) anda0(980)
resonances (J50 andI 50 and 1, respectively! which do not
appear as poles in theT matrix. The method also has a path
logical behavior close to theT matrix zeros@7#.

The second approach dealt with theJ50 sector alone@8#.
The input consists of theO(p2) Lagrangian, which is used a
the source of a potential between mesons. This potential
ters in a set of coupled channel Lippmann-Schwinger~LS!
equations~actually closer to Bethe-Salpeter equations, sin
relativistic propagators are used! which leads to the scatter
ing matrix. The method imposes unitarity in coupled cha
nels; hence it yields inelasticities when inelastic chann
open up. Amazingly, the approach has only one free par
eter, which is a cutoff that regularizes the loop integrals
the LS equation. Such a method proves rather succes
since phase shifts and inelasticities are reproduced accur
up to 1200 MeV. Thef 0(980) anda0(980) resonances ap
pear as poles of theT matrix for I 50 and 1, respectively
and their widths and partial decay widths are very well
produced. In addition, one finds a pole whenI 50 at As
.500 MeV with a width of around 400 MeV, correspondin
to thes meson, which was also found with similar properti
with the IAM @5#.

The appearance of thef 0 anda0 is due to the introduction
of the KK̄ channel in addition topp in I 50 andph in I

51. These resonances disappear if theKK̄ channel~not con-
sidered in@4,5#! is omitted, while thes in I 50 is almost not
affected. This explains why thef 0 anda0 resonances did no
show up in the IAM@4,5#.

The success of the scheme of Ref.@8# in the scalar sector
gives hope that it could be used in other channels. Howe
one soon realizes that it does not reproduce properly thJ
51 sector. This looks less surprising when one recalls t
the O(p4) chiral Lagrangian can be reproduced with t
resonance saturation hypothesis@9#, that is, assuming that th
actual values of theO(p4) parameters are basically saturat
by resonance exchanges between Goldstone bosons. In

nce
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way, one establishes a clear relation between the informa
contained in theO(p4) Lagrangian and the resonances in t
meson-meson sector, particularly vector meson resonan
where the approach of@9# has its stronghold. Indeed, th
absence of ther andK* in the approach of@8#, which only
uses theO(p2) Lagrangian, is an indirect confirmation of th
link between these resonances and theO(p4) Lagrangian.

The approaches of@4,5# and@8# seem complementary an
one may wonder whether there is a generalization of th
methods, containing both them as limiting cases. An affirm
tive answer to this question was recently found and suc
generalized method was proposed in@10#. The purpose of the
present paper is to exploit the idea of@10# and obtain all the
predictions of such an approach in the meson-meson se
such as phase shifts, inelasticities, resonance properties
At the same time we will establish the links between t
scheme andxPT at low energies. We also illustrate qualit
tively, using a toy model, why the proposed method is
successful when dealing with amplitudes dominated by re
nances.

II. UNITARY AMPLITUDE IN COUPLED CHANNELS

Let us write the partial wave decomposition of the mes
meson amplitude with definite isospinI as

TI5SJ~2J11!TIJPJ~cosu!, ~1!

whereTIJ is the partial wave amplitude with isospinI and
angular momentumJ. In each one of these channels there
several meson-meson states coupled to each other. In T
I, we have listed these states for theJ50,1 channels, which
contain the most relevant meson-meson information belo
GeV. Note that it is enough to take into account one or t
states in each channel since we are neglecting here, on
one hand, multipion states which are only relevant for hig
energies and, on the other hand, thehh that appears for
(I ,J)5(0,0). The influence of this state is rather small. W
have checked it following the scheme of@8# and, although it
has some effect, particularly in the inelasticities, we found
small enough to omit it with the consequent simplicity in t
general formalism.

Hence, throughout the present work,TIJ will be either a
232 symmetric matrix when two states couple or just
number when there is only one state. In what follows

TABLE I. Physical states used in the differentI ,J channels.

I 50 I 51/2 I 51 I 53/2 I 52

pp Kp ph
J50 Kp pp

KK̄ Kh KK̄

Kp pp
J51 KK̄

Kh KK̄
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omit theI ,J labels and use a matrix formalism, which will b
valid for the general case ofn3n matrices corresponding to
n coupled states.

The normalization ofT is such that

ds

dV
5

1

64p2s

kf

ki
uTi f u2, ~2!

whereki andkf are, respectively, the c.m. three momenta
the initial and final state ands is the usual Mandelstam vari
able. We follow the convention for the sign ofT such that in
an elastic amplitude ImT<0.

Unitarity in coupled channels implies

Im Ti f 5TinsnnTn f* , ~3!

wheres is a real diagonal matrix whose elements acco
for the phase space of the two meson intermediate statn
which are physically accessible. With the normalization th
we have chosen,s is given by

snn~s!52
kn

8pAs
u„s2~m1n1m2n!2

…, ~4!

wherekn is the on-shell c.m. momentum of the meson in t
intermediate staten andm1n ,m2n the masses of the two me
sons in the staten.

An equivalent way of expressing the unitarity is by mea
of the K matrix formalism@11# which states in matrix form
that

T215K212 is, ~5!

whereK is theK matrix, which is real, and from the forme
equation is trivially given by

K215ReT21. ~6!

For the sake of completeness we show briefly the equ
lence between Eqs.~3! and~5!. Isolatings from Eq. ~3! we
find

s5T21 Im TT* 21

5
1

2i
T21~T2T* !T* 21

5
1

2i
~T21* 2T21!52Im T21. ~7!

Hence, taking into account Eq.~6! one arrives to Eq.~5!
or, equivalently,

T5@K212 is#215@ReT212 is#21. ~8!

This is a practical way to write theT matrix fulfilling
unitarity and then the dynamics is contained in theK matrix.
In the following we will use the information contained i
xPT up toO(p4) in order to approximate theK matrix or,
equivalently, ReT21.
1-2



da

t

F
n

d
-

e
ix

e

-

iv
-

ls
l

at

re-
se

-

-

m,
ole

his
er-
is

we

the

, we

der
us
l

n

in
u-

for

oice

MESON-MESON INTERACTIONS IN A . . . PHYSICAL REVIEW D 59 074001
The next point is to realize that theT matrix has poles
associated with resonances, which implies that the stan
perturbative evaluation ofx PT will necessarily fail close to
these poles. As a consequence, one might try to exploit
expansion ofT21, which will have zeros at the poles ofT,
and in principle does not present convergence problems.
illustrative purposes, we can use an analogy with the fu
tion tanx when expanded aroundx50 (x playing here the
role of p2 in the chiral expansion!. This function has a pole
at x5p/2. Its inverse, cotx, has a Laurent expansion aroun
x50 and a zero atx5p/2. However, inverting the expan
sion of cotx aroundx50 for values ofx nearp/2 provides a
faster convergence than expanding directly tanx around that
point. With this idea in mind let us expandT21 in powers of
p2 as one would do forT usingxPT:

T.T21T41•••,

T21.T2
21@11T4T2

21
•••#21.T2

21@12T4T2
21

•••#. ~9!

