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Alternative derivation of the Pegg-Barnett phase operator
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An alternative derivation of the Pegg-Barnett phase operator is presented. This approach is based
on the properties of the representation in quantum mechanics of a nonlinear nonbijective canonical
transformation. It does not use as its starting point either a finite-dimensional space or the definition
of phase states. The features of this formalism are analyzed in terms of this transformation.
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I. INTRODUCTION

The correct definition of phase in quantum mechanics
encounters basic difhculties, becoming a subject of con-
tinuous investigation from the beginning of the quantum
theory until the present time [1]. The relevance of such a
variable has stimulated an active search for a satisfactory
quantum description as close as possible to its desirable
properties.

Two approaches have found great acceptance. In his
original work on the quantized electromagnetic field,
Dirac [2] proposed the existence of a phase operator that
would be defined from a polar decomposition of the anni-
hilation operator in terms of the square root of the num-
ber and the exponential of the phase operators [3]. Such
exponential of phase, known as the Susskind-Glogower
(SG) operator [4], is not unitary and does not allow the
existence of a Hermitian phase operator. This formalism
exhibits phaselike properties for fields with high average
excitation number, and its non-normalizable eigenstates
are often considered as states with well-defined phase [5].
However, when the existence of the vacuum becomes sig-
nificant, the peculiar effects associated with the nonuni-
tarity become apparent.

The Pegg-Barnett (PB) formalism [6], which has been
widely employed recently, starts with states of well-
defined phase. They ascribe the obstacles to defining
a satisfactory phase operator to the use of an infinite
Hilbert space from the start, and propose to work with
a finite, but arbitrarily large, Hilbert space of 8+ 1 di-
mensions. With the aid of the phase states they are able
to define a Herrnitian phase operator. Then, after mea-
surable quantities are calculated, the limit as s tends to
infinity is taken. This first step of working entirely with
a finite-dimensional space before finding the limit is a
departure from the usually accepted prescription.

In this work, we present a difFerent derivation of
this formalism that does not begin with either a finite-
dimensional space or the definition of phase states. The
idea is to consider a canonical transformation to action
and phase-angle variables for a harmonic oscillator [7],
and incorporate in this way a finite-dimensional space to
the description of the system.

II. PECC-BARNETT PHASE OPERATOR

The PB formalism starts from a previous definition of
phase states as
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The annihilation operator on 4 is defined via its polar
decomposition in terms of the square root of the number
and e'& operators, obtaining [8]
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The difBculties that the SG formalism has in describing
the vacuum are overcome by working with 4. However,
the special role played by the upper state

~
s) in remov-

ing these difhculties also precludes taking the infinite s
limit of the above operator, because the diKculties would

are then an overcomplete set. A Hermitian operator P is
constructed, selecting a subset of these states to form a
complete orthogonal basis, as

S
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(2.3)
27r

0 =Op+ m,s+ 1

where 8O is an arbitrary reference phase. Choosing the
basis beginning with Ho to span the space iIJ corresponds
to the classical procedure of choosing a particular 2' win-
dow in which to express the value of arctan(p/q).

A unitary operator exponential of the phase is then
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Two ways to do this are as follows. First, one could
give an expression for

l @) in the 4' space, carry out the
summation, and then take the limit as s —+ oo. This
procedure can be difficult, especially the first step, if we
are interested in the phase properties of a state which
needs the infinite-dimensional space for its normal de-
scription. This has been done numerically for a coherent
state [10]. A second, and widely used, method is appli-
cable for states, such as physically accessible states, for
which l(n l g)l eventually decreases sufficiently rapidly
with increasing n. For such states the limit of (2.7) can
be found without inserting the particular expression for

then reappear. Pegg and Barnett have never claimed to
have established a well-defined Hermitian operator in the
infinite-dimensional space 'R. Their procedure inust be
worked entirely in the 4 space, and allows its dimension
tend to infinity only after expectation values are calcu-
lated in order to become true expectation values. We
are not going to discuss the consistency of the theory,
but just mention that there may appear to be diKculties
in general because of the finiteness of the space means
that some operators, such as a, have different properties
from those of their infinite-space counterparts. Pegg and
Barnett emphasize that such differences will not lead to
detectable physical difference when the limit is eventu-
ally taken [9].

Then, while on the one hand the finiteness of the state
space is crucial to the existence of the phase operator, on
the other, the infinite limit is necessary both to obtain the
final results and to overcome the undesirable terms de-
pending on the upper state. In fact, one of the successes
of this approach, the characterization of the vacuum as a
random phase state, is obtained only in the limit s —+ oo,
and only then an arbitrary phase state

l 8) can be con-
sidered as having a well-defined phase irrespective of the
phase reference 6I0.

Nevertheless, it can be advantageous to interpret Pegg
and Barnett's statement about the impossibility of dis-
tinguishing, by physical experiments, the difFerences be-
tween an infinite and a finite but arbitrarily large dimen-
sional space in the sense that one can describe a given
physical system as accurately as desired by its projection
on a finite-dimensional space with a proper choice of its
dimension. This is equivalent to say that, for a physically
accessible or preparable state (prepared from the vacuum
by interactions for a finite time and a finite energy ex-
change), one can always choose a value of s so that the
physical effects of this cutoff are as small as desired. This
does not mean, however, that s is a fixed number whose
choice depends on the state of the system. Instead, s is
a parameter which tends to infinity. In this limit, the
differenc in the physical properties of any physically ac-
cessible state of the infinite Hilbert space and its 4 space
counterpart vanishes.

