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Abstract

Most distributed database systems offer weak consistency models in order to avoid the
performance penalty of coordinating replicas. Ideally, distributed databases would offer
strong consistency models, like serialisability, since they make it easy to verify application
invariants, and free programmers from worrying about concurrency. However, implementing
and scaling systems with strong consistency is difficult, since it usually requires global
communication. Weak models, while easier to scale, impose on the programmers the need to
reason about possible anomalies, and the need to implement conflict resolution mechanisms
in application code.

Recently proposed consistency models, like Parallel Snapshot Isolation (PSI) and Non-
Monotonic Snapshot Isolation (NMSI), represent the strongest models that still allow to
build scalable systems without global communication. They allow comparable performance
to previous, weaker models, as well as similar abort rates. However, both models still provide
weaker guarantees than serialisability, and may prove difficult to use in applications.

This work shows an approach to bridge the gap between PSI, NMSI and strong con-
sistency models like serialisability. It introduces and implements fastPSI, a consistency
protocol that allows the user to selectively enforce serialisability for certain executions,
while retaining the scalability properties of weaker consistency models like PSI and NMSI.
In addition, it features a comprehensive evaluation of fastPSI in comparison with other con-
sistency protocols, both weak and strong, showing that fastPSI offers better performance
than serialisability, while retaining the scalability of weaker protocols.

Keywords

Consistency models, Transactions, Parallel Snapshot Isolation, Non-Monotonic Snapshot
Isolation, Concurrency control.
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Resumen

La mayoría de las bases de datos distribuidas ofrecen modelos de consistencia débil,
con la finalidad de evitar la penalización de rendimiento que supone la coordinación de las
distintas réplicas. Idealmente, las bases de datos distribuidas ofrecerían modelos de con-
sistencia fuerte, como serialisability, ya que facilitan la verificación de los invariantes de
las aplicaciones, y permiten que los programadores no deban preocuparse sobre posibles
problemas de concurrencia. Sin embargo, implementar sistemas escalables que con modelos
de consistencia fuerte no es fácil, pues requieren el uso de comunicación global. Sin em-
bargo, aunque los modelos de consistencia más débiles permiten sistemas más escalables,
imponen en los programadores la necesidad de razonar sobre posibles anomalías, así como
implementar mecanismos de resolución de conflictos en el código de las aplicaciones.

Dos modelos de consistencia propuestos recientemente, Parallel Snapshot Isolation (PSI)
y Non-Monotonic Snapshot Isolation (NMSI), representan los modelos más fuertes que per-
miten implementaciones escalables sin necesidad de comunicación global. Permiten, a su
vez, implementar sistemas con rendimientos similares a aquellos con modelos más débiles,
a la vez que mantienen tasas de cancelación de transacciones similares. Aun así, ambos
modelos no logran ofrecer las mismas garantías que serialisability, por lo que pueden ser
difíciles de usar desde el punto de vista de las aplicaciones.

Este trabajo presenta una propuesta que busca acortar la distancia entre modelos como
PSI y NMSI y modelos fuertes como serialisability. Con esa finalidad, este trabajo presenta
fastPSI, un protocolo de consistencia que permite al usuario ejecutar de manera selectiva
transacciones serializables, reteniendo a su vez las propiedades de escalabilidad propias
de modelos de consistencia débiles como PSI o NMSI. Además, este trabajo cuenta con
una evaluación exhaustiva de fastPSI, comparándolo con otros protocolos de consistencia,
tanto fuertes como débiles. Se muestra así que fastPSI logra un rendimiento mayor que
serialisability sin por ello renunciar a la escalabilidad de protocolos más débiles.

Palabras clave

Modelos de Consistencia, Transacciones, Parallel Snapshot Isolation, Non-Monotonic
Snapshot Isolation, Control de Concurrencia.
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Chapter 1

Introduction

1.1. Motivation
Modern cloud applications are characterised by being globally available, and users expect

to use the services provided by these applications with low latency, and in a reliable manner.
To satisfy these requirements, programmers usually resort to distributed databases and
storage, that allow to partition application data and place it geographically close to the
users that need it. For example, a social media site would place data related to European
users on data centers located in the same region, and the same for users in the United
States. Under this design, however, those users requesting data from another region would
suffer from high latency, as requests travel across different geographical regions. To this
end, these data partitions are also replicated across different geographical regions, to ensure
both low latency for all kinds of user requests, and fault tolerance, which allows applications
to ensure a smooth operation even if an entire region goes offline.

These approaches, however, add significant complexity to the design and implementation
of applications and the underlying databases. The presence of multiple replicas raises the
question of how to keep them consistent, that is, reflecting an unified version of the data
they contain. Traditional mechanisms to deal with database consistency prove harder to im-
plement in efficient ways in distributed databases. For example, transactions should satisfy
a set of desirable properties, commonly known as ACID: Atomicity, Consistency, Isolation,
and Durability. These properties allow programmers to reason about concurrency as a set
of isolated, atomic operations, but in geo-distributed scenarios it requires the coordination
of multiple replicas in order to apply their updates.

The usual approach to bridge these problems involves relaxing the consistency guarantees
that databases offer programmers [40]. Indeed, the CAP Theorem [16, 23] proves it is
impossible to build applications that continue operating in the presence of network partitions
without sacrificing consistency guarantees. However, the degree to which these guarantees
can be relaxed offers a trade-off: on the one hand, weak consistency allows to build scalable
applications without loss of availability, but proves difficult to reason about given that it
allows non-serialisable behaviours called anomalies, and forces programmers to deal with
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inconsistent data at the application level; on the other hand, strengthening consistency
guarantees can reduce performance and hurt application availability, while being much easier
to reason about.

Until recently, systems that offered weak consistency guarantees did not provide trans-
actions (e.g. Dynamo [20]). In the recent years, however, a large number of transactional
consistency models have been proposed for large-scale databases [6, 10, 32, 39]. Given the
proliferation of different consistency models, it can be hard to choose which one is appropri-
ate for a particular application, as it requires the programmer to think about the possible
anomalies that can arise during an execution and about how they can interfere with applica-
tion logic. Ideally, one would want to run all applications under strong consistency models,
like serialisability [15], as programmers only need to check that application invariants hold as
if transactions executed one after the other, without worrying about concurrency. Unfortu-
nately, guaranteeing a serialisable execution in distributed databases is not possible without
requiring global communication, which increases latency and limits availability [23].

This leaves the programmers with the responsibility of choosing an adequate consistency
model for their applications. However, programmers often lack techniques to ensure that
a given consistency model is safe to use for a particular application. One way to address
this problem is to rely on the notion of application robustness [14, 22]: an application
is robust against a particular consistency model if it behaves in the same way whether
using a database providing this model or serialisability. When an application is robust,
the programmer can take advantage of the scalability properties of a weak consistency
model without paying the price of anomalous behaviours. Previous work has focused on
static analysis of applications [29, 34], which let programmers know which parts of their
applications are susceptible to anomalies. In these cases, programmers can selectively run
transactions under serialisability: Fekete et al. [21, 22] propose several techniques that allow
transactions executing under snapshot isolation (SI) [13] to exhibit serialisable behaviours,
effectively making them equivalent to transactions running under serialisability.

Most recently, Bernardi and Gotsman [14] proposed a way to check the robustness of
parallel snapshot isolation (PSI)1 [39], which relaxes the consistency guarantees of snapshot
isolation to allow more efficient implementations for distributed databases. PSI is also the
strongest model that is weaker than SI [17], thus it is an obvious candidate to investigate
its impact on the correctness of applications. Although there are several implementations
that guarantee PSI [6, 33, 39], none of them were implemented with the focus on exploring
the relation between PSI and application robustness.

1.2. Goals
The goal of this work is to help programmers bridge the gap between weak and strong

consistency protocols, without sacrificing application correctness. To that end, fastPSI is
proposed, an implementation of Parallel Snapshot Isolation that allows to selectively en-
force serialisability for transactions through careful grouping of database objects into entity

1Also known as non-monotonic snapshot isolation [6]. This is discussed in §2.2.5.
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groups [11]: transactions accessing objects in the same group execute as if they were run-
ning under a system guaranteeing SI (instead of the weaker PSI). Following the techniques
proposed by Fekete et al. [22], these transactions can be further constrained so that they
execute as if running under serialisability.

As such, the contributions of this work are:

A hybrid consistency protocol that allows mixing Snapshot Isolation with Parallel
Snapshot Isolation, by relying on entity groups. This protocol allows programmers to
combine the scalability of Parallel Snapshot Isolation with the familiarity and intu-
itiveness of well-known consistency models like Snapshot Isolation and serialisability.

A comprehensive evaluation of the proposed protocol, and a comparison against alter-
native implementations of both weak and strong consistency models.

An exposition of the drawbacks and trade-offs of the protocol, and a discussion of how
their impact can be minimised.

1.3. Work Plan
The work carried out for this project was divided in the following phases:

Explore previous contributions. It’s necessary to get familiarised with existing termi-
nology, as well as previous work and implementations.

Delimit project scope. After having the necessary knowledge to carry out the work,
the limits and specific contributions of the work are established. In addition, the
hypotheses that the final implementation should validate are proposed.

Implementation phase. After setting clear objectives and milestones, the bulk of the
implementation is done. Throughout this phase, testing and validation of the software
is done, both with unit tests and with model checking techniques.

Benchmark and validation. With the implementation complete, representative bench-
marks are designed, as well as scenarios to validate the performance of the imple-
mentation. The results are used validate previous hypotheses, and also framed in the
context of the existing literature.

1.4. Document Structure
The rest of this document is structured as follows. Chapter 2 provides an overview of

previous work and the state of the art with regards to relevant consistency models, as well
as basic notions that will be used throughout this document. Chapter 3 introduces fastPSI,
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a PSI protocol that allows the programmer to selectively enforce serialisable executions. It
also discusses some potential shortcomings of its design. Chapter 4 presents the results of
the work, with a comprehensive evaluation of fastPSI and a comparison against alternative
consistency models. Chapter 5 compares the approach in this work with the previous work
outlined in Chapter 2, and highlights the main differences. Finally, Chapter 6 provides the
conclusions.

1.5. Sources and Repositories
The relevant sources related to this document can be found online at the following

repositories:

The server-side of the fastPSI protocol, to be found at https://github.com/ergl/
antidote/tree/pvc.

The client-side library of the fastPSI protocol, to be found at https://github.com/
ergl/pvc/tree/v0.8.0.

The software used to benchmark fastPSI, modified with extra features, to be found at
https://github.com/ergl/lasp-bench/tree/coord.

The benchmark data, along with several scripts used to generate the plots on Chap-
ter 4, to be found at https://github.com/ergl/antidote-evaluation.

1.6. Related Program Courses
Several courses during the Computer Science program were of great help to learn the

foundations and the necessary skills to carry out the work in this document:

Databases and Advanced Databases, which taught the foundational concepts of trans-
actions, consistency and concurrency control. In particular, the latter covered the
implementation and design of the storage subsystems of databases.

Networks and Advanced Operating Systems and Networks, which taught the necessary
skills to design and implement an efficient client-server protocol on top of TCP.

Technology and Organisation of Computer Systems, which taught the necessary cache
and distributed memory designs that allowed an increased performance of the fastPSI
server implementation.

