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In this paper we have evaluated the overhead and the tradeoffs of a set of components usually 
included in a system with run-time partial reconfiguration implemented on a Xilinx Virtex-5. 
Our analysis shows the benefits of including a scratchpad memory inside the reconfiguration 
controller in order to improve the efficiency of the reconfiguration process. We have designed 
a simple controller for this scratchpad that includes support for prefetching and caching in 
order to further reduce both the energy and latency overhead. 

 

1. INTRODUCTION AND RELATED WORK 
Dynamic partial reconfiguration (DPR) is one of the most interesting features of 

FPGAs. Reconfiguration enables the reuse of the FPGA hardware resources for 
different tasks that can be loaded at run-time according to the system needs. Hence, 
FPGAs can be used to develop flexible platforms that can adapt themselves to the 
execution of different applications. DPR has been thoroughly explored as a way to 
reduce area and power in some systems [1-3]. The idea is to reuse the reconfigurable 
area for different tasks that are not executed simultaneously. However, the 
reconfiguration process itself introduces overheads both in the execution time and in 
the energy consumption. The reason is that it involves not only using the 
reconfiguration circuitry to update the device configuration, but also moving large 
data sets from the memory where the configurations are stored to the reconfiguration 
port. 

The analysis of the reconfiguration overheads has been the target of many 
research groups, and they have focused on execution-time overheads. Several works 
have proposed alternative reconfigurable architectures. For instance, multi-context 
FPGAs [4] enable the load of a new configuration while another one is being 
executed. Another example is coarse-grain architectures [5], which offer less 
flexibility but require smaller configuration bitstreams that can be easily stored on-
chip in order to further increase the reconfiguration speed [6-7]. We believe that the 
techniques that we expose in this article can be also applied on these architectures, 
but we have focused on single-context FPGAs because they dominate the 
reconfiguration landscape. 

Another approach to reduce the reconfiguration overheads is to apply scheduling 
techniques that attempt to hide the reconfiguration latency by fetching the 
configurations in advance and storing them in idle reconfigurable regions. This is a 
powerful technique for embedded systems where the task execution order is known 
because these techniques use the task-graph information to prefetch the 
configurations that will be needed in the near future. Some relevant works that 
propose reconfiguration scheduling techniques are [8-13]. It is important to mention 
that the controller described in this article is compatible with any of these techniques 
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and, in fact, it can improve their results since even when all the reconfigurable 
regions are busy, the configurations can be still prefetched to the internal memory 
included in our controller. This is explained in detail in Section 3.3. 

Another powerful way to reduce the reconfiguration time overhead is to reduce its 
size by applying compression techniques. With this approach, configurations are 
fetched faster but they have to be decompressed before writing them in the device, 
and this may involve additional execution time and energy penalties. However, these 
overheads can be smaller if the system includes hardware support to decompress the 
configurations. Some relevant works on compression are [14] and [15]. Again, these 
techniques are fully compatible with our work since our controller could easily 
incorporate a decompression module. 

Another option to reduce the reconfiguration overhead is to customize the memory 
resources used to store the configurations. For instance, [16] proposes to include 
heterogeneous on-chip memory modules, ones optimized for performance and others 
optimized for low power. With this approach the designer can explore different 
power/performance reconfiguration tradeoffs. This idea is orthogonal with our 
approach and could be included in our controller. 

Another interesting technique is configuration caching. The idea is to store 
different configurations in different reconfigurable regions in the device and design 
specific replacement techniques to maximize the configuration reuse. Some 
interesting configuration caching techniques are [17-19]. Our controller has been 
designed to support configuration caching, and, in fact, its internal memories can be 
used to apply these techniques in an additional level. This is further explained in 
Section 3.3. 

Regarding the reconfiguration process, many works assume that the 
reconfiguration latency is a fixed time that can be calculated by dividing the size of 
the configuration by the peak bandwidth of the reconfiguration port. In fact, the peak 
reconfiguration bandwidth is usually the only value provided by FPGA vendors. 
However, is that value relevant? Can we really achieve that bandwidth? How can we 
do it? In [20], Papadimitriou et al. elaborated a theoretical cost model to estimate the 
reconfiguration time at an early stage of the development. The authors estimated the 
reconfiguration time when fetching the bitstreams from external memories. They 
verified the model with measures over a real system implemented on a Virtex-II Pro 
FPGA and reported a model difference of ~25%, which is due to different clocks of 
processors, i.e. 300 MHz for the calculated one and 100 MHz for the measured one. 
Several works have pointed out that the actual reconfiguration latencies obtained in 
representative case studies are one order of magnitude, or even two, worse than the 
peak reconfiguration latency [21-22]. The reason for these poor results is that 
configurations are usually stored in off-chip non-volatile memories, and the actual 
bandwidth of these memories is much smaller than that of the reconfiguration port. 
Hence, the bottleneck is not the reconfiguration port, but the bandwidth of the 
external memories. Some previous works have demonstrated that it is possible to 
achieve almost peak-performance when using some specific external memories with 
additional support. For instance, in [23] the authors claim to achieve almost peak 
performance in a Virtex-6 when using DDR3 memory, a Direct Memory Access 
(DMA) controller, and some additional FIFOs to hide the latency, and in [24], they 
retrieve configurations from an external SRAM through a customized DMA. In [23], 
they also state that it is possible to achieve a speedup of 2 by overclocking the 
Internal Configuration Access Port (ICAP). However, although each new generation 
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of external memories is providing more bandwidth, it is likely that the speed of the 
reconfiguration port will also scale accordingly. In fact, Virtex UltraScale+TM FPGAs 
can be reconfigured at 200MHz (previous generations were limited to 100 MHz). 
Moreover, in many systems the energy overhead is even more relevant than 
performance, and the use of external memories strongly penalizes in power and 
energy.  

Some previous works propose the inclusion of memory resources inside the 
reconfiguration controller in order to preload configurations. In [25], the authors 
analyze the reconfiguration latency of a system implemented in a Virtex-4 FPGA that 
includes a system bus that is used for all the data transfers, including those needed 
to carry out a reconfiguration, i.e. reading the configuration and sending it to the 
reconfiguration port. They measured the reconfiguration latencies taking into 
account the different access schemes provided by the bus, and including a DMA 
controller. The results demonstrate the impact of the communication scheme in the 
reconfiguration latency. In their analysis, they claim that the only way to achieve the 
peak reconfiguration bandwidth is to avoid accesses to the system bus. Even when 
the system bus is available and transfers are performed through a DMA, these 
accesses introduce significant delays.  

Other interesting works are [26] and [27]. In these articles, the authors propose 
partial reconfiguration controllers that reach a throughput of 1.433GB/s and 2.2GB/s 
respectively. These controllers allocate on-chip memory resources to store de 
configurations, and the ICAP is overclocked up to 550 MHz. Although the 
manufacturer does not guarantee proper operation at frequencies higher than 100 
MHz, these works are a proof of concept of the use of internal memory for future and 
faster versions of the ICAP.  

After analyzing the aforementioned works, it is clear that the reconfiguration 
latency drastically depends on where the configurations are stored and the 
communication scheme used to read them. The first contribution of this work is the 
analysis of how these two parameters affect the reconfiguration latency in a Virtex-5 
FPGA. We made the evaluation on the XUPV5-LX110T Development System 
included in the Xilinx University Program. This evaluation board includes many 
different memories, and we selected two external memories, Flash and DDR2 DRAM, 
and the internal on-chip SRAM. 