The PB approach requires the infinite s limit to be
taken of s-dependent expectation values, which have the
general form

the @ space form of
l Q). The result obtained is

co+2~
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Then, what the expectation value (2.8) tells us is that
this formalism, at least by this way, corresponds to con-
sider the SG phase states as orthogonal eigenstates of a
phase operator. Although it would be a desirable result,
it cannot take place. The PB formalism circumvents this
problem and arrives at Eq. (2.8) by using, instead of the
SG phase states, their orthogonal and normalizable PB
counterparts. Phase relations are then defined and phase
properties calculated within this context before the limit
is taken, in order to avoid dealing with the troublesome
nonorthogonality of the SG states which precludes (2.8).

Note that
Ho+ 27r

lim P= d8
l 8)8(6 l (2.11)

is the phase operator introduced by Garrison and Wong
[11], and independently by Galindo [12], which have
many interesting properties. However,

co+2m
lim f(P) = d8f(8) l 8)(8 ]g f( lim Q). (2.12)

In view of (2.12), the PB formalism cannot be re-
garded as an approximation to the formalism involving
the Garrison-Wong operator (which, incidentally, satis-
fies the canonical commutation relation [ata, P] = i on a
dense set of the Hilbert space of state vectors, although
approximating even simple physical states by members
of said dense set is a very awkward business [13]) be-
cause very different results are obtained from the two
approaches. Although in the s ~ oo limit the PB phase
and exponential operators approach the Garrison-Wong
and Susskind-Glogower operators, respectively, the PB
formalism excludes taking these limits because of the in-
equality in (2.12).

In what follows we give another derivation of this for-
malism, which starts with the infinite Hilbert space 'H

and in which the phase operator is not derived from the
phase states, in order to make the analysis clearer.

III. A DIFFERENT DERIVATION
OF THE PEGG-BARNETT FORMALISM

A crucial point in the PB approach is the use of a finite
space. Such a space can be easily incorporated to the

where the phase probability distribution is given by
OO 2

Pq(8) = lim l(8 l Q)l = ) e '" (n l g)2" .=0

(2 9)

Note that the last term is nothing but the projection
of the state over a SG phase state
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j =rj, rp=p,
where

j = —(p + q ), p = arctan
~

—
~
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&q)

(3.1)

(3.2)

are the action and phase-angle variables of the oscillator,
and the bared and unbared variables refer to the new and
old phase spaces, respectively.

Due to the nonbijectivity [a sector of angle 2vr/K in
the (q, p) plane is mapped on the full (q, p) plane] the
(j, p) or (q, p) variables cannot be a complete set of co-
ordinates in the new space. Thus, in the quantum case
it is necessary to add to the Hilbert space '8 associated
with the (q, p) variables a finite-dimensional space V to
completely describe the physical system.

In this way, a unitary representation for the transfor-
rnation (3.1) can be given U: 'R —+ 'M V,

description of a system in quantum mechanics in place of
the cutofF previously discussed.

In a recent work [14], we studied the representation
in quantum mechanics of the nonlinear and nonbijective
canonical transformation relating a one-dimensional har-
monic oscillator of unit frequency with another of fre-
quency r, , r. being a non-negative integer. This transfor-
mation is a dilation in the angle-action variables of the
form [7]

2 ) (3.5)

Note that, efFectively, the second term on the right-hand
side of (3.4) is the third component of an angular mo-
mentum.

In this way a unitary operator for the exponential of
the phase can be obtained from a polar decomposition
of the projection of the angular momentum in the XY
plane in terms of a radial component and an exponential
of the phase angle in the form [16)

= e'&J„, J+ = J„e-'&, (3.6)

adequate than the original one for our purposes if we
do not introduce any simplification. As we expect that
some kind of advantage can arise in the limit of an arbi-
trarily high dimension for V, we can exploit this finite-
dimensional space, focusing our attention momentarily
on the projection of the number operator on V, and try-
ing to find the operator corresponding to its conjugate
variable. As pointed out by Newton [15], when working
in the phase representation the number operator in the
enlarged space can be represented by a difFerential oper-
ator that formally coincides with the third component of
an angular momentum. So, we take the V space as car-
rying a tc;dimensional unitary irreducible representation
of SU(2) and identify the

~
A) basis as the eigenvectors of

one of its infinitesimal generators

U = ) ) ~
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splits in two terms acting on '8 and V, respectively. This
expression for the number operator does not seem more

where
~

A) is a basis in V and
~

n) is the number basis in

Thus this transformation not only naturally introduces
a 6.nite-dimensional space, but involve the phase in a way
that we think can be useful in the study of the PB formal-
ism. A similar technique of enlarging the Hilbert space
has been employed by Newton [15] in order to find quan-
tum representations of the action-angle variables for the
harmonic oscillator.