Probability and Statistics and Evaluation of Computer Systems, which taught the
foundational concepts needed for an effective interpretation of benchmark data, along
with theoretical models—such as queueing theory—necessary to tune performance and
to design effective performance experiments.
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Chapter 2

Preliminaries

This chapter begins with an introduction to the notation and basic concepts used
throughout this document. It also reviews several strong and weak consistency models,
based on the anomalies that are observable in each one.

2.1. Notation
This section defines the elements used throughout this chapter, such as transactions,

histories, and relations. It follows the models used by Saeida Ardekani [7], Adya [4] and
Bernstein et al. [15].

2.1.1. Objects and Replication

Following the definitions of Cerone et al. [17] and Saeida Ardekani [7], a database stores
objects Obj = {x, y, . . .}, which are assumed to be integer-valued.

Under such definition, a system consisting of independent processes Π = {p1, . . . pn}
offers full replication if every process in Π holds a copy of the entire set of objects Obj,
and partial replication if processes hold a subset of Obj. In partially-replicated systems,
processes might hold disjoint sets of Obj, although it is not necessary.

2.1.2. Transactions

Clients interact with the database via transactions Tx = {Ti | i ∈ N}, with i being
the transaction identifier of T .

A transaction is a totally ordered sequence of read or write operations, followed by a
terminating operation: either commit or abort. This order follows the order in which the
client invoked such operations. Given an object x and a transaction Ti, xi represents the
version i of x written by Ti. A transaction Ti writing a version i of x is denoted by wi(xi),
and ri(xi) denotes when Ti reads a version i of x. Finally, ci denotes when Ti commits,
and ai when it aborts. It is assumed that an initial transaction T0 exists, such that it
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writes the initial versions of every object in the database. Without loss of generality, one
can assume that no transaction performs blind updates, that is, for every write operation
wi(x) performed by Ti, there’s always a preceding read operation ri(x). A transaction is
read-only if its set of operations does not include writes, and update otherwise.

2.1.3. Histories

A history h represents the finite set of all transactions with disjoint identifiers issued
against a database. The set of all possible histories is denoted by H. Two orders are
defined over a history h: a real-time <h total order, which relates operations by their
wall-clock execution time; and a happens-before �h strict partial order, such that for any
two transactions Ti and Tj, if wi(xi) and rj(xi), Ti �h Tj (that is, Tj reads the version i of
x written by Ti).

Intuitively Ti �h Tj means that Tj is aware of the updates performed by Ti, and thus
the outcome of the operations in Tj may depend on the effects of Ti. In this case, Ti is a
causal dependency of Tj. A transaction Ti is pending in h if (ci ∨ ai) /∈ h.

The history and the relations between operations and transactions can be represented as
a graph, following Bernstein et al [15]. A history can also be represented as a permutation
of operations to show the real-time order, e.g. h = r1(x0).w1(x1).r2(y0).w2(y2).c2.c1.

h = r1(x0).r1(y0).w1(x1).w1(y1).c1 r2(x1).c2

r3(y1).w3(y3).c3

T1 T2

T3

Figure 2.1: Example of history represented as a graph. Boxes group operations intro
transactions, and arrows represent causal dependencies between transactions. Adapted from
Saeida Ardekani et al. [6].

Figure 2.1 above shows an example, with T1 �h T3 and T1 �h T2. Two transactions Ti

and Tj are concurrent in h (denoted by Ti ‖ Tj) if neither Ti �h Tj nor Tj �h Tj. In the
figure above, T2 and T3 are concurrent.

2.2. Consistency Models
This section defines what a consistency model is, placing them in two categories: strong

and weak. It also gives an overview of several models, and compares them in terms of their
undesirable effects.

A consistency model is defined as a subset of histories C ⊆ H. Intuitively, a consistency
model constrains the set of possible histories by specifying how operations interleave in any
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given history. A given history h satisfies a consistency model C if h ∈ C. Otherwise, h
violates C.

In the context of databases, the definition of a consistency model maps to the concept of
an isolation level (I in ACID), which specifies the degree to which concurrent transactions
in a database are aware of each other [4]. The term consistency is used throughout this
document, in accordance with Adya [4].

Traditionally, the different consistency models have been defined in terms of anoma-
lies [13], that map to a set of undesirable histories that are observable by the system.
Intuitively, one can distinguish between strong and weak consistency models depending on
the number of anomalies they disallow, with stronger models restricting the set of pos-
sible histories more than weak ones. The following sections give a brief overview of the
traditional anomalies following the definitions advanced by Berenson et al. [13], as well as
different consistency models that preclude them.

Definition 2.1 (Dirty Write). A Dirty Write occurs in a history h when a transaction Ti

modifies an object x that was previously modified by another pending transaction Tj. If
any of the two transactions commit or abort, it is not clear what value the object x should
have. A Dirty Write can be represented by a history such as w1(x1).w2(x2).(c1∨a1).(c2∨a2),
where the termination order of the transactions can be arbitrary. The anomaly occurs even
if any of the transactions abort.

Definition 2.2 (Dirty Read). A Dirty Read occurs in a history h when a transaction Ti

reads an object x modified by a pending transaction Tj. If Tj ultimately aborts in h, its
updates never take place. Thus, the value shouldn’t be observed by Ti. This is represented
by a history such as r1(x0) . . . w1(x1) . . . r2(x1) . . . c2 . . . a1.

Both Dirty Writes and Dirty Reads can be prevented at the implementation level by
making the changes made by a transaction visible only after the transaction commits. For
example, the updates of a transaction can be buffered locally. All the consistency models
described in the sections that follow preclude dirty writes and reads. Transactions executing
under such models offer atomicity (A in ACID).

2.2.1. Read Committed (RC)

Read Committed is the simplest consistency model that satisfies the atomicity guarantee
of ACID transactions, by preventing dirty reads and writes. Although this model specifies
that all or none of the updates by a transaction are applied to the database, it does not
prevent concurrent transactions from observing only a subset of those updates. As a result
of the simplicity of this model, systems operating under Read Committed might observe
anomalous behaviour, such as non-repeatable reads or lost updates, as described below.

Definition 2.3 (Non-Repeatable Read). A non-repeatable read—also called a fuzzy read—
occurs whenever a transaction Ti observes different values for an object x on subsequent
read operations when interleaved by a commit by another transaction Tj. This can be seen
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a history such as r1(x0) . . . r2(x0).w2(x2).c2 . . . r1(x2). In the previous history, T1 observes
two different values of x: the initial version x0 and the version x2 written by T2.

The non-repeatable read anomaly can be prevented in an easy way: a transaction can
keep a cache of already read values. Subsequent read operations can return values from this
read cache.

Definition 2.4 (Lost Update). A Lost Update occurs in a history h when two concurrent
transactions update the same object x and successfully commit. In this case, the update
written by whichever transaction commits first is “lost” after the second transaction com-
mits. This can be seen in a history such as r1(x0).r2(x0) . . . w1(x1).c1 . . . w2(x2).c2. After T2

commits, version x1 is no longer visible to subsequent transactions.

Compared to the Dirty Write anomaly, a Lost Update can occur even if the changes of
a transaction are only made visible after it commits. For the purposes of this document,
and following the definition used by Saeida Ardekani [7], a consistency model is strong if it
prevents concurrent transactions from modifying the same object. That is to say, a strong
consistency model precludes Dirty Writes and Dirty Reads, along with Lost Updates. A
model that allows concurrent transactions to modify the same object is weak. The Read
Consistency model, already introduced, is the weakest consistency model covered in this
work.

2.2.2. Serialisability (SER)

Serialisability restricts the set of possible histories to those equivalent to some serial exe-
cution. That is to say, under a traditional system offering serialisability, the happens-before
relation introduced in 2.1.3 is strengthened with a strict total order over the transactions
in a history. Such an order does not need to follow real-time order, thus, a system under
serialisability is free to reorder transactions as long as the resulting history is sequential. A
history such as the one in Figure 2.1 is serialisable: one can order T2 to occur before T3 (or
vice versa); while the one depicted in Figure 2.2 is not.

r2(x1).r2(y1).w2(x2).w2(y2).c2 r3(x2).r3(y2).w3(y3).c3

r4(x1).r4(y3).c4

w1(x1).w1(y1).c1

T1

T2 T3

T4

Figure 2.2: Example of a non-serialisable history. T4 observes version y3 written by T3,
but fails to observe version x2 written by T2. This result can’t be obtained by executing the
transactions in any sequence, and thus the history is not serialisable.
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Because of the CAP theorem, distributed databases can’t offer serialisability without
sacrificing availability [16, 23]. Although some database systems offer it [19], guarantee-
ing serialisability in geo-replicated systems is difficult, requiring global communication and
consensus mechanisms, like Paxos [31].

2.2.3. Snapshot Isolation (SI)

Proposed by Berenson et al. [13], Snapshot Isolation (SI) relaxes the total ordering
guarantees of serialisability by requiring only a partial order among committed transactions.
To preclude the Lost Update anomaly, SI introduces the concept of a snapshot : a private
view of the data written by committed transactions. This snapshot is created at the time
the transaction starts, called its start timestamp. A transaction T is not able to see updates
made by other transactions that commit after T ’s start timestamp. When a transaction
T is ready to commit, it gets assigned a commit timestamp, larger than any previous start
or commit timestamp. Transaction T commits successfully only if no other concurrent
transaction updated the same objects as T . Under SI, two transactions are concurrent if
their start–commit timestamps intervals overlap, and read-only transactions always commit.
Two transactions write-conflict if they update a non-disjoint set of objects.

Due to the partial order among transactions, and the condition that concurrent transac-
tions only abort if their set of updated objects overlap, a system under Snapshot Isolation is
able observe the so-called Write Skew anomaly, defined below. This anomaly occurs when
an external invariant is violated as a result of concurrent non-conflicting transactions. As an
example, suppose that objects x and y are related by a constraint such that x+y ≤ 10, with
x = 5 and y = 2 as the initial state. In such a setting, a history such as the following can vi-
olate the invariant: h = r1(x = 5).r1(y = 2).r2(x = 5).r2(y = 2).w1(x = 7).w2(y = 4).c1.c2.
Both T1 and T2 start their execution and observe a consistent state that upholds the in-
variant. Then, T1 updates the object x to the value 7, which still maintains the invariant,
as 7 + 2 ≤ 10. Concurrently, T2 proceeds as T1, updating y to 4, which also maintains
the original invariant (5 + 4 ≤ 10). However, as the result of both T1 and T2 successfully
committing, the invariant is violated, with 7 + 4 6≤ 10.

Definition 2.5 (Write Skew). A Write Skew occurs whenever non-conflicting transactions
update objects related with an external invariant, successfully commit, and as a result
violate the original invariant.

Due to the fact that transactions are assigned monotonically-increasing start and commit
timestamps, this imposes a total order among the commit times of transactions, i.e. a
total commit order. In addition, given that the updates of a transaction T must be
immediately visible to subsequent transactions, this means that T must wait to commit
until all its updates have been propagated to all remote replicas. These two facts make
Snapshot Isolation unsuitable for geo-replicated database systems without relying on global
communication, which makes them hard to scale.
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2.2.4. Parallel Snapshot Isolation (PSI)

Parallel Snapshot Isolation (PSI), proposed by Sovran et al. [39], is a consistency model
aimed at solving the scalability limits of classical Snapshot Isolation in geo-replicated sys-
tems. While concurrent conflicting transactions are not allowed, PSI allows non-conflicting
transactions to exhibit a relative commit order that varies between replicas. This means that
PSI can propagate transactions to replicas in causal order, sidestepping another scalability
limit of SI.

