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ABSTRACT- In this paper, we envision global optimization as finding,
for a given calculation complexity, a suitable initial guess of a considered
optimization algorithm. One can imagine that this possibility clearly im-
prove the capacity of existing optimization algorithms, including stochastic
ones. This approach is validated on several large dimension nonlinear min-
imization problems. Results are compared with those obtained by a genetic
algorithm.
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1 Introduction

Many optimization algorithms can be viewed as discrete forms of Cauchy
problems for a system of Ordinary Differential Equations (ODE) in the
space of control parameters [1, 2]. In situations where several local minima
exist, those algorithms perform better if the initial condition belongs to
the attraction basin of the infimum. This shows the importance of the
initial guesses in optimization algorithms. Hence, we would like to see if
it is possible to provide a suitable initial condition in order to improve the
efficiency of existing optimization methods.

In this work, we discuss different ways to implement this idea for three
classes of existing deterministic and nondeterministic minimization algo-
rithms ([1, 3]). In particular, we focus on the hybridization with Genetic
Algorithms (GA). Indeed, GAs have received tremendous interest in recent
years [4, 5, 6], but their high computational complexity and slow convergence
are still drawbacks. One would like therefore to enhance their performance
by providing better initial populations.
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2 Global optimization method

We introduce the following minimization problem:

min
x∈Ω

h0(x) (1)

where h0 : Ω → IR is the cost function and x is the optimization parameter
belonging to an admissible space Ω ⊂ IRN , with N ∈ IN. We assume
h0 ∈ C0(Ω, IR) is a coercive function (i.e. lim‖x‖→+∞ h0(x) = +∞).

We consider an optimization algorithm A0 : V → Ω, called ’core opti-
mization algorithm’, to solve (1). Here V is the space where we can choose
the initial condition for A0 (various examples are given in Section 2.3). The
optimization parameters of A0 (such as the stopping criteria parameters,
etc...) are chosen by the user at the beginning.

We assume the existence of a suitable initial condition v ∈ V such that
the output returned by A0(v) approaches a solution of (1). In this case, solv-
ing numerically (1) with the considered core optimization algorithm means
to solve

{

Find v ∈ V such that
A0(v) ∈ argminx∈Ωh0(x).

(2)

In order to solve (2), we propose to use a multi-layer semi-deterministic
algorithm based on line search methods (see, for instance, [1]) called, for the
sake of simplicity, ’Semi-Deterministic Algorithm’ (SDA).

2.1 General description of the SDA

We introduce h1 : V → IR by

h1(v) = h0(A0(v)). (3)

Thus problem (2) can be rewritten as:
{

Find v ∈ V such that
v ∈ argminw∈V h1(w).

(4)

A geometrical representation of h1(.) in one dimension is shown in Fig-
ure 1 for a situation where the core optimization algorithm is the steepest
descent algorithm applied with a large number of iterations. We see that
h1(.) is discontinuous with plateaus. Indeed, the same point is reached by
the algorithm starting from any of the points of the same attraction basin.
Furthermore, h1(.) is discontinuous where the functional reaches a local max-
imum. One way to minimize such a kind of function, in the one dimensional
case, is to consider line search optimization methods (such as secant method
or dichotomy [1]).

Thus, in order to solve (4), we introduce the algorithm A1 : V → V that,
for each v1 ∈ V return A1(v1) given by

2



Step 1- Choose v2 randomly in V .

Step 2- Find v ∈ argminw∈O(v1,v2)h1(w), where O(v1, v2) = {v1 + t(v2 −
v1), t ∈ IR} ∩ V , using a line search method.

Step 3- Return v.

The line search minimization algorithm in A1 and its corresponding param-
eters are defined by the user.

In fact, we are interested to perform a multi-directional search of the
solution of (2). To do so, we add a layer external to the algorithm A1 by
considering the following methodology:

We define h2 : V → IR by

h2(v) = h1(A1(v)) (5)

Then we consider the problem:

{

Find v ∈ V such that
v ∈ argminw∈V h2(w).