Other key metrics, especially in embedded systems, are power and energy. Hence, 
as a second contribution, we measured the energy demanded in a reconfiguration, 
depending on the kind of memory where the configurations are stored. We also 
measured the power overhead of some components providing support for the process, 
such as the controllers for the memories, the reconfiguration, or the DMA. This 
analysis of the energy overhead in the reconfiguration may be helpful for the 
developers in order to decide where to store the configurations.  

Finally, as a third contribution, we have developed a simple and efficient 
reconfiguration controller that, as in [26] and [27], includes an embedded memory 
that can be used to store bitstreams. Using that memory the reconfiguration process 
can be carried out at the maximum speed supported by the ICAP while minimizing 
the energy consumption. As a novelty, this controller includes two additional working 
modes in order to provide support for configuration prefetching and caching using the 
memory embedded in the controller. These modes can be used to reduce the 
reconfiguration overheads when only some of the configurations can be stored on-
chip. 
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2. TARGET ARCHITECTURE 
Our target architecture consists of three different memories that can be used to store 
configuration bitstreams, a reconfiguration controller that provides an interface with 
the ICAP [28], a processor, and at least one Reconfigurable Region (RR).  Figure 1 
depicts the elements of this architecture. In our experiments, the processor is a 
Xilinx MicroBlaze, the system bus is a PLB 4.6, and the memories are a 1GB 
Compact Flash, a 64-bit wide 256MB DDR2 SODIMM, and the FPGA internal 
BlockRAMs (BRAMs). Additionally, DMA and interrupt controllers supplied by 
Xilinx were added in order to evaluate their performance-energy tradeoffs.  
 

FPGA

Processor
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DDR2 Flash
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Controller

Interrupt
Controller

Flash
Controller
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Controller

R.R. 1 R.R. N…

…

Reconfiguration
controller
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Fig. 1. Target architecture 

 
The selection of the memories where configurations will be stored, and how to move 
these configurations among these memories and the reconfiguration controller is not 
straightforward, as it depends on multiple factors such as the power budget, the 
performance requirements, and the needs of other system components (for example, if 
the DDR or the Flash memories are demanded by other tasks or components, they would 
be already present in the system and then the static power of these controllers will not 
introduce an additional penalty related to DPR). In the experimental results presented 
in Section 4, we analyze the reconfiguration energy-performance tradeoff in order to 
help designers to make their decisions. 
 

3. PARTIAL RECONFIGURATION CONTROLLER 
3.1 Xilinx IP 

Xilinx provides the XPS_HWICAP IP core for the Virtex-5 FPGA to manage partial 
reconfigurations in processor-based systems [29]. It is composed of several control 
registers, two small FIFOs, a finite-state machine (FSM), and a PLB bus interface 
[30]. Xilinx also provides a driver to use this controller from the processor-side. This 
driver enables to read configurations from any memory in the system and to send the 
data to the XPS_HWICAP controller through the PLB bus. This controller is easy to 
use and it should be the starting point for anybody who wants to carry out 
reconfigurations. However, this driver has not been designed to optimize the data 
transfers among the memories and the XPS_HWICAP. As a result, as it will be 
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explained in section 4, it only achieves a reconfiguration throughput of 12 MB/s, far 
from the peak 400 MB/s supported by the ICAP. 

 
3.2 Multi-Mode ICAP Controller 

In order to reach the maximum reconfiguration throughput, the ICAP should receive 
one 32-bit word per cycle at a 100MHz rate. As explained in the previous section, it is 
hard to achieve this throughput when configurations are stored in off-chip memories, 
or even when they are stored on-chip but they are accessed through a shared system 
bus. A solution is to store them inside the configuration controller as it was 
previously proposed in [25-27]. With this approach the reconfigurations can be 
carried out at full speed. In current FPGA architectures, this can be achieved by 
reserving part of the on-chip RAM for the controller. We refer to this on-chip RAM as 
bitstream memory.  

 
Fig. 2. Multi-Mode ICAP reconfiguration controller 

 

Figure 2 illustrates the architecture of our partial reconfiguration controller, called 
Multi-Mode ICAP. The bus interface was automatically generated by the Xilinx EDK 
tool, and the remaining blocks were designed in VHDL and integrated inside the 
EDK project. The Control and the Address registers are software accessible. Hence 
the processor can easily provide the information and check if the controller has 
finished. If the system includes an interrupt controller, the controller can generate 
an interrupt when the Done bit is activated; again this is straightforward by using 
the EDK tools. This architecture based on an internal memory, a register-based 
interface, and a control unit that is very similar to those proposed in [25] and [26]. 
The main difference is that our control unit provides support for several useful 
working modes. 

The Multi-Mode ICAP supports four different working modes:  

a) Mode 0: Configuration Load. The controller receives a configuration and 
stores it in the bitstream memory. The controller does not send the 
configuration to the ICAP. This mode is useful to fetch configurations in 
advance from the external memories in order to reduce the 
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reconfiguration latency since, once a configuration is stored, our 
controller sends it to the ICAP at the maximum supported speed. 

b) Mode 1: External reconfiguration and configuration load. The controller 
receives a configuration and forwards it to the ICAP. In parallel, it stores 
the configuration in the internal bitstream memory. In this mode the 
reconfiguration speed depends on how fast the configuration data are 
received from the bus, i.e. our controller does not reduce the 
reconfiguration latency in this mode. However, if the same configuration 
is required again, it can be loaded from the internal bitstream memory at 
the maximum speed. 

c) Mode 2: External reconfiguration. The controller receives a configuration 
and forwards it to the ICAP as in the previous case, but in this mode the 
configuration is not stored in the bitstream memory.  

d) Mode 3: Internal reconfiguration. The controller sends to the ICAP a 
configuration previously stored in the bitstream memory. The 
reconfiguration is carried out at full speed. 

In order to support this functionality, only two software accessible registers (Control 
and Address registers) and little additional control logic are necessary. The control 
register (Figure 3) is used to configure our controller. Bit 0 reports when an operation 
has finished, bit 1 triggers the start of an operation, and bits 2 and 3 are used to 
select the working mode. Finally the remaining 28 bits are used to set the size of the 
configuration expressed in 32-bits words. The address register specifies the initial 
address of the bitstream memory to store or load a specific configuration.  

Done

0 1 2 3

Start

Config size (number of 32-bit words)Mode

 
Fig. 3. Control register 

The control unit (Figure 4) only requires three states: Idle, Modes 0, 1, 2, and Mode 3. 
The controller is initially in the Idle state. When the start bit is activated it will move 
forward to state Modes 0, 1, 2, or Mode 3 according to the Mode set on the Control 
register. In Modes 0, 1, 2, every configuration word received from the bus is 
forwarded to the proper destination: bitstream memory for Modes 0 and 1, and the 
ICAP for Modes 1 and 2. In Mode 3, the controller reads the configuration stored in 
the bitstream memory included in the reconfiguration controller, and forwards it to 
the ICAP. In all the cases a counter is used to know how many words have been 
processed and to update the next bitstream memory address to be read. When the 
counter reaches the number of words requested the Done bit is activated. 
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Fig. 4. Multi-Mode ICAP Finite State Machine 

 
The implementation of this control unit requires a 2-bit register to store the current 
state, a counter that keeps track of how many words have been received, an adder to 
update the bitstream memory address, and a comparator to know when all the words 
have been processed. We have also included a bit swapper module. The reason is that 
Xilinx Plan Ahead, which is the tool that we used to generate the bitstreams for run-
time reconfiguration, does not generate the configuration data in the same bit order 
required by the ICAP [21]. Hence, the bit swapper module reorders each 
configuration word by swapping the bits within each byte, i.e. from (b31..b24, b23..b16, 
b15..b8, b7..b0) to (b24..b31, b16..b23, b8..b15, b0..b7). This step might be instead done in 
software once a configuration bitstream is generated, and then this module could be 
removed. We decided to do it in hardware because swapping bits do not introduce any 
hardware overhead and because it simplifies the use of the controller. 