However, allowing different commit orders for non-conflicting transactions at different
replicas (or sites) makes PSI susceptible to the Long Fork anomaly [39]. Consider the
history depicted in Figure 2.3. If transactions T4 and T5 execute in different replicas, they
are allowed to observe different commit orders for T2 and T3.

r4(y1)

r2(x1).w2(x2).c2

r3(y1).w3(y3).c3

r5(y3).c5

r4(x2).c4

r5(x1)

T2

T3

T4

T5

w1(x1).w1(y1).c1

T1

Figure 2.3: Example of a history showing the Long Fork anomaly. Transaction T4 observes
T1 � T2 � T3 while T5 observes T1 � T3 � T2.

Definition 2.6 (Long Fork). A Long Fork occurs whenever transactions are able to observe
different commit orders of previous non-conflicting update transactions.

Like SI, PSI exhibits base freshness [8]: a transaction T is limited to read only versions
of objects written by transactions that committed before T started. In the geo-replicated
scenarios that PSI is meant to address, this limitation leads to a high number of stale data
reads. Consider the example of two sites s1 and s2 separated by a high latency link: if a
transaction starts in s1 and subsequently tries to read an object located at s2, it might be the
case that the version it is forced to read due to base freshness has already been overwritten
by other transactions. Saeida Ardekani et al. [38; Theorem 4] prove that base freshness
requires replicas that do not replicate data accessed by a transaction T to coordinate in
order to commit T , which results in lower system performance and limits scalability. Indeed,
the original implementation advanced by Sovran et al. communicates with all the replicas
in the system [39].
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2.2.5. Non-Monotonic Snapshot Isolation (NMSI)

The Non-Monotonic Snapshot Isolation (NMSI) consistency model also alleviates the
total commit order scalability problem in classical Snapshot Isolation. NMSI was proposed
by Saeida Ardekani et al. [6] as an improvement over the previously described Parallel
Snapshot Isolation model, by exhibiting forward freshness : a transaction T is allowed to
read versions written by transactions that committed after T started, as long as those
reads form a causally consistent snapshot. A transaction T observes a causally consistent
snapshot if all the versions read by T are written by its direct causal dependencies, i.e. if a
transaction Ti performs ri(xj) such that it depends on Tj, then there’s no such wk(xk) such
that Tj / Tk / Ti.

In spite of this, the set of possible anomalies produced by both Parallel Snapshot Isolation
and Non-Monotonic Snapshot Isolation are the same, as can be seen in Figure 2.4. In
addition, both models can be proved to be equivalent, as shown by A. Cerone (2016, personal
communication with the author), with the only difference being the choice of the concurrency
control algorithm.

2.2.6. Anomaly Comparison

Figure 2.4 summarises the consistency models reviewed, together with the anomalies
that they allow.

Anomalies Consistency Models
SER SI PSI NMSI RC

Dirty Write x x x x x
Dirty Read x x x x x

Non-Repeatable Read x x x x X
Lost Update x x x x X
Write Skew x X X X X
Long Fork x x X X X

Figure 2.4: Anomaly Comparison of Consistency Models (x:disallowed, X:allowed).
Adapted from Saeida Ardekani et al. [6].
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Chapter 3

The fastPSI protocol

This chapter describes fastPSI, a transactional protocol that implements Parallel Snap-
shot Isolation and allows stronger consistency guarantees for transactions accessing objects
inside entity groups. The chapter begins with an overview of what entity groups are, and
by explaining the consistency guarantees of fastPSI for transactions executing both within
and across different groups. It follows with a summary of how the different participants of
the protocol interact with each other, and with a description of the different data struc-
tures involved. Next, it shows how the protocol is structured by going over the execution
of a transaction. The chapter concludes with a discussion of the possible drawbacks of the
design.

3.1. Consistency Guarantees
The fastPSI protocol considers a system in which objects are aggregated in entity

groups [11]. An entity group σ is defined as a proper partition of objects Obj. This means
that two properties hold: (i) ∀σ, σ′ =⇒ σ ∩ σ′ = ∅, and (ii) ∀x ∈ Obj. ∃σ. x ∈ σ. The first
property says that the sets of objects covered by different entity groups are disjoint, while
the second property states that any object that exists in the system is part of an entity
group.

The goal of fastPSI is as follows: transactions that only access objects inside a single
entity group should satisfy Snapshot Isolation (SI), while transactions that access objects
across entity groups should satisfy Parallel Snapshot Isolation (PSI). Intuitively, if one has
a single entity group that encompasses every object, any execution of fastPSI is equivalent
to an execution under Snapshot Isolation, thereby precluding the Long Fork anomaly. Con-
versely, if one has an entity group per object in the system, then any execution of fastPSI is
equivalent to an execution under Parallel Snapshot Isolation. The decision of which objects
to place into different entity groups is left to the programmer, who should take application
requirements into account.

Recall from Section 2.2.3 that transactions executing under SI are only partially ordered,
in contrast with serialisability, where they are totally ordered. However, the requirement for
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transactions to take monotonic start and commit timestamps induces a total commit order
for transactions, even for those that are not in conflict with each other. In the presence of
different entity groups, this requirement would require transactions to communicate with
every group in order to determine a monotonic timestamp. In fastPSI, this requirement is
relaxed so that transactions have multiple, independent timestamps, one per entity group.

In order to guarantee Parallel Snapshot Isolation across entity groups, the protocol
incorporates the notion of forward freshness [6], which allows a transaction T to read versions
of objects written by transactions that committed after T starts. The fastPSI protocol
accomplishes this by making a transaction T fix its start timestamp at a particular entity
group only when T reads an object from that group. This also allows a transaction to
acquire start timestamps only at the groups it reads from, thus avoiding coordination with
other groups.

The fastPSI protocol leverages both approaches to offer its consistency guarantees: a
transaction is able to read from versions written by latter transactions as long as those
reads form a causally consistent snapshot. When a transaction T performs its first read
operation in an entity group, it fixes a snapshot that includes all the transactions that
committed before T ’s read occurred. As T performs further read operations on other entity
groups, the snapshots that T fixes are restricted to versions written by transactions that
are not causally dependent on the transactions that T already included in its previous
snapshots.

3.2. Overview and System Model
The protocol consists of three components: client processes that provide the system

interface for managing transactions, server processes that handle the individual operations of
transactions, and entity groups—managed by a server—which store individual data objects.
Given that entity groups properly divide the range of objects into disjoint partitions, for the
remainder of this chapter the term partition is used as a shorthand for entity group.

Both client and server processes are considered reliable and connected by reliable chan-
nels1. Processes communicate with each other using an asynchronous message-passing sys-
tem. Server processes are denoted as a set S = {s1, . . . , sN}, and clients as C = {c1, . . . , cM}.
Data objects are denoted by a set Obj, split into N partitions, each stored by a server pro-
cess. In addition, partition(x) represents the index of the partition the object x belongs
to, such that it is managed by server spartition(x). For simplicity, it is assumed that server
processes only manage a single partition.

Clients provide the transactional interface of the protocol through the start, read,
write and commit operations. Transactions are interactive, i.e., when a transaction starts,
the client does not know which operations it will perform in advance. In fastPSI, the start
and write operations are local to the client. Clients issue read operations to servers, which
return the values and metadata associated with the objects the client requested. Clients

1Fault-tolerance concerns are orthogonal to the problem addressed, although several approaches are
discussed in Chapter 5.
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handle write operations locally by storing the updates in a buffer, called the write-set of a
transaction. At commit time, the client acts a coordinator of a two-phase commit protocol
(2PC) [15], issuing prepare and decide operations to all the participating servers. The
written values buffered locally are transmitted to the servers at prepare time, together
with the accumulated metadata for the objects that the client read. The decision to commit
or abort a transaction is taken based on this metadata.

Servers handle three operations issued by clients: read, prepare and decide. When a
server handles read operations, it forwards the request to the partition responsible for the
object being requested. When receiving a prepare request for a certain transaction, the
server checks for conflicts with other transactions waiting to be decided, which are stored
in a commit queue. If the transaction contained in the client request does not conflict, it
is added to the queue, and the server replies to the client with a commit vote. If, on the
other hand, the transaction is found to be conflicting, an abort vote is sent instead.

Partitions are responsible for fulfilling read requests on behalf of servers, and for main-
taining causally consistent snapshots on behalf of the clients. Partitions store multiple ver-
sions of an object in accordance with a multi-version concurrency control protocol. When
executing a read request for an object x, a partition finds and returns the most recent
causally consistent version of x, along with some metadata of the chosen version.

Each partition stores multiple versions of an object represented by a tuple 〈val, vid〉,
where val is the value of a given version, and vid is a logical identifier for the transaction
that committed this version. This logical identifier is represented using version vectors [35].
Such a vector consists of N entries, one for each partition, storing a non-negative integer.
Each entry vid[i] in the vector can also be represented by a pair (si, k), where k is the actual
value of the i-th entry of the vector. These pairs are also called dots [12]. Version vectors
are compared according to the following relation, showing when one vector covers more dots
than another: V1 v V2 ⇐⇒ ∀i. V1[i] ≤ V2[i]. In addition, there exists a join operation
on vectors, taking their entry-wise maximum, which will be denoted by max from now on.
The set of all version vectors is denoted by VerVector, and the vector with all entries set to
0 by ~0.

3.3. Server data structures
Each server si maintains five main data structures, summarised in Figure 3.1. This

section now follows with a more detailed explanation of each of them.
LastPrep is a counter of the number of update transactions that initiated their commit

phase at a given server. When a transaction commits at a server si, it gets assigned the value
of the counter as a sequence number k, which induces the commit order of transactions at si.
A transaction computes its commit vector Vc from these sequence numbers, such that the
vector represents the set of dots {(si, k) | k ≤ Vc[i]} which identify the writes by previous
transactions whose sequence number at si is no higher than Vc[i].

VersionLog is a mapping of objects to a list of versions, called the database. As noted
before, each version is a tuple 〈val, Vcomm〉 such that val is a value and Vcomm is the
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Data Structures at a server si
LastPrep Integer The number of update transactions that tried to

commit at the server.
VersionLog Map[Object,

Set[〈Value val,VerVector Vcomm〉]]
Database: a mapping from objects to lists of pairs
of a value and the commit vector of the transac-
tion that wrote it. The lists are ordered by the
i-th component of the commit vectors.

CommitLog Sequence[〈Tx T, VerVector Vaggr〉] Log of update transactions T committed at the
server, ordered by Vaggr[i]. Here Vaggr is the
aggregate vector of T : the join of the commit
vectors of all transactions up to T in CommitLog.

Vtotal VerVector The join of the commit vectors of all transactions
in CommitLog.

CommitQueue Sequence[〈Tx,pending,WriteSet〉 ∪
〈Tx,decided,WriteSet,VerVector〉]

Queue containing information about update
transactions trying to commit at the server.