(6)

To solve (6) we use the two-layer algorithm A2 : V → V that, for each
v1 ∈ V return A2(v1) given by

Step 1- Choose v2 randomly in V .

Step 2- Find v ∈ argminw∈O(v1,v2)h2(w) using a line search method.

Step 3- Return v.

As previously, the line search minimization algorithm in A2 and its corre-
sponding parameters are defined by the user. Due to the fact that the line
search direction O(v1, v2) in A1 is constructed randomly, the algorithm A2

perform a multi-directional search of the solution of (2).
This construction can be pursued recursively by defining for i = 3, 4, ...

hi(v) = hi−1(Ai−1(v)) (7)

and considering the problem:

{

Find v ∈ V such that
v ∈ argminw∈V hi(w).

(8)

Problem (8) is solved using the i-layer algorithm Ai : V → V that, for each
v1 ∈ V return Ai(v1) given by

Step 1- Choose v2 randomly in V .

Step 2- Find v ∈ argminw∈O(v1,v2)hi(w) using a line search method.

Step 3- Return v.
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As before, line search method used in Step 2 and its corresponding param-
eters are defined by the user.

In practice we run Ai with suitable stopping criteria and with v1 ∈ V
arbitrary (or v1 ∈ V a good initial guess, if available).

The choice of the random technique used to generate v2 during Step 1
of Ai is important and could depend on the shape of h0. For instance, if we
know that h0 has several local minima in Ω with small attraction basins, it
seems appropriate to generate v2 in a small neighborhood of v1.

The line search minimization algorithm used during Step 2 of Ai should
depend on the properties of h0. In the sequel, we present an implementation
of the SDA, considering various core optimization algorithms, in the partic-
ular case where h0 is a non negative function with zero as the minimum
value (which often occurs in industrial problems [7, 8, 9, 10]).

2.2 SDA implementation with 1st order descent core opti-

mization algorithms

We consider core optimization algorithms A0 that come from the discretiza-
tion of the following initial value problem [2, 11, 1]:

{

M(x(t), t)xt(t) = −d(x(t)), t ≥ 0,
x(0) = x0,

(9)

where t is a fictitious time, xt = dx
dt , M : Ω × IR → MN×N (where MN×N

denotes the set of matrix N × N) and d : Ω → IRN is a function giving a
descent direction. For example, assuming h0 ∈ C1(Ω, IR), if d = ∇h0 and
M(x, t) = Id (the identity operator) for all (x, t) ∈ Ω × IR we recover the
steepest descent method.

According to previous notations, we use V = Ω and denote by A0(x0) :=
A0(x0; t0, ǫ) the solution returned by the core optimization algorithm start-
ing from the initial point x0 ∈ Ω after t0 ∈ IN iterations and considering a
stopping criterion defined by ǫ ∈ IR.

We point out that for this choice of A0, problem (2) is trivially admissible
since, for instance, any x0 ∈ argminx∈Ωh0(x) is a solution. In Section 2.3,
we show a different case where the solvability of the corresponding problem
is not trivial.

We consider a particular implementation of the algorithms Ai, i =
1, 2, ..., introduced previously. For i = 1, 2, ..., Ai(v1) is implemented with
a secant method (a low-cost method well adapted to find the zeros of a
function [1]) in order to perform the line search. It reads:

Step 1- Choose v2 ∈ Ω randomly.

Step 2- For l from 1 to tli ∈ IN (large enough) execute:

Step 2.1- If hi(vl) = hi(vl+1) go to Step 3
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Step 2.2- Set vl+2 =projΩ(vl+1 − hi(vl+1)
vl+1−vl

hi(vl+1)−hi(vl)
)

where projΩ : IR → Ω is a projection algorithm over Ω defined
by the user.

Step 3- Return the output: argmin{hi(vm), m = 1, ..., tli}

A geometrical representation of one execution of the algorithm A1 in one
dimension is shown in Figure 1.