The available on-chip RAM varies a lot depending on the FPGA used. The current 
trend in computer architecture is to include more and more on-chip memory 
resources. In fact, Xilinx has recently released a new family of FPGAs, called 
UltraScale+TM, which brings a breakthrough including up to 65,913 Mbits of on-chip 
RAM [31], making it feasible to store several configurations even for large 
reconfigurable regions. However, small FPGAs have less than 1 Mbit. Hence, the 
benefits of including a bitstream memory embedded in our controller depend on the 
availability of on-chip memory and the size of the reconfigurable regions. If there are 
enough on-chip memory resources to store a significant part of the needed 
configurations our controller will help to optimize the reconfiguration process. At this 
point, other orthogonal techniques such as compression would play an important role 
as well. Adding compression support to our controller is as simple as including a 
decompression module before the bit swapper.  

In our controller the size of the bitstream memory is a generic parameter that can 
be instantiated with different values. In our implementation we can use up to 256 
KB. Typically, the FPGA includes more RAM resources, but they are used to 
implement other elements of the system. This size can be used to store the 
configuration of a reconfigurable region of 8000 LUTs. If this is not enough, the 
configuration can be partially stored in the bitstream memory, and later it can be 
carried out by combining modes 2 and 3. This is a key feature to maximize the use of 
the on-chip memory. 
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3.3 Configuration Prefetching and Caching support 
 

Our ICAP controller has been designed to provide support both for configuration 
prefetching and configuration caching. As explained in Section 1, prefetching and 
caching have been proved to be powerful techniques to reduce the reconfiguration 
latency. These techniques are usually applied by loading and storing the 
configurations in different reconfigurable regions.  

The idea behind configuration prefetching, as applied in the articles [8-13], is to 
carry out the reconfigurations in advance. For instance, while a task is executed on a 
reconfigurable region, we may prefetch the following task by storing it in another 
reconfigurable region.  

Configuration caching in FPGAs consists in storing some selected configurations 
in idle reconfigurable regions. Hence, when these tasks need to be executed, they are 
already loaded and no reconfiguration is needed (this is called a configuration cache 
hit). Some examples are [17-19]. 

However, the application of these techniques with the reconfigurable regions of an 
FPGA presents a strong limitation: it is only feasible in systems where some of the 
reconfigurable regions are idle. Otherwise, it is not possible to prefetch or to cache 
new configurations. 

The on-chip memory included in our controller to store configurations can be 
leveraged to overcome this limitation since, if all the reconfigurable regions are busy, 
or if the system includes only one reconfigurable region, it is still possible to apply 
these techniques using our bitstream memory to store the configurations. Evidently, 
the benefits are different: if a configuration is stored in a reconfigurable region it can 
be used when required without carrying out a reconfiguration, whereas if stored in 
the bitstream memory of our controller, the reconfiguration is still necessary, but it 
can be carried out at full speed.  

Section 4.3 will present a case study that illustrates the benefits of using our 
bitstream memory for configuration caching and prefetching in a system with only 
one reconfigurable region. 

 

4. EXPERIMENTAL RESULTS 
4.1 Latency 

We have measured the reconfiguration latency for both Xilinx XPS_HWICAP 
controller and our controller retrieving configuration data from three different 
memories: a non-volatile off-chip memory (Flash), a volatile off-chip memory (DDR2), 
and a volatile on-chip memory (BRAM). Figure 5 depicts the normalized 
reconfiguration latencies for all the evaluations. Notice that the results are 
represented in logarithmic scale. The red line points out the minimum latency 
according to the ICAP bandwidth.  
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Fig. 5. Reconfiguration latencies 
 

With the XPS_HWICAP controller, reconfigurations from Flash take 2,900 
ms/MB. In the case of data transferences from the Flash memory, the inclusion of a 
DMA controller does not reduce significantly the latency because the Flash controller 
limits transferences to only 2 bytes [32]. If data are read from DDR2, the latency 
decreases to 117 ms/MB without DMA and 34.7 ms/MB with DMA, still far from 
taking fully advantage of the reconfiguration port bandwidth. Finally, retrieving the 
configurations from on-chip memory is the fastest choice, with a latency of 79 ms/MB 
without DMA, and 28 ms/MB with DMA. 

With our controller, both the Flash and the DDR2 alternatives got similar 
latencies than the XPS_HWICAP controller since in these cases the controller is not 
the bottleneck. However, the on-chip reconfiguration is clearly faster. The reason is 
that our on-chip memory is embedded in the controller. Hence, no accesses to the 
system bus are needed. For this reason, our controller achieves the minimum 
reconfiguration latency (one write operation per cycle at 100MHz, i.e. 400 MB/s), 
which is 31 times faster than the XPS_HWICAP. It is important to remark that, as 
explained in the introduction, other on-chip controllers [26-27] can achieve this 
performance. In fact they report even better performance by overclocking the ICAP.  
Our controller could also take advantage of overclocking, since it can be clocked at 
500 MHz, but, as explained before, Xilinx does not guarantee proper operation for 
frequencies above 100 MHz in this FPGA [28]. 

We have also evaluated the benefits of including a DMA controller to manage the 
transactions from the different memories without processor intervention. As it can be 
seen in the Figure 5, the DMA controller reduces the latencies significantly, but even 
in the best case is still eight times slower than using the embedded bitstream 
memory. Moreover the original Xilinx functions for the XPS_HWICAP do not support 
DMA transactions. Hence they have to be modified by the developer.  
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4.2 Resources and Power Overheads 

Some previous works have evaluated the power consumption during 
reconfiguration. In [33-34] the authors propose models to estimate the power 
consumption during the reconfiguration. In addition, in [33] they carry out 
measurements of the FPGA power consumption using a high-speed digital 
oscilloscope and the shunt resistor method. They use these measures to evaluate the 
accuracy of their model, reporting a small error of 14%. These models are interesting 
but only focus on the FPGA power consumption. In this work we also want to take 
into account the consumption of the memory elements involved in the reconfiguration 
process. [35] is a recent work that carries out FPGA power measurements during 
reconfiguration using a high-speed digital oscilloscope on a Virtex 5 FPGA. Their 
objective is to compare the power consumption during partial and total 
reconfiguration. They report a dynamic consumption of 160mW during on-chip 
partial reconfiguration and 220mW during total reconfiguration. Again they do not 
take into account the impact of the memory elements. The results presented for the 
on-chip reconfiguration are very similar to our measures for on-chip reconfiguration: 
we have measured 180mW for the dynamic power in our board whereas they have 
measured 160mW. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Fig. 6. Power measurement setup 
 
Figure 6 presents the setup used to measure the power consumption. We have 

used a Yokogawa WT210 digital power meter, which is an accepted device by the 
Standard Performance Evaluation Corporation (SPEC) for power efficiency 
benchmarking [36]. As explained before, our objective is to measure the contribution 
of all the components involved in the reconfiguration process, and not only the FPGA. 
The power supply of the evaluation board is connected to the power meter, therefore 
the power measures include the consumption of the evaluation board and the power 
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adapter. The power meter samples both voltage and current at a frequency of 100 
KHz. 