This expression requires the inversionT2 which might not
be invertible, as it happens, for instance in the~1, 1! channel.
In order to avoid the use ofT2

21 we modify Eq.~8! by for-
mally multiplying by T2T2

21 on the right andT2
21T2 on the

left. All the steps are justified using the continuity of th
functions involved in the derivation, starting from a matr
close toT2 , which can be inverted. Thus, Eq.~8! can be
rewritten as

T5T2@T2 ReT21T22 iT2sT2#21T2 . ~10!

Now, using the expansion forT21 of Eq. ~9! we find

T2 ReT21T2.T22ReT41••• ~11!

and recalling that

Im T45T2sT2 , ~12!

we finally obtain, within theO(p4) approximation,

T5T2@T22T4#21T2 . ~13!

From Eqs.~11! and~6! we also obtain the expression for th
K matrix,

K5T2@T22ReT4#21T2 , ~14!

which is very similar to Eq.~13! but using ReT4 instead of
T4 , which appears in the T matrix formula.

Note, as is clear from Eq.~10!, that what we are expand
ing is actuallyT2 ReT21T2 , which in our analogy would be
equivalent tox2 cotx, which is also convergent aroundx
50.

In another context, the above equation can also be der
using Pade´ approximants@12#. This equation is a generaliza
tion to multiple coupled channels of the IAM of Refs.@4,5#.
It makes the method more general and powerful and a
allows one to evaluate transition cross sections as wel
inelasticities. Our expansion ofK21 in Eq. ~11! reminds one
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of the effective range approximation for elastic scattering
low energies of the quantityK215s cotd, with d the phase
shift.

The coupled channel result has additional virtues with
spect to the single channel IAM. Indeed, in this latter ca
the expansion of Eq.~9! is meaningless ifuT2u,uT4u or T2
50 @7#. In particular, if T2 vanishes, Eq.~13! yields T
5T2

2T4
21 , which has adoublezero, whereas the correct re

sult would beT.T4 . This indeed occurs in theJ50 partial
waves below threshold~Adler zeros!. However, within the
coupled channel formalism, if a matrix element, say, (T2)11,
vanishes, it is sufficient that (T2)12Þ0, since then Eq.~13!
gives (T)11.(T4)11, which is the correct result. In conclu
sion, while the single channel IAM gives adouble zero
wheneverT250, the coupled channel method leads tosingle
zeros close to the zeros ofT2 .

The single channel IAM has another related proble
since close to the Adler zero it presents an spurious p
whenT25T4 . The coupled channel method also avoids t
problem, although it runs into a similar one when the det
minant of theT22T4 matrix vanishes below threshold. Th
happens indeed forJ50, I 50 aroundAs.120 MeV. Ex-
cluding the neighborhood of this zero of the determinant,
can still recover from Eq.~13! the usualx PT expansionT
.T21T41••• valid for low energies, typicallyuAsu,500
MeV. In any case we concentrate here on results above
two-pion threshold.

It is now important to realize that Eq.~13! requires the
complete evaluation ofT4 , which is rather involved when
dealing with many channels, as is the case here. Instead
present a further approximation to Eq.~13! which turns out
to be technically much simpler and rather accurate. In or
to illustrate the steps leading to our final formula, let
introduce the diagonalG matrix given by the loop integra
with two meson propagators,

Gnn~s!5 i E d4q

~2p!4

1

q22m1n
2 1 i e

1

~P2q!22m2n
2 1 i e

,

~15!

whereP is the total initial four-momentum of the two meso
system. ThisG matrix has the property

Im Gnn~s!5snn~s!, ~16!

as can be easily checked.
The real part ofG(s) is divergent and requires a certa

regularization. We evaluate it making use of a cutoff reg
larization with a maximum valueqmax for the modulus of the
three-momentum in the integral. An analytical expression
Gnn(s) is given in Appendix A.

In a first step let us assume that through a suitable ch
of the cutoff we can approximate

ReT4.T2 ReGT2 ~17!

or equivalently, from Eq.~14!,

K5T2@T22T2ReGT2#21T25@12T2 ReG#21T2 .
~18!
1-3
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In such a case we go back to Eqs.~10! and ~11! and
immediately write

T5@12T2G#21T2 , ~19!

which is equivalent to

T5T21T2GT, ~20!

which is a LS equation for theT matrix, whereT2 plays the
role of the potential. This is actually the approach follow
in Ref. @8#.

There is a subtle difference between Eq.~20! and the
ordinary LS integral equation. Indeed, Eq.~20! is an alge-
braic equation sinceT2 andT are factorized out of the inte
grals with their on-shell value. In contrast, in the ordinary
equations, theT2GT term is actually the integral of Eq.~15!,
including T2 and T inside the integral, since both of them
depend onq. As a result of the structure of theO(p2) La-
grangian, it was shown in@8# that writing T2(q) as
T2

on shell(q) 1 T2
off shell(q), the off-shell part renormalize

couplings and masses and hence it had to be omitted. Th
fore T2 , andT factorizedoutsidethe integral with their on-
shell values. As a consequence, the very same algeb
equation~20! was obtained.

As we have already commented, the approximation of
~17! leads to excellent results in the scalar channels. H
ever, as we mentioned in the Introduction, the generaliza
to JÞ0 is not possible since basic information contained
theO(p4) chiral Lagrangian is missing in Eq.~17!. The ob-
vious solution is to add a term to Eq.~17! such that

ReT4.T4
P1T2 ReGT2 . ~21!

The K matrix in this case follows immediately:

K5T2@T22T4
P2T2 ReGT2#21T2 , ~22!

whereT4
P is the polynomial tree level contribution comin

from the O(p4) Lagrangian. As already mentioned in th
Introduction there is a link established in@9# betweenT4

P and
the exchange of meson resonances, particularly the ve
ones. It is now clear from Eq.~22! that through the inclusion
of T4

P one can generate real poles in theK matrix which will
correspond to resonances of the unitarizedT matrix. The
polynomialT4

P is given in terms of theLi coefficients of the
O(p4) Lagrangian. Within our approach, these coefficie
will be fitted to data and denoted byL̂ i since they do not
have to coincide with those used inxPT, as we shall see
Actually, theLi coefficients depend on a regularization sc
(m). In our scheme this scale dependence appears thro
the cutoff.