Remark. When the minimum of h0 is unknown we can change Step 2.2
by other methods as the steepest descent iteration starting from vl+1 and
using −

vl+1−vl

hi(vl+1)−hi(vl)
as the descent direction.

2.3 SDA implementation with 2nd order descent core opti-

mization algorithms

In order to keep an exploratory character during the optimization process,
allowing to escape from attraction basins, we could use variants of previous
core optimization methods after adding second order derivatives to the initial
value problem (9). More precisely, we consider core optimization algorithms
A0 coming from the discretization of:

{

ηxtt(t) + M(x(t), t)xt(t) = −d(x(t)), t ≥ 0,
x(0) = x0, xt(0) = xt,0,

(10)

with xtt = d2x
dt2

and η ∈ IR. For instance, assuming h0 ∈ C2(Ω, IR), when
d = ∇h0 and M(x, t) = Id for all (x, t) ∈ Ω × IR we recover the ’heavy ball ’
dynamical system [2, 12].

Here, A0(x0, xt,0) := A0(x0, xt,0; t0, ǫ) denotes the solution returned by
the core optimization algorithm starting from the initial point x0 ∈ Ω with
an initial velocity of xt,0 ∈ IRN , after t0 ∈ IN iterations and considering a
stopping criterion given by ǫ ∈ IR.

In this case, we propose two different formulations for (2). The first one
is given by

{

Find x0 ∈ Ω such that
A0(x0, xt,0) ∈ argminw∈Ωh0(w),

(11)

where xt,0 is fixed. The second one is given by
{

Find xt,0 ∈ IRN such that
A0(x0, xt,0) ∈ argminw∈Ωh0(w),

(12)

where x0 is fixed.
The existence of x0 ∈ Ω such that (11) admits a solution is trivial (as

in Section 2.2). In the second case, under convenient hypotheses, it can
be proved the existence of xt,0 ∈ IRN such that (12) admits a numerical
solution, as stated in the following Theorem:
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Theorem 1 Let h0 : IRN → IR be a C2-function having a minimum, which
is reached at xm ∈ IRN . Then, for every (x0, ǫ) ∈ IRN × IR+, there exists
(σ, τb) ∈ IRN × IR+ such that the solution of the following dynamical system:











ηxtt(t) + xt(t) = −∇h0(x(t)), t ≥ 0,
x(0) = x0,
xt(0) = σ,

(13)

with η ∈ IR, passes at time τb into the ball Bǫ(xm).

Proof :

We assume x0 6= xm (x0 = xm is a trivial case). Let δ ≥ 0, we consider
the initial value problem:











ηyδ,tt(t) + δyδ,t(t) = −δ2∇h0(yδ(t)), t ≥ 0,
yδ(0) = x0,
yδ,t(0) = ̺(xm − x0),

(14)

with ̺ ∈ IR+\{0}. Let us show that yδ passes at some time into the ball
Bǫ(xm):

• If δ = 0, we obtain the following system :










ηy0,tt(t) = 0, t ≥ 0,
y0(0) = x0,
yt,0(0) = ̺(xm − x0).

(15)

System (15) describes a straight line of origin x0 and passing at some
time τ̺ ∈ IR+ by the point xm, i.e. y0(τ̺) = xm.

• If δ 6= 0, system (14) can be rewritten in the form wt(t) = (yδ,t,
−δyδ,t(t) − δ2∇h0(yδ(t))) = f(t, w(t), δ), with w(t) = (yδ(t), ηyδ,t(t))
and f continuous in t and in δ and Lipschitz continuous in w(t) [12].
Then, applying the Cauchy-Lipschitz theorem (see, for instance, [13]):

lim
δ→0

|yδ(τ̺) − y0(τ̺)| = 0.

Thus for every ǫ ∈ IR+\{0}, there exists τǫ ∈ IR+ such that for every
δ ≤ τǫ:

|yδ(τ̺) − xm| < ǫ. (16)

Let ǫ ∈ IR+\{0}. We consider the change of variable given by s = τǫt
and x(s) = yτǫ(

s
τǫ

). Then system (14) becomes:











ηxss(s) + xs(s) = −∇h0(x(s)), s ≥ 0,
x(0) = x0,
ẋ(0) = ̺

τǫ
(xm − x0).