Figure 3.1: Data structures used by servers in the protocol. The orders of entries in
CommitLog, VersionLog and CommitQueue are consistent with the commit order of the as-
sociated transactions. Components of various tuples are selected using the names given in
the figure.

commit vector of the transaction that wrote val. The VersionLog at si is ordered by the
i-th component of the commit vector of each version, which follows the commit order of
transactions at the server. The most recent entry in the list for the object x is denoted by
VersionLog[x].last.

CommitLog is an ordered list that maintains a tuple 〈T, Vaggr〉 for each update trans-
action that committed at a server, such that T is the identifier of a committed transaction
and Vaggr is an aggregate vector. The aggregate vector represents the join of the commit
vectors of all the transactions up to T in CommitLog. Entries in the log at si are totally
ordered according to the i-th entry of their aggregate vectors, Vaggr[i], which also follows the
commit order of transactions at the server. These aggregate vectors are stored for efficiency,
and are used to compute the snapshot of a transaction at the server. The aggregate vector
of the last committed transaction is stored in Vtotal. Initially, the CommitLog contains a
single placeholder entry 〈_,~0〉.

Finally, CommitQueue is an ordered queue of transactions trying to commit updates at
the server. The queue has entries of two types. An entry 〈T ,pending,WS 〉means that T is
successfully prepared to commit at si, but the final decision on it is not yet known; WS is the
write-set of the transaction, containing object-value pairs. An entry 〈T ,decided,WS , V 〉
in the queue means that T has been decided to commit with a commit vector V , but its
writes have not yet been added to VersionLog. The order of transactions in CommitQueue
follows the commit order at the server.
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3.4. Protocol Description
The protocol is now described in detail by following the execution of a transaction. This

section begins by describing how a transaction is initialised, along with the mechanism to
build a causally consistent snapshot. Later, it shows the mechanism to validate and commit
a transaction.

3.4.1. Transaction Execution

The fastPSI protocol uses optimistic concurrency control, that is, the execution of a
transaction is speculative. Clients read objects from servers and buffer writes locally. At the
end of the execution, the decision whether to commit or abort a transaction is taken based
on the existence of conflicts with concurrently executing transactions. Clients executing a
transaction maintain a transaction context including several pieces of data, summarised in
Figure 3.2 and explained below.

In the following, the steps taken by both clients and servers to execute T refer to the
algorithms in Figures 3.3 and 3.4.

Context for a transaction T at a client ci
T.WS WriteSet Write-set of T .

T.HasRead Vector[Bool] Mapping showing whether T has read a given partition.
T.Vsnap VerVector Snapshot vector: determines snapshots fixed at partitions T

has read from and possible causal dependencies at all other
partitions.

T.Vdep VerVector Dependency vector, representing all causal dependencies de-
veloped by T during its execution.

Figure 3.2: Data structures used in the transaction context, kept by the clients in the
protocol. In the table, WriteSet = Set[〈Object,Value〉]

When a client starts a transaction T , it first initialises its context (line 1). When a
transaction T writes a value v to an object x (line 3), the client buffers this write in T ’s
write-set, T .WS, while discarding any previously written value of x.

1 function start()

2 return new Tx(WS = ∅,HasRead = ~⊥,Vsnap = ~0,Vdep = ~0);

3 function write(T, x, v)
4 T .WS← (T .WS \ {〈x,_〉}) ∪ {〈x, v〉};

Figure 3.3: Initialisation of a transaction and update of an object x at client ci.

When the transaction T issues a read operation on an object x (line 5), the client first
checks T .WS (line 6): if T has already written to x, the value stored in the write-set is
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returned. Otherwise, and assuming that j = partition(x), the client sends a READREQUEST

message to the server sj to fetch the value of the object (line 9).
When the transaction T reads an object from a partition j for the first time, the server

sj fixes a snapshot of versions from which it will serve all future reads by T . This snapshot
is defined by an integer k: it will include the versions written by all the transactions that
committed at the server with a sequence number up to k. The client keeps this information
in the transaction context, by storing k in the j-th entry of a snapshot vector T .Vsnap, and
by marking the current partition as read in T .HasRead, a boolean mapping its j-th entry
to > if T read an object from sj, and ⊥ otherwise. If T .HasRead[j] = >, then the vector
T .Vsnap is equal to the join of the commit vectors of all transactions committed at sj with
a sequence number no higher than Vsnap[j].

5 function read(T, x)
6 if 〈x, v〉 ∈ T .WS then
7 return v;

8 j ← partition(x);
9 send READREQUEST(x, T.Vsnap, T.HasRead) to sj;

10 wait receive READRETURN(m) from sj;
11 if m = abort then
12 throw abort;
13 else if m = 〈v,Vdep,Vaggr〉 then
14 T .HasRead[j]← >;
15 T .Vdep← max(T .Vdep,Vdep);
16 T .Vsnap← max(T .Vsnap,Vaggr);
17 return v;

18 when received READREQUEST(x,Vsnap,HasRead) from cj
19 if HasRead [i] then
20 V ← Vsnap;
21 else
22 wait until Vtotal[i] ≥ Vsnap[i];
23 r ← max{r ∈ CommitLog | ∀j.HasRead [j] =⇒ (r.Vaggr[j] ≤ Vsnap[j])};
24 if r.Vaggr[i] < Vsnap[i] then
25 send READRETURN(abort) to cj;
26 return;

27 V ← r.Vaggr;

28 ver = max{ver ∈ VersionLog | ver.Vcomm[i] ≤ V [i]};
29 send READRETURN(ver .val, ver .Vcomm, V ) to cj;

Figure 3.4: Local and remote read of object x.

Thus, the entries in the snapshot vector for partitions that T has not yet read from
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Figure 3.5: Illustrations of the snapshot computation. Vertical lines depict the commit
order at the corresponding partitions (top to bottom) and horizontal lines the cut-offs of
various snapshots. Arrows between partitions depict causal dependencies.

delimit all the possible causal dependencies T may develop at these partitions.
Both T .Vsnap and T .HasRead are supplied by the client when issuing a read operation

on object x, by using them as parameters to the READREQUEST message sent to a server si.
When the server receives this message (line 18), it first checks, using the HasRead mapping,
if the transaction has read from it before (line 19). In this case, the snapshot is determined
by Vsnap[i], and the server returns the latest version ver of the object x written by a
transaction in the snapshot, i.e., with a sequence number no higher than Vsnap[i] (line 28).
This version is determined by examining the i-th entry of the commit vectors in VersionLog.
The server then replies to the client with a READRETURN message containing the value of the
chosen version and its associated version vector, as well as the unmodified snapshot vector
provided by the client: since the server used a previously fixed snapshot, no updates to the
vector are required.

In the case when the client reads from the server si for the first time (line 21), it is
necessary to fix the snapshot for the transaction T at this server. Choosing a suitable
snapshot is complicated by the fact that transactions are allowed to be interactive—that is,
it is not know in advance which objects a transaction will read in the future. The snapshot
is hence fixed in such a way that any later read from this snapshot will be causally consistent
with any other read from the snapshots that T has already fixed, as specified by HasRead
and Vsnap. To ensure this, the selected snapshot has to satisfy two requirements, depicted
in Figure 3.5.

On the one hand, the snapshot cannot be too fresh. For example, suppose a transaction
T1 that wrote to partition j is excluded from the snapshot chosen by T at j. Then, the
snapshot chosen by T at partition i cannot contain T1, nor any other transaction that
causally depends on it, like T2 (Figure 3.5a). If the snapshot chosen by T included T2,
it would be able to read some of T2’s writes at i, thereby forcing T to read the writes by
T2’s causal dependencies, including T1; but T cannot see these writes, because it excluded
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them from the snapshot at partition j. Thus, when building the snapshot, the server needs
to take into account the snapshots taken by T at the partitions it already read; the server
selects the longest prefix of CommitLog transactions, such that their writes—and the ones by
their causal dependencies—are included in T ’s previous snapshots. This prefix is denoted
by r (line 23), and is computed using the Vaggr vector included in each of the entries of
CommitLog, summarising the causal dependencies of all transactions up to a given record
in the log. Thus, the snapshot at si includes all transactions with sequence numbers up to
r.Vaggr[i].

On the other hand, the snapshot selected cannot be too stale. Continuing with the
previous example, if a transaction T3 is included in the snapshot taken by T at some
partition k, then the snapshot of T at partition i has to include the writes by T3 and its
causal dependencies, e.g., the transaction T4 in Figure 3.5a. The snapshot vector T .Vsnap
summarises the updates of the transactions (and of its causal dependencies) included in the
snapshots fixed by T . Thus, after determining the appropriate snapshot in line 23, the server
si checks that this snapshot covers transactions with sequence numbers at i up to Vsnap[i]
(line 24). To maximise the chances of passing this check, before allowing a transaction T to
proceed with a read, the server si waits until the writes from the prefix up to Vsnap[i] have
been incorporated into its state (line 22).

It may be the case that it’s impossible to satisfy both of the above requirements when
selecting a snapshot; e.g., in the situation illustrated in figure 3.5b. Assuming that the
transaction T has fixed a valid snapshot at j and k, it is impossible to build a consistent
snapshot at partition i; given that T included T3 at partition k, it is forced to read T4’s
writes at i. At the same time, because it excluded T1 from the snapshot at j, T can’t read
the writes by T2 at i. In this case, without the second requirement, the server si would build
a snapshot excluding both T2 and T4, violating T ’s causal dependency on T3. In this case
the server sends to the client a READRETURN message with a special value abort (line 25),
which will cause the client to abort the transaction (line 12).

Once the server fixes a new snapshot, it selects the most recent version of the object x,
defined by e.Vaggr[i] (line 28), to return to the client. The server replies with a READRETURN

message, carrying a triple of the value of the object, its associated version vector, and the
aggregate vector for e.Vaggr, summarising the causal dependencies of all the transactions in
the snapshot. When the client receives the message (line 13), it first sets the j-th entry of
T .HasRead to >, to indicate that T has read an object at partition j, and joins the returned
aggregate vector to T .Vsnap. The client also joins the commit vector associated with the
version read to a dependency vector T .Vdep, which represents all causal dependencies de-
veloped by T during its execution. This ensures that, upon reading a version of object x,
T will causally depend on the transaction T ′ that wrote that version of x, along with the
causal dependencies of T ′.

Consider the example depicted in Figure 3.6a, which shows a complete execution of the
protocol. Client c1 issues a pair of read requests to servers s1 and s2. In turn, these servers
reply with the value of the object requested, along with its version vector and the new
aggregate vector for the transaction, denoted by Vdep and Vaggr at the bottom. Since this
is the first read request issued on behalf of this transaction, the server s1 replies with its
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Figure 3.6: Message flow diagram of a sample execution, with message arrows labeled with
their names in the protocol. The different interactions between a client and servers are
shown in the shadowed regions. The operation performed by the client is shown at the top,
and the state observed by the client at the end of each message exchange is summarised at
the bottom.

most recent aggregate vector, stored in Vtotal. In addition, it replies with the most recently
updated version of x—the object being read—which in this case is the empty version vector,
~0, signalling the client that the object x has never been updated before. The aggregate vector
〈2, 0〉 signals the client that the transaction snapshot must cover committed transactions
with a sequence number at s1 no larger than two, and that those transactions have no
causal dependencies at s2, indicated by having the entry for s2 set to zero. The client
incorporates these two vectors to the transaction context, and issues a new read request to
s2. The server, in turn, must use the transaction’s snapshot vector, T .Vsnap, to compute
the snapshot of T . Following the requirements already introduced, the snapshot at s2 must
cover the transactions already included in T ’s snapshot at s1. That is, it must include
transactions committed at s2 with a sequence number at s1 no larger than two. Since at
s2 no committed transactions have causal dependencies on transactions that committed
at s1, the server is free to return its most recent aggregate vector, equal to 〈0, 3〉, along
with the most recent version of the object requested. The client updates the context of
the transaction with the dependency and aggregate vectors sent by s2, which leaves the
transaction with a dependency vector equal to 〈0, 2〉 and a snapshot vector equal to 〈2, 3〉.

