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Meson-meson interactions in a nonperturbative chiral approach
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A nonperturbative method which combines constraints from chiral symmetry breaking and coupled channel
unitarity is used to describe the meson-meson interaction up to about 1.2 GeV. The approach (%e€)the
andO(p*) chiral Lagrangians. The seven free parameters offig") Lagrangian are fitted to the data. The
results are in good agreement with a vast amount of experimental analyses. The amplitudes develop poles in
the complex plane corresponding to thg, ay, p, K*, ¢, o, andx resonances, the latter two being very
broad. The total and partial decay widths of the resonances are also well reproduced. Further extensions and
applications of this chiral nonperturbative scheme are also discy@856-282(99)05003-1

PACS numbe(s): 12.39.Fe, 11.80.Et, 13.75.Lb, 14.40

[. INTRODUCTION The results are very successful up to 1 GeV in all these
channels but th€d,0), where it only yields good results up to
The meson-meson interaction has been the key problem 00 MeV. The limitations of this single channel approach
test chiral perturbation theoryxPT), which has proved become evident, for instance, in tlig(980) andagy(980)
rather successful at low energigs2]. The underlying idea resonancesX=0 andl =0 and 1, respective)ywhich do not
is that an expansion in powers of the meson momenta corgppear as poles in tilematrix. The method also has a patho-
verges at sufficiently low energy, which in practice s |ogical behavior close to th& matrix zerog7].
<500 MeV. However, the convergence at higher energies The second approach dealt with the 0 sector alon¢s].
becomes progressively worse. Even more, one of the pecte jnput consists of thé(p?) Lagrangian, which is used as
liar features of the meson-meson interaction is the presenGge source of a potential between mesons. This potential en-
of resonances such as the fo, oray in the scalar sector o« in a set of coupled channel Lippmann-Schwinges)
and thep, K*, or ¢ in the vector channels. These reso- o ationgactually closer to Bethe-Salpeter equations, since

ngltn(?(ra]sa/wll ?:Owtuﬁ dlnrtf;)é_}mNatr\I/x gﬁ FIJOIeS :Eat Car?ntcr)tigte relativistic propagators are useghich leads to the scatter-
obtained using standargPT. Nevertheless, the constraints ing matrix. The method imposes unitarity in coupled chan-

imposed by chiral symmetry breaking are rather powerfuInel:s; hence it yields inelasticities when inelastic channels

and not restricted to the region wheyBT is meant to con- ’
open up. Amazingly, the approach has only one free param-

verge|[3]. e . .

1gw[o i]ndependent approaches of a nonperturbative chara ter, which is a cutoff that regularizes the loop integrals of
ter have extended the use of chiral Lagrangians to higher.e LS equation. Such a met.h.Od proves rather successiul
energies and have been rather successful, reproducing imposr'-nce phase shifts and inelasticities are reproduced accurately
tant features of the meson-meson interaction including se ip 10 1200|Mer. t'Lr%e‘o(QtSO)f anldf%(%og ;esonanc;a_s ?p-
eral resonances. Although these two approaches look in prirp-ﬁgrtﬁ:.rpo %?hg and maartr; d?arca_ '?jrt]hs ér;esré?c Ivglly’re-
ciple rather different, they share a common feature which i Ir-wi part y wl Very w

the imposition of unitarity. One of therf¥,5], based upon Eroduced. In_additiqn, one finds a pole when0 at \/5.
the inverse amplitude metha@AM ), first suggested ifi6], =500 MeV with a width of around 400 MeV, corresponding

makes use of the lowest orded(p?), as well as the next to to theo meson, which was also found with similar properties

leading order,O(p?), Lagrangians. Elastic unitarity is im- With the IAM [S]. , , _
posed and thus no mixture of channels is allowed. Then, the 1€ @ppearance of tifg anda, is due to the introduction
coefficients of the®(p*) Lagrangian are fitted to the data. Of the KK channel in addition tarz in I=0 andw in |
The absence of coupled channels has obvious limitations, but 1. These resonances disappear if ki€ channel(not con-
in spite of them, the IAM is able to generate dynamically thesidered in4,5]) is omitted, while ther in | =0 is almost not
p, K*, ando resonances, and to reproduge scattering in  affected. This explains why thig anda, resonances did not
the (1,J)=(0,0), (1,1), (2,0) partial waves, as well as in show up in the IAM[4,5].
the (3/2,0, (1/2,1), and (1/2,0 channels of7K scattering. The success of the scheme of R#f] in the scalar sector
gives hope that it could be used in other channels. However,
one soon realizes that it does not reproduce properlyJthe
*Email address: oller @condor.ific.uv.es =1 sector. This looks less surprising when one recalls that
"Email address: oset@condorl.ific.uv.es the O(p* chiral Lagrangian can be reproduced with the
*Email address: pelaez@eucmax.sim.ucm.es; on leave of absent@sonance saturation hypothd€l§ that is, assuming that the
from Departamento de §ica Téwica, Universidad Complutense, actual values of thé(p?) parameters are basically saturated
Madrid, Spain. by resonance exchanges between Goldstone bosons. In this
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TABLE I. Physical states used in the differdnd channels. omit thel,J labels and use a matrix formalism, which will be
valid for the general case ofx n matrices corresponding to
1=0 1=1/2 =1 1=3/2 1=2 n Coup|ed states.
The normalization ofT is such that
T K T
J=0 K
KK K7 KK ! " do 1 Kippo 2
d‘Q_647TZSki| ifl ()
K T .
J=1 KiC wherek; andk; are, respectively, the c.m. three momenta of

_ the initial and final state anslis the usual Mandelstam vari-
K7 KK able. We follow the convention for the sign ®fsuch that in
an elastic amplitude IM=<0.