A crude look at Eq. (3.1) could lead to the interpreta-
tion that, in the limit r. ~ oo, the discrete j (number of
excitations) and the bounded P will become a continuous
j = j/r and an unbounded p = Kp. The new variables
will become then better behaved than their original coun-
terparts with respect to the existence of a phase opera-
tor. This is obviously not true, and the new variables are
on an equal footing with the original ones, which is the
reason for the diKculties for a unitary representation of
this transformation. Then, overcoming these difhculties
would, at the same time, provide a tool for the descrip-
tion of the phase that is more accurate as K becomes
(arbitrarily) higher.

The transformation by U of the number operator

The solution of this equation for a unitary operator e'&

gives

e'~ = ) ~

A —l)(A
~
+ e'"8'

~

r —l)(0 ~, (3.8)

K80 being an arbitrary phase. Taking s+ 1 = K, this
operator coincides with (2.4) except for the space of def-
inition. From this operator all the PB formalism can be
derived now in the V space, the phase states basis in V
being

(3 9)

These results can be translated into the 'R space
by means of the transformation U. The PB formal-
ism, in our language, consists in identifying the finite-
dimensional space 4 with Uf

(~ 0) V). A basis in '8
can be given as

(3.10)

and the PB phase states will be now
~

0, 8 ).
This approach cannot be satisfactory yet. In the first

place, we have derived this formalism in the infinite-
dimensional space '8 and, as a consequence, we obtain
infinite many copies, labeled by n, of the phase states
and phase operator. In the second place, we have at-
tempted to describe the phase only in terms of the V
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space, and 'H remains merely as a spectator.
When we consider the limit of high ~ and restrict our-

selves to the physically accessible states as defined by
Pegg and Barnett [6,9] in their approach, the number op-
erator can be replaced by the second term in Eq. (3.4).
This corresponds to neglecting the role of the '8 space
and, together with this, taking just the first copy of the
V space in 'R (the one spanned by [ 0, 8 )) as a closer
description of a state.

Note that the rest of variables (like the annihilation op-
erator) remain, in this derivation, always in their usual
form; they do not need this procedure to be defined and
it does not affect them. Thus, by a different route, we
have arrived at the same description of phase as we dis-
cussed in Sec. II, except that here the physical properties,
such as expectation values, depend on r rather than s.
When the appropriate limit is taken, the description will
approach that which is expected for phase in quantum
mechanics, and which is now widely used.

IV. RELATIONSHIP
BETWEEN THE TWO DERIVATIONS

It is clear that the two approaches of Secs. II and III
cannot be too distant. The original derivation assumes
as a complete description the one realized in a finite-
dimensional space. In our approach this corresponds to
considering the image by U of the dynamical variables
(the annihilation operator) and eliminating the 'H space.

If we express the annihilation operator in 'M V we
have

(4.4)

factorizes into a SG state in Ft and a PB in V. Dismissing
now the '8 space, in the limit r ~ oo for physically
accessible states, allows the orthogonatization of the SG
states by the selection of a subset beginning with

~
8o) as

discussed earlier.
The same conclusions can be drawn starting from

the expression in Ft I3 V for the SG operator
E=Q„, ~n —1)(n~,

U~Ut = I e ) ~

~ —1)(& i+& I
~ —1)(0 I

(4.5)

This elimination of the '8 space then needs a more
subtle setting to recover the well-established results of
quantum mechanics. This leads to a possibly strange
relation between the PB formalism and the SG phase
states shown at the end of Sec. II. Clearly, in the infinite
limit for the dimension, some kind of relation must ap-
pear because the PB phase states are a projection on the
finite-dimensional space of the SG phase states.

In the context of this work the image of a SG state [17]

a = e'4'~n, (4.2)

where by a here it must be understood the right-hand
side of Eq. (4.1) after the previous comments, and by n
the second term on the right-hand side of Eq. (3.4).

This equation has a unitary solution for e'& that is
the same as that obtained before. Then the Hermitian
phase operator can occur from a polar decomposition,
due not to the existence of phase states, but to the finite
dimension of the space, expressed as well on the fact that
the upper state is annihilated by the creation operator

at is —1) =0,
a condition that must be taken into account when resolv-
ing Eq. (4.2).

(4.1)

A drastic elimination of the 'R space to retrieve the PB
derivation can be done taking n = 0 and a = 0, obtaining
the annihilation operator (2.5). Now it is possible to
obtain the exponential of the phase operator from a polar
decomposition of this annihilation operator in the form

The elimination of the 'R space by replacing E with an
arbitrary exponential of phase leads to Eq. (2.4) of the
PB formalism.

V. CONCLUSIONS

The PB formalism involves the construction of a phase
operator in a finite-dimensional space and the identiFica-
tion of states of a well-defined phase. Finally the limit
is taken of expectation values obtained from this opera-
tor as the dimension of the space is allowed to tend to
infinity. We have shown that, with a proper choice of
variables, the same phase operator can be derived with-
out the first two steps. This equivalent approach is based
on the infinite Hilbert space, but possesses the main fea-
tures of the PB formalism, including the ones related to
limit taking.
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