

Analysis of the reconfiguration latency and energy overheads for
a Xilinx Virtex-5 FPGA

JAVIER OLIVITO, University of Zaragoza, 0034876555081, jolivito@unizar.es
FELIPE SERRANO, Complutense University of Madrid
JUAN ANTONIO CLEMENTE, Complutense University of Madrid
HORTENSIA MECHA, Complutense University of Madrid
JAVIER RESANO, University of Zaragoza

In this paper we have evaluated the overhead and the tradeoffs of a set of components usually
included in a system with run-time partial reconfiguration implemented on a Xilinx Virtex-5.
Our analysis shows the benefits of including a scratchpad memory inside the reconfiguration
controller in order to improve the efficiency of the reconfiguration process. We have designed
a simple controller for this scratchpad that includes support for prefetching and caching in
order to further reduce both the energy and latency overhead.

1. INTRODUCTION AND RELATED WORK
Dynamic partial reconfiguration (DPR) is one of the most interesting features of

FPGAs. Reconfiguration enables the reuse of the FPGA hardware resources for
different tasks that can be loaded at run-time according to the system needs. Hence,
FPGAs can be used to develop flexible platforms that can adapt themselves to the
execution of different applications. DPR has been thoroughly explored as a way to
reduce area and power in some systems [1-3]. The idea is to reuse the reconfigurable
area for different tasks that are not executed simultaneously. However, the
reconfiguration process itself introduces overheads both in the execution time and in
the energy consumption. The reason is that it involves not only using the
reconfiguration circuitry to update the device configuration, but also moving large
data sets from the memory where the configurations are stored to the reconfiguration
port.

The analysis of the reconfiguration overheads has been the target of many
research groups, and they have focused on execution-time overheads. Several works
have proposed alternative reconfigurable architectures. For instance, multi-context
FPGAs [4] enable the load of a new configuration while another one is being
executed. Another example is coarse-grain architectures [5], which offer less
flexibility but require smaller configuration bitstreams that can be easily stored on-
chip in order to further increase the reconfiguration speed [6-7]. We believe that the
techniques that we expose in this article can be also applied on these architectures,
but we have focused on single-context FPGAs because they dominate the
reconfiguration landscape.

Another approach to reduce the reconfiguration overheads is to apply scheduling
techniques that attempt to hide the reconfiguration latency by fetching the
configurations in advance and storing them in idle reconfigurable regions. This is a
powerful technique for embedded systems where the task execution order is known
because these techniques use the task-graph information to prefetch the
configurations that will be needed in the near future. Some relevant works that
propose reconfiguration scheduling techniques are [8-13]. It is important to mention
that the controller described in this article is compatible with any of these techniques

39

Page 1 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:2

and, in fact, it can improve their results since even when all the reconfigurable
regions are busy, the configurations can be still prefetched to the internal memory
included in our controller. This is explained in detail in Section 3.3.

Another powerful way to reduce the reconfiguration time overhead is to reduce its
size by applying compression techniques. With this approach, configurations are
fetched faster but they have to be decompressed before writing them in the device,
and this may involve additional execution time and energy penalties. However, these
overheads can be smaller if the system includes hardware support to decompress the
configurations. Some relevant works on compression are [14] and [15]. Again, these
techniques are fully compatible with our work since our controller could easily
incorporate a decompression module.

Another option to reduce the reconfiguration overhead is to customize the memory
resources used to store the configurations. For instance, [16] proposes to include
heterogeneous on-chip memory modules, ones optimized for performance and others
optimized for low power. With this approach the designer can explore different
power/performance reconfiguration tradeoffs. This idea is orthogonal with our
approach and could be included in our controller.

Another interesting technique is configuration caching. The idea is to store
different configurations in different reconfigurable regions in the device and design
specific replacement techniques to maximize the configuration reuse. Some
interesting configuration caching techniques are [17-19]. Our controller has been
designed to support configuration caching, and, in fact, its internal memories can be
used to apply these techniques in an additional level. This is further explained in
Section 3.3.

Regarding the reconfiguration process, many works assume that the
reconfiguration latency is a fixed time that can be calculated by dividing the size of
the configuration by the peak bandwidth of the reconfiguration port. In fact, the peak
reconfiguration bandwidth is usually the only value provided by FPGA vendors.
However, is that value relevant? Can we really achieve that bandwidth? How can we
do it? In [20], Papadimitriou et al. elaborated a theoretical cost model to estimate the
reconfiguration time at an early stage of the development. The authors estimated the
reconfiguration time when fetching the bitstreams from external memories. They
verified the model with measures over a real system implemented on a Virtex-II Pro
FPGA and reported a model difference of ~25%, which is due to different clocks of
processors, i.e. 300 MHz for the calculated one and 100 MHz for the measured one.
Several works have pointed out that the actual reconfiguration latencies obtained in
representative case studies are one order of magnitude, or even two, worse than the
peak reconfiguration latency [21-22]. The reason for these poor results is that
configurations are usually stored in off-chip non-volatile memories, and the actual
bandwidth of these memories is much smaller than that of the reconfiguration port.
Hence, the bottleneck is not the reconfiguration port, but the bandwidth of the
external memories. Some previous works have demonstrated that it is possible to
achieve almost peak-performance when using some specific external memories with
additional support. For instance, in [23] the authors claim to achieve almost peak
performance in a Virtex-6 when using DDR3 memory, a Direct Memory Access
(DMA) controller, and some additional FIFOs to hide the latency, and in [24], they
retrieve configurations from an external SRAM through a customized DMA. In [23],
they also state that it is possible to achieve a speedup of 2 by overclocking the
Internal Configuration Access Port (ICAP). However, although each new generation

Page 2 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

of external memories is providing more bandwidth, it is likely that the speed of the
reconfiguration port will also scale accordingly. In fact, Virtex UltraScale+TM FPGAs
can be reconfigured at 200MHz (previous generations were limited to 100 MHz).
Moreover, in many systems the energy overhead is even more relevant than
performance, and the use of external memories strongly penalizes in power and
energy.

Some previous works propose the inclusion of memory resources inside the
reconfiguration controller in order to preload configurations. In [25], the authors
analyze the reconfiguration latency of a system implemented in a Virtex-4 FPGA that
includes a system bus that is used for all the data transfers, including those needed
to carry out a reconfiguration, i.e. reading the configuration and sending it to the
reconfiguration port. They measured the reconfiguration latencies taking into
account the different access schemes provided by the bus, and including a DMA
controller. The results demonstrate the impact of the communication scheme in the
reconfiguration latency. In their analysis, they claim that the only way to achieve the
peak reconfiguration bandwidth is to avoid accesses to the system bus. Even when
the system bus is available and transfers are performed through a DMA, these
accesses introduce significant delays.

Other interesting works are [26] and [27]. In these articles, the authors propose
partial reconfiguration controllers that reach a throughput of 1.433GB/s and 2.2GB/s
respectively. These controllers allocate on-chip memory resources to store de
configurations, and the ICAP is overclocked up to 550 MHz. Although the
manufacturer does not guarantee proper operation at frequencies higher than 100
MHz, these works are a proof of concept of the use of internal memory for future and
faster versions of the ICAP.

After analyzing the aforementioned works, it is clear that the reconfiguration
latency drastically depends on where the configurations are stored and the
communication scheme used to read them. The first contribution of this work is the
analysis of how these two parameters affect the reconfiguration latency in a Virtex-5
FPGA. We made the evaluation on the XUPV5-LX110T Development System
included in the Xilinx University Program. This evaluation board includes many
different memories, and we selected two external memories, Flash and DDR2 DRAM,
and the internal on-chip SRAM.

Other key metrics, especially in embedded systems, are power and energy. Hence,
as a second contribution, we measured the energy demanded in a reconfiguration,
depending on the kind of memory where the configurations are stored. We also
measured the power overhead of some components providing support for the process,
such as the controllers for the memories, the reconfiguration, or the DMA. This
analysis of the energy overhead in the reconfiguration may be helpful for the
developers in order to decide where to store the configurations.

Finally, as a third contribution, we have developed a simple and efficient
reconfiguration controller that, as in [26] and [27], includes an embedded memory
that can be used to store bitstreams. Using that memory the reconfiguration process
can be carried out at the maximum speed supported by the ICAP while minimizing
the energy consumption. As a novelty, this controller includes two additional working
modes in order to provide support for configuration prefetching and caching using the
memory embedded in the controller. These modes can be used to reduce the
reconfiguration overheads when only some of the configurations can be stored on-
chip.

Page 3 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:4

2. TARGET ARCHITECTURE
Our target architecture consists of three different memories that can be used to store
configuration bitstreams, a reconfiguration controller that provides an interface with
the ICAP [28], a processor, and at least one Reconfigurable Region (RR). Figure 1
depicts the elements of this architecture. In our experiments, the processor is a
Xilinx MicroBlaze, the system bus is a PLB 4.6, and the memories are a 1GB
Compact Flash, a 64-bit wide 256MB DDR2 SODIMM, and the FPGA internal
BlockRAMs (BRAMs). Additionally, DMA and interrupt controllers supplied by
Xilinx were added in order to evaluate their performance-energy tradeoffs.

FPGA

Processor

Bus

DDR2 Flash

DMA
Controller

Interrupt
Controller

Flash
Controller

DDR2
Controller

R.R. 1 R.R. N…

…

Reconfiguration
controller

ICAP

Fig. 1. Target architecture

The selection of the memories where configurations will be stored, and how to move
these configurations among these memories and the reconfiguration controller is not
straightforward, as it depends on multiple factors such as the power budget, the
performance requirements, and the needs of other system components (for example, if
the DDR or the Flash memories are demanded by other tasks or components, they would
be already present in the system and then the static power of these controllers will not
introduce an additional penalty related to DPR). In the experimental results presented
in Section 4, we analyze the reconfiguration energy-performance tradeoff in order to
help designers to make their decisions.