) ) ) ~Unitarity in coupled channels implies
way, one establishes a clear relation between the information

contained in the)(p*) Lagrangian and the resonances in the IMTi¢=TinonnTns (3
meson-meson sector, particularly vector meson resonances,
where the approach d®] has its stronghold. Indeed, the whereo is a real diagonal matrix whose elements account
absence of the andK* in the approach of8], which only  for the phase space of the two meson intermediate states
uses the?(p?) Lagrangian, is an indirect confirmation of the which are physically accessible. With the normalization that
link between these resonances and @{@*) Lagrangian. we have chosenr is given by

The approaches ¢#,5] and[8] seem complementary and
one may wonder whether there is a generalization of these n )
methods, containing both them as limiting cases. An affirma- Tnn(S)=— Bmde 0(s— (M +mMy,)”), (4)
tive answer to this question was recently found and such a 7

generalized method was proposedi0]. The purpose of the \yharek is the on-shell c.m. momentum of the meson in the
present paper is to exploit the idea[dD] and obtain all the  yiermegiate stata andm,,,,m,, the masses of the two me-
predictions of such an approach in the meson-meson sectQly s in the state.

such as phase shifts, inelasticities, resonance properties, etc. 5, equivalent way of expressing the unitarity is by means

At the same time we will establish the links between thisy¢ the K matrix formalism[11] which states in matrix form
scheme ang/PT at low energies. We also illustrate qualita- ¢,

tively, using a toy model, why the proposed method is so
successful when dealing with amplitudes dominated by reso- T 1=K 1-jo, (5)
nances.

whereK is theK matrix, which is real, and from the former

II. UNITARY AMPLITUDE IN COUPLED CHANNELS equation is trivially given by
-1_ -1

Let us write the partial wave decomposition of the meson- K™"=ReT = (6)

meson amplitude with definite isospiras For the sake of completeness we show briefly the equiva-

lence between Eq$3) and(5). Isolatingo from Eq. (3) we
T\=2,(2J+1)T,;P,(cosh), D find

—_T1-1 * —1
whereT,; is the partial wave amplitude with isospinand o=T"ImTT

angular momenturd. In each one of these channels there are

several meson-meson states coupled to each other. In Table

I, we have listed these states for the 0,1 channels, which

contain the most relevant meson-meson information below 1 1

GeV. Note that it is enough to take into account one or two =§(T71* T H=-ImTL (7)

states in each channel since we are neglecting here, on the

one hand, multipion states which are only relevant for higher  ence, taking into account E¢) one arrives to Eq(5)

energies and, on the other hand, the that appears for o equivalently,

(1,3)=(0,0). The influence of this state is rather small. We

have checked it following the scheme[@f and, although it T=[K '—iog] '=[ReT 1-io] . 8

has some effect, particularly in the inelasticities, we found it

small enough to omit it with the consequent simplicity in the  This is a practical way to write th& matrix fulfilling

general formalism. unitarity and then the dynamics is contained in kheatrix.
Hence, throughout the present woilk, will be either a  In the following we will use the information contained in

2X2 symmetric matrix when two states couple or just axyPT up toO(p*) in order to approximate th& matrix or,

number when there is only one state. In what follows weequivalently, R& 1.

1
= T HT-THT* 1
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The next point is to realize that thE matrix has poles

PHYSICAL REVIEW D 59 074001

of the effective range approximation for elastic scattering at

associated with resonances, which implies that the standaidw energies of the quantitf ~*= o cot s, with & the phase

perturbative evaluation of PT will necessarily fail close to

shift.

these poles. As a consequence, one might try to exploit the The coupled channel result has additional virtues with re-

expansion ofT ~1, which will have zeros at the poles ot

spect to the single channel IAM. Indeed, in this latter case

and in principle does not present convergence problems. Fahe expansion of Eq9) is meaningless ifT,|<|T,| or T,
illustrative purposes, we can use an analogy with the func=0 [7]. In particular, if T, vanishes, Eq(13) yields T

tion tanx when expanded around=0 (x playing here the
role of p? in the chiral expansion This function has a pole

=T5T, %, which has adoublezero, whereas the correct re-
sult would beT=T,. This indeed occurs in th&=0 partial

atx=m/2. Its inverse, cot has a Laurent expansion around waves below thresholdAdler zeros. However, within the

x=0 and a zero ak= 7/2. However, inverting the expan-

sion of cok aroundx=0 for values ofx near#/2 provides a
faster convergence than expanding directlyxamound that
point. With this idea in mind let us exparid ! in powers of
p? as one would do foll using yPT:

T=Toy+ T+,
T =T, [1+T,T, ] =T, {1-T,T,% 1. (9

This expression requires the inversibapwhich might not
be invertible, as it happens, for instance in ¢hel) channel.
In order to avoid the use of, * we modify Eq.(8) by for-
mally multiplying by T,T,* on the right andr, T, on the

coupled channel formalism, if a matrix element, say,)¢1,
vanishes, it is sufficient thafT),# 0, since then Eq(13)
gives (T)11=(T4)11, wWhich is the correct result. In conclu-
sion, while the single channel IAM gives double zero
whenevelT,=0, the coupled channel method leadsiagle
zeros close to the zeros of,.

The single channel IAM has another related problem,
since close to the Adler zero it presents an spurious pole
whenT,=T,. The coupled channel method also avoids this
problem, although it runs into a similar one when the deter-
minant of theT,— T, matrix vanishes below threshold. This
happens indeed fai=0, 1=0 around\/s=120 MeV. Ex-
cluding the neighborhood of this zero of the determinant, we
can still recover from Eq(13) the usualy PT expansiorl

left. All the steps are justified using the continuity of the ~T,+T,+ .. valid for low energies, typically/s| <500
functions involved in the derivation, starting from a matrix MeV. In any case we concentrate here on results above the

close toT,, which can be inverted. Thus, E() can be
rewritten as
T=T,[T,ReT T,—iT,0T,] 1T,. (10)

Now, using the expansion faF ! of Eq. (9) we find

T,ReT T,=T,—ReT,+--- (11)
and recalling that
IMT,=To0T,, (12)
we finally obtain, within theO(p*) approximation,
T=T,[T,—T4] 'T,. (13

From Egs.(11) and(6) we also obtain the expression for the

K matrix,
K=T,[T,—ReT,] 'T,, (14

which is very similar to Eq(13) but using RE, instead of
T,4, which appears in the T matrix formula.

Note, as is clear from Eq10), that what we are expand-

ing is actuallyT, ReT1T,, which in our analogy would be
equivalent tox? cotx, which is also convergent around
=0.

In another context, the above equation can also be derived
using Padepproximantg12]. This equation is a generaliza-

tion to multiple coupled channels of the IAM of Refg,5].

two-pion threshold.

It is now important to realize that Eq13) requires the
complete evaluation of 4, which is rather involved when
dealing with many channels, as is the case here. Instead, we
present a further approximation to Ed.3) which turns out
to be technically much simpler and rather accurate. In order
to illustrate the steps leading to our final formula, let us
introduce the diagonab matrix given by the loop integral
with two meson propagators,

d*q 1 1
(2m)* g>*—mZ, +ie (P—q)2—m3, +ie’

(15

whereP is the total initial four-momentum of the two meson
system. ThisG matrix has the property

Gnn(s)=iJ

ImGp(S)=oqn(S), (16)

as can be easily checked.

The real part ofG(s) is divergent and requires a certain
regularization. We evaluate it making use of a cutoff regu-
larization with a maximum valug,, .« for the modulus of the
three-momentum in the integral. An analytical expression for
Gn(S) is given in Appendix A.