In addition, there are also differences between our ren
malization scheme and that of standardxPT. Indeed, our
approach considers the iteration of loop diagrams in ths
channel, but neglects loops in theu or t channel. However,
the smooth structure of these terms for the physicals chan-
nel, since we are far away from the associated singulari
allows them to be approximately reabsorbed when fitting
L̂ i coefficients. Concerning tadpoles, they would be exa
07400
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reabsorbed in theL̂ i in the equal mass case. Therefore, wh
masses are different, we are omitting terms proportiona
differences between the actual masses squared and an
age mass squared. Thus all these contributions will make
L̂ i differ from theLi , although we expect them to be of th
same order.

This way of dealing with tadpoles has an additional a
vantage. Apart from the usual tadpole diagrams that wo
also appear in standardxPT there are some additional tad
pole terms. They come from the determinant of the SU(
metric that should be included in the path integral measur
order to make the generating functional SU(3) covari
@13#. With dimensional regularization such contribution
vanish, but that is not the case when using a cutoff regu
ization @14#. Nevertheless, we have just described how t
poles are absorbed within our approximation and thus we
not have to calculate them.

With these approximations our calculations have be
considerably simplified at the expense of losing some pr
sion at low energies with respect to the fullO(p4) xPT cal-
culation. As far as we are mostly interested in resona
behavior as well as higher energies this is not very relev
Nevertheless, if the completeO(p4) calculations were avail-
able, we could directly use Eq.~13!, and have both an accu
rate low energy description and a good coupled channel
tarity behavior.

Using Eqs.~10! and~11!, our final formula for theT ma-
trix is given by

T5T2@T22T4
P2T2GT2#21T2 . ~23!

III. TOY MODEL

In order to illustrate how the method works, we take
simple case of one channel and one amplitude around a r
nance which we assume to know exactly. That is,

T5
ap2

q22M21 i2MG
, ~24!

wherep2 is an invariant quantity, of dimension momentu
squared, related to the momenta or masses of the pse
scalar mesons,q the total four-momentum of the meson pa
and 2MG52ap2 Im G. The above equation satisfies unita
ity exactly as can be seen by using Eq.~7!.

To O(k2), k[p, q, we have

T252a
p2

M2
, ~25!

whereas atO(k4) we have

ReT452
ap2q2

M4
[T2

q2

M2
. ~26!

Then, using Eq.~13! we find
1-4
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T5
T2

2

T22ReT42 iT2 Im GT2

52
ap2

M2S 12
q2

M2
1 ia

p2

M2
Im GD

5
ap2

q22M22 iap2 Im G
. ~27!

So, as we can see, in this particular case the IAM lead
the exact result for theT matrix, Eq.~24!. The result is exact
here becauseT2 ReT21T2 is anO(k4) function and hence
the expansion up toO(k4) in Eq. ~11! is exact. However, the
structure of Eq.~24! is that of a meson propagator of a
unstable particle such as thef 0 a0 , r, K* , etc. reso-
nances. This could justify why the scheme which we prop
works even better that one could naively anticipate, at le
for resonant channels.

The above argumentation uses the same power coun
in momenta asxPT, but presumes that theO(k2) amplitude
comes from the exchange of a resonance. This seems to
conflict with @9#, where it is shown that resonance exchan
contribution shows up at higher orders. However, when t
ing into account the requirements of short distance beha
of QCD, these two points can be reconciled. In fact, this
been shown, in@15#, where a classical vector meson dom
nance expression for the pion form factor is obtained, in
same lines as Eq.~24!, starting from chiral Lagrangians an
imposing those QCD constraints at short distances and
largeNc limit.

In relation to the previous arguments, the link betwe
unitarizedxPT and vector meson dominance has also b
discussed in@16#.
itt
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IV. MATRIX ELEMENTS OF T2 AND T4

The lowest order chiral Lagrangian is given by

L25
f 2

4
^]mU†]mU1M ~U1U†!&, ~28!

wheref is the pion decay coupling and̂•••& stands for the
trace of the 333 matrices built out ofU(F) andM.

U~F!5exp~ iA2F/ f !, ~29!

whereF can be expressed in terms of the Goldstone bo
fields as

F~x![S 1

A2
p01

1

A6
h p1 K1

p2
2

1

A2
p01

1

A6
h K0

K2 K̄0 2
2

A6
h

D .

~30!

The mass matrixM is given by

M5S mp
2 0 0

0 mp
2 0

0 0 2mK
2 2mp

2
D , ~31!

where we have assumed the isospin limitmu5md .
TheO(p4) Lagrangian is given by
L45L1^]mU†]mU&21L2^]mU†]nU&^]mU†]nU&1L3^]mU†]mU]nU†]nU&1L4^]mU†]mU&^U†M1M†U&

1L5^]mU†]mU~U1M1M 1U !&1L6^U
†M1M 1U&21L7^U

†M2M†U&21L8^M†UM†U1U†MU†M &, ~32!
where the terms which couple to external sources are om
@1#.

The states with definite isospin, with the phasesup1&5
2u1,1&, uK2&52u1/221/2& are given by

I50,

uKK̄&52
1

A2
uK1~qW !K2~2qW !1K0~qW !K̄ 0~2qW !&,

upp&52
1

A6
up1~qW !p2~2qW !1p2~qW !p1~2qW !

1p0~qW !p0~2qW !&,
ed I51, I350,

uKK̄&52
1

A2
uK1~qW !K2~2qW !2K0~qW !K̄ 0~2qW !&,

uph&5up0~qW !h~2qW !&,

upp&52
1

2
up1~qW !p2~2qW !2p2~qW !p1~2qW !&,
1-5
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I52, I352,

upp&5
1

A2
up1~qW !p1~2qW !&,

I51/2, I351/2,

uKp&52UA2

3
p1~qW !K0~2qW !1

1

A3
p0~qW !K1~2qW !L ,

uKh&5uK1~qW !h~2qW !&,

I 53/2,I 353/2,

uKp&52uK1~qW !p1~2qW !&,

We should note that in the states of identical particles
have included an extra 1/A2 factor in the normalization. This
is done to ensure that the resolution of the identity giv
unity @recall that Squp0(qW )p0(2qW )&^p0(qW )p0(2qW )u52
with the statesp0(qW )p0(2qW ) normalized to unity#. This
normalization yields the ordinary unitarity formulas, Eq.~3!,
which we are using to extract phase shifts and inelasticit
However, we should return to the proper normalization at
end in order to obtain the physical amplitudes.