3. PARTIAL RECONFIGURATION CONTROLLER
3.1 Xilinx IP

Xilinx provides the XPS_HWICAP IP core for the Virtex-5 FPGA to manage partial
reconfigurations in processor-based systems [29]. It is composed of several control
registers, two small FIFOs, a finite-state machine (FSM), and a PLB bus interface
[30]. Xilinx also provides a driver to use this controller from the processor-side. This
driver enables to read configurations from any memory in the system and to send the
data to the XPS_HWICAP controller through the PLB bus. This controller is easy to
use and it should be the starting point for anybody who wants to carry out
reconfigurations. However, this driver has not been designed to optimize the data
transfers among the memories and the XPS_HWICAP. As a result, as it will be

Page 4 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

explained in section 4, it only achieves a reconfiguration throughput of 12 MB/s, far
from the peak 400 MB/s supported by the ICAP.

3.2 Multi-Mode ICAP Controller

In order to reach the maximum reconfiguration throughput, the ICAP should receive
one 32-bit word per cycle at a 100MHz rate. As explained in the previous section, it is
hard to achieve this throughput when configurations are stored in off-chip memories,
or even when they are stored on-chip but they are accessed through a shared system
bus. A solution is to store them inside the configuration controller as it was
previously proposed in [25-27]. With this approach the reconfigurations can be
carried out at full speed. In current FPGA architectures, this can be achieved by
reserving part of the on-chip RAM for the controller. We refer to this on-chip RAM as
bitstream memory.

Fig. 2. Multi-Mode ICAP reconfiguration controller

Figure 2 illustrates the architecture of our partial reconfiguration controller, called
Multi-Mode ICAP. The bus interface was automatically generated by the Xilinx EDK
tool, and the remaining blocks were designed in VHDL and integrated inside the
EDK project. The Control and the Address registers are software accessible. Hence
the processor can easily provide the information and check if the controller has
finished. If the system includes an interrupt controller, the controller can generate
an interrupt when the Done bit is activated; again this is straightforward by using
the EDK tools. This architecture based on an internal memory, a register-based
interface, and a control unit that is very similar to those proposed in [25] and [26].
The main difference is that our control unit provides support for several useful
working modes.

The Multi-Mode ICAP supports four different working modes:

a) Mode 0: Configuration Load. The controller receives a configuration and
stores it in the bitstream memory. The controller does not send the
configuration to the ICAP. This mode is useful to fetch configurations in
advance from the external memories in order to reduce the

Page 5 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:6

reconfiguration latency since, once a configuration is stored, our
controller sends it to the ICAP at the maximum supported speed.

b) Mode 1: External reconfiguration and configuration load. The controller
receives a configuration and forwards it to the ICAP. In parallel, it stores
the configuration in the internal bitstream memory. In this mode the
reconfiguration speed depends on how fast the configuration data are
received from the bus, i.e. our controller does not reduce the
reconfiguration latency in this mode. However, if the same configuration
is required again, it can be loaded from the internal bitstream memory at
the maximum speed.

c) Mode 2: External reconfiguration. The controller receives a configuration
and forwards it to the ICAP as in the previous case, but in this mode the
configuration is not stored in the bitstream memory.

d) Mode 3: Internal reconfiguration. The controller sends to the ICAP a
configuration previously stored in the bitstream memory. The
reconfiguration is carried out at full speed.

In order to support this functionality, only two software accessible registers (Control
and Address registers) and little additional control logic are necessary. The control
register (Figure 3) is used to configure our controller. Bit 0 reports when an operation
has finished, bit 1 triggers the start of an operation, and bits 2 and 3 are used to
select the working mode. Finally the remaining 28 bits are used to set the size of the
configuration expressed in 32-bits words. The address register specifies the initial
address of the bitstream memory to store or load a specific configuration.

Done

0 1 2 3

Start

Config size (number of 32-bit words)Mode

Fig. 3. Control register

The control unit (Figure 4) only requires three states: Idle, Modes 0, 1, 2, and Mode 3.
The controller is initially in the Idle state. When the start bit is activated it will move
forward to state Modes 0, 1, 2, or Mode 3 according to the Mode set on the Control
register. In Modes 0, 1, 2, every configuration word received from the bus is
forwarded to the proper destination: bitstream memory for Modes 0 and 1, and the
ICAP for Modes 1 and 2. In Mode 3, the controller reads the configuration stored in
the bitstream memory included in the reconfiguration controller, and forwards it to
the ICAP. In all the cases a counter is used to know how many words have been
processed and to update the next bitstream memory address to be read. When the
counter reaches the number of words requested the Done bit is activated.

Page 6 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

Mode
3

Modes
0, 1, 2

start &
mode 0,1 or 2 done

Idle
start &
mode 3done

Fig. 4. Multi-Mode ICAP Finite State Machine

The implementation of this control unit requires a 2-bit register to store the current
state, a counter that keeps track of how many words have been received, an adder to
update the bitstream memory address, and a comparator to know when all the words
have been processed. We have also included a bit swapper module. The reason is that
Xilinx Plan Ahead, which is the tool that we used to generate the bitstreams for run-
time reconfiguration, does not generate the configuration data in the same bit order
required by the ICAP [21]. Hence, the bit swapper module reorders each
configuration word by swapping the bits within each byte, i.e. from (b31..b24, b23..b16,
b15..b8, b7..b0) to (b24..b31, b16..b23, b8..b15, b0..b7). This step might be instead done in
software once a configuration bitstream is generated, and then this module could be
removed. We decided to do it in hardware because swapping bits do not introduce any
hardware overhead and because it simplifies the use of the controller.

The available on-chip RAM varies a lot depending on the FPGA used. The current
trend in computer architecture is to include more and more on-chip memory
resources. In fact, Xilinx has recently released a new family of FPGAs, called
UltraScale+TM, which brings a breakthrough including up to 65,913 Mbits of on-chip
RAM [31], making it feasible to store several configurations even for large
reconfigurable regions. However, small FPGAs have less than 1 Mbit. Hence, the
benefits of including a bitstream memory embedded in our controller depend on the
availability of on-chip memory and the size of the reconfigurable regions. If there are
enough on-chip memory resources to store a significant part of the needed
configurations our controller will help to optimize the reconfiguration process. At this
point, other orthogonal techniques such as compression would play an important role
as well. Adding compression support to our controller is as simple as including a
decompression module before the bit swapper.

In our controller the size of the bitstream memory is a generic parameter that can
be instantiated with different values. In our implementation we can use up to 256
KB. Typically, the FPGA includes more RAM resources, but they are used to
implement other elements of the system. This size can be used to store the
configuration of a reconfigurable region of 8000 LUTs. If this is not enough, the
configuration can be partially stored in the bitstream memory, and later it can be
carried out by combining modes 2 and 3. This is a key feature to maximize the use of
the on-chip memory.

Page 7 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:8

3.3 Configuration Prefetching and Caching support

Our ICAP controller has been designed to provide support both for configuration
prefetching and configuration caching. As explained in Section 1, prefetching and
caching have been proved to be powerful techniques to reduce the reconfiguration
latency. These techniques are usually applied by loading and storing the
configurations in different reconfigurable regions.

The idea behind configuration prefetching, as applied in the articles [8-13], is to
carry out the reconfigurations in advance. For instance, while a task is executed on a
reconfigurable region, we may prefetch the following task by storing it in another
reconfigurable region.

Configuration caching in FPGAs consists in storing some selected configurations
in idle reconfigurable regions. Hence, when these tasks need to be executed, they are
already loaded and no reconfiguration is needed (this is called a configuration cache
hit). Some examples are [17-19].

However, the application of these techniques with the reconfigurable regions of an
FPGA presents a strong limitation: it is only feasible in systems where some of the
reconfigurable regions are idle. Otherwise, it is not possible to prefetch or to cache
new configurations.

The on-chip memory included in our controller to store configurations can be
leveraged to overcome this limitation since, if all the reconfigurable regions are busy,
or if the system includes only one reconfigurable region, it is still possible to apply
these techniques using our bitstream memory to store the configurations. Evidently,
the benefits are different: if a configuration is stored in a reconfigurable region it can
be used when required without carrying out a reconfiguration, whereas if stored in
the bitstream memory of our controller, the reconfiguration is still necessary, but it
can be carried out at full speed.

Section 4.3 will present a case study that illustrates the benefits of using our
bitstream memory for configuration caching and prefetching in a system with only
one reconfigurable region.

4. EXPERIMENTAL RESULTS
4.1 Latency

We have measured the reconfiguration latency for both Xilinx XPS_HWICAP
controller and our controller retrieving configuration data from three different
memories: a non-volatile off-chip memory (Flash), a volatile off-chip memory (DDR2),
and a volatile on-chip memory (BRAM). Figure 5 depicts the normalized
reconfiguration latencies for all the evaluations. Notice that the results are
represented in logarithmic scale. The red line points out the minimum latency
according to the ICAP bandwidth.