In a first step let us assume that through a suitable choice
of the cutoff we can approximate

It makes the method more general and powerful and also

allows one to evaluate transition cross sections as well as

inelasticities. Our expansion & * in Eq. (11) reminds one

ReT,=T,ReGT, (17
or equivalently, from Eq(14),
K=T,[T,—T,ReGT,] 'T,=[1-T,ReG] T,.
(18
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~ In such a case we go back to Eq40) and (11) and  reabsorbed in thg; in the equal mass case. Therefore, when
immediately write masses are different, we are omitting terms proportional to
differences between the actual masses squared and an aver-

— -1
T=[1-ToG] Te, (19 age mass squared. Thus all these contributions will make the
which is equivalent to I:i differ from thel,, although we expect them to be of the
same order.
T=T,+T,GT, (20 This way of dealing with tadpoles has an additional ad-

vantage. Apart from the usual tadpole diagrams that would
also appear in standargPT there are some additional tad-
pole terms. They come from the determinant of the SU(3)
metric that should be included in the path integral measure in
order to make the generating functional SU(3) covariant
[13]. With dimensional regularization such contributions

: . i ) vanish, but that is not the case when using a cutoff regular-
grals Wlth their on-shell v_alue. In contra_st, in the ordinary Lsization [14]. Nevertheless, we have just described how tad-
equations, thd,GT term is actually the integral of EGLS),  5jes are absorbed within our approximation and thus we do
including T, and T insidethe integral, since both of them 5t have to calculate them.

depend org. As a result of the structure of the(p?) La- With these approximations our calculations have been
grangian, it ngﬁsshalhown i8] that writing T>(q) as  considerably simplified at the expense of losing some preci-
T2 _tQ) + T3 77(a), the off-shell part renormalizes gjon at low energies with respect to the f@{p*) xPT cal-
couplings and masses and hence it had to be omitted. Therggjation. As far as we are mostly interested in resonance
fore T, andT factorizedoutsidethe integral with their on-  phehavior as well as higher energies this is not very relevant.
shell values. As a consequence, the very same algebrajgevertheless, if the completd(p*) calculations were avail-
equation(20) was obtained. able, we could directly use E¢L3), and have both an accu-

As we have already commented, the approximation of Eqrate low energy description and a good coupled channel uni-
(17) leads to excellent results in the scalar channels. Howtgyity behavior.

ever, as we mentioned in the Introduction, the generalization ysing Eqs.(10) and(11), our final formula for theT ma-
to J#0 is not possible since basic information contained intrix is given by

the O(p*) chiral Lagrangian is missing in E¢17). The ob-

vious solution is to add a term to E(L7) such that T=T,[T,~ T —T,GT,] 'T,. (23

which is a LS equation for th& matrix, whereT, plays the
role of the potential. This is actually the approach followed
in Ref.[8].

There is a subtle difference between Eg0) and the
ordinary LS integral equation. Indeed, EQO) is an alge-
braic equation sinc&, andT are factorized out of the inte-

ReT,=T,+T,ReGT,. (22)
ll. TOY MODEL
The K matrix in this case follows immediately:
In order to illustrate how the method works, we take a
simple case of one channel and one amplitude around a reso-
nance which we assume to know exactly. That is,

K=T,[T,—Ty—T,ReGT,] 'T,, (22)

WhereTf is the polynomial tree level contribution coming
from the O(p*) Lagrangian. As already mentioned in the

2
Introduction there is a link established([id] betweerT}, and T ap

= 24
the exchange of meson resonances, particularly the vector q’°—M2+i2MTI" 24
ones. It is now clear from Ed22) that through the inclusion
of T, one can generate real poles in tenatrix which will  wherep? is an invariant quantity, of dimension momentum

correspond to resonances of the unitariZednatrix. The squared, related to the momenta or masses of the pseudo-
polynomiaITZ is given in terms of thé; coefficients of the scalar mesongj the total four-momentum of the meson pair,
O(p* Lagrangian. Within our approach, these coefficientsand 2\MT" = —ap?ImG. The above equation satisfies unitar-

will be fitted to data and denoted Ly since they do not Ity exactly as can be seen by using Eg).

have to coincide with those used yPT, as we shall see. 10 O(k?), k=p, g, we have

Actually, theL; coefficients depend on a regularization scale

(m). In our scheme this scale dependence appears through p?

the cutoff. To=- auz’ (29

In addition, there are also differences between our renor-
malization scheme and that of standgyBT. Indeed, our
approach considers the iteration of loop diagrams inshe
channel, but neglects loops in tleor t channel. However, 2 2
the smooth structure of these terms for the physsoethan- ReT,= — apq ETzq—. 26
nel, since we are far away from the associated singularities, M4 M?2
allows them to be approximately reabsorbed when fitting the

L, coefficients. Concerning tadpoles, they would be exactly Then, using Eq(13) we find

whereas at)(k*) we have
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T% IV. MATRIX ELEMENTS OF T, AND T,
T= - . L
T,—ReT,—iT,ImGT, The lowest order chiral Lagrangian is given by
~ ap® f2
= 7 2 £2=Z<aﬂuTa#u+M<u+uT)>, (28)

M?2 1——+iap—ImG
M?2 M2

wheref is the pion decay coupling and - -) stands for the

ap® trace of the X3 matrices built out ofJ (P) andM.

= . 2
q’°—M?—iap?ImG @7

U(d)=expli2d/1), (29)

So, as we can see, in this particular case the IAM leads to
the exact result for th& matrix, Eq.(24). The result is exact where® can be expressed in terms of the Goldstone boson
here becaus®&, ReT 1T, is an O(k%) function and hence fields as
the expansion up t®(k*) in Eq. (11) is exact. However, the
structure of Eq.(24) is that of a meson propagator of an 1
unstable particle such as thkg ag, p, K*, etc. reso- —=m+—=n " K*
nances. This could justify why the scheme which we propose V2 Ve
works even better that one could naively anticipate, at least 1 1
for resonant channels. d(x)= T ——a+—=y KO

The above argumentation uses the same power counting V2 G
in momenta agPT, but presumes that th@(k?) amplitude o 2
comes from the exchange of a resonance. This seems to be in K™ KO ——=n
conflict with [9], where it is shown that resonance exchange \/6
contribution shows up at higher orders. However, when tak- (30
ing into account the requirements of short distance behavior o
of QCD, these two points can be reconciled. In fact, this has The mass matriM is given by

been shown, if15], where a classical vector meson domi- )

nance expression for the pion form factor is obtained, in the mz 0 0

same lines as Eq24), starting from chiral Lagrangians and M=| 0 m? 0 31)
imposing those QCD constraints at short distances and the ” '

large N, limit. 0 0 2mi-m?