The amplitudes which we obtain are compiled in Appe
dix B. The projection over each partial waveJ is done by
means of

TIJ5
1

2E21

1

PJ~cosu! TI~u!d~cosu!. ~33!

In the case of two coupled channels,TIJ is a 232 matrix
whose elements (TIJ) i j are related toS matrix elements
through the equations~omitting theI ,J labels!

~T!1152
8pAs

2ip1
@~S!1121#, ~T!2252

8pAs

2ip2
@~S!2221#,

~T!125~T!2152
8pAs

2iAp1p2

~S!12, ~34!

with p1 ,p2 the c.m. momenta of the mesons in state 1 or
respectively. TheS matrix has the structure@17#
07400
e

s

s.
e
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,

S5F he2id1 i ~12h2!1/2ei ~d11d2!

i ~12h2!1/2ei ~d11d2! he2id2
G , ~35!

whered1 andd2 are the phase shifts for the elastic 1→1 and
2→2 processes@for instance,K̄K→K̄K and pp→pp in
(I ,J)5(0,0)] andh is the inelasticity.

It is interesting to note that, by means of (T)11 and (T)22,
one can determineh, d1 , and d2 , and hence the (T)12
5(T)21 matrix elements are redundant. We determine th
from our coupled equations and verify that the structure
Eq. ~34! is satisfied, which is another check of the coupl
channel unitary that we have imposed from the beginnin

V. RESULTS

We have carried out a fit to the data, which is show
in Figs. 1–7, using as free parameters theL̂ i with i

51,2,3,4,5,7 and 2L̂61L̂8 . The cutoff is fixed toqmax
51.02 GeV. The values which we obtain are shown in Ta
II. By comparing them with the standard values for theLi

coefficients obtained inxPT at the scalem52qmax/Ae ~see
Appendix A 2! we see that they are of the same order.

We show first the results on phase shifts and inelastici
in the different channels and later on we discuss the p
positions, widths, and partial decay widths.

A. Phase shifts and inelasticities

We will now go in detail through the results in each (I ,J)
channel.

1. Channel (0,0)

As we can see in Eq.~34! we have three independen
magnitudesd1 , d2 , andh. In Figs. 1~a! and 1~c! we show
the d1 and d2 corresponding topp→pp and KK̄→KK̄
elastic scattering. In Fig.1~b! we plot the phase shift for
KK̄→pp. This is actuallyd11d2 , which is therefore re-
dundant information. However, there are data for this proc
but not for elasticKK̄, and that is why we are plottingd1
1d2 . The agreement with experiment is good, with sm
discrepancies in theKK̄→pp phase shifts. In Fig. 1~a! we
see a bump around 600 MeV which is due to thes reso-
nance, whose associated pole appears around 4422 i225
MeV, as we shall see below. The fast raise in the phase s
at 1 GeV is caused by thef 0 pole around 9802 i14 MeV,
which translates into an apparent mass of.980 MeV and a
TABLE II. Fit parametersL̂ i3103 and comparison with theLi
r3103 of xPT.

qmax51.02 GeV L̂1 L̂2 L̂3 L̂4 L̂5 2L̂61L̂8 L̂7

0.5 1.0 23.2 20.6 1.7 0.8 0.2

m51.2 L1
r L2

r L3 L4
r L5

r 2L6
r 1L8

r L7

0.1 0.9 23.5 0.7 0.4 0.0 20.4
60.3 60.3 61.1 60.5 60.5 60.3 60.2
1-6
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MESON-MESON INTERACTIONS IN A . . . PHYSICAL REVIEW D 59 074001
FIG. 1. Results in theI 5J50 channel.~a! Phase shifts forpp→pp as a fraction of the c.m. energy of the meson pair: solid trian
@19#, open circle@20#, solid square@21#, open triangle@22#, open square@23# ~all these are an analysis of the same experiment@18#!, cross

@24#, solid circle @25#, open pentagon@26#. ~b! Phase shifts forKK̄→pp: solid square@27#, solid triangle@28#. ~c! Phase shifts forKK̄

→KK̄. ~d! Inelasticity: results and data for (12h2)/4: starred square@26#, solid square@27#, solid triangle@28#, solid circle@29#.
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ing up around 1.2 GeV. The omission of thehh and four-
meson states should limit the validity of the approach at h
energies since then these channels start being relevant.

2. Channel (1,1)

In Fig. 2~a! we display thepp→pp phase shifts which
clearly show ther meson. The perfect coincidence of th
results with the very precise data indicate that both the p
tion and the width of ther are very well described. In Fig

2~c! we show the phase shifts forKK̄→KK̄ scattering, for
which there are no data. As we can see, they are very sm
which implies a weakKK̄ interaction. Therefore thed1

1d2 phase shift ofKK̄→pp is essentially that ofpp
→pp. The fact that the inelasticity is practically 1, indicat
that there is almost no mixture ofpp andKK̄. This feature
causes ther to behave as a purepp elastic resonance. Tha
is why the single channel IAM gave essentially the sa
results as obtained here@4#.
07400
h
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e

3. Channel (2,0)

The I 52pp scattering contains only one state as sho
in Table I. In Fig. 3 we show the resulting phase shif
whose agreement with experimental data is remarkably g
up to 1.2 GeV.

4. Channel (1,0)

In Fig. 4~a! the ph→ph phase shifts are shown. Thos
of KK̄→KK̄ are plotted in Fig. 4~b! and the inelasticities in
Fig. 4~c!. In the latter, it can be seen that there is an app
ciable mixture betweenph andKK̄ aboveKK̄ threshold. In
Fig. 4~d! we compare a mass distribution forph around the
region of thea0 resonance. The data are obtained from@34#
using theK2p→S1(1385)ph reaction, whose cross sectio
~following @35#! can be written as

ds

dm
5Cutu2q, ~36!
1-7



J. A. OLLER, E. OSET, AND J. R. PELA´ EZ PHYSICAL REVIEW D 59 074001
FIG. 3. Phase shifts forpp→pp in the I 52, J50 channel. Data: cross@31#, open square@32#, solid triangle@33#.