Page 8 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

1

10

100

1,000

10,000

Flash DDR2 On-Chip

Re
co

nf
ig

ur
at

io
n

La
te

nc
y

(m
s/

M
B)

Data source

XPS_HWICAP XPS_HWICAP with DMA Multi-Mode ICAP Multi-Mode ICAP with DMA

ICAP min
(2.5 ms/MB)

Fig. 5. Reconfiguration latencies

With the XPS_HWICAP controller, reconfigurations from Flash take 2,900
ms/MB. In the case of data transferences from the Flash memory, the inclusion of a
DMA controller does not reduce significantly the latency because the Flash controller
limits transferences to only 2 bytes [32]. If data are read from DDR2, the latency
decreases to 117 ms/MB without DMA and 34.7 ms/MB with DMA, still far from
taking fully advantage of the reconfiguration port bandwidth. Finally, retrieving the
configurations from on-chip memory is the fastest choice, with a latency of 79 ms/MB
without DMA, and 28 ms/MB with DMA.

With our controller, both the Flash and the DDR2 alternatives got similar
latencies than the XPS_HWICAP controller since in these cases the controller is not
the bottleneck. However, the on-chip reconfiguration is clearly faster. The reason is
that our on-chip memory is embedded in the controller. Hence, no accesses to the
system bus are needed. For this reason, our controller achieves the minimum
reconfiguration latency (one write operation per cycle at 100MHz, i.e. 400 MB/s),
which is 31 times faster than the XPS_HWICAP. It is important to remark that, as
explained in the introduction, other on-chip controllers [26-27] can achieve this
performance. In fact they report even better performance by overclocking the ICAP.
Our controller could also take advantage of overclocking, since it can be clocked at
500 MHz, but, as explained before, Xilinx does not guarantee proper operation for
frequencies above 100 MHz in this FPGA [28].

We have also evaluated the benefits of including a DMA controller to manage the
transactions from the different memories without processor intervention. As it can be
seen in the Figure 5, the DMA controller reduces the latencies significantly, but even
in the best case is still eight times slower than using the embedded bitstream
memory. Moreover the original Xilinx functions for the XPS_HWICAP do not support
DMA transactions. Hence they have to be modified by the developer.

Page 9 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:10

4.2 Resources and Power Overheads

Some previous works have evaluated the power consumption during
reconfiguration. In [33-34] the authors propose models to estimate the power
consumption during the reconfiguration. In addition, in [33] they carry out
measurements of the FPGA power consumption using a high-speed digital
oscilloscope and the shunt resistor method. They use these measures to evaluate the
accuracy of their model, reporting a small error of 14%. These models are interesting
but only focus on the FPGA power consumption. In this work we also want to take
into account the consumption of the memory elements involved in the reconfiguration
process. [35] is a recent work that carries out FPGA power measurements during
reconfiguration using a high-speed digital oscilloscope on a Virtex 5 FPGA. Their
objective is to compare the power consumption during partial and total
reconfiguration. They report a dynamic consumption of 160mW during on-chip
partial reconfiguration and 220mW during total reconfiguration. Again they do not
take into account the impact of the memory elements. The results presented for the
on-chip reconfiguration are very similar to our measures for on-chip reconfiguration:
we have measured 180mW for the dynamic power in our board whereas they have
measured 160mW.

Fig. 6. Power measurement setup

Figure 6 presents the setup used to measure the power consumption. We have

used a Yokogawa WT210 digital power meter, which is an accepted device by the
Standard Performance Evaluation Corporation (SPEC) for power efficiency
benchmarking [36]. As explained before, our objective is to measure the contribution
of all the components involved in the reconfiguration process, and not only the FPGA.
The power supply of the evaluation board is connected to the power meter, therefore
the power measures include the consumption of the evaluation board and the power

Page 10 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

adapter. The power meter samples both voltage and current at a frequency of 100
KHz.

To measure the static power consumption of each component, we first measured
the power consumption of the system with all the components in an idle state, and
then we removed them one by one and repeated the power measures. The difference
between these sequent measures corresponds to the static power of each component
removed. Ambient temperature was constant in all the measures. In all the cases we
measured the power consumption for two minutes, and then computed the average
value.

Regarding the dynamic power consumption, we implemented a loop that
reconfigures thousands of times for a total time in the order of minutes. Finally, we
take the average power consumption for each reconfiguration scheme.

Table I summarizes the FPGA resources and the static power overheads of each
component. Although these data may change from one FPGA to another, we believe
that it provides an interesting hint for any designer in order to decide whether to
include or not any component based on the overheads, the resources available, the
power budget, and the system requirements. For instance, in systems with a very
constrained power budget, avoiding the use of the DDR2 memory, if possible, will
significantly help to meet this power budget.

Table I. Resources used and Static Power

Component LUTs FFs BRAMs Static power (W)
DDR2 controller 2531 3693 5 3.54
Flash controller 102 213 0 0.32

Interrupt controller 85 121 0 0.02
DMA controller 695 562 0 0.64

Multi-Mode ICAP (128KB) 439 355 32 0.28
 Multi-Mode ICAP (256KB) 446 357 64 0.45

XPS_HWICAP 717 702 2 0.16

LUTs and FFs required by the Multi-Mode ICAP controller keep almost constant

and very low regardless its storage capacity (the small variations are due to the
additional addressing bits required for higher memory capacities), and the static
power consumption linearly increases with the memory size by a factor of 1.6.

Page 11 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
yn

am
ic

 P
ow

er
(W

)

Data transference

Reconfiguration

Fig. 7. Dynamic Power

Figure 7 depicts the dynamic power consumption due to the reconfigurations, both
for our controller and for the XPS_HWICAP. Each bar is divided into two terms:
‘Data Transference’, which includes the dynamic power consumption due to data
movement from the external memories to the reconfiguration controller, and
‘Reconfiguration’, which includes the power consumption of the reconfiguration
controller and the FPGA reconfiguration circuitry.

We took two different measures in order to split the power consumption between
reconfiguration and data transference. In the first one, we carried out the
reconfiguration, which involves reading the configuration from a given memory and
loading it onto the FPGA. In the other one, we used the mode 0 of our reconfiguration
controller. In this mode, the configuration bitstream is transferred from an external
memory to the internal memory of our controller, but it is not loaded onto the FPGA.
Therefore, the difference between these two measures is due to the power term
corresponding to the reconfiguration. In both cases, we repeated the process inside a
loop for several minutes in order to minimize noise.

As it can be seen in the figure, the term ‘Reconfiguration’ keeps almost constant
about 180mW in all the setups. On the contrary, the ‘Data Transference’ term greatly
varies depending on the case. Dynamic power is much lower in the setups retrieving
data from the Flash memory than in setups accessing to the DDR2. In the case of the
on-chip storage, this term is null when using our controller because all the process is
carried out inside the controller; whereas if the XPS_HWICAP controller is used
instead, despite being also on-chip, data have to go through the bus.

Page 12 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

En
er

gy
 c

on
su

m
pt

io
n,

 m
J/

M
B

(lo
g

sc
al

e)

Static

Dynamic

Fig. 8. Energy Consumption

Figure 8 shows the energy consumed, in mJ per MB reconfigured, in the setups

evaluated in Figure 7. When configurations are retrieved from the Flash memory, the
results (taking into account both static and dynamic energy) are worse. Despite being
less power-hungry than the DDR2-based setups, the large latency of this memory
(see Figure 5) causes a strong energy penalty. On the contrary, setups that use an on-
chip memory are the most energy efficient ones. It is remarkable the fact that our
Multi-Mode ICAP controller requires two orders of magnitude less energy than the
XPS_HWICAP (on-chip). In fact, the energy required by this setup is, at least, one
order or magnitude lower than any other setup. Hence, a bitstream memory
embedded in the reconfiguration controller drastically reduces the reconfiguration
energy overheads.

4.3 Configuration Prefetching and Caching

Our Multi-Mode controller has been designed to provide an additional level for

configuration caching and prefetching. Using the bitstream memory, we can apply
these techniques even when all the reconfigurable regions are busy. In this section,
we present a case study to illustrate the benefits of this approach.

We have selected a 3D rendering application based on the open source Pocket-
GL library (Pocket GL). We do not have the code of the application but a dynamic
trace obtained at IMEC R&D [37]. They characterized the dynamic events of a
Pocket-GL application that were adapting its execution to its input data. For each
possible run-time scenario, they obtained the sequence of configurations that must be
executed. This is a very interesting test since it includes 10 different dynamic tasks
executed in 20 different sequences (task-graphs). We analyzed the same application
in a previous article that presented a run-time scheduler for reconfigurable systems
[13]. This scheduler included support both for configuration prefetching and caching
taking advantage of idle reconfigurable regions to reduce the reconfiguration
overhead. However, since these are sequential graphs, the system designer may
decide that only one reconfigurable region is needed to execute them. In that case
there would be no idle regions available. Hence, we have extended that previous

Page 13 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:14

approach to apply prefetching and caching by using the bitstream memory of our
controller.

The results are depicted in Figure 9. The leftmost column shows the initial
overhead when the reconfigurations are carried out on demand and without applying
neither prefetching nor caching. We assume that the configurations are stored in the
DDR2 memory, and that the system includes a DMA controller. In this case the
application needs 70% more time due to the reconfigurations. If we use the bitstream
memory to apply a prefetch approach we can reduce that overhead to 38%. The
approach implemented is very simple: while executing one task in the reconfigurable
region the following one is stored in the bitstream memory, totally or partially,
depending on the available time. When the first task finishes, we have to carry out a
reconfiguration to load the following task. During this reconfiguration the portion
stored in the bitstream memory can be loaded 3.2 times faster than the remaining
part stored in the external memory.