In relation to the previous arguments, the link between
unitarized yPT and vector meson dominance has also beewhere we have assumed the isospin limjj=m;.
discussed if16]. The O(p*) Lagrangian is given by

L4=L1(3,UT0"U)2+L»3,UT9,U)*UTa"U) +Lg(a,UT#Ud,UTa"U) +L,(a,UTo*UN UM +MTU)
+Ls(d,UT*U(UTM+MTU))+Lg(UTM+MTUY?+ L (UTM = MTUY?+ Lg(MTUMTU+UTMUTM), (32

where the terms which couple to external sources are omitted =1, 13=0,
[1].

The states with definite isospin, with the phages)=
—]1,), |K™)=—|1/2—1/2) are given by

_ 1 R . T .
= KK)=——|K* (@)K~ (—q)—K%Aq)K (-
=0, |KK) ﬁ' (K (—q)—KA>qK°(—q)),

_ 1 R R N R
IKK>=—ﬁIKWq)K‘(—qHKO(q)K°(—q)>,
|mn)y=|7°(q) n(—q)),
|m>=—%wam—(—aww-@m—a) 1

+ 2%E) 7~ d)) [mm)==3l7 (@7 (@) -7 (@7 (-a),

074001-5
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T . -
|WW>:E|W (@7 (=),

1=1/2, 1;=1/2,

|Kwr:—%EWW@K%—awj%w%@Kw—aﬁ,

IKn)y=|K" (@) n(—a)),

| =3/2)3=3/2,

|Kmy=—|K* ()7 (—q)),
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77e2i§1 i(l— 7]2)1/2ei(51-¢_ 55)
. i(1— 7?)Y2%ei (917 92) e? % . (39

where§; and d, are the phase shifts for the elastie-1l and
2—2 processesfor instance, KK—KK and wr— 77 in
(1,J)=(0,0)] and# is the inelasticity.

It is interesting to note that, by means df)g, and (T),,,
one can determine;, &;, and §,, and hence theT),
=(T),, matrix elements are redundant. We determine them
from our coupled equations and verify that the structure of
Eq. (34) is satisfied, which is another check of the coupled
channel unitary that we have imposed from the beginning.

V. RESULTS

We have carried out a fit to the data, which is shown
in Figs. 1-7, using as free parameters tﬁe with i
=1,2,3,4,5,7 and Rg+Lg. The cutoff is fixed t0Qmay

We should note that in the states of identical particles we=1.02 GeV. The values which we obtain are shown in Table
have included an extra {2 factor in the normalization. This . By comparing them with the standard values for the
is done to ensure that th§ resolt{tlon ofethe |de£1t|ty givegoefficients obtained iyPT at the Scale-LZZQmax/\/E (see
unity [recall that =4|7°(q)7°(—q))}(#°(a)7°(—q)|=2  Appendix A2 we see that they are of the same order.
with the Statesﬁo(a) 770(_5) normalized to unity. This We show first the results on phase shifts and inelasticities
normalization yields the ordinary unitarity formulas, Eg), in the different channels and later on we discuss the pole
which we are using to extract phase shifts and inelasticitie0sitions, widths, and partial decay widths.
However, we should return to the proper normalization at the
end in order to obtain the physical amplitudes.

The amplitudes which we obtain are compiled in Appen-
dix B. The projection over each partial waveis done by
means of

A. Phase shifts and inelasticities

We will now go in detail through the results in eadhJ)
channel.

1. Channel (0,0)

As we can see in Eq34) we have three independent
magnitudess;, &,, and#. In Figs. 1a and Xc) we show
the 6, and 6, corresponding torm— 77 and KK—KK
elastic scattering. In Fig(lh) we plot the phase shift for
KK— . This is actuallyd,+ &,, which is therefore re-
dundant information. However, there are data for this process
but not for elasticKK, and that is why we are plotting;
+6,. The agreement with experiment is good, with small
discrepancies in th&KK— 77 phase shifts. In Fig. (&) we
see a bump around 600 MeV which is due to thaeso-
877\/§ . .
(T)1o=(T)py= — ———=(S)10, nance, whose associated pole appears around- 225
2i\p1p2 MeV, as we shall see below. The fast raise in the phase shift
at 1 GeV is caused by thf, pole around 986114 MeV,
with p,,p, the c.m. momenta of the mesons in state 1 or 2which translates into an apparent mass=d80 MeV and a
respectively. Thes matrix has the structurel7] 30 MeV width. Small discrepancies with the data start show-

111
Tu=>5 j P;(cosh) T,(6)d(cosb). (33
-1

In the case of two coupled channélg; is a 2X 2 matrix
whose elementsT(;);; are related toS matrix elements
through the equation@mitting thel,J labelg

8ms 8ms
(M=~ 5 [(Su1], (Taz=— 0 (S22~ 1]

(34

TABLE Il. Fit parameterd.; x 10° and comparison with the! x 10° of xPT.

qmax: 102 Gev El |:2 |:3 |:4 I:S 2|:6+E8 L7
0.5 1.0 —-3.2 —-0.6 1.7 0.8 0.2

=12 L] Ly Ly L, LL 2LL+LE L,
0.1 0.9 -3.5 0.7 0.4 0.0 —-04
*+0.3 *0.3 *11 +0.5 *0.5 +0.3 *+0.2
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FIG. 1. Results in thé=J=0 channel(a) Phase shifts forr7— 77 as a fraction of the c.m. energy of the meson pair: solid triangle
[19], open circleg[20], solid squard21], open trianglg22], open squarg23] (all these are an analysis of the same experirh&8lf, cross
[24], solid circle[25], open pentagoh26]. (b) Phase shifts foKK — m: solid squarg 27], solid triangle[28]. (c) Phase shifts foKK
—KK. (d) Inelasticity: results and data for (17%)/4: starred squark26], solid squard27], solid triangle[28], solid circle[29].

3. Channel (2,0)

The | =2 scattering contains only one state as shown
in Table I. In Fig. 3 we show the resulting phase shifts,
whose agreement with experimental data is remarkably good
up to 1.2 GeV.

ing up around 1.2 GeV. The omission of the; and four-
meson states should limit the validity of the approach at high
energies since then these channels start being relevant.