3.4.2. Transaction Termination

To terminate a transaction, clients submit the transaction context to the servers for
validation against both previous and concurrently executing transactions. This validation
is described by referring to the algorithms in Figures 3.7 and 3.8.
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A client executing a transaction T tries to commit it by calling the commit function
(line 30). Read-only transactions are committed without any additional checks, since they
read a causally consistent snapshot (line 31). To commit an update transaction T , the
client executing T serves as the coordinator for a two-phase commit among the processes
that store the objects written by T .

In more detail, to commit a transaction T , the client first sends a PREPARE message to all
servers storing the objects written by the transaction (line 33). The message contains T ’s
write-set and its dependency vector T .Vdep. When a server si receives this message (line 47),
it validates the transaction, deciding whether it should commit or abort due to conflicting
concurrent transactions. The server then replies to the client with a vote representing its
decision. Based on the votes, the client determines the final decision on the transaction—the
transaction commits if all votes are positive—and distributes the decision to the relevant
servers.

30 function commit(T )
31 if T .WS = ∅ then
32 return commit;

33 forall sj ∈ partitions(T .WS) do
34 send PREPARE(T, T.WS,Vdep) to sj ;

35 Vcomm ← T .Vdep;
36 decision ← commit;
37 forall sj ∈ partitions(T .WS) do
38 wait receive VOTE(m) from sj ;
39 if m = 〈T,abort〉 then
40 decision ← abort;
41 break;
42 else if m = 〈T,commit, k〉 then
43 Vcomm[j]← k;

44 forall sj ∈ partitions(T .WS) do
45 send DECIDE(T ,Vcomm, decision) to sj ;

46 return decision;

Figure 3.7: Commit protocol of a transaction at client ci. The client acts as a coordinator
for the commit.

The mechanism to compute a vote on a transaction at server si is now described (line 48).
The vote for a transaction T ensures the write-conflict freedom property of PSI:

For any pair of distinct transactions T1 and T2 writing to an object x, if T1 precedes
T2 in the commit order, then T2 must see a version of x at least as up-to-date as the
one written by T1.
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47 when received PREPARE(T,WS ,Vdep) from cj
48 if (∃T ′. (〈T ′,pending,WS ′〉 ∈ CommitQueue

∨ 〈T ′,decided,_,_〉 ∈ CommitQueue)
∧ (WS ′ ∩WS 6= ∅)

∨ (∃x. x ∈WS ∧ (VersionLog[x].last.Vcomm[i] > Vdep[i]))

then
49 send VOTE(t,abort) to cj;
50 return;

51 LastPrep← LastPrep + 1;
52 CommitQueue.put(T ,pending,WS );
53 send VOTE(T ,commit, LastPrep) to cj;

54 when received DECIDE(T,Vcomm, decision) from cj
55 if decision = commit then
56 CommitQueue.update(〈T ,decided,_,Vcomm〉);
57 else
58 CommitQueue.remove(T );

59 upon 〈T,decided,WS ,Vcomm〉 = CommitQueue.head()
60 forall {〈x, v〉 | 〈x, v〉 ∈WS ∧ partition(x) = i} do
61 VersionLog.add(〈x, v,Vcomm〉);
62 Vtotal← max(Vtotal,Vcomm);
63 CommitLog.add(T,Vtotal);
64 CommitQueue.remove(T );

Figure 3.8: Commit protocol of a transaction at server si.

To ensure this property, the server si first check whether, for the objects that T updated,
the versions that T read are still the most up-to-date ones in the database of si at the time
of validation. The server then checks whether T conflicts with any transactions present
in CommitQueue, which have started committing at the server, but whose writes have not
been applied to the database yet (line 48). If any such transaction T ′ in CommitQueue
writes to the same object as T , the server should abort T . The writes of transactions in
CommitQueue may be applied to the database before the writes of T , so checking for such
conflicts ensures that the reads by T will still be up-to-date when its writes are applied to
the database.

If the validation for transaction T fails, the server sends a VOTE message with the vote
abort, which tells the client to abort the transaction (line 49). If the validation succeeds,
the server generates a sequence number for the transaction by incrementing LastPrep. Then,
it sends to the client a VOTEmessage with this sequence number and a vote commit (line 53).
The server also adds an entry 〈T ,pending,T .WS〉 to CommitQueue, to record the fact that
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it is trying to commit T at the server (lines 51–53).
The client waits until it receives VOTE messages from all involved servers (line 38). If all

the servers voted commit, the client constructs the final commit vector for T by changing its
dependency vector T .Vdep, so that it not only covers the updates of T ’s causal dependencies,
but also the updates of T . These writes are identified by the sequence numbers provided
by the servers as part of their VOTE messages. Thus, the commit vector is defined by setting
the entries in T .Vdep for partitions written by T to these sequence numbers (line 43). The
client then sends a DECIDE message to all the involved servers with the final decision on T
along with its commit vector (line 45).

Upon receiving a commit decision on a transaction T (line 54), a server updates the
entry associated with T in CommitQueue to change its status to decided and record its
commit vector. If the transaction is aborted, the server removes T from the queue.

Committed transactions are applied to the database in their order in CommitQueue, i.e.,
the commit order. When a decided transaction T gets to the head of the queue (line 59),
the server dequeues it and adds its writes to VersionLog, tagged with its commit vector.
The server then joins T ’s commit vector to Vtotal, and adds the transaction to CommitLog,
along with Vtotal as its aggregate vector.

3.5. Consistency Tradeoffs and Read Aborts
As mentioned in 3.4.1, a transaction T reads a causally consistent snapshot from a

partition when two properties are maintained: on the one hand, if the snapshot of T excludes
a particular transaction T ′, then T must exclude T ′, together with any other transaction
that causally depends on it, from the snapshots T fixes at any other partition. On the other
hand, if the snapshot of T includes a transaction, that transaction—along with its causal
dependencies—must be included in any other snapshot fixed by T at any other partition.
These two properties provide fastPSI with part of its consistency guarantees: transactions
accessing objects in a single partition are executed under Snapshot Isolation (SI), whereas
transactions accessing objects in different partitions are executed under Parallel Snapshot
Isolation (PSI).

However, it might be that both consistency models cannot be guaranteed at the same
time. Since Snapshot Isolation requires a strict order between snapshots, this means that
fastPSI must provide a strict per-partition order of snapshots, which is represented by the
commit order at a partition. At the same time, under Parallel Snapshot Isolation, partitions
are allowed to commit transactions in different order as long as those transactions are non-
conflicting. When a transaction cannot build a snapshot that satisfies both consistency
models, it is forced to abort.

Recall from 3.3 the usage of version vectors to represent causal dependencies, such that a
transaction Tk causally depends on Tj if Tj.Vcomm v Tk.Vdep, i.e., Tk is causally dependent
on Tj if Tk observes the updates of Tj. At the same time, the commit order of transactions
at a partition i is derived from the sequence numbers of transactions at i, such that Tj

committed before Tk if Tj.Vcomm[i] < Tk.Vcomm[i].
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Figure 3.9: Example read abort execution. Bold horizontal lines represent executions of
transactions over time (left to right), the black circles represent the commit times of the
transactions at different servers, and the dotted bold lines represent time it takes for the
commit of a transaction to propagate to the other servers. Arrows between transactions and
servers represent messages. The cross in the execution of T3 marks its abort time.

In practice, since the dependency vector Vdep of a transaction is used as the initial
value of its commit vector (line 35), this makes any two transactions committing at the
same partition causally dependent on each other, even if they are not aware of each other’s
updates. Nevertheless, this causal dependency is only established after both transactions
are committed, and thus it doesn’t interfere in their validation process.

This limitation comes from the strict per-partition commit order requirement of SI and
from the coarse-grained nature of version vectors. When combined with the property of
PSI that allows different commit orders across partitions, it can cause situations such that
any snapshot that observes a particular order of transactions will not be causally consistent.
When this happens, any transaction that observes such order will need to abort.

The example in Figure 3.9 illustrates such an order, with T1 and T2 being a pair of
concurrent, non-conflicting transactions, both committing at servers s1 and s2. Due to
the strict per-partition order requirement inherited from SI, both servers order T1 and T2

according to their local sequence number. In addition, the weaker consistency guarantees of
PSI allow servers to commit transactions in different order, such that s1 observes T1 � T2,
and s2 observes T2�T1. Usually, this divergence in the commit order of transactions doesn’t
affect the ability of subsequent transactions to form a causally consistent snapshot: as long
as a transaction is able to observe both T1 and T2 at every partition, their respective commit
orders are irrelevant. However, consider the execution of T3 in Figure 3.9. The transaction
reads an object from server s2, including T2 in its snapshot; however, the read operation of
T3 arrives at s2 before the commit of T1 propagates to the server, and therefore T3 excludes
T1 from its snapshot. Following this, T3 attempts to read an object from s1. Since T3

included T2 in its snapshot at s2, it must also include it in its snapshot at s1; on the other
hand, since T3 excluded T1 at s2, its snapshot must not include T1 at s1. However, due to
the fact that s1 observed the order of both transactions as T1�T2, the two requirements to
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form a causally consistent snapshot for T3 are contradictory: including T2 in its snapshot
would force T3 to observe T1, whereas excluding T1 would force T3 to also exclude any
other transaction that causally depends on T1, i.e., T2. In this situation, T3 cannot form a
causally consistent snapshot at s1, and thus it must abort.
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Chapter 4

Implementation and Evaluation

This chapter offers an evaluation that attempts to explore the overhead of fastPSI’s
strong consistency model compared to the weak consistency of Read Committed. The
evaluation also shows how fastPSI is able to outperform a protocol implementing the stronger
serialisability consistency model. Finally, it evaluates the scalability of fastPSI as more
servers and partitions are added to the system, and discusses some of the limitations of the
protocol.

4.1. Implementation
The implementation of fastPSI consists of a client-side library [1] and a server [3], the

latter being written as a plug-in transactional protocol for Antidote [5], a reference platform
for evaluating consistency protocols. Both the client library and the server are written in
the Erlang programming language, with a total of 6K lines of code. The Antidote plat-
form provides a key-value database, supports both in-memory and disk-based storage, and
implements full replication. For simplicity, the implementation of fastPSI only supports in-
memory storage, and lacks a replication mechanism. The client-side library communicates
with the server using Google’s Protocol Buffers [2]. To enhance network efficiency, client
messages are transmitted in periodic batches to the servers.

To validate the results of the evaluation, two alternative protocols are also implemented,
satisfying the Read Committed and serialisability consistency models, called naiveRC and
naiveSER, respectively. Both are built on top of the original fastPSI implementation and
are as efficient as possible. The pseudocode for both implementations can be found in
Appendix A.