These results can be further improved by caching some critical tasks. The idea is
to store in the bitstream memory the configuration of those tasks that generate the
largest reconfiguration overheads. In the figure we can see that when the
configuration of the most critical task is cached the overhead is reduced to 27%, and
if the two most critical tasks are cached, it is 22%. In the rightmost column we can
see that caching the remaining 8 tasks provides no further reductions. The reason is
that the prefetch technique is already reducing the reconfiguration latency of those
tasks. In fact when the two most critical tasks are cached the reconfiguration
overhead is reduced by a factor of 3.2, which is the best result that can be achieved in
this scenario. Hence, if the bitstream memory provides enough space to store three
configurations (the two cached ones plus the one that is prefetched each time) the
system will provide the same performance with a system that stores all the
configurations on-chip.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Initial overhead Prefetching Prefetching and
caching one task

Prefetching and
caching two tasks

Caching all the
tasks

Re
co

nf
ig

ur
at

io
n

O
ve

rh
ea

d

Fig. 9. Reconfiguration overheads for the Pocket GL application when using the bitstream memory to apply
configuration prefetching and caching

Page 14 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

5. CONCLUSIONS

Configurations in reconfigurable devices can be stored in very heterogeneous
memories with different latencies and power consumption. In this paper we have
analyzed the performance, energy and power tradeoffs when carrying out
reconfigurations from several representative memories in a Xilinx XUPV5LX110T
FPGA. This can be an interesting reference for any designer attempting to optimize
the reconfigurations of a given system. In addition we have developed a simple
reconfiguration controller and described its implementation in detail. This controller
includes an internal memory to store, totally or partially, the bitstreams. With this
approach it carries out the reconfigurations at the maximum speed supported by the
ICAP and reduces both the reconfiguration latency and energy consumption. In
addition, it provides support for prefetching and caching techniques that can further
reduce the reconfiguration overheads.

ACKNOWLEDGEMENTS
This work was supported in part by grants, TIN2013-46957-C2-1-P (Spanish Gov.
and European ERDF), Consolider NoE TIN2014-52608-REDC (Spanish Gov.), gaZ:
T48 research group (Aragón Gov. and European ESF).

REFERENCES

[1] T. Becker, W. Luk, P.Y.K. Cheung, “Energy-Aware Optimization for Run-time Reconfiguration”, Field-

Programmable Custom Computing Machines, pp. 55-62, 2010
[2] S. Liu, R. N. Pittman, A. Forin, J. Gaudiot, “Achieving Energy Efficiency Through Runtime Partial

Reconfiguration on Reconfigurable Systems”, ACM Trans. on Embedded Computing Systems, vol. 12,
no. 3, Mar 2013

[3] K. Paulsson, M. Hübner, and J. Becker, “Dynamic power optimization by exploiting self-
reconfiguration in Xilinx Spartan 3-based systems”, Microprocessors and Microsystems, vol. 33, no. 1,
pp. 46-52, Feb 2009

[4] D. I. Lehn, K. Puttegowda, J. H. Park, P. Athanas, and M. Jones, “Evaluation of rapid context
switching on a CSRC device,” in in Proceedings of the International Conference of Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2002, pp. 209–215

[5] R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospective,” in Proceedings of the
conference on Design, automation and test in Europe (DATE), 2001, pp. 642–649.

[6] H. Singh, M.H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M. Chaves Filho, “MorphoSys: an
integrated reconfigurable system for data-parallel and computation-intensive applications”, IEEE
transactions on computers 49 (5), 465-481

[7] P. Beeck , F. Barat , M. Jayapala , and R. Lauwereins, “Crisp: A template for reconfigurable instruction
set processors”, International conference on Field Programmable Logic (FPL 2002), pp. 296-305

[8] Z. Li and S. Hauck, “Configuration prefetching techniques for partial reconfigurable coprocessor with
relocation and defragmentation,” in Proceedings of the ACM/SIGDA international symposium on
Field-programmable gate arrays (FPGA), 2002, pp. 187–195.

[9] J. Noguera, and R. M. Badia, “Multitasking on reconfigurable architectures: microarchitecture support
and dynamic scheduling,” ACM Transactions on Embedded Computing Systems, vol. 3, no. 2, pp. 385–
406, May 2004.

[10] Y. Qu, J. Pekka Soininen, and J. Nurmi, “A parallel configuration model for reducing the run-time
reconfiguration overhead,” in IEEE Proceedings of the Design, Automation, and Test in Europe
Conference (DATE), 2006, pp. 965–970.

[11] J. Sim, W.-F. Wong, G. Walla, T. Ziermann, and J. Teich, “Interprocedural placement-aware
configuration prefetching for FPGA-based systems,” in IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), may 2010, pp. 179–182.

[12] W. Fu and K. Compton, “Scheduling intervals for reconfigurable computing,” in Proceedings of the
IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2008,
pp. 87–96

[13] J. Clemente, J. Resano, C. Gonzalez, and D. Mozos, “A hardware implementation of a run-time
scheduler for reconfigurable systems,” IEEE Transactions on Very Large Scale Integration (VLSI)

Page 15 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:16

Systems, vol. 19, no. 7, pp. 1263–1276, July 2011.
[14] Z. Li and S. Hauck, “Configuration compression for virtex FPGAs,” in Proceedings of the Annual IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM), 2001, pp. 147–159.
[15] A. Dandalis, and V. K. Prasanna, “Configuration compression for FPGA-based embedded systems,” in

Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays (FPGA),
New York, NY, USA, 2001, pp. 173–182

[16]J.A., Clemente, E. Perez Ramo, J. Resano, D. Mozos, and F. Catthoor, "Configuration Mapping
Algorithms to Reduce Energy and Time Reconfiguration Overheads in Reconfigurable Systems," Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.22, no.6, pp.1248,1261, June 2014.

[17] Z. Li, K. Compton, and S. Hauck, “Configuration caching management techniques for reconfigurable
computing,” in Proceedings of the annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2000, pp. 22–36

[18] R. Kalra, and R. Lysecky, “Configuration locking and schedulability estimation for reduced
reconfiguration overheads of reconfigurable systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 18, no. 4, pp. 671–674, Apr. 2010.

[19] J. A. Clemente, J. Resano, and D. Mozos, “An approach to manage reconfigurations and reduce area
cost in hard real-time reconfigurable systems”, ACM Transactions on Embedded Computing Systems,
vol. 13 Issue 4, article 90, November 2014.

[20] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of Partial Reconfiguration in FPGA Systems:
A Survey and a Cost Model," ACM Transactions on Reconfigurable Technology Systems, vol. 4, no. 4,
pp. 36:1-36:24, December 2011

[21] K. Papadimitriou, A. Anyfantis, and A. Dollas, “An effective framework to evaluate dynamic partial
reconfiguration in FPGA systems,” IEEE Transactions on Instrumentation and Measurement, vol. 59,
no. 6, pp.1642–1651, Jun. 2010

[22] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Exploiting partial runtime reconfiguration for high-
performance reconfigurable computing,” ACM Transactions on Reconfigurable Technology Systems,
vol. 1, no. 4, pp.21:1–21:23, Jan. 2009.

[23]K. Vipin, S. A. Fahmy, “A High Speed Open Source Controller for FPGA Partial Reconfiguration”, in
Proceedings of the International Conference on Field Programmable Technology (FPT), Seoul, Korea,
December 2012, pp. 61–66

[24]S. Liu, N. Pittman, and A. Forin, “Minimizing Partial Reconfiguration Overhead with Fully Streaming
DMA Engines and Intelligent ICAP Controller”, Microsoft Research 2009

[25] L. Ming, W. Kuehn, L. Zhonghai, and A. Jantsch, "Run-time Partial Reconfiguration speed
investigation and architectural design space exploration," Field Programmable Logic and Applications,
2009. FPL 2009. International Conference on , vol., no., pp.498-502, Aug. 31 2009-Sept. 2 2009

[26]R. Bonamy, P. Hung-Manh, S. Pillement, D. Chillet, "UPaRC—Ultra-fast power-aware reconfiguration
controller," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012 , vol., no.,
pp.1373-1378, 12-16 March 2012

[27]S. Gimle, D. Koch, and J. Torresen, "High Speed Partial Run-Time Reconfiguration Using Enhanced
ICAP Hard Macro," IEEE International Parallel & Distributed Processing Symposium, 2011, pp.174-
180, 16-20 May 2011

[28]Virtex-5 FPGA Configuration Guide UG191 (v3.11) October 19, 2012.
www.xilinx.com/support/documentation/user_guides/ug191.pdf

[29]Xilinx DS86 LogiCORE IP XPS HWICAP. June, 2011.
https://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap/v5_01_a/xps_hwicap.pdf

[30]Xilinx DS531 Processor Local Bus (PLB) v4.6 (v1.05a). Sept 2010.
http://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf

[31]Virtex UltraScale+ Product Table
 https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productTable
[32]XPS SYSACE (System ACE) Interface Controller (v1.01a) December 2, 2009.
 www.xilinx.com/support/documentation/ip_documentation/xps_sysace.pdf
[33] R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys, “Power consumption model for partial and
 dynamic reconfiguration”, International Conference on Reconfigurable Computing and FPGAs, 2012
[34] P. Stenström, “Transactions on High-Performance Embedded Architectures and Compilers IV”,
 Lecture Notes in Computer Science, vol. 6760, 2011
[35]A. Nafkha, and Y. Louet, “Accurate Measurement of Power Consumption Overhead During FPGA
 Dynamic Partial Reconfiguration”, International Symposium on Wireless Communication Systems
 (ISWCS), 2016
[36]Yokogawa WT210/WT230 Digital Power Meters.

http://tmi.yokogawa.com/discontinued-products/digital-power-analyzers/digital-power-
analyzers/wt210wt230-digital-power-meters/

[37] Interuniversitair Micro-Electronica Centrum.
 https://www.imec-int.com/

Page 16 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6410219

Analysis of the reconfiguration latency and energy overheads for

a Xilinx Virtex-5 FPGA

JAVIER OLIVITO, University of Zaragoza, 0034876555081, jolivito@unizar.es

FELIPE SERRANO, Complutense University of Madrid

JUAN ANTONIO CLEMENTE, Complutense University of Madrid

HORTENSIA MECHA, Complutense University of Madrid
JAVIER RESANO, University of Zaragoza

In this paper we have evaluated the overhead and the tradeoffs of a set of components usually

included in a system with run-time partial reconfiguration implemented on a Xilinx Virtex-5.