(17)
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Let τb = τǫτ̺. Under this assumption, x(τb) = yτǫ(τ̺). Thus, due to
(16): |x(τb)− xm| < ǫ. We have found σ = ̺

τǫ
(xm − x0) ∈ IRN and τb ∈ IR+

such that the solution of system (13) passes at time tb into the ball Bǫ(xm).

2

In order to determine a solution of (11) or (12), we can consider, for
example, the same implementation of algorithms Ai (with i = 1, 2, 3, ...) as
introduced in Section 2.2.

2.4 SDA implementation with genetic core optimization al-

gorithms

Now, we are interested to study SDA with GA as core optimization al-
gorithm. GAs can be seen as iterations of a coupled system of discrete
stochastic ODEs starting from a first family X0 = {x0

j ∈ Ω, j = 1, ..., Np}
of Np possible solutions of the optimization problem (see Appendix for a
complete description of the algorithm and notations).

Problem (2) can be rewritten as:

{

Find X0 ∈ V = ΩNp such that
A0(X

0) ∈ argminw∈Ωh0(w)
(18)

where A0(X
0) := A0(X

0; Np, Ng, pm, pc) with Np, Ng, pm, pc parameters of
the GA algorithm that here are considered fixed.

The solution of (18) may be determined, for instance, by using the SDA
implementation presented in Section 2.2. However, a first numerical study
(see [14] for more details) shows that the following variation of previous
algorithms Ai (with i = 1, 2, 3, ...) is better adapted to the GA case. Let
X0

1 = {x0
1,j ∈ Ω, j = 1, ..., Np}. Then Ai(X

0
1 ) reads:

Step 1- For l going from 1 to tli ∈ IN (large enough) execute:

Step 1.1- Set ol =argmin{h0(x) : x ∈ Ai−1(X
0
l )}

Step 1.2- We construct X0
l+1 = {x0

l+1,j ∈ Ω, j = 1, ..., Np} as following:

∀j ∈ {1, ..., Np}, if h0(ol) = h0(x
0
l,j) set x0

l+1,j = x0
l,j

else set x0
l+1,j = projΩ(x0

l,j − h0(ol)
ol−x0

l,j

h0(ol)−h0(x0
l,j

)
)

where projΩ : IR → Ω is a projection algorithm over Ω defined
by the user.

Step 2- Return the output: argmin{hi(X
0
m), m = 1, ..., tli}

This version of the algorithm intends to optimize, individual by indi-
vidual, the initial population of Ai−1. For each individual in the initial
population:
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• If there is a significant evolution of the cost function value between
this individual and the best element found by Ai−1, the secant method
used in Step 1.2 generates, in the optimized initial population, a new
individual closer to this best element.

• If not, the secant method allows to create a new individual far from
the current solution given by Ai−1.

In Section 3, numerical experiments show that this coupling reduces the
computational complexity of GAs. In particular, this permits to consider
smaller Np and Ng than with GAs alone.

3 Numerical examples

In this section, we focus on several benchmark optimization problems (in
part presented in [15]) to be solved using SDAs and GAs.

3.1 Parameters in algorithms

We consider various versions of the SDA in the cases when the core opti-
mization algorithm is, respectively, a steepest descent algorithm, a heavy
ball algorithm and a genetic algorithm:

• When the steepest descent algorithm is the core optimization algo-
rithm we use the SDA implementation presented in Section 2.2. We
consider the cases when the number of layers is i = 1 (the algorithm is
then denoted by SDDA-1L as Semi-Deterministic Descent Algorithm-
1 Layer), i = 2 (SDDA-2L) and i = 3 (SDDA-3L). We set t0 = 10,
tl1 = 5, tl2 = 5. The number of iterations for the highest layer, tli , is
set large enough.