FIG. 2. Results in theI 5J51 channel.~a! Phase shifts forpp→pp. Data: open circle@24#, solid square@30#. ~b!, ~c! Same as in Fig.
1. ~d! Inelasticity.
074001-8



MESON-MESON INTERACTIONS IN A . . . PHYSICAL REVIEW D 59 074001
FIG. 4. Results in theI 51, J50 channel.~a! Phase shifts forph→ph. ~b! Invariant mass distribution forph data from@34#. ~c! Phase

shifts for KK̄→ph. ~d! Inelasticity.
,
od

h
ro
ap
x

ar
l,

a

e,

the

in
s

g

in
to
wherem is thep2h invariant mass,q the p momentum in
thep2h c.m. frame,t thep2h→p2h scattering amplitude
and C a normalization constant. We observe a fairly go
agreement with the experimental numbers.

5. Channel (1/2,0)

The two coupled states are nowKp andKh. In Fig. 5~a!
we plot the phase shifts forKp→Kp. The theoretical curve
follows the same trend as the experimental data, althoug
lies a bit above them. The results and the data show a b
bump, which is related to the presence of a pole which
pears around 7702 i250 MeV. Such a resonance, whose e
istence has been claimed in a recent data analysis@42#, is

predicted in quark models ofq2q̄2 systems@41# and is usu-
ally denoted byk(900). This resonance bears some simil
ity with the s in the ~0,0! pp elastic scattering channe
which is also very broad. Finally, theKh→Kh phase shifts
are small as shown in Fig. 5~c! and the inelasticities given in
07400
it
ad
-

-

-

Fig. 5~d! are not distant from unity. This fact indicates
small mixture ofKp with Kh.

6. Channel (1/2,1)

In this case we also find a resonance in Fig. 6~a!, analo-
gous to ther, but in theKp system. This resonant stat
known as theK* (892), is as clean as ther, and the agree-
ment of our results with the data is remarkably good over
whole range of energies up to 1.2 GeV. In Fig. 6~c! we plot
the Kh→Kh phase shifts, which are very small. Finally,
Fig. 6~d! we can notice thath'1 which means that there i
practically no mixture ofKp and Kh in this channel. This
justifies the success of@4# reproducing this resonance usin
only theKp state and elastic unitarity.

7. Channel (3/2,0)

In Fig. 7 we show theKp phase shifts. As we can see
the figure, the agreement with the data is quite good up
about 1.2 GeV.
1-9



J. A. OLLER, E. OSET, AND J. R. PELA´ EZ PHYSICAL REVIEW D 59 074001
FIG. 5. Results in theI 51/2, J50 channel.~a! Phase shifts forKp→Kp. Data: solid circle@36#, cross@37#, open square@38#, solid
triangle @40#, open circle@39#. ~b! Phase shifts forKp→Kh. ~c! Phase shifts forKh→Kh. ~d! Inelasticity.
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The channel~3/2,1! in Kp ~see Table I! is such thatT2
50, since there is only anS wave there. In this case ou
method cannot be applied, as discussed above, and
should just take theT4 contribution. That also happens fo
the J52 channels, since the structure ofT2 , which is
O(p2), is a linear combination ofs, t, u and squared
masses. Therefore there is onlyJ50,1 in T2 , but notJ52.
Hence, the lowest contribution can only be obtained from
T4 terms and our method has nothing to improve there w
respect toxPT. The phase shifts in these channels are sm
and have been discussed in@4#. Hence we omit any furthe
discussion, simply mentioning that the agreement with d
found in @4# is fairly good.

There is another interesting result in the~0,1! channel
which is the appearance of a pole around 990 MeV, wh
we show in Fig. 8. Below 1.2 GeV there are two resonan
with such quantum numbers. They are thev and thef,
which fit well within the qq̄ scheme, with practically idea
mixing, as (1/A2)(uū1dd̄) andss̄, respectively. In the limit
of exact SU~3! symmetry these resonances manifest as
antisymmetric octet state and a symmetric singlet state. S
the spatial function of theKK̄ state is antisymmetric, its
SU~3! wave function also has to be antisymmetric and the
fore it only couples to the antysimmetric octet resonance.
course, our Lagrangians do contain some SU~3! breaking,
but in this channel we are only dealing with theKK̄ state,
neglecting states with other mesons~such as the three-pio
channel! and, hence, our formulas for this process do
contain any SU~3! symmetry breaking term. Thus, we ju
see one pole, corresponding to the antisymmetric octet s
07400
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of the exact SU~3! limit. Because the ideal mixing angle i
around 20°, the pole we obtain should be closer to the ph
cal f(1020) than to the physicalv(782). This is in fact
what we obtain since the mass of our pole is 990 MeV, mu
closer to the mass of thef~1020! meson than to the mass o
thev~782!. It seems then plausible that the small coupling
three pions~an OZI suppressed coupling of third clas!
which we are not taking into account, could be enough
bring our pure octet state to the physicalf resonance.

B. Pole positions, widths, and partial decay widths

We will now look for the poles of theT matrix in the
complex plane, which should appear in the unphysical R
mann sheets~the conventions taken are those of@8#, which
can be easily induced from the analytical expressions of
pendix A!. Let us remember that the mass and the width o
Breit-Wigner resonance are related to the position of its co
plex pole byAspole.M2 iG/2, but this formula does no
hold for other kinds of resonances. In Table III we give t
results for the pole positions as well as the apparent or ‘
fective’’ masses and widths that can be estimated from ph
shifts and mass distributions in scattering processes. N
that such ‘‘effective’’ masses and widths depend on
physical process.

We shall make differentiation between ther and K* ,
which are clean elastic Breit-Wigner resonances, and
rest. For ther andK* their mass is given by the energy
which d590° and the width is taken from the phase shi
1-10



MESON-MESON INTERACTIONS IN A . . . PHYSICAL REVIEW D 59 074001
FIG. 6. Results in theI 51/2, J51 channel.~a! Phase shifts forKp→Kp. Data: solid triangle@36#, open circle@40#. ~b! Phase shifts
for Kp→Kh. ~c! Phase shifts forKh→Kh. ~d! Inelasticity.

FIG. 7. Phase shifts forKp→Kp in the I 53/2, J50 channel. Data: open triangle@40#, open circle@43#.
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FIG. 8. (uTIJ501u)2 for KK̄→KK̄ showing the singularity corresponding to thef resonance.
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slope aroundd590°, by means of

GR5
MR

22s

MR
tand~s!. ~37!