Our analysis shows the benefits of including a scratchpad memory inside the reconfiguration

controller in order to improve the efficiency of the reconfiguration process. We have designed

a simple controller for this scratchpad that includes support for prefetching and caching in

order to further reduce both the energy and latency overhead.

1. INTRODUCTION AND RELATED WORK

Dynamic partial reconfiguration (DPR) is one of the most interesting features of

FPGAs. Reconfiguration enables the reuse of the FPGA hardware resources for

different tasks that can be loaded at run-time according to the system needs. Hence,

FPGAs can be used to develop flexible platforms that can adapt themselves to the

execution of different applications. DPR has been thoroughly explored as a way to

reduce area and power in some systems [1-3]. The idea is to reuse the reconfigurable

area for different tasks that are not executed simultaneously. However, the

reconfiguration process itself introduces overheads both in the execution time and in

the energy consumption. The reason is that it involves not only using the

reconfiguration circuitry to update the device configuration, but also moving large

data sets from the memory where the configurations are stored to the reconfiguration

port.

The analysis of the reconfiguration overheads has been the target of many

research groups, and they have focused on execution-time overheads. Several works

have proposed alternative reconfigurable architectures. For instance, multi-context

FPGAs [4] enable the load of a new configuration while another one is being

executed. Another example is coarse-grain architectures [5], which offer less

flexibility but require smaller configuration bitstreams that can be easily stored on-

chip in order to further increase the reconfiguration speed [6-7]. We believe that the

techniques that we expose in this article can be also applied on these architectures,

but we have focused on single-context FPGAs because they dominate the

reconfiguration landscape.

Another approach to reduce the reconfiguration overheads is to apply scheduling

techniques that attempt to hide the reconfiguration latency by fetching the

configurations in advance and storing them in idle reconfigurable regions. This is a

powerful technique for embedded systems where the task execution order is known

because these techniques use the task-graph information to prefetch the

configurations that will be needed in the near future. Some relevant works that

propose reconfiguration scheduling techniques are [8-13]. It is important to mention

that the controller described in this article is compatible with any of these techniques

39

Page 17 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:2

and, in fact, it can improve their results since even when all the reconfigurable

regions are busy, the configurations can be still prefetched to the internal memory

included in our controller. This is explained in detail in Section 3.3.

Another powerful way to reduce the reconfiguration time overhead is to reduce its

size by applying compression techniques. With this approach, configurations are

fetched faster but they have to be decompressed before writing them in the device,

and this may involve additional execution time and energy penalties. However, these

overheads can be smaller if the system includes hardware support to decompress the

configurations. Some relevant works on compression are [14] and [15]. Again, these

techniques are fully compatible with our work since our controller could easily

incorporate a decompression module.

Another option to reduce the reconfiguration overhead is to customize the memory

resources used to store the configurations. For instance, [16] proposes to include

heterogeneous on-chip memory modules, ones optimized for performance and others

optimized for low power. With this approach the designer can explore different

power/performance reconfiguration tradeoffs. This idea is orthogonal with our

approach and could be included in our controller.

Another interesting technique is configuration caching. The idea is to store

different configurations in different reconfigurable regions in the device and design

specific replacement techniques to maximize the configuration reuse. Some

interesting configuration caching techniques are [17-19]. Our controller has been

designed to support configuration caching, and, in fact, its internal memories can be

used to apply these techniques in an additional level. This is further explained in

Section 3.3.

Regarding the reconfiguration process, many works assume that the

reconfiguration latency is a fixed time that can be calculated by dividing the size of

the configuration by the peak bandwidth of the reconfiguration port. In fact, the peak

reconfiguration bandwidth is usually the only value provided by FPGA vendors.

However, is that value relevant? Can we really achieve that bandwidth? How can we

do it? In [20], Papadimitriou et al. elaborated a theoretical cost model to estimate the

reconfiguration time at an early stage of the development. The authors estimated the

reconfiguration time when fetching the bitstreams from external memories. They

verified the model with measures over a real system implemented on a Virtex-II Pro

FPGA and reported a model difference of ~25%, which is due to different clocks of

processors, i.e. 300 MHz for the calculated one and 100 MHz for the measured one.

Several works have pointed out that the actual reconfiguration latencies obtained in

representative case studies are one order of magnitude, or even two, worse than the

peak reconfiguration latency [21-22]. The reason for these poor results is that

configurations are usually stored in off-chip non-volatile memories, and the actual

bandwidth of these memories is much smaller than that of the reconfiguration port.

Hence, the bottleneck is not the reconfiguration port, but the bandwidth of the

external memories. Some previous works have demonstrated that it is possible to

achieve almost peak-performance when using some specific external memories with

additional support. For instance, in [23] the authors claim to achieve almost peak

performance in a Virtex-6 when using DDR3 memory, a Direct Memory Access

(DMA) controller, and some additional FIFOs to hide the latency, and in [24], they

retrieve configurations from an external SRAM through a customized DMA. In [23],

they also state that it is possible to achieve a speedup of 2 by overclocking the

Page 18 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

Internal Configuration Access Port (ICAP). However, although each new generation

of external memories is providing more bandwidth, it is likely that the speed of the

reconfiguration port will also scale accordingly. In fact, Virtex UltraScale+
TM

 FPGAs

can be reconfigured at 200MHz (previous generations were limited to 100 MHz).

Moreover, in many systems the energy overhead is even more relevant than

performance, and the use of external memories strongly penalizes in power and

energy.

Some previous works propose the inclusion of memory resources inside the

reconfiguration controller in order to preload configurations. In [25], the authors

analyze the reconfiguration latency of a system implemented in a Virtex-4 FPGA that

includes a system bus that is used for all the data transfers, including those needed

to carry out a reconfiguration, i.e. reading the configuration and sending it to the

reconfiguration port. They measured the reconfiguration latencies taking into

account the different access schemes provided by the bus, and including a DMA

controller. The results demonstrate the impact of the communication scheme in the

reconfiguration latency. In their analysis, they claim that the only way to achieve the

peak reconfiguration bandwidth is to avoid accesses to the system bus. Even when

the system bus is available and transfers are performed through a DMA, these

accesses introduce significant delays.

Other interesting works are [26] and [27]. In these articles, the authors propose

partial reconfiguration controllers that reach a throughput of 1.433GB/s and 2.2GB/s

respectively. These controllers allocate on-chip memory resources to store de

configurations, and the ICAP is overclocked up to 550 MHz. Although the

manufacturer does not guarantee proper operation at frequencies higher than 100

MHz, these works are a proof of concept of the use of internal memory for future and

faster versions of the ICAP.

After analyzing the aforementioned works, it is clear that the reconfiguration

latency drastically depends on where the configurations are stored and the

communication scheme used to read them. The first contribution of this work is the

analysis of how these two parameters affect the reconfiguration latency in a Virtex-5

FPGA. We made the evaluation on the XUPV5-LX110T Development System

included in the Xilinx University Program. This evaluation board includes many

different memories, and we selected two external memories, Flash and DDR2 DRAM,

and the internal on-chip SRAM.

Other key metrics, especially in embedded systems, are power and energy. Hence,

as a second contribution, we measured the energy demanded in a reconfiguration,

depending on the kind of memory where the configurations are stored. We also

measured the power overhead of some components providing support for the process,

such as the controllers for the memories, the reconfiguration, or the DMA. This

analysis of the energy overhead in the reconfiguration may be helpful for the

developers in order to decide where to store the configurations.

Finally, as a third contribution, we have developed a simple and efficient

reconfiguration controller that, as in [26] and [27], includes an embedded memory

that can be used to store bitstreams. Using that memory the reconfiguration process

can be carried out at the maximum speed supported by the ICAP while minimizing

the energy consumption. As a novelty, this controller includes two additional working

modes in order to provide support for configuration prefetching and caching using the

memory embedded in the controller. These modes can be used to reduce the

reconfiguration overheads when only some of the configurations can be stored on-

chip.

Page 19 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:4

2. TARGET ARCHITECTURE

Our target architecture consists of three different memories that can be used to store

configuration bitstreams, a reconfiguration controller that provides an interface with

the ICAP [28], a processor, and at least one Reconfigurable Region (RR). Figure 1

depicts the elements of this architecture. In our experiments, the processor is a

Xilinx MicroBlaze, the system bus is a PLB 4.6, and the memories are a 1GB

Compact Flash, a 64-bit wide 256MB DDR2 SODIMM, and the FPGA internal

BlockRAMs (BRAMs). Additionally, DMA and interrupt controllers supplied by

Xilinx were added in order to evaluate their performance-energy tradeoffs.

FPGA

Processor

Bus

DDR2 Flash

DMA
Controller

Interrupt

Controller
Flash

Controller
DDR2

Controller

R.R. 1 R.R. N…

…

Reconfiguration

controller

ICAP

Fig. 1. Target architecture

The selection of the memories where configurations will be stored, and how to move

these configurations among these memories and the reconfiguration controller is not

straightforward, as it depends on multiple factors such as the power budget, the

performance requirements, and the needs of other system components (for example, if

the DDR or the Flash memories are demanded by other tasks or components, they would

be already present in the system and then the static power of these controllers will not

introduce an additional penalty related to DPR). In the experimental results presented

in Section 4, we analyze the reconfiguration energy-performance tradeoff in order to

help designers to make their decisions.