• When the heavy ball method is used as the core optimization algo-
rithm, we use the two-layer algorithm A2, described in Sections 2.2
and 2.3, with η = 0.1, t0 = 10, tl1 = 5 and tl2 large enough. The
velocity xt,0 is the initial condition to be optimized. This algorithm is
denoted by HBSDA (Heavy-Ball Semi-Deterministic Algorithm).

• With GA as the core optimization algorithm, we use the algorithm A2

introduced in Section 2.4 with tl1 = 5 and tl2 large enough. This algo-
rithm is denoted by GSDA as Genetic Semi-Deterministic Algorithm.
In addition, the GA parameters are set as following:

– The population size is set to Np = 10.

– The selection is a roulette wheel type [3] proportional to the rank
of the individuals in the population.
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– The crossover is barycentric in each coordinate with a probability
of pc = 0.45.

– The mutation process is non-uniform with a probability of pm =
0.35.

– A one-elitism principle, that consists in keeping the current best
individual in the next generation, has also been imposed.

The performances of the previous SDAs are compared to those of two
classical GAs. Both GAs use the same stochastic processes than GSDA but
have two different sets of parameters:

• First GA denoted by GA-S1 applied with: Np = 180, pc = 0.45,
pm = 0.15.

• Second GA denoted by GA-S2 applied with: Np = 50, pc = 0.5,
pm = 0.3.

3.2 Results

Due to the stochastic aspect of the approach results are average values over
10 simulations with a standard deviation of ±5%.

Flat Iso-contour Convex Function (FICF)

h0(x) =
N

∑

j=1

x2j
j , (19)

with x = (x1, ..., xN ) ∈ [−5, 5]N and N is successively set to 10, 100 and 1000.
This function is interesting as it is convex with flat iso-contours resulting in
a slow convergence of various optimization algorithms (such as the steepest
descent). Its minimum equals to 0 and is reached at the origin.

Results are reported in Table 1. As we can observe, combining steepest
descent with our technique allows to perform a satisfactory minimization.
The choice of a single-layer structure is less time consuming than multi-layer
structures.

This benchmark test also points out the difficulty of HBSDA to find
accurate results. This is due to the perturbation created by the 2nd order
derivative term.

GSDA and GAs are only compared in the cases when n = 10 and n = 100
as a good convergence is difficult to obtain with genetic based algorithms.
GSDA is twice faster than the other genetic methods.
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OPT. METH. SDDA-1L SDDA-2L SDDA-3L HBSDA

N=10 / rd = 10−6 100 400 500 600

N=100 / rd = 10−7 200 500 600 800

N=1000 / rd = 10−8 700 600 700 1600

OPT. METH. GSDA GA-S1 GA-S2

N=10 / rd = 10−5 200 500 400

N=100 / rd = 10−6 300 600 600

Table 1: FICF results: Number of cost function evaluations needed by op-
timization methods (OPT. METH. ) to obtain a reduction by a factor rd of
the initial value of the cost function considered in dimension N .

Generalized Rastringin Function (GRF)

h0(x) =
N

∑

j=1

(x2
j − cos(18xj)), (20)

with x = (x1, ..., xN ) ∈ [−5, 5]N and N is successively set to 2, 10 and 100.
This function is a perturbed version of a convex function with a large number
of local minima. Its minimum equals to 0 and is reached at the origin.

We can see in Table 2 that performing a multi-directional search of the
initial condition provides a faster optimization process. Furthermore, the
steepest descent based methods seems to be better adapted to this kind of
function.

As previously, GSDA is faster than the classical genetic based methods.

OPT. METH. SDDA-1L SDDA-2L SDDA-3L HBSDA

N=2 / rd = 10−5 1000 1000 900 1000

N=10 / rd = 10−6 1500 1400 1000 1500

N=100 / rd = 10−7 2000 1800 1200 3000

OPT. METH. GSDA GA-S1 GA-S2

N=2 / rd = 10−4 1000 1800 3000

Table 2: GRF results: Number of cost function evaluations needed by opti-
mization methods (OPT. METH. ) to obtain a reduction by a factor rd of
the initial value of the cost function considered in dimension N .