2. Channel (1,1)

In Fig. 2(@) we display ther7— 77 phase shifts which 4. Channel (1,0)
clearly show thep meson. The perfect coincidence of the

results with the very precise data indicate that both the posi- In Fig. 4_(a) the 7”7_)7,”’ phase shifts arg shOV\./n...Th(.)se
tion and the width of the are very well described. In Fig. of KK—KK are plotted in Fig. &) and the inelasticities in

— Fig. 4(c). In the latter, it can be seen that there is an appre-
2(c) we show the phase shifts fattK— KK scattering, for 9. 4c) PP

which there are no data. As we can see, they are very sma |.ab|e mixiure between ; andKK {aboyeKK threshold. In
T — . ig. 4(d) we compare a mass distribution ferp around the
which implies a weakKK interaction. Therefore the5;

ghad region of thea, resonance. The data are obtained fri@#]
+J, phase shift ofKK— 77 is essentially that ofrm  uysing theK p—3 *(1385)m 7 reaction, whose cross section
— mrar. The fact that the inelasticity is practically 1, indicates (following [35]) can be written as
that there is almost no mixture af7w andKK. This feature
causes the to behave as a purew elastic resonance. That
is why the single channel IAM gave essentially the same
results as obtained hefé].

do

_ 2

(36)
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FIG. 2. Results in thé=J=1 channel(a) Phase shifts forrm— 7. Data: open circl¢24], solid squaré30]. (b), (c) Same as in Fig.

1. (d) Inelasticity.

0 T T T T TTTT TTTT T TTT T TTT T TTT T T T T
- I 11 . .
- | 3 . .
-10 |- d{‘ﬂ;_' -
—20 |— T |
- — _
: 620.1"1
—40 | L1 1| | L1 1| | L1 1 1 | I | 111 | 111 | 111 | | L1 1| | L1 1|
300 400 500 600 700 800 900 1000 1100
E(MeV)

1200

FIG. 3. Phase shifts fofrm— a7 in thel =2, J=0 channel. Data: cro§81], open squar¢32], solid triangle[33].
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FIG. 4. Results in thé=1, J=0 channel(a) Phase shifts forr — 7 #. (b) Invariant mass distribution fo# » data from[34]. (c) Phase
shifts for KK— 7. (d) Inelasticity.

wherem is the 7~ 5 invariant massg the = momentum in  Fig. 5(d) are not distant from unity. This fact indicates a
the w~ 7 c.m. frame} the w~ »— 7~ 5 scattering amplitude, small mixture ofK 7 with K.
and C a normalization constant. We observe a fairly good
agreement with the experimental numbers.
6. Channel (1/2,1)

In this case we also find a resonance in Fi@)6analo-
gous to thep, but in the K7 system. This resonant state,
known as theK*(892), is as clean as thg and the agree-
ment of our results with the data is remarkably good over the
whole range of energies up to 1.2 GeV. In Figc)éwve plot
the Knp—K» phase shifts, which are very small. Finally, in

ig. 6(d) we can notice thaiy~1 which means that there is
actically no mixture oK~ andK» in this channel. This
stifies the success ¢#] reproducing this resonance using
only theK 7 state and elastic unitarity.

5. Channel (1/2,0)

The two coupled states are nd¢sr andK 7. In Fig. 5a)
we plot the phase shifts fa¢ w— K. The theoretical curve
follows the same trend as the experimental data, although
lies a bit above them. The results and the data show a bro
bump, which is related to the presence of a pole which apJ—u
pears around 770i250 MeV. Such a resonance, whose ex-
istence has been claimed in a recent data analy& is
predicted in quark models @f°’q® systemg41] and is usu-
ally denoted byx(900). This resonance bears some similar- 7. Channel (3/2,0)
ity with the o in the (0,00 w7 elastic scattering channel, In Fig. 7 we show th& 7 phase shifts. As we can see in

which is also very broad. Finally, th€n— K phase shifts the figure, the agreement with the data is quite good up to
are small as shown in Fig(& and the inelasticities given in about 1.2 GeV.
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FIG. 5. Results in thé=1/2, J=0 channel(a) Phase shifts foK 77— K. Data: solid circlg 36], cross[37], open squar¢38], solid
triangle[40], open circle[39]. (b) Phase shifts foK 7— K %. (c) Phase shifts foK »— K. (d) Inelasticity.

The channel3/2,1) in K7 (see Table)lis such thafT, of the exact S(B) limit. Because the ideal mixing angle is
=0, since there is only a® wave there. In this case our around 20°, the pole we obtain should be closer to the physi-
method cannot be applied, as discussed above, and wgl ¢(1020) than to the physicab(782). This is in fact
should just take thd, contribution. That also happens for what we obtain since the mass of our pole is 990 MeV, much
the J=2 channels, since the structure @5, which is  closer to the mass of th¢(1020 meson than to the mass of
O(p?), is a linear combination of, t, u and squared the w(782). It seems then plausible that the small coupling to
masses. Therefore there is odly 0,1 inT,, but notJ=2.  three pions(an OZI suppressed coupling of third class
Hence, the lowest contribution can only be obtained from theyhich we are not taking into account, could be enough to

T, terms and our method has nothing to improve there withying our pure octet state to the physigairesonance.
respect toyPT. The phase shifts in these channels are small

and have been discussed[#]. Hence we omit any further
discussion, simply mentioning that the agreement with data
found in[4] is fairly good.

There is another interesting result in tk@1) channel ) o
which is the appearance of a pole around 990 MeV, which We Wwill now look for the poles of thel matrix in the
we show in Fig. 8. Below 1.2 GeV there are two resonance§°mPplex plane, which should appear in the unphysical Rie-
with such quantum numbers. They are theand the,  Mann sheetgthe conventions taken are those[8], which
which fit well within the qa scheme, with practically ideal can be easily induced from the analytical expressions of Ap-

o - - ) 7 pendix A. Let us remember that the mass and the width of a
mixing, as (142)(uu+dd) andss, respectively. Inthe limit  gyejt-wigner resonance are related to the position of its com-
of exact SUJS) symmetry these resonan(.:es'manlfest as ongay pole by m:M—iF/Z, but this formula does not
antisymmetric octet state and a symmetric singlet state. SinGe,| 4 for other kinds of resonances. In Table Il we give the

the spatial function of the&KK state is antisymmetric, its results for the pole positions as well as the apparent or “ef-
SU(3) wave function also has to be antisymmetric and therefective” masses and widths that can be estimated from phase
fore it only couples to the antysimmetric octet resonance. Obhifts and mass distributions in scattering processes. Note
course, our Lagrangians do contain some(3lbreaking, that such “effective” masses and widths depend on the
but in this channel we are only dealing with tKe&K state, physical process.

neglecting states with other mesofssich as the three-pion We shall make differentiation between tleand K*,
channel and, hence, our formulas for this process do notwhich are clean elastic Breit-Wigner resonances, and the
contain any S(B) symmetry breaking term. Thus, we just rest. For thep andK* their mass is given by the energy at
see one pole, corresponding to the antisymmetric octet statghich §=90° and the width is taken from the phase shifts