To measure the static power consumption of each component, we first measured 
the power consumption of the system with all the components in an idle state, and 
then we removed them one by one and repeated the power measures. The difference 
between these sequent measures corresponds to the static power of each component 
removed. Ambient temperature was constant in all the measures. In all the cases we 
measured the power consumption for two minutes, and then computed the average 
value. 

Regarding the dynamic power consumption, we implemented a loop that 
reconfigures thousands of times for a total time in the order of minutes. Finally, we 
take the average power consumption for each reconfiguration scheme. 

Table I summarizes the FPGA resources and the static power overheads of each 
component. Although these data may change from one FPGA to another, we believe 
that it provides an interesting hint for any designer in order to decide whether to 
include or not any component based on the overheads, the resources available, the 
power budget, and the system requirements. For instance, in systems with a very 
constrained power budget, avoiding the use of the DDR2 memory, if possible, will 
significantly help to meet this power budget. 
 

Table I. Resources used and Static Power  

Component LUTs FFs BRAMs Static power (W) 
DDR2 controller 2531 3693 5 3.54 
Flash controller 102 213 0 0.32 

Interrupt controller 85 121 0 0.02 
DMA controller 695 562 0 0.64 

Multi-Mode ICAP (128KB) 439 355 32 0.28 
 Multi-Mode ICAP (256KB) 446 357 64 0.45 

XPS_HWICAP 717 702 2 0.16 

 
LUTs and FFs required by the Multi-Mode ICAP controller keep almost constant 

and very low regardless its storage capacity (the small variations are due to the 
additional addressing bits required for higher memory capacities), and the static 
power consumption linearly increases with the memory size by a factor of 1.6. 
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Fig. 7. Dynamic Power 
 

Figure 7 depicts the dynamic power consumption due to the reconfigurations, both 
for our controller and for the XPS_HWICAP. Each bar is divided into two terms: 
‘Data Transference’, which includes the dynamic power consumption due to data 
movement from the external memories to the reconfiguration controller, and 
‘Reconfiguration’, which includes the power consumption of the reconfiguration 
controller and the FPGA reconfiguration circuitry. 

We took two different measures in order to split the power consumption between 
reconfiguration and data transference. In the first one, we carried out the 
reconfiguration, which involves reading the configuration from a given memory and 
loading it onto the FPGA. In the other one, we used the mode 0 of our reconfiguration 
controller. In this mode, the configuration bitstream is transferred from an external 
memory to the internal memory of our controller, but it is not loaded onto the FPGA. 
Therefore, the difference between these two measures is due to the power term 
corresponding to the reconfiguration. In both cases, we repeated the process inside a 
loop for several minutes in order to minimize noise.  

As it can be seen in the figure, the term ‘Reconfiguration’ keeps almost constant 
about 180mW in all the setups. On the contrary, the ‘Data Transference’ term greatly 
varies depending on the case. Dynamic power is much lower in the setups retrieving 
data from the Flash memory than in setups accessing to the DDR2. In the case of the 
on-chip storage, this term is null when using our controller because all the process is 
carried out inside the controller; whereas if the XPS_HWICAP controller is used 
instead, despite being also on-chip, data have to go through the bus. 
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Fig. 8. Energy Consumption 

 
Figure 8 shows the energy consumed, in mJ per MB reconfigured, in the setups 

evaluated in Figure 7. When configurations are retrieved from the Flash memory, the 
results (taking into account both static and dynamic energy) are worse. Despite being 
less power-hungry than the DDR2-based setups, the large latency of this memory 
(see Figure 5) causes a strong energy penalty. On the contrary, setups that use an on-
chip memory are the most energy efficient ones. It is remarkable the fact that our 
Multi-Mode ICAP controller requires two orders of magnitude less energy than the 
XPS_HWICAP (on-chip). In fact, the energy required by this setup is, at least, one 
order or magnitude lower than any other setup. Hence, a bitstream memory 
embedded in the reconfiguration controller drastically reduces the reconfiguration 
energy overheads. 
 
4.3 Configuration Prefetching and Caching 

 
Our Multi-Mode controller has been designed to provide an additional level for 

configuration caching and prefetching. Using the bitstream memory, we can apply 
these techniques even when all the reconfigurable regions are busy.  In this section, 
we present a case study to illustrate the benefits of this approach.  

We have selected a 3D rendering application based on the open source Pocket-
GL library (Pocket GL). We do not have the code of the application but a dynamic 
trace obtained at IMEC R&D [37]. They characterized the dynamic events of a 
Pocket-GL application that were adapting its execution to its input data. For each 
possible run-time scenario, they obtained the sequence of configurations that must be 
executed. This is a very interesting test since it includes 10 different dynamic tasks 
executed in 20 different sequences (task-graphs). We analyzed the same application 
in a previous article that presented a run-time scheduler for reconfigurable systems 
[13]. This scheduler included support both for configuration prefetching and caching 
taking advantage of idle reconfigurable regions to reduce the reconfiguration 
overhead. However, since these are sequential graphs, the system designer may 
decide that only one reconfigurable region is needed to execute them. In that case 
there would be no idle regions available. Hence, we have extended that previous 
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approach to apply prefetching and caching by using the bitstream memory of our 
controller.   

The results are depicted in Figure 9. The leftmost column shows the initial 
overhead when the reconfigurations are carried out on demand and without applying 
neither prefetching nor caching. We assume that the configurations are stored in the 
DDR2 memory, and that the system includes a DMA controller. In this case the 
application needs 70% more time due to the reconfigurations. If we use the bitstream 
memory to apply a prefetch approach we can reduce that overhead to 38%. The 
approach implemented is very simple: while executing one task in the reconfigurable 
region the following one is stored in the bitstream memory, totally or partially, 
depending on the available time. When the first task finishes, we have to carry out a 
reconfiguration to load the following task. During this reconfiguration the portion 
stored in the bitstream memory can be loaded 3.2 times faster than the remaining 
part stored in the external memory.  

These results can be further improved by caching some critical tasks. The idea is 
to store in the bitstream memory the configuration of those tasks that generate the 
largest reconfiguration overheads. In the figure we can see that when the 
configuration of the most critical task is cached the overhead is reduced to 27%, and 
if the two most critical tasks are cached, it is 22%. In the rightmost column we can 
see that caching the remaining 8 tasks provides no further reductions. The reason is 
that the prefetch technique is already reducing the reconfiguration latency of those 
tasks. In fact when the two most critical tasks are cached the reconfiguration 
overhead is reduced by a factor of 3.2, which is the best result that can be achieved in 
this scenario. Hence, if the bitstream memory provides enough space to store three 
configurations (the two cached ones plus the one that is prefetched each time) the 
system will provide the same performance with a system that stores all the 
configurations on-chip. 
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Fig. 9. Reconfiguration overheads for the Pocket GL application when using the bitstream memory to apply 
configuration prefetching and caching 
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5. CONCLUSIONS 
 

Configurations in reconfigurable devices can be stored in very heterogeneous 
memories with different latencies and power consumption. In this paper we have 
analyzed the performance, energy and power tradeoffs when carrying out 
reconfigurations from several representative memories in a Xilinx XUPV5LX110T 
FPGA. This can be an interesting reference for any designer attempting to optimize 
the reconfigurations of a given system. In addition we have developed a simple 
reconfiguration controller and described its implementation in detail. This controller 
includes an internal memory to store, totally or partially, the bitstreams. With this 
approach it carries out the reconfigurations at the maximum speed supported by the 
ICAP and reduces both the reconfiguration latency and energy consumption. In 
addition, it provides support for prefetching and caching techniques that can further 
reduce the reconfiguration overheads.  
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In this paper we have evaluated the overhead and the tradeoffs of a set of components usually 

included in a system with run-time partial reconfiguration implemented on a Xilinx Virtex-5. 