As the implementation of fastPSI doesn’t target replicated scenarios, this document
refrains from comparing against previous implementations of Parallel Snapshot Isolation.
Since the protocols and implementations as described in the literature are influenced by
the choice of replication mechanisms, a comprehensive evaluation of fastPSI against other
implementations of PSI is deferred to future work, which could explore incorporating either
partial or full replication to fastPSI.
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Given that fastPSI requires the use of multiple versions per object, it becomes necessary
to prevent an unbounded growth of the number of versions in the VersionLog database, and
in the number of entries in the per-partition CommitLog. To that end, a simple garbage
collection mechanism in the implementation ensures a fixed number of versions, and regularly
prunes the oldest versions from the state of a partition.

4.2. Evaluation
This section evaluates the performance of fastPSI using several workloads inspired by the

Yahoo! Cloud Serving Benchmark (YCSB) [18], modified to generate transactional work-
loads [6, 9]. The implementation of Read Committed is used as a baseline for comparison,
in order to show the maximum possible performance. Figure 4.1 describes the workloads
used. All experiments are run on a cluster consisting of machines running Debian 4.19.67-2
(Stretch) with 3.80 GHz to 4.70 GHz Intel Xeon processors with six cores, 32 GB of RAM,
and one gigabit network port. The cluster is partitioned in up to three different sites, with
four server machines and four client machines at each site. Thus, there is no shared memory
between clients and servers, as if clients were acting as proxies in the same data centre as
servers. Since all the machines are located in the same local network, the tc Linux command
is used to artificially add latency between sites.

In all benchmarks, the system is loaded with one million random keys and 256-byte values
prior to receiving any operations from the clients. Partitions are distributed uniformly across
servers, such that a server might be responsible for multiple partitions. Keys are mapped
to partitions using consistent hashing [30], with clients being aware of the distribution of
keys to partitions and server machines. Thus, clients can directly address the correct server
and partition for a specific key. Each client machine spawns multiple concurrent threads
that execute transactions and communicate with servers in a closed-loop fashion. When
transactions read more than one object, clients perform those operations serially. For the
experiments that involve more than one site, the latency between sites is of 10 ms.

Key Selection Distribution Operations
Read-Only Tran. Update Tran.

B Uniform 4 Reads 3 Reads, 1 Update
C Uniform 2 Reads 1 Read, 1 Update
D Uniform 3 Reads 3 Reads, 1 Update
E Uniform 3 Reads 3 Reads, 3 Updates

Figure 4.1: Transactional YCSB Workload Types.
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Figure 4.2: Comparison of throughput and termination latency of update transactions.

4.2.1. Performance & Scalability Limits

Performance. The first experiment serves to investigate the overall performance profile of
the implementations. The throughput and latency of the different protocols is measured and
compared as the number of update transactions increases, while keeping the number of sites
constant. For this experiment, the number of concurrent client threads varies such that the
resources of the CPU never saturate. The aim is to explore the overall overhead of fastPSI
in comparison with naiveRC, as well as the performance benefits it offers in comparison
with naiveSER. Figure 4.2 shows the results of using Workload C and three sites, with 64
partitions uniformly distributed across sites. It measures the termination latency of update
transactions (i.e., the amount of time spent on the validation of a transaction) as the ratio
of read-only to update transaction ranges from 90%/10% to 70%/30% (left to right). Since
the latency is measured in the client, it only reflects the amount of time spent on the prepare
phase of the commit validation, as the client does not need to wait until the changes of a
transaction are committed to the partition state.

Transactions as executed by naiveRC need minimal synchronisation during its commit
phase, and no synchronisation at all during read operations. This is reflected in its high
performance, with the validation of update transactions as the only bottleneck in the system.
Thus, as the proportion of update transactions increases, the impact on overall throughput
is pronounced, dropping by as much as 20%.

For both naiveSER and fastPSI, read operations from a transaction T must wait until
the causal dependencies of T commit at a particular partition, bounded in the worst case
by the maximum latency across sites. In addition, read operations accessing the same
partition suffer from having to synchronise while fixing a snapshot, as the implementation
of CommitLog is not thread-safe. These two shortcomings explain the overall low throughput
in comparison with naiveRC. Nevertheless, both implementations exhibit stable performance
as the proportion of update transactions increases.

By comparing fastPSI with naiveSER, one can observe that the latter implementation
is limited by its need to validate every transaction, in comparison with fastPSI, which only
validates update transactions. In addition, the weaker consistency model offered by fastPSI
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allows it to outperform naiveSER in all cases by approximately 150%, while showing similar
latencies.

Scalability. The next experiment explores the overall scalability of fastPSI, by examining
how the maximum performance of each protocol changes as the number of machines in the
system is increased. Workload B is used, with a fixed ratio of 10% update transactions, and
the number of sites is varied from one to three, while keeping the number of partitions fixed
to 64. Figure 4.3 shows the overall performance of the protocols.
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Figure 4.3: Maximum Throughput of Consistency Models.

As before, the performance of naiveRC increases almost in a linear fashion as more
servers are added, as explained by its minimum need for synchronisation. Although the
scalability of fastPSI is limited by the fixed number of partitions, it benefits moderately
from increasing the number of machines: as the overall number of partitions per machine
decreases, servers free resources, and can thus fulfil more client requests. This is reflected
in its performance at three sites being 1.52 times its base throughput at a single site. In
contrast, the overall performance of naiveSER stays almost constant as the number of sites
is increased, reflecting its need to validate every transaction, which requires greater levels
of synchronisation.

As the number of sites increases, so does the difference between naiveSER and fastPSI.
Overall, fastPSI manages to outperform naiveSER by a factor of 2.88 with a single site, and
by a factor of 3.52 at three sites.

Parameter Range Default
Sites 1–3 3
Update Tran. Proportion 10%–30% 10%

Figure 4.4: Parameter space used in the comparison workload.
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Figure 4.5: Parameter space exploration to reflect the performance comparison of the pro-
tocols. Each experiment varies one parameter while keeping the other fixed at its default
value (represented by the grey vertical line). Throughput is shown normalised compared to
naiveRC.

Overall comparison. The last two experiments have shown how the performance and
scalability of the implementations is determined by the proportion of update transactions
and the number of sites. To better visualise the relationship between workload choice and
performance, the next experiment explores the parameter space described in Figure 4.4
when using Workload B. As in the previous experiment, the number of partitions is kept
constant as the number of sites increases. The results are shown in Figure 4.5, with the
throughput depicted normalised compared to the performance of naiveRC.

As shown in Figure 4.5a, fastPSI and naiveSER have different scalability properties.
Although both implementations suffer in comparison with naiveRC, fastPSI exhibits much
better scalability in comparison with naiveSER. For naiveSER, the need to validate every
transaction imposes a performance penalty that increases as more sites are added, and
consequently increases the overall latency of the commit phase for every transaction. In
contrast, the impact on fastPSI is less severe, as the increased latency only affects the read
operations, since the proportion of update transactions is low.

Figure 4.5b shows the performance comparison as the proportion of update transactions
increases. While the difference in throughput between naiveRC and fastPSI stays constant,
the overall performance of fastPSI is hindered by the need to compute a causally compatible
snapshot. Nevertheless, the fact that the relative performance stays constant in comparison
with naiveRC shows that the impact of the validation process does not grow with the
number of update transactions. The impact of update transactions on naiveSER is less
pronounced, and its performance difference with fastPSI gets smaller as the proportion
of updates increases. This is explained by the choice of workload: read-only transactions
perform four reads, while update transactions perform three. Since naiveSER also validates
read-only transactions, as the proportion of updates grows, the average number of partitions
that participate in the voting phase shrinks from four to three, which decreases the runtime
cost of validation.
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Figure 4.6: Overall transaction abort ratio for different consistency models and workloads.

4.2.2. Abort Ratio

This section focuses on another advantage of the relaxed consistency model of fastPSI
in comparison with serialisability, namely, the ratio of aborted transactions. One of the
characteristics of fastPSI is that the snapshots of transactions exhibit forward freshness : a
transaction T is able to read object versions written by transactions that committed after
T started. In contrast, a transaction T under serialisability or classical Snapshot Isolation
can only read versions written by transactions that commit before T ’s start time. This
limitation leads to a high number of aborted transactions due to stale reads in high latency
settings.

As such, this section aims to explore the advantages of forward freshness in fastPSI in
comparison with naiveSER, and how different workloads affect it. Figure 4.6 shows how the
abort ratio of transactions varies—under different workloads—with the number of update
transactions. The results were obtained with two sites. The graph on the left shows the
advantages of the forward freshness of transactions, with the abort ratio of fastPSI being 30
percentage points better than naiveSER, on average. However, as the number of updates
increases, so does the number of conflicting transactions. This is reflected in an increase of
aborted transactions, from less than one percent to around five percent. The graph on the
right, however, shows different results: as the number of update transactions grows, so does
the overall abort ratio of fastPSI, from 7% to 25%. Overall, in the worst case the abort
ratio of fastPSI is only 10 percentage points better than naiveSER.

The difference between workloads is explained in the two graphs depicted in Figure 4.7,
which explores the reasons why transactions abort. In fastPSI, a transaction might abort
for two reasons: by updating an object that is overwritten by a concurrent transaction, or
by failing to form a causally consistent snapshot, as detailed in 3.5. By virtue of having the
same implementation of causally consistent snapshots, naiveSER inherits the same reasons,
and adds a third: a transaction is forced to abort if it reads a version of an object that is
later overwritten. For both protocols, a transaction might abort at two points during its
execution: read aborts occur when a transaction fails to fix a causally consistent snapshot,
and otherwise the transaction aborts during validation, i.e., during the termination of the
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Figure 4.7: Ratio of aborts that happen during the validation phase, for different consistency
models and workloads.

transaction. As seen on the left graph in Figure 4.7, in Workload D all aborted transactions
in fastPSI do so during the validation phase, while for naiveSER, only a small percentage
of aborted transactions (between 0.5% and 2.5%) do so during termination. In contrast,
fastPSI exhibits a very different behaviour with Workload E, as shown in the graph on the
right. With this workload, transactions abort for the same reason in both protocols: they
are unable to build causally consistent snapshots. In both cases, the amount of transactions
that abort while attempting to fix a snapshot grows as the number of update transactions
increases.

Recall that in Workload D, update transactions update one single key, while in Workload
E, they update three. This small difference in the number of updated keys explains the
difference in aborted transactions for fastPSI. As described in 3.5, a transaction T will
be unable to fix a causally consistent snapshot when a) different partitions commit non-
conflicting transactions in different order, and b) T fixes a snapshot in one of those partitions
before the updates of all the non-conflicting transactions become visible. Since update
transactions in Workload D only update a single key, update transactions will only commit
at a single partition, and therefore, no transaction can observe a different commit order.
This explains why there are no aborted transactions due to inconsistent snapshots when
executing this workload for fastPSI. In contrast, update transactions in Workload E update
three keys, and therefore commit at three different partitions,1 such that the probability of
partitions committing transactions in different order grows. In addition, since transactions
read three keys, the probability of observing different commit orders also grows. Thus, as the
number of update transactions increases, so does the probability of transactions attempting
to fix inconsistent snapshots. In naiveSER transactions also commit at the partitions they
read from, meaning that update transactions in Workload D commit at three partitions.