3. PARTIAL RECONFIGURATION CONTROLLER

3.1 Xilinx IP

Xilinx provides the XPS_HWICAP IP core for the Virtex-5 FPGA to manage partial

reconfigurations in processor-based systems [29]. It is composed of several control

registers, two small FIFOs, a finite-state machine (FSM), and a PLB bus interface

[30]. Xilinx also provides a driver to use this controller from the processor-side. This

driver enables to read configurations from any memory in the system and to send the

data to the XPS_HWICAP controller through the PLB bus. This controller is easy to

use and it should be the starting point for anybody who wants to carry out

reconfigurations. However, this driver has not been designed to optimize the data

transfers among the memories and the XPS_HWICAP. As a result, as it will be

Page 20 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

explained in section 4, it only achieves a reconfiguration throughput of 12 MB/s, far

from the peak 400 MB/s supported by the ICAP.

3.2 Multi-Mode ICAP Controller

In order to reach the maximum reconfiguration throughput, the ICAP should receive

one 32-bit word per cycle at a 100MHz rate. As explained in the previous section, it is

hard to achieve this throughput when configurations are stored in off-chip memories,

or even when they are stored on-chip but they are accessed through a shared system

bus. A solution is to store them inside the configuration controller as it was

previously proposed in [25-27]. With this approach the reconfigurations can be

carried out at full speed. In current FPGA architectures, this can be achieved by

reserving part of the on-chip RAM for the controller. We refer to this on-chip RAM as

bitstream memory.

Fig. 2. Multi-Mode ICAP reconfiguration controller

Figure 2 illustrates the architecture of our partial reconfiguration controller, called

Multi-Mode ICAP. The bus interface was automatically generated by the Xilinx EDK

tool, and the remaining blocks were designed in VHDL and integrated inside the

EDK project. The Control and the Address registers are software accessible. Hence

the processor can easily provide the information and check if the controller has

finished. If the system includes an interrupt controller, the controller can generate

an interrupt when the Done bit is activated; again this is straightforward by using

the EDK tools. This architecture based on an internal memory, a register-based

interface, and a control unit that is very similar to those proposed in [25] and [26].

The main difference is that our control unit provides support for several useful

working modes.

The Multi-Mode ICAP supports four different working modes:

a) Mode 0: Configuration Load. The controller receives a configuration and

stores it in the bitstream memory. The controller does not send the

configuration to the ICAP. This mode is useful to fetch configurations in

advance from the external memories in order to reduce the

Page 21 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:6

reconfiguration latency since, once a configuration is stored, our

controller sends it to the ICAP at the maximum supported speed.

b) Mode 1: External reconfiguration and configuration load. The controller

receives a configuration and forwards it to the ICAP. In parallel, it stores

the configuration in the internal bitstream memory. In this mode the

reconfiguration speed depends on how fast the configuration data are

received from the bus, i.e. our controller does not reduce the

reconfiguration latency in this mode. However, if the same configuration

is required again, it can be loaded from the internal bitstream memory at

the maximum speed.

c) Mode 2: External reconfiguration. The controller receives a configuration

and forwards it to the ICAP as in the previous case, but in this mode the

configuration is not stored in the bitstream memory.

d) Mode 3: Internal reconfiguration. The controller sends to the ICAP a

configuration previously stored in the bitstream memory. The

reconfiguration is carried out at full speed.

In order to support this functionality, only two software accessible registers (Control

and Address registers) and little additional control logic are necessary. The control

register (Figure 3) is used to configure our controller. Bit 0 reports when an operation

has finished, bit 1 triggers the start of an operation, and bits 2 and 3 are used to

select the working mode. Finally the remaining 28 bits are used to set the size of the

configuration expressed in 32-bits words. The address register specifies the initial

address of the bitstream memory to store or load a specific configuration.

Done

0 1 2 3

Start

Config size (number of 32-bit words)Mode

Fig. 3. Control register

The control unit (Figure 4) only requires three states: Idle, Modes 0, 1, 2, and Mode 3.

The controller is initially in the Idle state. When the start bit is activated it will move

forward to state Modes 0, 1, 2, or Mode 3 according to the Mode set on the Control

register. In Modes 0, 1, 2, every configuration word received from the bus is

forwarded to the proper destination: bitstream memory for Modes 0 and 1, and the

ICAP for Modes 1 and 2. In Mode 3, the controller reads the configuration stored in

the bitstream memory included in the reconfiguration controller, and forwards it to

the ICAP. In all the cases a counter is used to know how many words have been

processed and to update the next bitstream memory address to be read. When the

counter reaches the number of words requested the Done bit is activated.

Page 22 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

Mode

3

Modes

0, 1, 2

start &

mode 0,1 or 2
done

Idle
start &

mode 3
done

Fig. 4. Multi-Mode ICAP Finite State Machine

The implementation of this control unit requires a 2-bit register to store the current

state, a counter that keeps track of how many words have been received, an adder to

update the bitstream memory address, and a comparator to know when all the words

have been processed. We have also included a bit swapper module. The reason is that

Xilinx Plan Ahead, which is the tool that we used to generate the bitstreams for run-

time reconfiguration, does not generate the configuration data in the same bit order

required by the ICAP [21]. Hence, the bit swapper module reorders each

configuration word by swapping the bits within each byte, i.e. from (b
31
..b

24
,

b

23
..b

16
,

b
15
..b

8
,

b

7
..b

0
) to (b

24
..b

31
,

b

16
..b

23
,

b

8
..b

15
,

b

0
..b

7
). This step might be instead done in

software once a configuration bitstream is generated, and then this module could be

removed. We decided to do it in hardware because swapping bits do not introduce any

hardware overhead and because it simplifies the use of the controller.

The available on-chip RAM varies a lot depending on the FPGA used. The current

trend in computer architecture is to include more and more on-chip memory

resources. In fact, Xilinx has recently released a new family of FPGAs, called

UltraScale+
TM

, which brings a breakthrough including up to 65,913 Mbits of on-chip

RAM [31], making it feasible to store several configurations even for large

reconfigurable regions. However, small FPGAs have less than 1 Mbit. Hence, the

benefits of including a bitstream memory embedded in our controller depend on the

availability of on-chip memory and the size of the reconfigurable regions. If there are

enough on-chip memory resources to store a significant part of the needed

configurations our controller will help to optimize the reconfiguration process. At this

point, other orthogonal techniques such as compression would play an important role

as well. Adding compression support to our controller is as simple as including a

decompression module before the bit swapper.

In our controller the size of the bitstream memory is a generic parameter that can

be instantiated with different values. In our implementation we can use up to 256

KB. Typically, the FPGA includes more RAM resources, but they are used to

implement other elements of the system. This size can be used to store the

configuration of a reconfigurable region of 8000 LUTs. If this is not enough, the

configuration can be partially stored in the bitstream memory, and later it can be

carried out by combining modes 2 and 3. This is a key feature to maximize the use of

the on-chip memory.

Page 23 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:8

3.3 Configuration Prefetching and Caching support

Our ICAP controller has been designed to provide support both for configuration

prefetching and configuration caching. As explained in Section 1, prefetching and

caching have been proved to be powerful techniques to reduce the reconfiguration

latency. These techniques are usually applied by loading and storing the

configurations in different reconfigurable regions.

The idea behind configuration prefetching, as applied in the articles [8-13], is to

carry out the reconfigurations in advance. For instance, while a task is executed on a

reconfigurable region, we may prefetch the following task by storing it in another

reconfigurable region.

Configuration caching in FPGAs consists in storing some selected configurations

in idle reconfigurable regions. Hence, when these tasks need to be executed, they are

already loaded and no reconfiguration is needed (this is called a configuration cache

hit). Some examples are [17-19].

However, the application of these techniques with the reconfigurable regions of an

FPGA presents a strong limitation: it is only feasible in systems where some of the

reconfigurable regions are idle. Otherwise, it is not possible to prefetch or to cache

new configurations.

The on-chip memory included in our controller to store configurations can be

leveraged to overcome this limitation since, if all the reconfigurable regions are busy,

or if the system includes only one reconfigurable region, it is still possible to apply

these techniques using our bitstream memory to store the configurations. Evidently,

the benefits are different: if a configuration is stored in a reconfigurable region it can

be used when required without carrying out a reconfiguration, whereas if stored in

the bitstream memory of our controller, the reconfiguration is still necessary, but it

can be carried out at full speed.

Section 4.3 will present a case study that illustrates the benefits of using our

bitstream memory for configuration caching and prefetching in a system with only

one reconfigurable region.

4. EXPERIMENTAL RESULTS

4.1 Latency

We have measured the reconfiguration latency for both Xilinx XPS_HWICAP

controller and our controller retrieving configuration data from three different

memories: a non-volatile off-chip memory (Flash), a volatile off-chip memory (DDR2),

and a volatile on-chip memory (BRAM). Figure 5 depicts the normalized

reconfiguration latencies for all the evaluations. Notice that the results are

represented in logarithmic scale. The red line points out the minimum latency

according to the ICAP bandwidth.