Our analysis shows the benefits of including a scratchpad memory inside the reconfiguration 

controller in order to improve the efficiency of the reconfiguration process. We have designed 

a simple controller for this scratchpad that includes support for prefetching and caching in 

order to further reduce both the energy and latency overhead. 

 

1. INTRODUCTION AND RELATED WORK 

Dynamic partial reconfiguration (DPR) is one of the most interesting features of 

FPGAs. Reconfiguration enables the reuse of the FPGA hardware resources for 

different tasks that can be loaded at run-time according to the system needs. Hence, 

FPGAs can be used to develop flexible platforms that can adapt themselves to the 

execution of different applications. DPR has been thoroughly explored as a way to 

reduce area and power in some systems [1-3]. The idea is to reuse the reconfigurable 

area for different tasks that are not executed simultaneously. However, the 

reconfiguration process itself introduces overheads both in the execution time and in 

the energy consumption. The reason is that it involves not only using the 

reconfiguration circuitry to update the device configuration, but also moving large 

data sets from the memory where the configurations are stored to the reconfiguration 

port. 

The analysis of the reconfiguration overheads has been the target of many 

research groups, and they have focused on execution-time overheads. Several works 

have proposed alternative reconfigurable architectures. For instance, multi-context 

FPGAs [4] enable the load of a new configuration while another one is being 

executed. Another example is coarse-grain architectures [5], which offer less 

flexibility but require smaller configuration bitstreams that can be easily stored on-

chip in order to further increase the reconfiguration speed [6-7]. We believe that the 

techniques that we expose in this article can be also applied on these architectures, 

but we have focused on single-context FPGAs because they dominate the 

reconfiguration landscape. 

Another approach to reduce the reconfiguration overheads is to apply scheduling 

techniques that attempt to hide the reconfiguration latency by fetching the 

configurations in advance and storing them in idle reconfigurable regions. This is a 

powerful technique for embedded systems where the task execution order is known 

because these techniques use the task-graph information to prefetch the 

configurations that will be needed in the near future. Some relevant works that 

propose reconfiguration scheduling techniques are [8-13]. It is important to mention 

that the controller described in this article is compatible with any of these techniques 
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and, in fact, it can improve their results since even when all the reconfigurable 

regions are busy, the configurations can be still prefetched to the internal memory 

included in our controller. This is explained in detail in Section 3.3. 

Another powerful way to reduce the reconfiguration time overhead is to reduce its 

size by applying compression techniques. With this approach, configurations are 

fetched faster but they have to be decompressed before writing them in the device, 

and this may involve additional execution time and energy penalties. However, these 

overheads can be smaller if the system includes hardware support to decompress the 

configurations. Some relevant works on compression are [14] and [15]. Again, these 

techniques are fully compatible with our work since our controller could easily 

incorporate a decompression module. 

Another option to reduce the reconfiguration overhead is to customize the memory 

resources used to store the configurations. For instance, [16] proposes to include 

heterogeneous on-chip memory modules, ones optimized for performance and others 

optimized for low power. With this approach the designer can explore different 

power/performance reconfiguration tradeoffs. This idea is orthogonal with our 

approach and could be included in our controller. 

Another interesting technique is configuration caching. The idea is to store 

different configurations in different reconfigurable regions in the device and design 

specific replacement techniques to maximize the configuration reuse. Some 

interesting configuration caching techniques are [17-19]. Our controller has been 

designed to support configuration caching, and, in fact, its internal memories can be 

used to apply these techniques in an additional level. This is further explained in 

Section 3.3. 

Regarding the reconfiguration process, many works assume that the 

reconfiguration latency is a fixed time that can be calculated by dividing the size of 

the configuration by the peak bandwidth of the reconfiguration port. In fact, the peak 

reconfiguration bandwidth is usually the only value provided by FPGA vendors. 

However, is that value relevant? Can we really achieve that bandwidth? How can we 

do it? In [20], Papadimitriou et al. elaborated a theoretical cost model to estimate the 

reconfiguration time at an early stage of the development. The authors estimated the 

reconfiguration time when fetching the bitstreams from external memories. They 

verified the model with measures over a real system implemented on a Virtex-II Pro 

FPGA and reported a model difference of ~25%, which is due to different clocks of 

processors, i.e. 300 MHz for the calculated one and 100 MHz for the measured one. 

Several works have pointed out that the actual reconfiguration latencies obtained in 

representative case studies are one order of magnitude, or even two, worse than the 

peak reconfiguration latency [21-22]. The reason for these poor results is that 

configurations are usually stored in off-chip non-volatile memories, and the actual 

bandwidth of these memories is much smaller than that of the reconfiguration port. 

Hence, the bottleneck is not the reconfiguration port, but the bandwidth of the 

external memories. Some previous works have demonstrated that it is possible to 

achieve almost peak-performance when using some specific external memories with 

additional support. For instance, in [23] the authors claim to achieve almost peak 

performance in a Virtex-6 when using DDR3 memory, a Direct Memory Access 

(DMA) controller, and some additional FIFOs to hide the latency, and in [24], they 

retrieve configurations from an external SRAM through a customized DMA. In [23], 

they also state that it is possible to achieve a speedup of 2 by overclocking the 
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Internal Configuration Access Port (ICAP). However, although each new generation 

of external memories is providing more bandwidth, it is likely that the speed of the 

reconfiguration port will also scale accordingly. In fact, Virtex UltraScale+
TM

 FPGAs 

can be reconfigured at 200MHz (previous generations were limited to 100 MHz). 

Moreover, in many systems the energy overhead is even more relevant than 

performance, and the use of external memories strongly penalizes in power and 

energy.  

Some previous works propose the inclusion of memory resources inside the 

reconfiguration controller in order to preload configurations. In [25], the authors 

analyze the reconfiguration latency of a system implemented in a Virtex-4 FPGA that 

includes a system bus that is used for all the data transfers, including those needed 

to carry out a reconfiguration, i.e. reading the configuration and sending it to the 

reconfiguration port. They measured the reconfiguration latencies taking into 

account the different access schemes provided by the bus, and including a DMA 

controller. The results demonstrate the impact of the communication scheme in the 

reconfiguration latency. In their analysis, they claim that the only way to achieve the 

peak reconfiguration bandwidth is to avoid accesses to the system bus. Even when 

the system bus is available and transfers are performed through a DMA, these 

accesses introduce significant delays.  

Other interesting works are [26] and [27]. In these articles, the authors propose 

partial reconfiguration controllers that reach a throughput of 1.433GB/s and 2.2GB/s 

respectively. These controllers allocate on-chip memory resources to store de 

configurations, and the ICAP is overclocked up to 550 MHz. Although the 

manufacturer does not guarantee proper operation at frequencies higher than 100 

MHz, these works are a proof of concept of the use of internal memory for future and 

faster versions of the ICAP.  

After analyzing the aforementioned works, it is clear that the reconfiguration 

latency drastically depends on where the configurations are stored and the 

communication scheme used to read them. The first contribution of this work is the 

analysis of how these two parameters affect the reconfiguration latency in a Virtex-5 

FPGA. We made the evaluation on the XUPV5-LX110T Development System 

included in the Xilinx University Program. This evaluation board includes many 

different memories, and we selected two external memories, Flash and DDR2 DRAM, 

and the internal on-chip SRAM. 