We also saw that, in practice, ther andK* only couple to
pp andKp, respectively. Thes decays only topp and the
k only to Kp due to phase space and dynamical suppres
of other channels@see Fig. 5~d!#. The case of thef 0 anda0 is
different, since they can decay either topp or KK̄ ~the f 0)
and ph or KK̄ ~the a0). In order to determine the partia
decay widths of these resonances we follow the procedur
@8#, where we show that, assuming a Breit-Wigner shape
the amplitudes around the resonance pole, the partial d
widths are given by

GR,152
1

16p2EEmin

Emax
dE

q

E2
4MR Im T11,
07400
n

of
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GR,252
1

16p2EEmin

Emax
dE

q

E2
4MR

~ Im T21!
2

Im T11
, ~38!

whereE stands for the total c.m. energy of the meson-me
system,q is the momentum of one meson in the c.m. and
labels 1,2 stand forKK̄, pp in the case of thef 0 and
KK̄, ph in the case of thea0 . The masses of the fina
mesons arem1 ,m2 . The upper limit in the integral,Emax, is
.MR1GR whereGR is the total width@8# and Emin5MR
2GR , unless the threshold energy (m11m2) for the decay is
bigger than that quantity, in which caseEmin5m11m2 . In
this way we largely avoid the contribution of the bac
grounds in the amplitudes. One caveat must be raised
cerning Eq.~38!, which was already pointed out in the stud
of the f 0→gg decay@44#. The subtlety is that around thi
resonance the phase shifts@see Fig. 1~a!# are of the order of
90°, due to the background coming from the broads pole.
TABLE III. Masses and partial widths in MeV.

Channel Mass Width Mass Width Partial
(I ,J) Resource from pole from pole effective effective widths

~0,0! s 442 454 '600 very large pp2100%
pp265%

~0,0! f 0(980) 994 28'980 '30

KK̄235%
~0,1! f(1020) 980 0 980 0
~1/2,0! k 770 500'850 very large Kp2100%
~1/2,1! k* (890) 892 42 *895 42 Kp2100%

ph250%
~1,0! a0(980) 1055 42 980 40

KK̄250%
~1,1! r(770) 759 141 771 147 pp5100%
1-12
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FIG. 9. Imaginary part of thepp amplitude in the (I ,J)5(0,0) channel in the second Riemann sheet. On the left we show a t
dimensional plot were we can observe the different structure of thes and f 0 poles. On the right we show a contour plot of the lower h
plane of the second sheet. Thes pole is very far away from the real~physical! axis and its lines of maximum gradient are parallel to it,
contrast with thef 0 . That is why the effect of both poles in the phase shifts~Fig. 1! is so different.
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This background causes thef 0→pp coupling constant to
appear effectively multiplied by ap/2 phase (i factor! and in
this way theT12 amplitude around thef 0 looks like an ordi-
nary Breit-Wigner multiplied byi. This means that the rea
part has a peak around the resonance and the imaginary
changes sign. In this case the arguments used in@8# and@44#
lead to a trivial modification inGR,2 , where ImT12 should be
substituted by ReT12.

It is also very instructing to see the representation of
poles in a three-dimensional plot. In Fig. 9 we show on
left the imaginary part of the~0,0! pp→pp scattering am-
plitude on the second Riemann sheet. It is possible to
very clearly the appearance of two poles that correspon
the s and thef 0 resonances. The former is located at 4
2 i227 and thus is very far away from the real axis, whi
implies a huge effective width. In contrast, the other pole
located at 9942 i14 MeV accordingly to the narrow width o
the f 0 resonance.

Apart from the position of the poles, there is an addition
piece of information which also determines the observ
shape of a resonance. It also explains some of the differe
between the ‘‘effective’’ masses and the real part of the p
position. On the right of Fig. 9 we give a contour plot, aga
of the imaginary part of the~0,0! amplitude in the second
Riemann sheet. Notice that both poles are oriented dif
ently, almost transversally, on the complex plane. On the
hand, thef 0 pole is oriented almost perpendicularly to th
real axis, which is the relevant one in this work. As a co
sequence, in the positive real axis, the imaginary part of
amplitude first grows rapidly and then drops very fast aga
giving rise to the dramatic variation of the phase shift typi
of resonances. A similar orientation is found for ther, K* ,
and a0 resonances too. On the other hand, thes pole is
oriented so that in the real axis we only see a slow a
smooth increase, but almost no decrease, of the imagi
part. That is also the case of thek resonance. This feature
together with the fact that both thes and thek are very far
from the real axis, explains why it is so hard to establ
firmly their existence and their physical parameters.
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Finally, in Fig. 10 we present a very detailed contour p
of ther anda0 poles. Both of them are almost perpendicu
to the real axis, but the former is tilted clockwise, where
the latter is tilted counterclockwise. Let us now rememb
that the real part of the pole position, roughly, should give
the apparent mass of the resonance. However, the line
maximum gradient of each pole cross the real axis at a p
which is slightly different from the real part of its position
Therefore, those poles rotated clockwise, as ther or theK* ,
have an apparent mass a little bit higher than that given
the pole position. In contrast those tilted counterclockw
yield a resonance whose mass is somewhat lower that
one obtained from the pole. That is the case of thef 0 and the
a0 .

VI. CONCLUSIONS AND OUTLOOK

We have used a coupled channel unitary approach,
gether with the dynamical information contained in t
O(p2) and O(p4) chiral Lagrangian, which allows us to
study the meson-meson interaction up to about 1.2 G
This nonperturbative method generates poles in the com
plane corresponding to physical resonances. We have
the experimental information available to make a fit of t
O(p4) Lagrangian coefficients. These areL̂ i , i

51,2,3,4,5,7 and 2L̂61L̂8 , whose actual values depend o
the cutoff that we have used to regularize divergent one-l
integrals. With those seven degrees of freedom we are
to fit, up to 1.2 GeV, all the experimental information
seven meson-meson channels. Each one of these cha
consists of two phase shifts and an inelasticity. Moreover
our results, we obtain the position and widths, partial de
widths, etc. of all the resonances that appear in those c
nels below 1.2 GeV. Apart from the standa
f 0 , a0 , r, K* resonances, we find poles in theT matrix
for thes in theppI 5J50 channel and fork in the ~1/2,0!
channel, both of them very broad.
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J. A. OLLER, E. OSET, AND J. R. PELA´ EZ PHYSICAL REVIEW D 59 074001
FIG. 10. The poles associated with ther ~left! anda0 ~right! are oriented differently. Ther mass seen on the (I ,J)5(1,1) phase shifts
is slightly bigger than the real part of the position of ther pole, whereas the peak of the mass distribution where thea0 is observed~see Fig.
4! is smaller than the real part of thea0 pole. Concerning the widths, they are obtained as twice the imaginary part of the associate
position.
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The method has proved very efficient to extend the id
of chiral symmetry at energies beyond the realm of appli
bility of xPT. However, at energies higher than 1.2 GeV,
limitations of the model show up, since, among other thin
we have restricted ourselves only to two meson states.
restrictions in the space of states precluded the appearan
the v resonance which couples dominantly to three pio
However, thef resonance which couples strongly toKK̄
does appear in the scheme, although slightly shifted towa
lower energies. Presumably, by including thef coupling to
three pions, although very small, it should be enough to s
the mass to its correct place.