Page 24 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

1

10

100

1,000

10,000

Flash DDR2 On-Chip

R
e

co
n

fi
g

u
ra

ti
o

n
 L

a
te

n
cy

(m
s/

M
B

)

Data source

XPS_HWICAP XPS_HWICAP with DMA Multi-Mode ICAP Multi-Mode ICAP with DMA

ICAP min

(2.5 ms/MB)

Fig. 5. Reconfiguration latencies

With the XPS_HWICAP controller, reconfigurations from Flash take 2,900

ms/MB. In the case of data transferences from the Flash memory, the inclusion of a

DMA controller does not reduce significantly the latency because the Flash controller

limits transferences to only 2 bytes [32]. If data are read from DDR2, the latency

decreases to 117 ms/MB without DMA and 34.7 ms/MB with DMA, still far from

taking fully advantage of the reconfiguration port bandwidth. Finally, retrieving the

configurations from on-chip memory is the fastest choice, with a latency of 79 ms/MB

without DMA, and 28 ms/MB with DMA.

With our controller, both the Flash and the DDR2 alternatives got similar

latencies than the XPS_HWICAP controller since in these cases the controller is not

the bottleneck. However, the on-chip reconfiguration is clearly faster. The reason is

that our on-chip memory is embedded in the controller. Hence, no accesses to the

system bus are needed. For this reason, our controller achieves the minimum

reconfiguration latency (one write operation per cycle at 100MHz, i.e. 400 MB/s),

which is 31 times faster than the XPS_HWICAP. It is important to remark that, as

explained in the introduction, other on-chip controllers [26-27] can achieve this

performance. In fact they report even better performance by overclocking the ICAP.

Our controller could also take advantage of overclocking, since it can be clocked at

500 MHz, but, as explained before, Xilinx does not guarantee proper operation for

frequencies above 100 MHz in this FPGA [28].

We have also evaluated the benefits of including a DMA controller to manage the

transactions from the different memories without processor intervention. As it can be

seen in the Figure 5, the DMA controller reduces the latencies significantly, but even

in the best case is still eight times slower than using the embedded bitstream

memory. Moreover the original Xilinx functions for the XPS_HWICAP do not support

DMA transactions. Hence they have to be modified by the developer.

Page 25 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:10

4.2 Resources and Power Overheads

Some previous works have evaluated the power consumption during

reconfiguration. In [33-34] the authors propose models to estimate the power

consumption during the reconfiguration. In addition, in [33] they carry out

measurements of the FPGA power consumption using a high-speed digital

oscilloscope and the shunt resistor method. They use these measures to evaluate the

accuracy of their model, reporting a small error of 14%. These models are interesting

but only focus on the FPGA power consumption. In this work we also want to take

into account the consumption of the memory elements involved in the reconfiguration

process. [35] is a recent work that carries out FPGA power measurements during

reconfiguration using a high-speed digital oscilloscope on a Virtex 5 FPGA. Their

objective is to compare the power consumption during partial and total

reconfiguration. They report a dynamic consumption of 160mW during on-chip

partial reconfiguration and 220mW during total reconfiguration. Again they do not

take into account the impact of the memory elements. The results presented for the

on-chip reconfiguration are very similar to our measures for on-chip reconfiguration:

we have measured 180mW for the dynamic power in our board whereas they have

measured 160mW.

Fig. 6. Power measurement setup

Figure 6 presents the setup used to measure the power consumption. We have

used a Yokogawa WT210 digital power meter, which is an accepted device by the

Standard Performance Evaluation Corporation (SPEC) for power efficiency

benchmarking [36]. As explained before, our objective is to measure the contribution

of all the components involved in the reconfiguration process, and not only the FPGA.

The power supply of the evaluation board is connected to the power meter, therefore

the power measures include the consumption of the evaluation board and the power

Page 26 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

adapter. The power meter samples both voltage and current at a frequency of 100

KHz.

To measure the static power consumption of each component, we first measured

the power consumption of the system with all the components in an idle state, and

then we removed them one by one and repeated the power measures. The difference

between these sequent measures corresponds to the static power of each component

removed. Ambient temperature was constant in all the measures. In all the cases we

measured the power consumption for two minutes, and then computed the average

value.

Regarding the dynamic power consumption, we implemented a loop that

reconfigures thousands of times for a total time in the order of minutes. Finally, we

take the average power consumption for each reconfiguration scheme.

Table I summarizes the FPGA resources and the static power overheads of each

component. Although these data may change from one FPGA to another, we believe

that it provides an interesting hint for any designer in order to decide whether to

include or not any component based on the overheads, the resources available, the

power budget, and the system requirements. For instance, in systems with a very

constrained power budget, avoiding the use of the DDR2 memory, if possible, will

significantly help to meet this power budget.

Table I. Resources used and Static Power

Component LUTs FFs BRAMs Static power (W)

DDR2 controller 2531 3693 5 3.54

Flash controller 102 213 0 0.32

Interrupt controller 85 121 0 0.02

DMA controller 695 562 0 0.64

Multi-Mode ICAP (128KB) 439 355 32 0.28

 Multi-Mode ICAP (256KB) 446 357 64 0.45

XPS_HWICAP 717 702 2 0.16

LUTs and FFs required by the Multi-Mode ICAP controller keep almost constant

and very low regardless its storage capacity (the small variations are due to the

additional addressing bits required for higher memory capacities), and the static

power consumption linearly increases with the memory size by a factor of 1.6.

Page 27 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
y

n
a

m
ic

 P
o

w
e

r

(W
)

Data transference

Reconfiguration

Fig. 7. Dynamic Power

Figure 7 depicts the dynamic power consumption due to the reconfigurations, both

for our controller and for the XPS_HWICAP. Each bar is divided into two terms:

‘Data Transference’, which includes the dynamic power consumption due to data

movement from the external memories to the reconfiguration controller, and

‘Reconfiguration’, which includes the power consumption of the reconfiguration

controller and the FPGA reconfiguration circuitry.

We took two different measures in order to split the power consumption between

reconfiguration and data transference. In the first one, we carried out the

reconfiguration, which involves reading the configuration from a given memory and

loading it onto the FPGA. In the other one, we used the mode 0 of our reconfiguration

controller. In this mode, the configuration bitstream is transferred from an external

memory to the internal memory of our controller, but it is not loaded onto the FPGA.

Therefore, the difference between these two measures is due to the power term

corresponding to the reconfiguration. In both cases, we repeated the process inside a

loop for several minutes in order to minimize noise.

As it can be seen in the figure, the term ‘Reconfiguration’ keeps almost constant

about 180mW in all the setups. On the contrary, the ‘Data Transference’ term greatly

varies depending on the case. Dynamic power is much lower in the setups retrieving

data from the Flash memory than in setups accessing to the DDR2. In the case of the

on-chip storage, this term is null when using our controller because all the process is

carried out inside the controller; whereas if the XPS_HWICAP controller is used

instead, despite being also on-chip, data have to go through the bus.

Page 28 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

,
m

J/
M

B

(l
o

g
 s

ca
le

)

Static

Dynamic

Fig. 8. Energy Consumption

Figure 8 shows the energy consumed, in mJ per MB reconfigured, in the setups

evaluated in Figure 7. When configurations are retrieved from the Flash memory, the

results (taking into account both static and dynamic energy) are worse. Despite being

less power-hungry than the DDR2-based setups, the large latency of this memory

(see Figure 5) causes a strong energy penalty. On the contrary, setups that use an on-

chip memory are the most energy efficient ones. It is remarkable the fact that our

Multi-Mode ICAP controller requires two orders of magnitude less energy than the

XPS_HWICAP (on-chip). In fact, the energy required by this setup is, at least, one

order or magnitude lower than any other setup. Hence, a bitstream memory

embedded in the reconfiguration controller drastically reduces the reconfiguration

energy overheads.

4.3 Configuration Prefetching and Caching

Our Multi-Mode controller has been designed to provide an additional level for

configuration caching and prefetching. Using the bitstream memory, we can apply

these techniques even when all the reconfigurable regions are busy. In this section,

we present a case study to illustrate the benefits of this approach.

We have selected a 3D rendering application based on the open source Pocket-

GL library (Pocket GL). We do not have the code of the application but a dynamic

trace obtained at IMEC R&D [37]. They characterized the dynamic events of a

Pocket-GL application that were adapting its execution to its input data. For each

possible run-time scenario, they obtained the sequence of configurations that must be

executed. This is a very interesting test since it includes 10 different dynamic tasks

executed in 20 different sequences (task-graphs). We analyzed the same application

in a previous article that presented a run-time scheduler for reconfigurable systems

[13]. This scheduler included support both for configuration prefetching and caching

taking advantage of idle reconfigurable regions to reduce the reconfiguration

overhead. However, since these are sequential graphs, the system designer may

decide that only one reconfigurable region is needed to execute them. In that case

Page 29 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:14

there would be no idle regions available. Hence, we have extended that previous

approach to apply prefetching and caching by using the bitstream memory of our

controller.

The results are depicted in Figure 9. The leftmost column shows the initial

overhead when the reconfigurations are carried out on demand and without applying

neither prefetching nor caching. We assume that the configurations are stored in the

DDR2 memory, and that the system includes a DMA controller. In this case the

application needs 70% more time due to the reconfigurations. If we use the bitstream

memory to apply a prefetch approach we can reduce that overhead to 38%. The

approach implemented is very simple: while executing one task in the reconfigurable

region the following one is stored in the bitstream memory, totally or partially,

depending on the available time. When the first task finishes, we have to carry out a

reconfiguration to load the following task. During this reconfiguration the portion

stored in the bitstream memory can be loaded 3.2 times faster than the remaining

part stored in the external memory.