Other key metrics, especially in embedded systems, are power and energy. Hence, 

as a second contribution, we measured the energy demanded in a reconfiguration, 

depending on the kind of memory where the configurations are stored. We also 

measured the power overhead of some components providing support for the process, 

such as the controllers for the memories, the reconfiguration, or the DMA. This 

analysis of the energy overhead in the reconfiguration may be helpful for the 

developers in order to decide where to store the configurations.  

Finally, as a third contribution, we have developed a simple and efficient 

reconfiguration controller that, as in [26] and [27], includes an embedded memory 

that can be used to store bitstreams. Using that memory the reconfiguration process 

can be carried out at the maximum speed supported by the ICAP while minimizing 

the energy consumption. As a novelty, this controller includes two additional working 

modes in order to provide support for configuration prefetching and caching using the 

memory embedded in the controller. These modes can be used to reduce the 

reconfiguration overheads when only some of the configurations can be stored on-

chip. 
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2. TARGET ARCHITECTURE 

Our target architecture consists of three different memories that can be used to store 

configuration bitstreams, a reconfiguration controller that provides an interface with 

the ICAP [28], a processor, and at least one Reconfigurable Region (RR).  Figure 1 

depicts the elements of this architecture. In our experiments, the processor is a 

Xilinx MicroBlaze, the system bus is a PLB 4.6, and the memories are a 1GB 

Compact Flash, a 64-bit wide 256MB DDR2 SODIMM, and the FPGA internal 

BlockRAMs (BRAMs). Additionally, DMA and interrupt controllers supplied by 

Xilinx were added in order to evaluate their performance-energy tradeoffs.  
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Fig. 1. Target architecture 

 

The selection of the memories where configurations will be stored, and how to move 

these configurations among these memories and the reconfiguration controller is not 

straightforward, as it depends on multiple factors such as the power budget, the 

performance requirements, and the needs of other system components (for example, if 

the DDR or the Flash memories are demanded by other tasks or components, they would 

be already present in the system and then the static power of these controllers will not 

introduce an additional penalty related to DPR). In the experimental results presented 

in Section 4, we analyze the reconfiguration energy-performance tradeoff in order to 

help designers to make their decisions. 

 

3. PARTIAL RECONFIGURATION CONTROLLER 

3.1 Xilinx IP 

Xilinx provides the XPS_HWICAP IP core for the Virtex-5 FPGA to manage partial 

reconfigurations in processor-based systems [29]. It is composed of several control 

registers, two small FIFOs, a finite-state machine (FSM), and a PLB bus interface 

[30]. Xilinx also provides a driver to use this controller from the processor-side. This 

driver enables to read configurations from any memory in the system and to send the 

data to the XPS_HWICAP controller through the PLB bus. This controller is easy to 

use and it should be the starting point for anybody who wants to carry out 

reconfigurations. However, this driver has not been designed to optimize the data 

transfers among the memories and the XPS_HWICAP. As a result, as it will be 
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explained in section 4, it only achieves a reconfiguration throughput of 12 MB/s, far 

from the peak 400 MB/s supported by the ICAP. 

 

3.2 Multi-Mode ICAP Controller 

In order to reach the maximum reconfiguration throughput, the ICAP should receive 

one 32-bit word per cycle at a 100MHz rate. As explained in the previous section, it is 

hard to achieve this throughput when configurations are stored in off-chip memories, 

or even when they are stored on-chip but they are accessed through a shared system 

bus. A solution is to store them inside the configuration controller as it was 

previously proposed in [25-27]. With this approach the reconfigurations can be 

carried out at full speed. In current FPGA architectures, this can be achieved by 

reserving part of the on-chip RAM for the controller. We refer to this on-chip RAM as 

bitstream memory.  

 

Fig. 2. Multi-Mode ICAP reconfiguration controller 

 

Figure 2 illustrates the architecture of our partial reconfiguration controller, called 

Multi-Mode ICAP. The bus interface was automatically generated by the Xilinx EDK 

tool, and the remaining blocks were designed in VHDL and integrated inside the 

EDK project. The Control and the Address registers are software accessible. Hence 

the processor can easily provide the information and check if the controller has 

finished. If the system includes an interrupt controller, the controller can generate 

an interrupt when the Done bit is activated; again this is straightforward by using 

the EDK tools. This architecture based on an internal memory, a register-based 

interface, and a control unit that is very similar to those proposed in [25] and [26]. 

The main difference is that our control unit provides support for several useful 

working modes. 

The Multi-Mode ICAP supports four different working modes:  

a) Mode 0: Configuration Load. The controller receives a configuration and 

stores it in the bitstream memory. The controller does not send the 

configuration to the ICAP. This mode is useful to fetch configurations in 

advance from the external memories in order to reduce the 
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reconfiguration latency since, once a configuration is stored, our 

controller sends it to the ICAP at the maximum supported speed. 

b) Mode 1: External reconfiguration and configuration load. The controller 

receives a configuration and forwards it to the ICAP. In parallel, it stores 

the configuration in the internal bitstream memory. In this mode the 

reconfiguration speed depends on how fast the configuration data are 

received from the bus, i.e. our controller does not reduce the 

reconfiguration latency in this mode. However, if the same configuration 

is required again, it can be loaded from the internal bitstream memory at 

the maximum speed. 

c) Mode 2: External reconfiguration. The controller receives a configuration 

and forwards it to the ICAP as in the previous case, but in this mode the 

configuration is not stored in the bitstream memory.  

d) Mode 3: Internal reconfiguration. The controller sends to the ICAP a 

configuration previously stored in the bitstream memory. The 

reconfiguration is carried out at full speed. 

In order to support this functionality, only two software accessible registers (Control 

and Address registers) and little additional control logic are necessary. The control 

register (Figure 3) is used to configure our controller. Bit 0 reports when an operation 

has finished, bit 1 triggers the start of an operation, and bits 2 and 3 are used to 

select the working mode. Finally the remaining 28 bits are used to set the size of the 

configuration expressed in 32-bits words. The address register specifies the initial 

address of the bitstream memory to store or load a specific configuration.  

Done

0 1 2 3

Start

Config size (number of 32-bit words)Mode

 
Fig. 3. Control register 

The control unit (Figure 4) only requires three states: Idle, Modes 0, 1, 2, and Mode 3. 

The controller is initially in the Idle state. When the start bit is activated it will move 

forward to state Modes 0, 1, 2, or Mode 3 according to the Mode set on the Control 

register. In Modes 0, 1, 2, every configuration word received from the bus is 

forwarded to the proper destination: bitstream memory for Modes 0 and 1, and the 

ICAP for Modes 1 and 2. In Mode 3, the controller reads the configuration stored in 

the bitstream memory included in the reconfiguration controller, and forwards it to 

the ICAP. In all the cases a counter is used to know how many words have been 

processed and to update the next bitstream memory address to be read. When the 

counter reaches the number of words requested the Done bit is activated. 
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Mode

3

Modes

0, 1, 2

start & 

mode 0,1 or 2
done

Idle
start & 

mode 3
done

 
 

Fig. 4. Multi-Mode ICAP Finite State Machine 

 

The implementation of this control unit requires a 2-bit register to store the current 

state, a counter that keeps track of how many words have been received, an adder to 

update the bitstream memory address, and a comparator to know when all the words 

have been processed. We have also included a bit swapper module. The reason is that 

Xilinx Plan Ahead, which is the tool that we used to generate the bitstreams for run-

time reconfiguration, does not generate the configuration data in the same bit order 

required by the ICAP [21]. Hence, the bit swapper module reorders each 

configuration word by swapping the bits within each byte, i.e. from (b
31
..b

24
,

 
b

23
..b

16
,
 

b
15
..b

8
,
 
b

7
..b

0
) to (b

24
..b

31
,
 
b

16
..b

23
,
 
b

8
..b

15
,
 
b

0
..b

7
). This step might be instead done in 

software once a configuration bitstream is generated, and then this module could be 

removed. We decided to do it in hardware because swapping bits do not introduce any 

hardware overhead and because it simplifies the use of the controller. 