Modified Rastringin Function (MRF)

h0(x) =
2

∑

j=1

(sin(xj)
2 − cos(18xj)), (21)
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with x = (x1, x2) ∈ [−3, 3]2. The minimum of h0 is equal to 0 and it is
reached at the origin. In this case, we have modified the previous Rastringin
function in order to create a perturbed version of a non convex function.

As we can observe in Table 3, using a second order descent method
as core optimization algorithm seems to be more adapted to this type of
functions. The GSDA still gives better results than the classical GAs.

OPT. METH. SDDA-1L SDDA-2L SDDA-3L HBSDA

rd = 10−5 Fail 1000 1000 600

OPT. METH. GSDA GA-S1 GA-S2

rd = 10−4 700 800 1000

Table 3: MRF results: Number of cost function evaluations needed by opti-
mization methods (OPT. METH. ) to obtain a reduction by a factor rd of
the initial value of the cost function.

Modified Rosenbrock Function (MROF)

h0(x) = 40 + 100(x2 − x2
1)

2 + (1 − x1)
2 − 400 exp−10((x1+1)2+(x2+1)2), (22)

with x = (x1, x2) ∈ [−2, 2]2. This function is compound by a large attrac-
tion basin of a local minimum and a small attraction basin of the global
minimum. Its minimum is equal to 0 and it is reached at (1, 1).

This problem is well adapted to study the efficiency of stochastic meth-
ods. As we can observe in Table 4, GSDA is faster than all other methods
and the other SDA techniques also provide interesting alternatives to clas-
sical GAs.

OPT. METH. SDDA-1L SDDA-2L SDDA-3L HBSDA

rd = 10−4 Fail 3000 2000 3000

OPT. METH. GSDA GA-S1 GA-S2

rd = 10−4 1000 5000 2500

Table 4: MROF results: Number of cost function evaluationsneeded by
optimization methods (OPT. METH. ) to obtain a reduction by a factor rd
of the initial value of the cost function.

3.3 Industrial Applications

In addition to the previous benchmark results, SDDA and GSDA have been
validated on several industrial problems involving numerous local minima
such as: optical fiber synthesis [10], shape optimization of fast-micro-fluidic
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mixer devices [9], temperature and pollution control in a bunsen flame [16],
portfolio risk management [8], control problem of the Burgers equation [7],
shape optimization of coastal structures [17], shape optimization under aero-
dynamic and acoustic constraints for internal and external flows [11]. For
all those problems, those algorithms have provided an affordable approach
and satisfactory numerical solutions.

4 Conclusions

A new semi-deterministic global optimization algorithm has been intro-
duced. This algorithm provides suitable initial conditions for existing mini-
mization algorithms. It has been coupled with both deterministic and non-
deterministic algorithms. Numerical results show that this coupling upgrade
the performance of the considered algorithms.

A Matlab c© version of the algorithms presented in this paper are included
in the free optimization package ”Global Optimization Platform” which can
be downloaded at

http://www.mat.ucm.es/momat/software.htm
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Appendix: Genetic algorithms

We briefly recall the general form of GAs and show that they can be seen
as iterations of a coupled system of discrete stochastic ODEs.

GAs approximate the global minimum of the cost function h0 through
a stochastic process based on an analogy with the Darwinian evolution of
species [3]. A first family, called ’population’, X0 = {x0

l ∈ Ω, j = 1, ..., Np}
of Np possible solutions of the optimization problem, called ’individuals’, is
randomly generated in the search space Ω. Starting from this population,
we build recursively Ngen new populations, called generations, Xi = {xi

l ∈
Ω, j = 1, ..., Np} with i = 1, .., Ngen through three stochastic steps, called
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selection, crossover and mutation. More precisely we present here a matrix-
form approach for GAs:

We first rewrite Xi using the following (Np, N)-real valued matrix form:

Xi =









xi
1(1) . . . xi

1(N)
...