B. Pole positions, widths, and partial decay widths
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FIG. 6. Results in thé=1/2, J=1 channel(a) Phase shifts foK 7— K. Data: solid triangld36], open circle[40]. (b) Phase shifts
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FIG. 8. (T,3-04)? for KK—KK showing the singularity corresponding to ttberesonance.

slope arounds=90°, by means of 1 (Emax (IM T,y)?
2 FRzz_—zf E—AMg—/———, (39
Mi—s ’ 167 JEmin  E Im Ty,
I'g= M tands(s). (37)
R

whereE stands for the total c.m. energy of the meson-meson
We also saw that, in practice, theandK* only couple to ~ Systemg is the momentum of one meson in the c.m. and the

7 andK, respectively. Ther decays only tarm and the labels 1,2 stand foKK, 7 in the case of thef, and

« only to K7 due to phase space and dynamical suppressioRK, =7 in the case of thea,. The masses of the final

of other channelfsee Fig. &)]. The case of thé; andagis  mesons aren;,m,. The upper limit in the integraE,y, is

different, since they can decay eitheriar or KK (the () =Mg+I'r wherel'y is the total width[8] and E,;j,=Mg

and 77 or KK (the ay). In order to determine the partial —1'r. unless the threshold energy{+m;) for the decay is

decay widths of these resonances we follow the procedure d¢figger than that quantity, in which ca&g,j,=m;+m;. In

[8], where we show that, assuming a Breit-Wigner shape fothis way we largely avoid the contribution of the back-

the amplitudes around the resonance pole, the partial decgyounds in the amplitudes. One caveat must be raised con-

widths are given by cerning Eq.(38), which was already pointed out in the study
1 e of the fy— yy decay[44]. The subtlety is that around this
Tri=— f Y EE4MR IMmTyy, resonance the phase shifsee Fig. 1a)] are of the order of
’ 16m2JEpnin  E? 90°, due to the background coming from the breagole.

TABLE lll. Masses and partial widths in MeV.

Channel Mass Width Mass Width Partial
(1,J) Resource from pole from pole effective effective widths
(0,0 o 442 454 ~600 very large 7—100%

r—65%
0,0 f0(980) 994 28~980 ~30

KK —35%
0, $(1020) 980 0 980 0
(/2,0 K 770 500~850 very large K7 —100%
(/2,3 k, (890) 892 42 *895 42 Ka—100%

mn—50%
1,0 a0(980) 1055 42 980 40

KK —50%
1,2 p(770) 759 141 771 147 7m=100%
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FIG. 9. Imaginary part of therm amplitude in the (,J)=(0,0) channel in the second Riemann sheet. On the left we show a three-
dimensional plot were we can observe the different structure ofrthad f, poles. On the right we show a contour plot of the lower half
plane of the second sheet. Thepole is very far away from the regbhysica) axis and its lines of maximum gradient are parallel to it, in
contrast with thef,. That is why the effect of both poles in the phase shifig. 1) is so different.

This background causes tHg— 77 coupling constant to Finally, in Fig. 10 we present a very detailed contour plot
appear effectively multiplied by @a/2 phase ( factor) and in  of the p anda, poles. Both of them are almost perpendicular
this way theT, amplitude around thé&, looks like an ordi- to the real axis, but the former is tilted clockwise, whereas
nary Breit-Wigner multiplied byi. This means that the real the latter is tilted counterclockwise. Let us now remember
part has a peak around the resonance and the imaginary péngat the real part of the pole position, roughly, should give us
changes sign. In this case the arguments us¢8]iand[44]  the apparent mass of the resonance. However, the lines of
lead to a trivial modification if"g ,, where ImT 1, should be  maximum gradient of each pole cross the real axis at a point
substituted by R& 5. which is slightly different from the real part of its position.

It is also very instructing to see the representation of thelherefore, those poles rotated clockwise, asgtloe theK*,
poles in a three-dimensional plot. In Fig. 9 we show on thehave an apparent mass a little bit higher than that given by
left the imaginary part of th€0,0) w7— 7 scattering am- the pole position. In contrast those tilted counterclockwise
plitude on the second Riemann sheet. It is possible to segeld a resonance whose mass is somewhat lower that the
very clearly the appearance of two poles that correspond tone obtained from the pole. That is the case offhand the
the o and thef, resonances. The former is located at 442a.

—i227 and thus is very far away from the real axis, which

implies a huge effective width. In contrast, the other pole is

located at 994 i14 MeV accordingly to the narrow width of

the fo resonance. VI. CONCLUSIONS AND OUTLOOK

Apart from the position of the poles, there is an additional
piece of information which also determines the observed
shape of a resonance. It also explains some of the differenc

2 4 i ; ;
between the “effective” masses and the real part of the pol (p%) and O(p") chiral ngrangl_an, which allows us to
position. On the right of Fig. 9 we give a contour plot, againStudy the meson-meson interaction up to about 1.2 GeV.

of the imaginary part of th€0,0) amplitude in the second This nonperturbat?ve method generates poles in the complex
Riemann sheet. Notice that both poles are oriented differP!2ne corresponding to physical resonances. We have used

ently, almost transversally, on the complex plane. On the onIahe experimental information available to make aAﬁt of the
hand, thef, pole is oriented almost perpendicularly to the O(p*) ~ Lagrangian  coefficients. These arel;, i

real axis, which is the relevant one in this work. As a con-=1,2,3,4,5,7 and 24+ Lg, whose actual values depend on
sequence, in the positive real axis, the imaginary part of théhe cutoff that we have used to regularize divergent one-loop
amplitude first grows rapidly and then drops very fast againintegrals. With those seven degrees of freedom we are able
giving rise to the dramatic variation of the phase shift typicalto fit, up to 1.2 GeV, all the experimental information in
of resonances. A similar orientation is found for e K*, seven meson-meson channels. Each one of these channels
and ay resonances too. On the other hand, thepole is  consists of two phase shifts and an inelasticity. Moreover, in
oriented so that in the real axis we only see a slow andur results, we obtain the position and widths, partial decay
smooth increase, but almost no decrease, of the imaginamyidths, etc. of all the resonances that appear in those chan-
part. That is also the case of theresonance. This feature, nels below 1.2 GeV. Apart from the standard
together with the fact that both the and thex are very far g, a5, p, K* resonances, we find poles in tAematrix

from the real axis, explains why it is so hard to establishfor the ¢ in the warl =J=0 channel and fok in the (1/2,0
firmly their existence and their physical parameters. channel, both of them very broad.