The available on-chip RAM varies a lot depending on the FPGA used. The current 

trend in computer architecture is to include more and more on-chip memory 

resources. In fact, Xilinx has recently released a new family of FPGAs, called 

UltraScale+
TM

, which brings a breakthrough including up to 65,913 Mbits of on-chip 

RAM [31], making it feasible to store several configurations even for large 

reconfigurable regions. However, small FPGAs have less than 1 Mbit. Hence, the 

benefits of including a bitstream memory embedded in our controller depend on the 

availability of on-chip memory and the size of the reconfigurable regions. If there are 

enough on-chip memory resources to store a significant part of the needed 

configurations our controller will help to optimize the reconfiguration process. At this 

point, other orthogonal techniques such as compression would play an important role 

as well. Adding compression support to our controller is as simple as including a 

decompression module before the bit swapper.  

In our controller the size of the bitstream memory is a generic parameter that can 

be instantiated with different values. In our implementation we can use up to 256 

KB. Typically, the FPGA includes more RAM resources, but they are used to 

implement other elements of the system. This size can be used to store the 

configuration of a reconfigurable region of 8000 LUTs. If this is not enough, the 

configuration can be partially stored in the bitstream memory, and later it can be 

carried out by combining modes 2 and 3. This is a key feature to maximize the use of 

the on-chip memory. 
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3.3 Configuration Prefetching and Caching support 

 

Our ICAP controller has been designed to provide support both for configuration 

prefetching and configuration caching. As explained in Section 1, prefetching and 

caching have been proved to be powerful techniques to reduce the reconfiguration 

latency. These techniques are usually applied by loading and storing the 

configurations in different reconfigurable regions.  

The idea behind configuration prefetching, as applied in the articles [8-13], is to 

carry out the reconfigurations in advance. For instance, while a task is executed on a 

reconfigurable region, we may prefetch the following task by storing it in another 

reconfigurable region.  

Configuration caching in FPGAs consists in storing some selected configurations 

in idle reconfigurable regions. Hence, when these tasks need to be executed, they are 

already loaded and no reconfiguration is needed (this is called a configuration cache 

hit). Some examples are [17-19]. 

However, the application of these techniques with the reconfigurable regions of an 

FPGA presents a strong limitation: it is only feasible in systems where some of the 

reconfigurable regions are idle. Otherwise, it is not possible to prefetch or to cache 

new configurations. 

The on-chip memory included in our controller to store configurations can be 

leveraged to overcome this limitation since, if all the reconfigurable regions are busy, 

or if the system includes only one reconfigurable region, it is still possible to apply 

these techniques using our bitstream memory to store the configurations. Evidently, 

the benefits are different: if a configuration is stored in a reconfigurable region it can 

be used when required without carrying out a reconfiguration, whereas if stored in 

the bitstream memory of our controller, the reconfiguration is still necessary, but it 

can be carried out at full speed.  

Section 4.3 will present a case study that illustrates the benefits of using our 

bitstream memory for configuration caching and prefetching in a system with only 

one reconfigurable region. 

 

4. EXPERIMENTAL RESULTS 

4.1 Latency 

We have measured the reconfiguration latency for both Xilinx XPS_HWICAP 

controller and our controller retrieving configuration data from three different 

memories: a non-volatile off-chip memory (Flash), a volatile off-chip memory (DDR2), 

and a volatile on-chip memory (BRAM). Figure 5 depicts the normalized 

reconfiguration latencies for all the evaluations. Notice that the results are 

represented in logarithmic scale. The red line points out the minimum latency 

according to the ICAP bandwidth.  
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Fig. 5. Reconfiguration latencies 

 

With the XPS_HWICAP controller, reconfigurations from Flash take 2,900 

ms/MB. In the case of data transferences from the Flash memory, the inclusion of a 

DMA controller does not reduce significantly the latency because the Flash controller 

limits transferences to only 2 bytes [32]. If data are read from DDR2, the latency 

decreases to 117 ms/MB without DMA and 34.7 ms/MB with DMA, still far from 

taking fully advantage of the reconfiguration port bandwidth. Finally, retrieving the 

configurations from on-chip memory is the fastest choice, with a latency of 79 ms/MB 

without DMA, and 28 ms/MB with DMA. 

With our controller, both the Flash and the DDR2 alternatives got similar 

latencies than the XPS_HWICAP controller since in these cases the controller is not 

the bottleneck. However, the on-chip reconfiguration is clearly faster. The reason is 

that our on-chip memory is embedded in the controller. Hence, no accesses to the 

system bus are needed. For this reason, our controller achieves the minimum 

reconfiguration latency (one write operation per cycle at 100MHz, i.e. 400 MB/s), 

which is 31 times faster than the XPS_HWICAP. It is important to remark that, as 

explained in the introduction, other on-chip controllers [26-27] can achieve this 

performance. In fact they report even better performance by overclocking the ICAP.  

Our controller could also take advantage of overclocking, since it can be clocked at 

500 MHz, but, as explained before, Xilinx does not guarantee proper operation for 

frequencies above 100 MHz in this FPGA [28]. 

We have also evaluated the benefits of including a DMA controller to manage the 

transactions from the different memories without processor intervention. As it can be 

seen in the Figure 5, the DMA controller reduces the latencies significantly, but even 

in the best case is still eight times slower than using the embedded bitstream 

memory. Moreover the original Xilinx functions for the XPS_HWICAP do not support 

DMA transactions. Hence they have to be modified by the developer.  
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4.2 Resources and Power Overheads 

Some previous works have evaluated the power consumption during 

reconfiguration. In [33-34] the authors propose models to estimate the power 

consumption during the reconfiguration. In addition, in [33] they carry out 

measurements of the FPGA power consumption using a high-speed digital 

oscilloscope and the shunt resistor method. They use these measures to evaluate the 

accuracy of their model, reporting a small error of 14%. These models are interesting 

but only focus on the FPGA power consumption. In this work we also want to take 

into account the consumption of the memory elements involved in the reconfiguration 

process. [35] is a recent work that carries out FPGA power measurements during 

reconfiguration using a high-speed digital oscilloscope on a Virtex 5 FPGA. Their 

objective is to compare the power consumption during partial and total 

reconfiguration. They report a dynamic consumption of 160mW during on-chip 

partial reconfiguration and 220mW during total reconfiguration. Again they do not 

take into account the impact of the memory elements. The results presented for the 

on-chip reconfiguration are very similar to our measures for on-chip reconfiguration: 

we have measured 180mW for the dynamic power in our board whereas they have 

measured 160mW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Fig. 6. Power measurement setup 

 

Figure 6 presents the setup used to measure the power consumption. We have 

used a Yokogawa WT210 digital power meter, which is an accepted device by the 

Standard Performance Evaluation Corporation (SPEC) for power efficiency 

benchmarking [36]. As explained before, our objective is to measure the contribution 

of all the components involved in the reconfiguration process, and not only the FPGA. 

The power supply of the evaluation board is connected to the power meter, therefore 

the power measures include the consumption of the evaluation board and the power 
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adapter. The power meter samples both voltage and current at a frequency of 100 

KHz. 