1Since transactions choose keys following an uniform distribution, most keys will be managed by distinct
partitions.
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Figure 4.8: Results from exploring the abort ratio of fastPSI across different workload and
deployment scenarios.

This explains why its abort ratio is similar in both workloads.
Since small changes in workload choice are able to affect the overall abort ratio of fastPSI

in a significant manner, the evaluation is concluded with an exploration of the parame-
ters that have the highest impact on the number of aborted transactions. As explained
previously, one of the reasons why transactions observe inconsistent snapshots is because
partitions commit transactions in different orders. Thus, by changing the number of keys
updated by a transaction, one can modify the number of partitions involved, which affects
the chances of different commit orders. Another reason for inconsistent snapshots is that
transactions are able to observe the transactions that commit in different order, which leads
to change the number of keys read by the transactions. If transactions read from a small
amount of partitions, the probability that they observe different commit orders will also be
small. Finally, the most important factor is the number of partitions, or rather, the amount
of keys per partition. When a few partitions manage all the keys, most transactions will
commit at the same partitions. Therefore, the probability of having different commit orders
grows, as well as the probability that a given transaction observes those orders. Conversely,
when the number of partitions is large, or partitions manage only a small amount of keys,
the probability of different commit orders shrinks, as does the probability of them being
observed by transactions.

Figure 4.8 shows the results of modifying each of the parameters mentioned, noting
that, for simplicity, a single site is used while modifying the number of partitions, instead of
changing the total amount of keys in the database. The percentage of update transactions
is set to 50%, to show the worst possible abort ratio. The effect of changing the number
of keys read by a transaction, shown in Figure 4.8a, is small. Although the overall abort
ratio never grows larger than 10%, modifying the number of read keys results, at best, in
an improvement of 7.5 percentage points. Blind updates are not allowed, and as such the
minimum number of read keys is two, since transactions need to update at least two keys
in two different partitions to introduce inconsistent snapshots in the system. In contrast,
changing the number of keys updated by a transaction produces a bigger impact, as shown
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Figure 4.9: Performance degradation of fastPSI as the number of partitions increases, with
a fixed number of servers.

in Figure 4.8b, with an overall change of 23 percentage points in the number of aborted
transactions. When transactions update a single key, all transactions abort during valida-
tion. At this point, the system shows the best possible abort ratio for 64 partitions, at
5%. Finally, modifying the number of partitions yields the biggest change in the number of
aborted transactions, as shown in Figure 4.8c. With 8 partitions, the overall abort ratio is
of almost 70%, which serves as an extreme example of the importance of this parameter. As
the number of partitions grows, the system reaches an abort ratio of 27%. By increasing the
number of partitions to 256, the result is an abort ratio of 10%. With an overall difference
of 60 percentage points in the proportion of aborted transactions, this shows that the num-
ber of partitions is the biggest influence in the abort ratio of transactions in fastPSI. It is
important to note, however, that increasing the number of partitions also has a big impact
on the performance of the system, as shown in Figure 4.9. During the experiment, the
maximum throughput is reached at 32 partitions across 4 machines. With a small number
of partitions, the increased contention causes the throughput to drop. With a big number of
partitions, each server machine is also responsible for a big number of partitions. As a result,
the system overloads. Thus, the number of available machines constraints the number of
partitions.
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Chapter 5

Related Work

This chapter gives an overview of the previous work in the settings of transactional
protocols, consistency, and application robustness. It also highlights the main differences
between the contributions of this work and previous approaches.

Application Robustness. The notion of robustness as applied to databases was first
investigated by Fekete et al. [22], proposing a way to analyse if applications were robust
against Snapshot Isolation (SI) [13]. The work of Fekete et al. has resulted in the prolifer-
ation of static analysis tools for detecting the presence of anomalies in applications [29], as
well as several run-time techniques for ensuring serialisable transactions [37]. More recently,
Bernardi and Gotsman [14] proposed several robustness criteria for a variety of consistency
models, including Parallel Snapshot Isolation (PSI) [39]. The work on fastPSI builds on
the robustness criteria of Parallel Snapshot Isolation and of Snapshot Isolation to build a
hybrid protocol that allows programmers to selectively strengthen consistency guarantees
for individual transactions.

Entity Groups. The concept of entity was introduced by Helland [28] to refer to a self-
contained data object, with application-defined boundaries, and uniquely identified by an
entity key. In addition, Helland argued for the entity to be the largest scope of transactional
serialisability : transactions can only guarantee atomicity for objects held within the same
entity, and are prevented from modifying objects across entities.

Later systems, such as Megastore [11], introduced the concept of entity groups as disjoint
aggregations of individual entities. Such systems allowed transactions to access distinct enti-
ties, and offered strong consistency for transactions accessing entities within a group, while
offering almost no consistency guarantees for transactions that accessed different groups.
Such systems thus broadened the scope of transactional serialisability to encompass entire
entity groups. In contrast, fastPSI provides PSI for all transactions, even those that ac-
cess objects in multiple entity groups. At the same time, it strengthens the consistency
guarantees further for transactions accessing only individual entity groups, by providing SI.
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Strong Consistency Protocols. Although there is a large variety of protocols providing
strong consistency, this section focuses on those that provide similar guarantees to those in
fastPSI, as well as others from which inspiration was drawn during the design of the fastPSI
protocol.

Walter, designed by Sovran et al. [39], is a transactional replicated key-value store that
offers Parallel Snapshot Isolation. To track causality relations between transactions, Walter
uses vector timestamps with one entry per replica, compared to the version vectors used
by fastPSI, with one entry per partition. In contrast with fastPSI, Walter can only offer
snapshots with base freshness, as transactions fix a start timestamp at the beginning of their
execution. As a result, the system may experience a higher number of aborted transactions
due to stale reads. Walter employs a single server per replica to assign monotonic timestamps
and to manage transactions, which limits the overall scalability. In fastPSI, timestamps are
assigned independently by each partition, and further allows any server to perform the role
of transaction coordinator. Although Walter offers partial replication, the combination of
replication and the choice of monotonic start timestamp leads the system to perform global
communication in the background with all replicas.

Jessy, proposed by Saeida Ardekani et al. [6], is a similar transactional key-value store,
and the first system to provide Non-Monotonic Snapshot Isolation (NMSI). Unlike Walter,
however, transactions in Jessy observe forward freshness in their snapshots, allowing greater
scalability. To support consistent snapshots, Jessy uses a data structure called dependence
vector, also similar to a version vector, with a number of entries either equal to the number
of objects, or equal to the number of partitions. The former approach suffers from a big
overhead, although it allows transactions to read versions of objects as fresh as possible.
With one entry per partition, Jessy offers greater scalability, at the cost of introducing
spurious conflicts between transactions. The fastPSI protocol follows a similar approach,
using version vectors with one entry per partition. Like Walter, Jessy also supports partial
replication. However, Jessy relies on atomic multicast primitives [26], instead of the two-
phase commit protocol used in Walter and fastPSI.

Another protocol that provides NMSI is Blotter, proposed by Moniz et al. [33]. In
contrast with Jessy, Blotter supports full replication through the use of Paxos commit [25].
The design of Blotter shows how the properties of NMSI, like forward freshness, can be used
to design protocols with full replication without loss of scalability.

Peluso et al. [36] proposed GMU, a transactional protocol that uses vector clocks to
track causal dependencies. Much of the design of fastPSI is inspired by GMU, including
its clock mechanism, as well as the approaches to build causally consistent snapshots. The
consistency guarantees are different, however, as transactions in GMU satisfy the Extended
Update Serialisability (EUS) [4, 27] consistency model. EUS guarantees serialisability for
update transactions, while read-only transactions can observe different commit orders for
non-conflicting transactions, similar to the guarantees offered by the causally compatible
snapshots of fastPSI. Even though GMU offers a stronger consistency model, it always
commits read-only transactions, in contrast with the possibility of aborts under fastPSI
when transactions cannot satisfy SI and PSI for the same snapshot.

36



Chapter 6

Conclusions and Future Work

6.1. Conclusions
This work has presented fastPSI, a transactional protocol with hybrid consistency that

combines Parallel Snapshot Isolation (PSI) with stronger consistency models like Snapshot
Isolation (SI) or serialisability. The core of fastPSI is formed by the notions of entity
groups and causally consistent snapshots, which allow forward freshness for transactions
while allowing serialisable transactions inside individual entity groups. The performance
of fastPSI is evaluated in comparison with both strong and weak consistency protocols,
demonstrating that fastPSI is able to outperform a serialisable protocol while having similar
consistency guarantees. On the other hand, the need to reconcile SI and PSI makes fastPSI
susceptible to abort read-only transactions, a major drawback of the protocol in comparison
with other proposals. While fastPSI doesn’t achieve the performance and scalability of weak
consistency protocols like Read Committed, the stronger guarantees provided by fastPSI’s
hybrid consistency should offer an attractive alternative for applications where both strong
consistency and scalability are needed.

6.2. Future Work
In the future, fastPSI should be compared against existing implementations of protocols

of Parallel Snapshot Isolation [39] and Non-Monotonic Snapshot Isolation [6, 33], in order
to explore the scalability properties and overhead of the contributions of this work in com-
parison with previous approaches. As most previous protocols provide either partial or full
replication, a first step towards a fair comparison would be to explore ways of providing
replication in fastPSI, with the work of Moniz et al. [33] on Blotter providing a possible
solution.

As discussed in 3.5, one of the main limitations of fastPSI is the possibility of read-
only transactions having to abort, due the impossibility of observing a causally consistent
snapshot. This limitation is caused by the combination of the hybrid consistency guarantees
of the protocol, combined with the coarse grained nature of entity groups. This limitation
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can be minimised, as shown in 4.2.2, by increasing the number of entity groups in the system
at the cost of lower performance. Future work could investigate ways to further minimise
the number of aborts due to inconsistent snapshots without having to change the number of
entity groups. One such approach could be similar to the one proposed by Bailis et al. [10],
where transactions are able to detect inconsistent reads at run-time, and perform a second
round of communication with servers in order to repair the snapshot.

Finally, in the current implementation of fastPSI, the choice of both the number and the
size of entity groups is left to the application programmer, as it is influenced by the require-
ments of the domain. As such, another possibility of future research is the development of
tools that aid programmers in making such choices by inferring the entity groups required
for application correctness. The work of Gotsman et al. [24] and Najafzadeh et al. [34] pave
the way to build static analysis tools that work for hybrid consistency protocols such as
fastPSI.

38



Appendix A

Serialisable and Read Committed
Protocols

This appendix gives a quick overview of the protocols implemented to compare against
fastPSI. For simplicity, both protocols are minor modifications of the original one, although
the implementations are still efficient. For each protocol, the most relevant changes with re-
spect to fastPSI are summarised, accompanied by the full pseudocode. The implementation
for both protocols is freely available on GitHub [1, 3].

A.1. Serialisability
Recall from 2.2.2 that under serialisability transactions appear to execute one after the

other. However, it does not guarantee a real-time order among them: an implementation
is free to reorder the commit order of transactions as long as the resulting execution still
satisfies serialisability. Since the original protocol guarantees Parallel Snapshot Isolation, it
is sufficient to prevent the Write Skew and the Long Fork anomalies. To do so, fastPSI is
expanded with several changes. A summary of the state of a server is reflected in Figure A.1,
and the pseudocode of the protocol can be found in Figures A.2–A.4.