We have used a coupled channel unitary approach, to-
ther with the dynamical information contained in the
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FIG. 10. The poles associated with thedleft) anda, (right) are oriented differently. The mass seen on theé ,J) =(1,1) phase shifts
is slightly bigger than the real part of the position of fheole, whereas the peak of the mass distribution wherehs observedsee Fig.
4) is smaller than the real part of tlag pole. Concerning the widths, they are obtained as twice the imaginary part of the associated pole
position.

The method has proved very efficient to extend the ideaalso in order. Indeed, it can be easily extended to deal with
of chiral symmetry at energies beyond the realm of applicaprocesses where meson pairs appear in the initial or final
bility of yPT. However, at energies higher than 1.2 GeV, thestate, like meson pair photoproductip#d]. It looks likely
limitations of the model show up, since, among other thingsthat it could also prove useful describing the meson-nucleon
we have restricted ourselves only to two meson states. Thigteraction[46] complemented with heavy baryon chiral per-
restrictions in the space of states precluded the appearancetgfbation theory. In addition, the method, nonperturbative in

the w resonance which couples dominantly to three pionshature, is equally well suited to study the meson-meson in-
However, thes resonance which couples strongly K& teraction in a nuclear medium where there has been some

d§0eculation about the appearance of bownd pairs[47].

Finally it seems that the approach could be extended to
f[he effective chiral Lagrangian description of the standard
model strongly interacting symmetry breaking sector, where
atpe single channel approach has already been apjpligd

lower energies. Presumably, by including tiecoupling to
three pions, although very small, it should be enough to shi
the mass to its correct place.

One of the formal weaknesses of the approach is th
loops in crossed channels, as well as some tadpole contribu-
tions, are not explicitly included in the calculation. In prac-
tice, their effect can be reabsorbed in the fit of tgp*)
parameters, whose values can then be different from those We are grateful to A. Dobado for discussions concerning
obtained for the standard low energT approach. the tadpole contributions and for his careful reading of the

This approximation could be improved by using E#3)  manuscript. Two of us, J.A.O and E.O., would like to thank
with the full O(p*) xPT calculation, which includes one the kind hospitality of the Complutense University of
loop in crossed channels and the tadpoles. This would allowadrid. J.R.P. wishes to thank the hospitality of the Univer-
a more straightforward comparison with standa#dT as sity of Valencia and the SLAC Theory Group, as well as M.
well as a better accuracy in the low energy results. AlthougtSuzuki for his comments on the octét This work was
such calculations are welcome and there is indeed someartially supported by DGICYT under contracts PB96-0753
work in progres$45], they are far more involved to calculate and AEN93-0776. J.A.O. and J.R.P. acknowledge financial
and use. support from the Generalitat Valenciana and the Ministerio

Applications of the method to other physical problems arede Educacin y Cultura, respectively.
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APPENDIX A: ANALYTICAL FORMULA FOR  G(s): RELATION BETWEEN CUTOFF AND DIMENSIONAL
RENORMALIZATION

In this appendix we show the relationship between our regularization scheme and dimensional regularization, which is the
usual one when dealing withPT.

1. Analytical formula for G(s) with a cutoff regularization

In the general case with different masdés andM,,

074001-14



MESON-MESON INTERACTIONS IN A ... PHYSICAL REVIEW D 59 074001

( ( 3
M3 M3
s—A+v 1+— s+A+v 1+ —
1 A M2 2

1 max max
G(s)= ¢ ——log—+—< | +log '
3272 S M3 s M2 M2
—s+A+v 1+— —s—A+v 1+—

\ \ max maxJ

1+ \/ 1+ —
A Oimax M3 M3 MiM3
+2— Iog— 2log | 1+ 1+2— 1+ 1+2— +Iog— > (A1)
M2 max qmax

wherev=\[s—(M;+M,)?][s— (M;—M;)?] andA=MZ2—M3. In the case of equal masskk,=M,=m, the above for-
mula reduces to

m
T 1+—+1 .
l Qmax qmax m
G(s)= o log —2logy —| 1+ 1+ — , (A2)
(477)2 m2 m ﬁwax
o 1+—1
V 2
e max -

where now,o=\/1—4m?/s.

The numerical evaluation of the principal part of Efj5) is also performed as an additional check.

2. Relation between th_e cytoff and the dimensional Li=L{(um)+Tix, (A4)
regularization scale

In order to obtain the relationship between the cutoff and"’herel- () is the renormalized value df; at theu scale,
the renormalization scalg let us consider, for the sake of i IS just a number, and
simplicity, the case with equal masséhe same result is
obtained with different masses but the formulas are more
cumbersomge As far as we are going to compare the same 1

function calculated in different ways, let us denote®Yy(s) 32772
the G(s) calculated with a cutoff regularization ar@P(s)
the one calculated with dimensional regularization. In this

latter case we have The logu?, and its companion &~ 1 are incorporated in
GP(s) so that at the end one has a logarithm of the dimen-
sionless quantityn?/ 2. In this way we rewriteGP(s) as

1
r+log,u2—1]. (A5)
€

co(s)= 2l—2+|ogm2+a|og(‘i%i, (A3)
(4m)°| € )

m o+1
—1+Iog—2+alog— . (AB)
“ o—1

GP(s)=

(4m)?

where 1E=1/e—log(4m)+y with D=4+ 2e.

The scaleu in GP(s) appears through the inclusion of the ~ We expand Eq(A2) in powers ofmzlqﬁqax to compare
L; [2] at O(p*): with the cutoff regularization, as follows:
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2

2 o+1 m
GS(s)= o| —2log qmax+alog +0| =
(4m)?| m o—1 A% ax
L | tiogetiop"—+o! 1o mz)
= —1+loge+log——+olog——+ —_—
(477)2_ %ax o-1 qr211ax
L 110g™ S otog L o ™ (A7)
= —1+log——+olog—— —
(477)2_ 4qr2nax o-1 qﬁ]ax
|
Then comparing Eq$A6) and (A7) one has: 2
m2=mj, | 1+ —~(2Lg+2Lg—Ls—Lsg)
~ 20max fo
M= \/— =1.2max- (A8)
Hence, to our cutoffy,,,=1 GeV would correspond a >—(2Le—La) |,
u=1.2 GeV dimensional regularization scale. In Table II, fo
we have listed the values of the parameters and those of
standardyPT scaled tqu=1.2 GeV. As it is explained in the 16mﬁ 1
text, in our fit we have neglected the crossed channel dia- mz=ma.| 1+ —2<2L6+ Lg—Ls— §L5)
grams and we have treated tadpoles differently. The effect of fo
these contributions is effectively reabsorbed in Bpparam- m?2
eters; hence some differences betweenithandL; param- + 2”(2L6—L4) : (B2

eters should be expected and this is indeed the case as can be
seen in Table II. Note that, even if we had used the complete
O(p*) xPT calculations, these parameters could be differentwhere the 0
since they have been obtained from a fit over a much wider
range of energies than it is used 3T and higher order
contributions have been included.