To measure the static power consumption of each component, we first measured 

the power consumption of the system with all the components in an idle state, and 

then we removed them one by one and repeated the power measures. The difference 

between these sequent measures corresponds to the static power of each component 

removed. Ambient temperature was constant in all the measures. In all the cases we 

measured the power consumption for two minutes, and then computed the average 

value. 

Regarding the dynamic power consumption, we implemented a loop that 

reconfigures thousands of times for a total time in the order of minutes. Finally, we 

take the average power consumption for each reconfiguration scheme. 

Table I summarizes the FPGA resources and the static power overheads of each 

component. Although these data may change from one FPGA to another, we believe 

that it provides an interesting hint for any designer in order to decide whether to 

include or not any component based on the overheads, the resources available, the 

power budget, and the system requirements. For instance, in systems with a very 

constrained power budget, avoiding the use of the DDR2 memory, if possible, will 

significantly help to meet this power budget. 

 

Table I. Resources used and Static Power  

Component LUTs FFs BRAMs Static power (W) 

DDR2 controller 2531 3693 5 3.54 

Flash controller 102 213 0 0.32 

Interrupt controller 85 121 0 0.02 

DMA controller 695 562 0 0.64 

Multi-Mode ICAP (128KB) 439 355 32 0.28 

 Multi-Mode ICAP (256KB) 446 357 64 0.45 

XPS_HWICAP 717 702 2 0.16 

 

LUTs and FFs required by the Multi-Mode ICAP controller keep almost constant 

and very low regardless its storage capacity (the small variations are due to the 

additional addressing bits required for higher memory capacities), and the static 

power consumption linearly increases with the memory size by a factor of 1.6. 
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Fig. 7. Dynamic Power 

 

Figure 7 depicts the dynamic power consumption due to the reconfigurations, both 

for our controller and for the XPS_HWICAP. Each bar is divided into two terms: 

‘Data Transference’, which includes the dynamic power consumption due to data 

movement from the external memories to the reconfiguration controller, and 

‘Reconfiguration’, which includes the power consumption of the reconfiguration 

controller and the FPGA reconfiguration circuitry. 

We took two different measures in order to split the power consumption between 

reconfiguration and data transference. In the first one, we carried out the 

reconfiguration, which involves reading the configuration from a given memory and 

loading it onto the FPGA. In the other one, we used the mode 0 of our reconfiguration 

controller. In this mode, the configuration bitstream is transferred from an external 

memory to the internal memory of our controller, but it is not loaded onto the FPGA. 

Therefore, the difference between these two measures is due to the power term 

corresponding to the reconfiguration. In both cases, we repeated the process inside a 

loop for several minutes in order to minimize noise.  

As it can be seen in the figure, the term ‘Reconfiguration’ keeps almost constant 

about 180mW in all the setups. On the contrary, the ‘Data Transference’ term greatly 

varies depending on the case. Dynamic power is much lower in the setups retrieving 

data from the Flash memory than in setups accessing to the DDR2. In the case of the 

on-chip storage, this term is null when using our controller because all the process is 

carried out inside the controller; whereas if the XPS_HWICAP controller is used 

instead, despite being also on-chip, data have to go through the bus. 
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Fig. 8. Energy Consumption 

 

Figure 8 shows the energy consumed, in mJ per MB reconfigured, in the setups 

evaluated in Figure 7. When configurations are retrieved from the Flash memory, the 

results (taking into account both static and dynamic energy) are worse. Despite being 

less power-hungry than the DDR2-based setups, the large latency of this memory 

(see Figure 5) causes a strong energy penalty. On the contrary, setups that use an on-

chip memory are the most energy efficient ones. It is remarkable the fact that our 

Multi-Mode ICAP controller requires two orders of magnitude less energy than the 

XPS_HWICAP (on-chip). In fact, the energy required by this setup is, at least, one 

order or magnitude lower than any other setup. Hence, a bitstream memory 

embedded in the reconfiguration controller drastically reduces the reconfiguration 

energy overheads. 

 
4.3 Configuration Prefetching and Caching 

 

Our Multi-Mode controller has been designed to provide an additional level for 

configuration caching and prefetching. Using the bitstream memory, we can apply 

these techniques even when all the reconfigurable regions are busy.  In this section, 

we present a case study to illustrate the benefits of this approach.  

We have selected a 3D rendering application based on the open source Pocket-

GL library (Pocket GL). We do not have the code of the application but a dynamic 

trace obtained at IMEC R&D [37]. They characterized the dynamic events of a 

Pocket-GL application that were adapting its execution to its input data. For each 

possible run-time scenario, they obtained the sequence of configurations that must be 

executed. This is a very interesting test since it includes 10 different dynamic tasks 

executed in 20 different sequences (task-graphs). We analyzed the same application 

in a previous article that presented a run-time scheduler for reconfigurable systems 

[13]. This scheduler included support both for configuration prefetching and caching 

taking advantage of idle reconfigurable regions to reduce the reconfiguration 

overhead. However, since these are sequential graphs, the system designer may 

decide that only one reconfigurable region is needed to execute them. In that case 
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there would be no idle regions available. Hence, we have extended that previous 

approach to apply prefetching and caching by using the bitstream memory of our 

controller.   

The results are depicted in Figure 9. The leftmost column shows the initial 

overhead when the reconfigurations are carried out on demand and without applying 

neither prefetching nor caching. We assume that the configurations are stored in the 

DDR2 memory, and that the system includes a DMA controller. In this case the 

application needs 70% more time due to the reconfigurations. If we use the bitstream 

memory to apply a prefetch approach we can reduce that overhead to 38%. The 

approach implemented is very simple: while executing one task in the reconfigurable 

region the following one is stored in the bitstream memory, totally or partially, 

depending on the available time. When the first task finishes, we have to carry out a 

reconfiguration to load the following task. During this reconfiguration the portion 

stored in the bitstream memory can be loaded 3.2 times faster than the remaining 

part stored in the external memory.  

These results can be further improved by caching some critical tasks. The idea is 

to store in the bitstream memory the configuration of those tasks that generate the 

largest reconfiguration overheads. In the figure we can see that when the 

configuration of the most critical task is cached the overhead is reduced to 27%, and 

if the two most critical tasks are cached, it is 22%. In the rightmost column we can 

see that caching the remaining 8 tasks provides no further reductions. The reason is 

that the prefetch technique is already reducing the reconfiguration latency of those 

tasks. In fact when the two most critical tasks are cached the reconfiguration 

overhead is reduced by a factor of 3.2, which is the best result that can be achieved in 

this scenario. Hence, if the bitstream memory provides enough space to store three 

configurations (the two cached ones plus the one that is prefetched each time) the 

system will provide the same performance with a system that stores all the 

configurations on-chip. 
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Fig. 9. Reconfiguration overheads for the Pocket GL application when using the bitstream memory to apply 
configuration prefetching and caching 

5. CONCLUSIONS 

 

Configurations in reconfigurable devices can be stored in very heterogeneous 

memories with different latencies and power consumption. In this paper we have 

analyzed the performance, energy and power tradeoffs when carrying out 

reconfigurations from several representative memories in a Xilinx XUPV5LX110T 

FPGA. This can be an interesting reference for any designer attempting to optimize 

the reconfigurations of a given system. In addition we have developed a simple 

reconfiguration controller and described its implementation in detail. This controller 

includes an internal memory to store, totally or partially, the bitstreams. With this 

approach it carries out the reconfigurations at the maximum speed supported by the 

ICAP and reduces both the reconfiguration latency and energy consumption. In 

addition, it provides support for prefetching and caching techniques that can further 

reduce the reconfiguration overheads.  
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