Track versions of read objects. Read-only transactions need to observe consistent data
that it’s not too stale, or overwritten by concurrent transactions. In order to enforce this
guarantee, a new piece of information is added to the transaction context: the read-set of a
transaction keeps track of the objects that it reads, along with the commit time of the read
version of the object. When a client receives a READRETURN message after issuing a read
of an object x on behalf of a transaction T , it incorporates the commit time of x in T ’s
read-set, T .RS (line 15). It suffices to store the j-th entry of x’s commit vector, that is, the
sequence number assigned to the transaction that wrote the version of x read by T . The
read-set of a transaction is initialised to the empty set (line 2) when the transaction starts.
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Avoid stale reads. Recall from Section 2.2.4 that the Long Fork anomaly occurs whenever
concurrent transactions are able to observe different orderings of non-conflicting transac-
tions. This anomaly can be precluded by forcing transactions to observe the latest version
of an object. The protocol enforces this property during the validation of a transaction.
When a transaction T prepares to commit, it performs a two-phase commit among the
servers storing the objects read and written by the transaction (lines 32–33). Upon receiv-
ing a PREPARE message, a server si checks that, for the objects that T read, the version of
those objects is the most up-to-date in the database of si (line 47, last condition). It does
so by comparing the version of the object stored in the transaction’s read-set (RS ) against
the latest version as reflected by the VersionLog of the object (VersionLog[x].last.Vcomm).
The server also needs to perform the check against concurrently-committing transactions
(line 47, first condition): a server checks that the read-set of a transaction T does not over-
lap with the write-set of any other concurrently-committing transaction, thereby making
T ’s read stale. If the version that T read is stale, the server si votes abort (line 48). Since
it is assumed that transactions read an object before writing to it (and thus, T .WS ⊆ T .RS)
the stale read check also precludes stale writes.

Avoid read-write conflicts. The Write Skew anomaly, introduced in Section 2.2.3, can
be precluded by forcing transactions to observe the writes of concurrent transactions as soon
as those updates are reflected in the state of the database. A history that exhibits Write
Skew, such as h = r1(x0).r1(y0).r2(x0).r2(y0).w1(x1).w2(y2).c1.c2, can only be serialisable by
aborting either T1 or T2. In the protocol, this is avoided by precluding read-write conflicts:
in the previous history, T2 overwrites the version of y that T1 read. Also, T1 overwrites
the version of x that T2 reads, which is also considered a read-write conflict. Both kinds of
conflict can be precluded during the validation of a transaction (line 47, first condition): a
server checks that the write-set of a transaction T does not overlap with the read-set of any
other concurrently-committing transaction (thereby invalidating the read of such concurrent
transaction). If any of the checks is true, the server votes abort (line 48).
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Variables at a server si
Name Domain Description
LastPrep Integer The number of update transactions

that tried to commit at the server.
VersionLog Map[Object, Set[〈Value val,VerVector Vcomm〉]] Database: a mapping from objects to

lists of pairs of a value and the commit
vector of the transaction that wrote it.
The lists are ordered by the i-th com-
ponent of the commit vectors.

CommitLog Sequence[〈Tx T, VerVector Vaggr〉] Log of update transactions T commit-
ted at the server, ordered by Vaggr[i].
Here Vaggr is the aggregate vector of
T : the join of the commit vectors of all
transactions up to T in CommitLog.

Vtotal VerVector The join of the commit vectors of all
transactions in CommitLog.

CommitQueue Sequence[〈Tx,State,ReadSet,WriteSet〉] where
State = {pending,decided}

Queue containing information about
update transactions trying to commit
at the server.

Context for a transaction T at a client ci
T.RS ReadSet Read-set of T .
T.WS WriteSet Write-set of T .

T.HasRead Vector[Bool] Mapping showing whether T has read
a given partition.

T.Vsnap VerVector Snapshot vector: determines snapshots
fixed at partitions T has read from
and possible causal dependencies at all
other partitions.

T.Vdep VerVector Dependency vector, representing all
causal dependencies developed by T
during its execution.

Figure A.1: List of variables used in the Serialisable protocol, where ReadSet =
Set[〈Object, Integer〉] and WriteSet = Set[〈Object,Value〉]

1 function start()

2 return new Tx(WS = ∅,RS = ∅,HasRead = ~⊥,Vsnap = ~0,Vdep = ~0);

3 function write(T, x, v)
4 T .WS← (T .WS \ {〈x,_〉}) ∪ {〈x, v〉};

Figure A.2: Initialisation of a transaction and update of an object x at client ci under
serialisability.
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5 function read(T, x)
6 if 〈x, v〉 ∈ T .WS then
7 return v;

8 j ← partition(x);
9 send READREQUEST(x, T.Vsnap, T.HasRead) to sj;

10 wait receive READRETURN(m) from sj;
11 if m = abort then
12 throw abort;
13 else if m = 〈v,Vdep,Vaggr〉 then
14 T .HasRead[j]← >;
15 T .RS← (T .RS \ {〈x,_〉}) ∪ {〈x,Vdep[j]〉};
16 T .Vdep← max(T .Vdep,Vdep);
17 T .Vsnap← max(T .Vsnap,Vaggr);
18 return v;

19 when received READREQUEST(x,Vsnap,HasRead) from cj
20 if HasRead [i] then
21 V ← Vsnap;
22 else
23 wait until Vtotal[i] ≥ Vsnap[i];
24 r ← max{r ∈ CommitLog | ∀j.HasRead [j] =⇒ (r.Vaggr[j] ≤ Vsnap[j])};
25 if r.Vaggr[i] < Vsnap[i] then
26 send READRETURN(abort) to cj;
27 return;

28 V ← r.Vaggr;

29 ver = max{ver ∈ VersionLog | ver.Vcomm[i] ≤ V [i]};
30 send READRETURN(ver .val, ver .Vcomm, V ) to cj;

Figure A.3: Serialisable local and remote read of object x
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31 function commit(T )
32 forall sj ∈ partitions(T .RS ∪ T .WS) do
33 send PREPARE(T, T.RS, T.WS,Vdep) to sj ;

34 Vcomm ← T .Vdep;
35 decision ← commit;
36 forall sj ∈ partitions(T .RS ∪ T .WS) do
37 wait receive VOTE(m) from sj ;
38 if m = 〈T,abort〉 then
39 decision ← abort;
40 break;
41 else if m = 〈T,commit, k〉 then
42 Vcomm[j]← k;

43 forall sj ∈ partitions(T .RS ∪ T .WS) do
44 send DECIDE(T ,Vcomm, decision) to sj ;

45 return decision;

46 when received PREPARE(T,RS ,WS ,Vdep) from cj
47 if (∃T ′. (〈T ′,pending,RS ′,WS ′〉 ∈ CommitQueue

∨ 〈T ′,decided,_,_,_〉 ∈ CommitQueue)
∧ (WS ′ ∩ RS 6= ∅ ∧ RS ′ ∩WS 6= ∅)

∨ (∃x. 〈x, vsn〉 ∈ RS ∧ (VersionLog[x].last.Vcomm[i] > vsn))

then
48 send VOTE(t,abort) to cj;
49 return;

50 LastPrep← LastPrep + 1;
51 CommitQueue.put(T ,pending,RS ,WS );
52 send VOTE(T ,commit, LastPrep) to cj;

53 when received DECIDE(T,Vcomm, decision) from cj
54 if decision = commit then
55 CommitQueue.update(〈T ,decided,_,_,Vcomm〉);
56 else
57 CommitQueue.remove(T );

58 upon 〈T,decided,_,WS ,Vcomm〉 = CommitQueue.head()
59 forall {〈x, v〉 | 〈x, v〉 ∈WS ∧ partition(x) = i} do
60 VersionLog.add(〈x, v,Vcomm〉);
61 Vtotal← max(Vtotal,Vcomm);
62 CommitLog.add(T,Vtotal);
63 CommitQueue.remove(T );

Figure A.4: Serialisable termination protocol.
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A.2. Read Committed
Read Committed (RC) is the weakest consistency model that satisfies the isolation prop-

erty required by ACID transactions. It forbids concurrent transactions from observing any
data that has not been committed, but it does not place any restriction on the ordering of
transactions, and does not preclude write-write conflicts. Thus, transactions may be ordered
in any way. Figure A.5 shows a summary of the data structures involved in the protocol.

Variables at a server si
Name Domain Description

CommitQueue Sequence[〈Tx,State,WriteSet〉]
where State = {pending,decided}

Queue containing information about update
transactions trying to commit at the server.

Database Set[〈Object,Value〉] Set representing the key-value store as a mapping
from objects to values.

Context for a transaction T at a client ci
T.WS WriteSet Write-set of T .

Figure A.5: List of variables used in the Read Committed protocol, where WriteSet =
Set[〈Object,Value〉].

Since transactions only need to observe the last committed version of an object, it is
sufficient to store only one version. Thus, the VersionLog mapping can be substituted with
a Database that simply maps an object to its latest version. In addition, transactions
don’t need to observe a consistent snapshot of the state of a partition, and therefore all
data structures related to computing a snapshot can be removed. This is reflected in the
execution of a transaction, as can be seen in Figure A.7. A server si executing a remote read
on behalf of a transaction T simply fetches the currently available value of the requested
object, and returns it to the client (line 13).

A protocol satisfying Read Committed still needs to offer atomic visibility. To do so, the
implementation uses two-phase commit to guarantee that a transaction commits at every
partition (line 14). Servers that participate during the commit phase always vote commit
(line 30), since RC does not preclude write-write conflicts. After a successful commit phase,
all servers incorporate the updates of the transaction to its partition state (line 38).

1 function start()
2 return new Tx(WS = ∅);

3 function write(T, x, v)
4 T .WS← (T .WS \ {〈x,_〉}) ∪ {〈x, v〉};

Figure A.6: Initialisation of a transaction and update of an object x at client ci under
Read Committed.
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5 function read(T, x)
6 if 〈x, v〉 ∈ T .WS then
7 return v;

8 j ← partition(x);
9 send READREQUEST(x) to sj;

10 wait receive READRETURN(v) from sj;
11 return v;

12 when received READREQUEST(x) from cj
13 send READRETURN(Databasei.get(x)) to cj;

14 function commit(T )
15 if t.ws = ∅ then
16 return commit;

17 forall sj ∈ partitions(T .WS) do
18 send PREPARE(T ) to sj ;

19 decision ← commit;
20 forall sj ∈ partitions(T .WS) do
21 wait receive VOTE(m) from sj ;
22 if m = 〈T,abort〉 then
23 decision ← abort;
24 break;

25 forall sj ∈ partitions(T .WS) do
26 send DECIDE(T , decision) to sj ;

27 return decision;

28 when received PREPARE(T ) from cj
29 CommitQueue.put(T,pending,WS);
30 send VOTE(T,commit) to cj;

31 when received DECIDE(T, decision) from cj
32 if decision = commit then
33 CommitQueue.update(〈T,decided,_〉);
34 else
35 CommitQueue.remove(T );

36 upon 〈T,decided,WS 〉 = CommitQueue.head()
37 forall {〈x, v〉 | 〈x, v〉 ∈WS ∧ partition(x) = i} do
38 Databasei.apply(x, v);

39 CommitQueue.remove(T );

Figure A.7: Read Committed execution protocol.
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