Finally, note that the tern@(mzlq%ag in Eq. (A7) yield

0

subscript refers to bare quantities.

2. ww— a7 Scattering

The definite isospin amplitud&g" are obtained from just

O(p®), or higher, contributions and that is why they are notone amplitudeT:

included inGP(s).

It is also worth stressing that the relationship of E&8)
is independent of the physical process and channel since the
function G(s) appears in all them in the same way.

APPENDIX B: AMPLITUDES

TO(st,

u)=[3T(s,t,u)+T(t,s,u)+T(u,t,s)]/2,

TO(s,t,u)=[T(t,s,u)—T(u,t,s)]/2,

, , , T@(s,t,u)=[T(t,s,u)+T(u,t,8)]/2, B3
We have used the following formulas in our calculations. ( )= )+ )] B3
Note that, as has been explained in the text, we have an o
overall sign of difference with the definitions [a], as well ~WhereT=T,+T, is given by
as a 1/2 factor for those amplitudes with identical particles.
1. Masses and decay constants mi—s
T2: 2 y
fﬂT
am? m&
fﬂ.zfo 1+_2(L5+L4)+_2L y
fo fo 4 2 2
T4=— f_4{(2|-1+ L3)(s—2mZ)2+L,[ (t—2m2)?
amz 4m? m
O +(u=2m?2)2]+ 2(2L 4+ Lg)m2(s—2m2)
+4(2Lg+Lg)m?}, (B4)
4m? 8mz +4m?
f7]:f0 1+ 2 L5+ > 41 . .
I f5 which have been obtained at the tree level frégand L,,

(B1) respectively.
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3. K#—Kar scattering

Using crossing symmetry, we can write the 1/2 amplitude in terms of that with=23/2, as

3 1
T2(s,t,u) = T2 (u,t,9)~ 5 T32(s,t,u), (B5)

where

2 2
S—(mZ+mg)

T(3/2): ’
2 2f fx
T2 =— o (ALt Ly (t- 2m2)(t—2mg) +2L,(m2 +mz—s)?
7' K

+(2L,+ Lg) (M2 +m2 —u)2+ 4L [ (m2+m2)t—4m2m2]

+ L[ (M2 +mg) (m3 +mg —s) — 4m2mg |+ 8m2mg (2Le+Lg)}, (B6)
which, once more, have been obtained, respectively, ffgrand £, at the tree level.

4. KK—KK scattering
The definite isospin amplitudes can be written just in terms of two:

TO(s,t,u) =T+~ (s,t,u)+ T ~(s,t,u), (B7)
T (s,t,u) =T~ (s,t,u) =T ~(s,t,u),
whereT" ="~ is the amplitude foK "K~—K*K ™, whose respectiv®(p?) and O(p*) contributions are

u—2ma

f2

T3 (stu)=

+—+- 4 2\2 2y\2 272 2 4
T, (s,t,u)=—f—4{2L2(u—2mK) +(2L1+ Lo+ La)[(s—2mg)*+ (t—2mg)*]—2u mg (2L 4+ Lg) +8mi(2Lg+ Lg)},
K

(B8)
whereasT* ~ is the amplitude folk°K°— K *K~, which is given by
= u—2m3
TP+~ (s,t,u)= ay
2 ) 212
00+ — 2 212 242 212
T, (s,t,u)=—f—4 (4L1+L3)(s—2my)“+ (2L, +L3)(t—2my)“+ 2Lo(u—2my)
K
2 2 4
+2s nﬁ(4L4+ Ls)+ §t My (2L 4+ Ls) —8my(2L4+Ls—2Lg—Lg) . (B9)
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a. mr—KK scattering

Again, we can use crossing symmetry to obtain, fidm— K, the definite isospin amplitudé§ of this process:

3
TO= g[T(?”Z)(u,s,t)+T(3/2)(I,S,U)],

1
TW= [T (y,s,t)— TE2(t,s,u)]. B10O
LT us ) -T 0] (B10

b. Kp— Kz scattering
This process is pure=1/2. We obtain the following contributions to the amplitude:

6m?+2m?>— 9t

To(s,t,u)= TJK’ (B11)
1 2 2 2 212 2 2\2
T4(s,t,u)=— W{Z(t—ZmK)(t—2mn)(12Ll+5L3)+[(u—m,7—mK) +(s—mj,—mi)<]
7
X (12L,+ Lg)+2(t—2mZ)[11mZ (2L 4+ Lg) —m2(L4+3Ls)]
+4mg[3(2L 4+ Ls) +32Le+ Ly +Lg) ] +2(t—2m2)[9ME (2L 4+ Lg) +m2(3L,—Ls)]
+4m7(16L7+8Lg—Lg) +6Lsm’ —t[ Mg (24L 4+ 7Ls) +2m2 (6L, —Ls) +9Lsm’ ]
+6Momg (AL 4+ Lg) +2m2m2(6L 4+ Lg) +2mgmi[ 6L 4+ Ls—8(2Le+7Lg+12L7)]}. (B12)
c. Kp—Kar scattering
The | =1/2 amplitude can be obtained as follows:
T2 _ \/§-|— B13
(s,t,u)= > KOy—k—a+(S,t,U). (B13)
The O(p?) and O(p*) contributions toK®p—K 7+ are
. V6[8mE +3m?2+m%—9t]
Z(S!tvu)_ 36fo77 I}
V2/3
Tu(s,t,u)=— W{3L3[2(t—mi—m@)(t—zmﬁ)—(s— Mg —m2)(s—mg—m?)
7
—(u=mg—m2)(u—mg—m2)]+Lg[ (t+mZ —m?)(7mg—5m?)
+4mg (3t—3m2 —m?) +2(t—2mg) (mg +m>) +4(m7 —my) |
+16(2L;+ Lg)(m? —2mg + mam?)}. (B14)
d. pmonw
This channel is puré=1 isospin. The amplitude is given by
Ty(s,t,u)= (B1Y

3f,f,
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T4(s,t,u)=—

fef?

PHYSICAL REVIEW D 59 074001

{(t—2m2)(t—2m2)(6L 1+ L3) +4tL ,(m2 + 2my)

+(3Lo+La)[(s—mi—m2)2+ (u—mZ—m2)?]+mi(4L,— Ls—8Les+32L,+12L)

—16mgm2(Ls—2Le+2L7) —3mam’(4L,+Ls)}.

(B16)
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