. . .
...

xi
Np

(1) . . . xi
Np

(N)









(23)

Selection: Each individual, xi
l is ranked with respect to its cost function

value h0(x
i
l) (i.e. the lower is its value of h0(x

i
l) the higher is the ranking).

Then Np individuals are randomly selected (individuals with better ranking
have higher chances to be selected), with eventual repetitions, to become
’parents’.

Introducing a binary (Np, Np)-matrix Si, generated according to previ-
ous ranking and selection processes, with Si

j,k = 1 if the kth individual of

Xi is the selected ’parent’ number j and Si
j,k = 0 otherwise, we define:

Xi+1/3 = SiXi. (24)

Crossover: This process leads to a data exchange between two ’parents’
and the apparition of two new individuals called ’children’. We determine,
with a probability pc, if two consecutive parents in Xi+1/3 should exchange
data or if they are directly copied into the intermediate population Xi+2/3.

Introduce a real-valued (Np, Np)-matrix Ci where for each couple of con-

secutive lines (2j − 1, 2j) (1 ≤ j ≤
Np

2 in case Np is even or 1 ≤ j ≤
Np−1

2
in case Np is odd), the coefficients of the (2j − 1)th and 2jth rows are given
by:

Ci
2j−1,2j−1 = λ1, Ci

2j−1,2j = 1 − λ1, Ci
2j,2j−1 = λ2, Ci

2j,2j = 1 − λ2

In this expression:

• λ1 = λ2 = 1 if parents are directly copied (with a probability 1 − pc).

• λ1 and λ2 are randomly chosen in ]0, 1[ if a data exchange occurs
between the two parents (with probability pc).

Other coefficients of Ci are set to 0. If Np is odd, the Npth parent is directly
copied, i.e Ci

Np,Np
= 1.

This step can be summarized as:

Xi+2/3 = CiXi+1/3. (25)

Mutation: This process leads to new parameter values for some individ-
uals of the population. More precisely, each child is modified (or mutated)
with a fixed probability pm.
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Introduce for instance a random perturbation matrix E i with an jth line
equal to:

• a random vector ǫj ∈ IRN , according to the admissible space Ω, if a
mutation is applied to the ith child (with probability pm).

• 0 if no mutation is applied to the jth child (with probability 1-pm).

This step can then take the following form:

Xi+1 = Xi+2/3 + E i. (26)

Therefore, the new population can be written as:

Xi+1 = CiSiXi + E i. (27)

At the end of the algorithm, after Ng iterations, the GA returns an
output denoted by A0(X

0, Np, Ng, pm, pc, ǫ) = argmin{h0(x
i
j)/xi

j ∈ Xi, i =
1, ..., Np, j = 1, ..., Ng).

With these three basic evolution processes, it is generally observed that
the best obtained individual is getting closer after each generation to the
optimal solution of the problem [3].

These algorithms do not require sensitivity computation, perform global
and multi-objective optimization and are easy to parallelize. However, their
drawbacks remain their weak mathematical background, their computa-
tional complexity, their slow convergence and their lack of accuracy.

As a fine convergence is difficult to achieve with GA based algorithms,
it is recommended when it is possible, to complete the GA iterations by a
descent method. This is especially useful when the functional is flat around
the infimum [6].
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Figure 1: (....) h0(x) = 1
2 cos(2x)+sin(1

3x)+1.57 for x ∈ Ω = V = [−10, 6].
(—-) Geometrical representation of h1(.) when the steepest descent method
is used as core optimization algorithm with a large number of iterations. (-
.-.) Geometrical representation of one execution of the algorithm A1(v1),
written in Section 2.2, when v1 is given and tl1 = 1. v2 is generated randomly
∈ [−10, 6] during the first Step of the algorithm. v3 is built by the secant
method performed during the Step 2.2. During the Step 3, as h1(v3) is lower
than h1(v1) and h1(v2), v3 is considered as the best initial condition and is
returned as the output.
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