One of the formal weaknesses of the approach is
loops in crossed channels, as well as some tadpole cont
tions, are not explicitly included in the calculation. In pra
tice, their effect can be reabsorbed in the fit of theO(p4)
parameters, whose values can then be different from th
obtained for the standard low energyxPT approach.

This approximation could be improved by using Eq.~13!
with the full O(p4) xPT calculation, which includes on
loop in crossed channels and the tadpoles. This would a
a more straightforward comparison with standardxPT as
well as a better accuracy in the low energy results. Althou
such calculations are welcome and there is indeed s
work in progress@45#, they are far more involved to calculat
and use.

Applications of the method to other physical problems
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also in order. Indeed, it can be easily extended to deal w
processes where meson pairs appear in the initial or fi
state, like meson pair photoproduction@44#. It looks likely
that it could also prove useful describing the meson-nucl
interaction@46# complemented with heavy baryon chiral pe
turbation theory. In addition, the method, nonperturbative
nature, is equally well suited to study the meson-meson
teraction in a nuclear medium where there has been s
speculation about the appearance of boundpp pairs @47#.

Finally it seems that the approach could be extended
the effective chiral Lagrangian description of the stand
model strongly interacting symmetry breaking sector, wh
the single channel approach has already been applied@48#.
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APPENDIX A: ANALYTICAL FORMULA FOR G„s…: RELATION BETWEEN CUTOFF AND DIMENSIONAL
RENORMALIZATION

In this appendix we show the relationship between our regularization scheme and dimensional regularization, whi
usual one when dealing withxPT.

1. Analytical formula for G„s… with a cutoff regularization

In the general case with different massesM1 andM2,
1-14
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G~s!5
1

32p25 2
D

s
log

M1
2

M2
2

1
n

s5 log

s2D1nA11
M1

2

qmax
2

2s1D1nA11
M1

2

qmax
2

1 log

s1D1nA11
M2

2

qmax
2

2s2D1nA11
M2

2

qmax
2
6

12
D

s
log

11A11
M2

2

qmax
2

11A11
M2

2

qmax
2

22logF S 11A11
M1

2

qmax
2 D S 11A11

M2
2

qmax
2 D G1 log

M1
2 M2

2

qmax
4 6 , ~A1!

wheren5A@s2(M11M2)2#@s2(M12M2)2# andD5M1
22M2

2 . In the case of equal massesM15M25m, the above for-
mula reduces to

G~s!5
1

~4p!2F s log

sA11
m2

qmax
2

11

sA11
m2

qmax
2

21

22 logH qmax

m
S 11A11

m2

qmax
2 D J G , ~A2!

where now,s5A124m2/s.
The numerical evaluation of the principal part of Eq.~15! is also performed as an additional check.
n
f

or
m

hi

e

en-
2. Relation between the cutoff and the dimensional
regularization scale

In order to obtain the relationship between the cutoff a
the renormalization scalem let us consider, for the sake o
simplicity, the case with equal masses~the same result is
obtained with different masses but the formulas are m
cumbersome!. As far as we are going to compare the sa
function calculated in different ways, let us denote byGC(s)
the G(s) calculated with a cutoff regularization andGD(s)
the one calculated with dimensional regularization. In t
latter case we have

GD~s!5
1

~4p!2F1

ê
221 logm21s log

s11

s21G , ~A3!

where 1/ê51/e2 log(4p)1g with D5412e.
The scalem in GD(s) appears through the inclusion of th

Li @2# atO(p4):
07400
d

e
e

s

Li5Li
r~m!1G il, ~A4!

whereLi
r(m) is the renormalized value ofLi at them scale,

G i is just a number, and

l5
1

32p2F1

ê
1 logm221G . ~A5!

The logm2, and its companion 1/ê21 are incorporated in
GD(s) so that at the end one has a logarithm of the dim
sionless quantitym2/m2. In this way we rewriteGD(s) as

GD~s!5
1

~4p!2F211 log
m2

m2
1s log

s11

s21G . ~A6!

We expand Eq.~A2! in powers ofm2/qmax
2 to compare

with the cutoff regularization, as follows:
1-15



J. A. OLLER, E. OSET, AND J. R. PELA´ EZ PHYSICAL REVIEW D 59 074001
GC~s!5
1

~4p!2F22 log
2qmax

m
1s log

s11

s21
1OS m2

qmax
2 D G

5
1

~4p!2F211 loge1 log
m2

4 qmax
2

1s log
s11

s21
1OS m2

qmax
2 D G

5
1

~4p!2F211 log
m2 e

4qmax
2

1s log
s11

s21
1OS m2

qmax
2 D G . ~A7!
II
f

di
t

an
le
en
ide

o

t

s

s

Then comparing Eqs.~A6! and ~A7! one has:

m5
2 qmax

Ae
.1.2qmax. ~A8!

Hence, to our cutoffqmax.1 GeV would correspond a
m51.2 GeV dimensional regularization scale. In Table
we have listed the values of theL̂ i parameters and those o
standardxPT scaled tom51.2 GeV. As it is explained in the
text, in our fit we have neglected the crossed channel
grams and we have treated tadpoles differently. The effec
these contributions is effectively reabsorbed in ourL̂ i param-
eters; hence some differences between theL̂ i andLi param-
eters should be expected and this is indeed the case as c
seen in Table II. Note that, even if we had used the comp
O(p4) xPT calculations, these parameters could be differ
since they have been obtained from a fit over a much w
range of energies than it is used inxPT and higher order
contributions have been included.

Finally, note that the termsO(m2/qmax
2 ) in Eq. ~A7! yield

O(p6), or higher, contributions and that is why they are n
included inGD(s).

It is also worth stressing that the relationship of Eq.~A8!
is independent of the physical process and channel since
function G(s) appears in all them in the same way.

APPENDIX B: AMPLITUDES

We have used the following formulas in our calculation
Note that, as has been explained in the text, we have
overall sign of difference with the definitions in@1#, as well
as a 1/2 factor for those amplitudes with identical particle

1. Masses and decay constants

f p5 f 0F11
4mp

2

f 0
2 ~L51L4!1

8mK
2

f 0
2

L4G ,

f K5 f 0F11
4mK

2

f 0
2 ~L512L4!1

4mp
2

f 0
2

L4G ,

f h5 f 0F11
4mh

2

f 0
2

L51
8mK

2 14mp
2

f 0
2

L4G ,

~B1!
07400
,

a-
of

be
te
t,
r

t

he

.
an

.

mp
2 5m0p

2 F11
8mp

2

f 0
2 ~2L612L82L42L5!