These results can be further improved by caching some critical tasks. The idea is

to store in the bitstream memory the configuration of those tasks that generate the

largest reconfiguration overheads. In the figure we can see that when the

configuration of the most critical task is cached the overhead is reduced to 27%, and

if the two most critical tasks are cached, it is 22%. In the rightmost column we can

see that caching the remaining 8 tasks provides no further reductions. The reason is

that the prefetch technique is already reducing the reconfiguration latency of those

tasks. In fact when the two most critical tasks are cached the reconfiguration

overhead is reduced by a factor of 3.2, which is the best result that can be achieved in

this scenario. Hence, if the bitstream memory provides enough space to store three

configurations (the two cached ones plus the one that is prefetched each time) the

system will provide the same performance with a system that stores all the

configurations on-chip.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Initial overhead Prefetching Prefetching and

caching one task

Prefetching and

caching two tasks

Caching all the

tasks

R
e

co
n

fi
g

u
ra

ti
o

n
 O

v
e

rh
e

a
d

Page 30 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

Fig. 9. Reconfiguration overheads for the Pocket GL application when using the bitstream memory to apply
configuration prefetching and caching

5. CONCLUSIONS

Configurations in reconfigurable devices can be stored in very heterogeneous

memories with different latencies and power consumption. In this paper we have

analyzed the performance, energy and power tradeoffs when carrying out

reconfigurations from several representative memories in a Xilinx XUPV5LX110T

FPGA. This can be an interesting reference for any designer attempting to optimize

the reconfigurations of a given system. In addition we have developed a simple

reconfiguration controller and described its implementation in detail. This controller

includes an internal memory to store, totally or partially, the bitstreams. With this

approach it carries out the reconfigurations at the maximum speed supported by the

ICAP and reduces both the reconfiguration latency and energy consumption. In

addition, it provides support for prefetching and caching techniques that can further

reduce the reconfiguration overheads.

ACKNOWLEDGEMENTS

This work was supported in part by grants, TIN2013-46957-C2-1-P (Spanish Gov.

and European ERDF), Consolider NoE TIN2014-52608-REDC (Spanish Gov.), gaZ:

T48 research group (Aragón Gov. and European ESF).

REFERENCES

[1] T. Becker, W. Luk, P.Y.K. Cheung, “Energy-Aware Optimization for Run-time Reconfiguration”, Field-

Programmable Custom Computing Machines, pp. 55-62, 2010

[2] S. Liu, R. N. Pittman, A. Forin, J. Gaudiot, “Achieving Energy Efficiency Through Runtime Partial

Reconfiguration on Reconfigurable Systems”, ACM Trans. on Embedded Computing Systems, vol. 12,

no. 3, Mar 2013

[3] K. Paulsson, M. Hübner, and J. Becker, “Dynamic power optimization by exploiting self-

reconfiguration in Xilinx Spartan 3-based systems”, Microprocessors and Microsystems, vol. 33, no. 1,

pp. 46-52, Feb 2009

[4] D. I. Lehn, K. Puttegowda, J. H. Park, P. Athanas, and M. Jones, “Evaluation of rapid context

switching on a CSRC device,” in in Proceedings of the International Conference of Engineering of

Reconfigurable Systems and Algorithms (ERSA), 2002, pp. 209–215

[5] R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospective,” in Proceedings of the

conference on Design, automation and test in Europe (DATE), 2001, pp. 642–649.

[6] H. Singh, M.H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M. Chaves Filho, “MorphoSys: an

integrated reconfigurable system for data-parallel and computation-intensive applications”, IEEE

transactions on computers 49 (5), 465-481

[7] P. Beeck , F. Barat , M. Jayapala , and R. Lauwereins, “Crisp: A template for reconfigurable instruction

set processors”, International conference on Field Programmable Logic (FPL 2002), pp. 296-305

[8] Z. Li and S. Hauck, “Configuration prefetching techniques for partial reconfigurable coprocessor with

relocation and defragmentation,” in Proceedings of the ACM/SIGDA international symposium on Field-

programmable gate arrays (FPGA), 2002, pp. 187–195.

[9] J. Noguera, and R. M. Badia, “Multitasking on reconfigurable architectures: microarchitecture support

and dynamic scheduling,” ACM Transactions on Embedded Computing Systems, vol. 3, no. 2, pp. 385–

406, May 2004.

[10] Y. Qu, J. Pekka Soininen, and J. Nurmi, “A parallel configuration model for reducing the run-time

reconfiguration overhead,” in IEEE Proceedings of the Design, Automation, and Test in Europe

Conference (DATE), 2006, pp. 965–970.

[11] J. Sim, W.-F. Wong, G. Walla, T. Ziermann, and J. Teich, “Interprocedural placement-aware

configuration prefetching for FPGA-based systems,” in IEEE Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), may 2010, pp. 179–182.

[12] W. Fu and K. Compton, “Scheduling intervals for reconfigurable computing,” in Proceedings of the

Page 31 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

39:16

IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2008,

pp. 87–96

[13] J. Clemente, J. Resano, C. Gonzalez, and D. Mozos, “A hardware implementation of a run-time

scheduler for reconfigurable systems,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 19, no. 7, pp. 1263–1276, July 2011.

[14] Z. Li and S. Hauck, “Configuration compression for virtex FPGAs,” in Proceedings of the Annual IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM), 2001, pp. 147–159.

[15] A. Dandalis, and V. K. Prasanna, “Configuration compression for FPGA-based embedded systems,” in

Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays (FPGA),

New York, NY, USA, 2001, pp. 173–182

[16]J.A., Clemente, E. Perez Ramo, J. Resano, D. Mozos, and F. Catthoor, "Configuration Mapping

Algorithms to Reduce Energy and Time Reconfiguration Overheads in Reconfigurable Systems," Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.22, no.6, pp.1248,1261, June 2014.

[17] Z. Li, K. Compton, and S. Hauck, “Configuration caching management techniques for reconfigurable

computing,” in Proceedings of the annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2000, pp. 22–36

[18] R. Kalra, and R. Lysecky, “Configuration locking and schedulability estimation for reduced

reconfiguration overheads of reconfigurable systems,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 18, no. 4, pp. 671–674, Apr. 2010.

[19] J. A. Clemente, J. Resano, and D. Mozos, “An approach to manage reconfigurations and reduce area

cost in hard real-time reconfigurable systems”, ACM Transactions on Embedded Computing Systems,

vol. 13 Issue 4, article 90, November 2014.

[20] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of Partial Reconfiguration in FPGA Systems:

A Survey and a Cost Model," ACM Transactions on Reconfigurable Technology Systems, vol. 4, no. 4,

pp. 36:1-36:24, December 2011

[21] K. Papadimitriou, A. Anyfantis, and A. Dollas, “An effective framework to evaluate dynamic partial

reconfiguration in FPGA systems,” IEEE Transactions on Instrumentation and Measurement, vol. 59,

no. 6, pp.1642–1651, Jun. 2010

[22] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Exploiting partial runtime reconfiguration for high-

performance reconfigurable computing,” ACM Transactions on Reconfigurable Technology Systems,

vol. 1, no. 4, pp.21:1–21:23, Jan. 2009.

[23]K. Vipin, S. A. Fahmy, “A High Speed Open Source Controller for FPGA Partial Reconfiguration”, in

Proceedings of the International Conference on Field Programmable Technology (FPT), Seoul, Korea,

December 2012, pp. 61–66
[24]S. Liu, N. Pittman, and A. Forin, “Minimizing Partial Reconfiguration Overhead with Fully Streaming

DMA Engines and Intelligent ICAP Controller”, Microsoft Research 2009

[25] L. Ming, W. Kuehn, L. Zhonghai, and A. Jantsch, "Run-time Partial Reconfiguration speed

investigation and architectural design space exploration," Field Programmable Logic and Applications,

2009. FPL 2009. International Conference on , vol., no., pp.498-502, Aug. 31 2009-Sept. 2 2009

[26]R. Bonamy, P. Hung-Manh, S. Pillement, D. Chillet, "UPaRC—Ultra-fast power-aware reconfiguration

controller," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012 , vol., no.,

pp.1373-1378, 12-16 March 2012

[27]S. Gimle, D. Koch, and J. Torresen, "High Speed Partial Run-Time Reconfiguration Using Enhanced

ICAP Hard Macro," IEEE International Parallel & Distributed Processing Symposium, 2011, pp.174-

180, 16-20 May 2011

[28]Virtex-5 FPGA Configuration Guide UG191 (v3.11) October 19, 2012.

www.xilinx.com/support/documentation/user_guides/ug191.pdf

[29]Xilinx DS86 LogiCORE IP XPS HWICAP. June, 2011.

https://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap/v5_01_a/xps_hwicap.pdf

[30]Xilinx DS531 Processor Local Bus (PLB) v4.6 (v1.05a). Sept 2010.

http://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf

[31]Virtex UltraScale+ Product Table
 https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productTable

[32]XPS SYSACE (System ACE) Interface Controller (v1.01a) December 2, 2009.

 www.xilinx.com/support/documentation/ip_documentation/xps_sysace.pdf

[33] R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys, “Power consumption model for partial and

 dynamic reconfiguration”, International Conference on Reconfigurable Computing and FPGAs, 2012

[34] P. Stenström, “Transactions on High-Performance Embedded Architectures and Compilers IV”,

 Lecture Notes in Computer Science, vol. 6760, 2011

[35]A. Nafkha, and Y. Louet, “Accurate Measurement of Power Consumption Overhead During FPGA

 Dynamic Partial Reconfiguration”, International Symposium on Wireless Communication Systems

 (ISWCS), 2016

Page 32 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

[36]Yokogawa WT210/WT230 Digital Power Meters.

http://tmi.yokogawa.com/discontinued-products/digital-power-analyzers/digital-power-

analyzers/wt210wt230-digital-power-meters/

[37] Interuniversitair Micro-Electronica Centrum.

 https://www.imec-int.com/

Page 33 of 33

IET Review Copy Only

IET Computers & Digital Techniques

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