1
16mK

2

f 0
2 ~2L62L4!G ,

mK
2 5m0K

2 F11
16mK

2

f 0
2 S 2L61L82L42

1

2
L5D

1
8mp

2

f 0
2 ~2L62L4!G , ~B2!

where the 0 subscript refers to bare quantities.

2. pp˜pp scattering

The definite isospin amplitudesT(I ) are obtained from just
one amplitudeT:

T~0!~s,t,u!5@3T~s,t,u!1T~ t,s,u!1T~u,t,s!#/2,

T~1!~s,t,u!5@T~ t,s,u!2T~u,t,s!#/2,

T~2!~s,t,u!5@T~ t,s,u!1T~u,t,s!#/2, ~B3!

whereT5T21T4 is given by

T25
mp

2 2s

f p
2

,

T452
4

f p
4 $~2L11L3!~s22mp

2 !21L2@~ t22mp
2 !2

1~u22mp
2 !2#12~2L41L5!mp

2 ~s22mp
2 !

14~2L61L8!mp
4 %, ~B4!

which have been obtained at the tree level fromL2 andL4 ,
respectively.
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3. Kp˜Kp scattering

Using crossing symmetry, we can write theI 51/2 amplitude in terms of that withI 53/2, as

T~1/2!~s,t,u!5
3

2
T~3/2!~u,t,s!2

1

2
T~3/2!~s,t,u!, ~B5!

where

T2
~3/2!5

s2~mp
2 1mK

2 !

2 f p f K
,

T4
~3/2!52

2

f p
2 f K

2 $~4L11L3!~ t22mp
2 !~ t22mK

2 !12L2~mp
2 1mK

2 2s!2

1~2L21L3!~mp
2 1mK

2 2u!214L4@~mp
2 1mK

2 !t24mp
2 mK

2 #

1L5@~mp
2 1mK

2 !~mp
2 1mK

2 2s!24mp
2 mK

2 #18mp
2 mK

2 ~2L61L8!%, ~B6!

which, once more, have been obtained, respectively, fromL2 andL4 at the tree level.

4. KK̄˜KK̄ scattering

The definite isospin amplitudes can be written just in terms of two:

T~0!~s,t,u!5T1212~s,t,u!1T0̄012~s,t,u!, ~B7!

T~1!~s,t,u!5T1212~s,t,u!2T0̄012~s,t,u!,

whereT1212 is the amplitude forK1K2→K1K2, whose respectiveO(p2) andO(p4) contributions are

T2
1212~s,t,u!5

u22mK
2

f K
2

,

T4
,1212~s,t,u!52

4

f K
4 $2L2~u22mK

2 !21~2L11L21L3!@~s22mK
2 !21~ t22mK

2 !2#22u mK
2 ~2L41L5!18mK

4 ~2L61L8!%,

~B8!

whereasT0̄012 is the amplitude forK̄0K0→K1K2, which is given by

T2
0̄012~s,t,u!5

u22mK
2

2 f K
2

,

T4
0̄012~s,t,u!52

2

f K
4 H ~4L11L3!~s22mK

2 !21~2L21L3!~ t22mK
2 !212L2~u22mK

2 !2

12s mK
2 ~4L41L5!1

2

3
t mK

2 ~2L41L5!28mK
4 ~2L41L522L62L8!J . ~B9!
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a. pp˜KK̄ scattering

Again, we can use crossing symmetry to obtain, fromKp→Kp, the definite isospin amplitudesTI of this process:

T~0!5
A3

2
@T~3/2!~u,s,t !1T~3/2!~ t,s,u!#,

T~1!5
1

A2
@T~3/2!~u,s,t !2T~3/2!~ t,s,u!#. ~B10!

b. Kh˜Kh scattering

This process is pureI 51/2. We obtain the following contributions to the amplitude:

T2~s,t,u!5
6mh

212mp
2 29t

12f h f K
, ~B11!

T4~s,t,u!52
1

3 f K
2 f h

2 $2~ t22mK
2 !~ t22mh

2 !~12L115L3!1@~u2mh
22mK

2 !21~s2mh
22mK

2 !2#

3~12L21L3!12~ t22mK
2 !@11mK

2 ~2L41L5!2mp
2 ~L413L5!#

14mK
4 @3~2L41L5!132~L61L71L8!#12~ t22mh

2 !@9mK
2 ~2L41L5!1mp

2 ~3L42L5!#

14mp
4 ~16L718L82L5!16L5mh

42t@mK
2 ~24L417L5!12mp

2 ~6L42L5!19L5mh
2 #

16mh
2mK

2 ~4L41L5!12mh
2mp

2 ~6L41L5!12mK
2 mp

2 @6L41L528~2L617L8112L7!#%. ~B12!

c. Kh˜Kp scattering

The I 51/2 amplitude can be obtained as follows:

T~1/2!~s,t,u!5A3

2
TK̄0h→K2p1~s,t,u!. ~B13!

TheO(p2) andO(p4) contributions toK̄0h→K2p1 are

T2~s,t,u!5
A6@8mK

2 13mh
21mp

2 29t#

36f K f h
,

T4~s,t,u!52
A2/3

3 f K
2 f h

2 $3L3@2~ t2mp
2 2mh

2 !~ t22mK
2 !2~s2mK

2 2mp
2 !~s2mK

2 2mh
2 !

2~u2mK
2 2mp

2 !~u2mK
2 2mh

2 !#1L5@~ t1mp
2 2mh

2 !~7mK
2 25mp

2 !

14mK
2 ~3t23mp

2 2mh
2 !12~ t22mK

2 !~mK
2 1mp

2 !14~mp
4 2mK

4 !#

116~2L71L8!~mp
4 22mK

4 1mK
2 mp

2 !%. ~B14!

d. hp˜hp

This channel is pureI 51 isospin. The amplitude is given by

T2~s,t,u!5
2mp

2

3 f h f p
, ~B15!
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T4~s,t,u!52
4

3 f K
2 f h

2 $~ t22mp
2 !~ t22mh

2 !~6L11L3!14tL4~mp
2 12mK

2 !

1~3L21L3!@~s2mp
2 2mh

2 !21~u2mp
2 2mh

2 !2#1mp
4 ~4L42L528L6132L7112L8!

216mK
2 mp

2 ~L422L612L7!23mp
2 mh

2~4L41L5!%. ~B16!
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